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Abstract
Parameter tampering attacks are dangerous to a web application
whose server fails to replicate the validation of user-supplied data
that is performed by the client. Malicious users who circumvent
the client can capitalize on the missing server validation. In this pa-
per, we describe WAPTEC, a tool that is designed to automatically
identify parameter tampering vulnerabilities and generate exploits
by construction to demonstrate those vulnerabilities. WAPTEC
involves a new approach to whitebox analysis of the server’s code.
We tested WAPTEC on six open source applications and found
previously unknown vulnerabilities in every single one of them.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Verification; K.4.4 [Electronic
Commerce]: Security; K.6.5 [Security and Protection]: Unau-
thorized access

General Terms
Languages, Security, Verification

Keywords
Parameter Tampering, Exploit Construction, Program Analysis, Con-
straint Solving

1. INTRODUCTION
Interactive processing and validation of user input is increasingly

becoming the de-facto standard for applications programmed for
the Web. With the advent of client-side scripting, there has been a
rapid transition in the last few years to process and validate user in-
put in the browser itself, before it is actually submitted to the server.
Some of the advantages of client-side processing is the elimination
of delays associated with purely server-side data validation, and re-
duction of server-side loads.

Consider the example of a shopping cart application, where in-
puts such as the items in the shopping cart, submitted by a user are
supplied as parameters to the server side. The server often makes
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certain assumptions about those parameters, e.g., the credit card
expiration date is valid (not a past date). Most of those assump-
tions are being enforced by JavaScript on the client side, thereby
avoiding extra round trips to the server caused by incorrect data
entry. However, malicious clients often circumvent the client-side
validation (e.g., craft HTTP requests by hand), and supply invalid
data to the server. The correct way to program these applications is
to ensure that the server performs the same (or stricter) validation
checks that are performed at the client. If this is not the case with a
server, then it is vulnerable to parameter tampering attacks.

Prior work [7] identifying such vulnerabilities in web applica-
tions used a blackbox approach that involved generating opportu-
nities for potential tampering vulnerabilities. This blackbox ap-
proach, while being most suitable for testing web sites whose server
side code isn’t available, involves human labor in converting oppor-
tunities to actual exploits.

This paper improves the state-of-art by seeking a fully automated
approach to identify the presence of such vulnerabilities in a web
application, thus eliminating the need for a human in the loop.
Since there is no human in the loop, our approach must identify
such vulnerabilities without resulting in false alarms. Therefore,
our approach must include mechanisms to confirm the existence of
each potential vulnerability it identifies.

The basic problem of detecting parameter tampering vulnerabil-
ities is to identify validation checks that are “missing” in a server.
This can be done if we have a formal specification of the set of
checks that must be performed by the server. Developing such
specifications is often done through a manual process, and is a dif-
ficult task for legacy applications.

The key idea explored in this paper stems from the observation
that in a web application, a client code already constitutes a de-
scription of the server’s intentions regarding parameter validation
checks. We can therefore, extract a specification directly from the
client code. This specification can then be used to check the server
side code for vulnerabilities.

Using the above observation, we develop a new formulation of
this problem of automatically detecting parameter tampering vul-
nerabilities. In our formulation, a web application is said to be vul-
nerable when the server-side parameter validation is weaker than
client-side validation. In other words, the server performs fewer
checks than the client as to the well-formedness of the client sup-
plied input. Such weaknesses point to security vulnerabilities on
the server that can be exploited by malicious users. Whenever we
find such a weakness, our approach automatically generates a con-
crete instance of the vulnerability in the form of an exploit.

Our approach tool that we call WAPTEC (Whitebox Analysis
for Parameter Tampering Exploit Construction), performs web ap-
plication vulnerability analysis by combining techniques from for-



Listing 1: client.js
1 function validateForm(){
2

3 var q = document.getElementById("quantity");
4 var n = document.getElementById("name");
5

6 if(q < 0 || n.length() > 10){
7 return false; // show error, don’t submit
8 } else {
9 return true; // submit form

10 }
11 }

mal logic and constraint solving, symbolic evaluation and dynamic
program analysis. Our approach implementation is targeted to-
wards applications written using the LAMP (Linux, Apache, MYSQL,
PHP) stack, one of the most widely used development and deploy-
ment platforms for web applications.

Due to the inherent multi-tiered nature of a LAMP application,
the analysis that we need has to reason about the client side code
that validates user supplied inputs, the server side transaction pro-
cessing logic and (often) the database used for persistent storage.
These tiers are implemented as different modules in different lan-
guages (HTML / JavaScript, PHP and SQL), and our core analysis
needs to abstract the validation logic in each of these tiers and rea-
son about them. While the Links [9, 10] programming language
and several other frameworks [1, 8, 2] facilitate principled con-
struction of multiple tiered applications, they are not applicable to
reason across the three tiers of existing (legacy) LAMP applica-
tions.

To the best of our knowledge, this paper presents the first anal-
ysis that presents a uniform framework to reason about the three
different tiers of an interactive LAMP application. Since our anal-
ysis spans the client, server and database, it is comprehensive and
precise about its understanding of the validation performed on web
application inputs, and identifies vulnerabilities “by construction”.
We discuss the design and implementation of this framework in this
paper.

We evaluated six open source web applications using WAPTEC
and were able to find 45 previously unknown vulnerabilities span-
ning every single one of these applications. These vulnerabilities
have serious real world consequences including privilege escalation
to an administrator account, overwriting files on the web server and
denial of service. Furthermore, we show how our approach elimi-
nates false positives and false negatives that are inherent in a black-
box approach.

This paper is organized as follows: Section 2 presents a run-
ning example used in the rest of this paper. Section 3 provides a
high-level overview of the basic ideas behind our approach. Sec-
tion 4 describes the architecture of WAPTEC and its different com-
ponents. Section 5 presents the implementation of WAPTEC. Sec-
tion 6 presents an evaluation of our approach over several open
source web applications. Section 7 presents related work. In Sec-
tion 8 we conclude.

2. RUNNING EXAMPLE
Our main thesis is that it is possible to use the client of a web

application as a specification of the server’s intended behavior. The
basis for this thesis stems from the following observations:

• Validation checks that are implemented at a client convey the
“intention” of the server side of a web application.

Listing 2: server.php
1 $ca = $_POST[’card’];
2 if($ca matches ’card-1’|’card-2’)
3 // generate HTML to show a
4 //selected card in the form
5

6 $n = $_POST[’name’];
7 if( strlen($n) > 10 )
8 $n = substr ($n, 10);
9

10 if($_GET[’op’] == "purchase"){
11

12 $cost = $_POST[’quantity’] * $price + $shipping;
13

14 if(isset($_POST[’discount’]))
15 $cost = $cost - $_POST[’discount’] * $cost / 100;
16

17 $q = "INSERT INTO orders (‘name‘, ‘address‘, ‘card‘,
‘cost‘) ";

18 $q .= " VALUES (’$n’, ’$_POST[address]’, $ca, $cost)
;";

19

20 mysql_query($q);
21 if(mysql_error())
22 $html .= " Please specify an address";
23 }

• Server code on occasion does not replicate these intended
checks often leading to security flaws.

The second point is worth further elaborating. The reason for the
omission of security checks is multi-fold: first, not all web devel-
opers are aware of the security concerns about data received from a
client cannot be trusted to respect these intended checks and there-
fore need to be replicated. Secondly, the client and the server of-
ten originate from two different codebases, the typical example is
that a client is written in JavaScript and the server in one of the
many platforms such as PHP, ASP or Java. When there are two
codebases, improvements made to one (such as additional new val-
idation checks and maintenance updates) do not always translate to
changes to the other, leading to security violations. In this work,
our aim is to detect such mismatches through automated code anal-
ysis.

We illustrate the general ideas in this work with the help of a run-
ning example. Consider a web application that provides a shopping
checkout form with textfields name, address, item quantity, a
dropdown menu displaying previously used credit cards to pick the
card for the current purchase and a hidden field op that is set to
“purchase". (These fields assume the usual meaning as in a typical
shopping session). Listing 1 and 2 list the client side and server
side code of this application, respectively.

The client side code in Listing 1 performs its validation checks
at lines 6 through 7. The code checks if the quantity field is a
positive integer, and if the supplied name is less than 10 characters,
and submits input to the server if these conditions are met.

The server side code shown in Listing 2 computes the cost of
purchase and inserts this into the orders database. To illustrate the
basic parameter tampering attack, notice that the validation check
for quantity is not replicated in the server. It is therefore possi-
ble that a malicious client can perform this attack by submitting a
negative quantity field, reducing the cost computed to a low value.

In order to uncover this attack, the client JavaScript code in List-
ing 1 must be analyzed, leading to the inference that the constraint
on the quantity field restricts it to a non-negative number. Sim-
ilarly, the server PHP code in Listing 2 must be analyzed to infer
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Figure 1: System Workflow

that it does not impose any constraints on this field. In addition, the
following challenges need to be addressed as well.

Restrictive servers. While servers occasionally fail to replicate
client checks, they are often designed to be more restrictive than
clients in processing user input. In our example, note that the client
restricts the length of the name field to 10 characters or less. On
an input that does not meet this constraint (has 11 or more charac-
ters), the server chooses to “sanitize” this field by considering only
the first 10 characters of the submitted value. A naive approach
that doesn’t satisfy the client restrictions and fails to consider the
effect of sanitization in reaching a sensitive operation on the server
will generate a false alarm. Our analysis is designed to factor such
changes to input and avoids generating false alarms (§4.2).

Handling database operations. Any server side analysis should
not only consider the effect of server side code, but also the ef-
fect of its database operations. For instance, database operations
may further constrain data submitted by a client through integrity
constraints. Failing to consider these constraints will also generate
false alarms. For example, say the address field in database has an
integrity constraint that ensures that it is not null. Failing to con-
sider such constraints will generate false alarms. Our approach is
designed to correctly handle the effect of such database constraints
(§4.3).

Negative Parameter Tampering. Sometimes a server side file,
such as server.php is written to handle multiple forms. In the
above example, the server-side code additionally checks for pa-
rameter discount. While this code was intended for processing
a totally different form that contains discounts for the user, it is
not uncommon for LAMP applications to reuse the code that has
some shared processing of content. An exploit that introduces this
field discount can result in providing unlimited discounts to the
total price. We call this negative tampering, as it is performed by
an input field that is not present in the original form. By whitebox
analysis of server side code, we are able to identify such vulnera-
bilities. We found a zero-day negative tampering attack on the open
source application dcpportal that enables privilege escalation of
an ordinary user to an administrator (§6).

3. APPROACH OVERVIEW
WAPTEC’s basic approach to identifying parameter tampering

exploits (inputs the client rejects but the server accepts) on a web
application is a two-step process: (i) find server control paths that
if taken result in the input being accepted, i.e., paths that lead to
sensitive operations (such as the INSERT query in line 17 of our
running example), and (ii) find inputs leading to each such control
path that the client rejects (such as submitting a negative quantity
to the server). In WAPTEC, step (i) is accomplished using a form
of constraint-guided search that probes the server with inputs that
the server ought to accept and then analyzes the code the server
executed to determine if that control path led to a sensitive sink.
We call any input the server ought to accept that results in execu-
tion of a sensitive operation a benign input. Step (ii) is also ac-
complished by probing the server with inputs and checking for a
sensitive sink on the resulting control path, though this time the
inputs are those the server ought to reject. Any input the server
ought to reject that results in execution of a sensitive operation is a
hostile input. Hostile inputs are correct by construction parameter
tampering exploits.

Unlike many bug-finding program analysis efforts, WAPTEC
leverages the existence of client-side code (a web form) for both
steps. When searching for a benign input in step (i), WAPTEC
only generates inputs that the web form accepts and would submit
to the server; moreover, because the client code is relatively sim-
ple to analyze, WAPTEC extracts a logical representation of all
such inputs (fclient) and utilizes constraint-solving technology to
directly construct an input the client accepts (i.e., without fuzzing).
While the server does not accept every input the client accepts,
therefore requiring constraint-guided search, the client side code is
a good enough approximation that WAPTEC often finds a benign
input on the first try.

When searching for attacks on a given control path on the server
in step (ii), WAPTEC again uses fclient to generate inputs, but
in this case the inputs are designed to be hostile. The main thesis
of WAPTEC’s approach is that if the client code rejects an input,
the server ought to reject it as well; thus, every input satisfying the
negation of fclient is a potential hostile input (parameter tampering
exploit), which constraint solvers can again construct directly. Fur-



thermore, WAPTEC uses the logical representation of fclient to
group all the potential exploits by the vulnerabilities they illustrate
and generates one (or any number) of exploits per distinct vulnera-
bility.

Below we describe WAPTEC’s two step approach in more detail
and refer to the steps shown in Figure 1.

3.1 Finding benign inputs
The purpose of a web form that validates user input is to re-

ject inputs that the server will (or in practice should) reject. The
converse is also often true: if the web form accepts an input the
server will also accept it. We can therefore reasonably treat the
constraints the web form checks as an approximate specification
for the server’s intended behavior. WAPTEC extracts the con-
straints enforced by the web form (which we call fclient) using
program analysis, which is accomplished by the HTML / JavaScript
Analyzer in step 2 of Figure 1. For our running example, the
client formula is quantity ≥ 0 ∧ len(name) ≤ 10 ∧ card ∈
{card-1|card-2} ∧ op = “purchase′′ where the first two con-
straints are contributed by JavaScript and the rest are derived from
HTML.

To find a benign input, WAPTEC starts by using its Constraint
Solver component to find any input that satisfies fclient and then
submits that input to the server (step 3). To check whether or not
the input reaches a sensitive sink (i.e., is benign), WAPTEC an-
alyzes the code executed by the server using its Trace Analyzer
component (step 4). If the server reaches a sensitive sink, the in-
put is benign. However, sometimes the input fails to reach a sen-
sitive sink because the server enforces more constraints than the
client. These extra constraints can arise, for example, because the
server has more information than the client (e.g., the list of ex-
isting usernames). In our running example, the input satisfying
fclient might be quantity = 3, name = “JohnDoe”, card =
card-1, op = “purchase′′. The server rejects this input because
it requires address to have a non-null value (i.e., address is a
required value).

When an input that satisfies fclient fails to reach a sensitive
sink, WAPTEC attempts to augment fclient with additional con-
straints, the intention being that any input satisfying the augmented
fclient will lead to a sensitive sink. To compute this augmentation,
WAPTEC examines the execution trace of the code the server exe-
cuted on the failed input, and computes a logical formula represent-
ing that code trace (called fserver , computed in step 5, by the Trace
Analyzer). The intuition is that fserver represents (the conjunction
of) the conditions on the server’s inputs that if true will always lead
to the same control path. Since that control path fails to lead to a
sensitive sink, every input leading to a sensitive sink must falsify
one of the conditions on the path, i.e., it must satisfy the negation of
fserver . Thus, the augmentation of fclient when no success sink is
found is fclient∧¬fserver (step 9). In our example, the augmented
fclient would be quantity ≥ 0 ∧ len(name) ≤ 10 ∧ card ∈
{card-1|card-2} ∧ op = “purchase′′ ∧ required(address),
where required(x) means variable x is required to have a value.

This process then repeats, starting with the augmented fclient,
finding an input that satisfies it, and iterating until WAPTEC finds
a benign input. At a high level, this process generates a series of
inputs, where each subsequent input has a better chance of being a
benign input than all of the previous.

Once WAPTEC finds a benign input, it performs a depth-limited
version of the procedure above to find additional, nearby control
paths that lead to sensitive operations. To do that, WAPTEC ana-
lyzes the trace to extract fserver , which is a conjunction C1∧· · ·∧
Cn. For each Ci, WAPTEC adds ¬Ci to (the augmented) fclient,

finds a satisfying input, and checks if that input leads to a sensi-
tive operation. We call this process perturbation, since WAPTEC
attempts to perturb the constraints leading to one sensitive sink
to find additional sinks. Since each Ci can potentially produce a
distinct control path leading to a sensitive sink, after this depth-
limited search WAPTEC has between 1 and n + 1 control paths
leading to sensitive operations. The perturbation process is moti-
vated by the intuition that small changes to successful inputs may
still drive execution successfully to sensitive sinks, which are often
clustered together, and hence after finding a single sink, there is a
high likelihood of finding additional sinks nearby. It is noteworthy
that WAPTEC does not perturb a path that has no sensitive sinks
because all the paths that it would reach by perturbation are already
reachable by the augmentation of fclient by ¬fserver .

3.2 Finding hostile inputs
For each control path WAPTEC finds that leads to a sensitive

sink, it attempts to generate inputs that the server ought not ac-
cept but that lead to that same sink. Generating inputs the server
ought not accept is straightforward: find solutions to the negation
of fclient, for if the client rejects a given input, we can be assured
the server will reject it as well (or else the client fails to expose the
server’s full functionality to users). Generating inputs that cause
the server to follow the same control path and therefore arrive at
the same sensitive sink is likewise straightforward: find solutions to
fserver . Thus, generating inputs that follow the same control path
and therefore are accepted by the server but that the server should
not accept amounts to finding a solution to ¬fclient ∧ fserver (step
6). Conceptually, every such solution amounts to a parameter tam-
pering exploit, but to ensure the input is in fact an exploit, we sub-
mit it to the server (step 7) and ensure it reaches a success sink
(steps 8 and 9).

Furthermore, instead of generating one input for¬fclient∧fserver ,
WAPTEC generates one input for each disjunct δ in the disjunctive
normal form of ¬fclient by finding a solution to δ ∧ fserver . Each
of those inputs satisfies a logically distinct set of constraints and
hence is likely to represent a logically distinct vulnerability. Each
δ ∧ fserver can be construed as a distinct server-side vulnerability
witnessed by one of the exploits WAPTEC finds.

In our running example, the negation of fclient is quantity <
0∨len(name) > 10∨op! = “purchase′′∨card 6∈ {card-1|card-2}.
There is a control path through the server where fserver includes
required(address) ∧ ¬len(name) > 10. Thus, to construct an
exploit, WAPTEC uses the Constraint Solver to find one solution
to the formula
quantity < 0 ∧ required(address) ∧ ¬(len(name) > 10) and
another solution to the formula
len(name) > 10 ∧ required(address) ∧ ¬(len(name) > 10).
In the first case, the server executes an INSERT operation, and is
deemed an exploit (hostile). This exploit illustrates the vulnerabil-
ity where quantity is given a negative value. The second formula
is not satisfiable and therefore there is no exploit reported.

The pseudo-code for steps (i) and (ii) of our approach can be
found in Algorithms 1 and 2, respectively.

3.3 Soundness
It is important to describe at a high level the mechanisms that we

use for generating the client formula fclient and the server formula
fserver , and their implications for the correctness of our approach.

The client formula fclient is generated by the HTML / JavaScript
Analyzer (shown in Figure 1), and is based on our prior work [7].
The analyzer uses symbolic evaluation [20] to compute the client
formula fclient. Since the formula is statically computed from the



Algorithm 1 WAPTEC (url)
1: fclient := clientAnalyzer(url)
2: Q := {true}
3: loop
4: α := pop(Q)
5: ν := solve(fclient ∧ α)
6: (success, fserver) := server(url, ν)
7: if success then
8: genHostiles(url, fclient, fserver)
9: for all Ci | fserver = C1 ∧ · · · ∧ Cm do

10: ν := solve(fclient ∧ α ∧ ¬Ci)
11: (success, fserver) := server(url, ν)
12: if success then genHostiles(url, fclient, fserver)
13: else
14: Q := Q ∪ {α ∧ ¬Ci | ¬fserver = ¬C1 ∨ · · · ∨ ¬Cm}
15: Q := simplify(Q)
16: if empty(Q) then return

Algorithm 2 GENHOSTILES(url,fclient,fserver)
1: for all δ ∈ DNF (¬fclient) do
2: ν := solve(δ ∧ fserver)
3: success := server(url, ν)
4: if success then print Exploit found: ν

source, the generated formula is in fact an approximation. Specif-
ically, due to the nature of the approximations made in [7], fclient

is an under-approximation of the constraints the client enforces,
which means that every time an input is generated that satisfies
fclient, it is indeed the case that this input will lead to a successful
form submission from the client. Similarly, ¬fclient, represents an
over-approximation of input instances that are rejected by the client
(e.g., line 7 of client code listing 1 in our running example). Inputs
satisfying ¬fclient are therefore not necessarily rejected, but we
can always execute those inputs in the actual client code to ensure
they are rejected by the client.

In our approach, the server side behavior is obtained by dynamic
analysis of server side code. This means that the server side for-
mula fserver will be specifically tied to each run, and is generated
from the program trace induced by the run. By its very nature, dy-
namic analysis only considers the operations done by code that is
executed; hence, fserver precisely captures the server behavior for
the run without any approximations.

Since fserver is precise, and WAPTEC can verify that any so-
lution to ¬fclient ∧ fserver is actually rejected by the client, all
the exploits WAPTEC reports are concrete parameter tampering
exploits. Our implementation seeks to find such exploits.

3.4 Discussion
Section 2 described several challenges that WAPTEC addresses.

Here we explain how those challenges are met by the algorithms
just discussed.

Multi-tier analysis. The algorithms above are written as though
WAPTEC is faced with analyzing only a single program, but in re-
ality there are three programs written in different languages that it
must analyze: the web form, the server code, and the database. To
reason about the combination of these three programs, WAPTEC
analyzes each program individually and extracts the relevant se-
mantics into logical formulas (more specifically the logic of strings).
Once the important portions of the three programs are expressed in
a common language, reasoning about the combination is much sim-
pler and can be carried out as described in this section. Details on

translating web forms into logic can be found in Section 4.1; de-
tails on translating server code (one trace at a time) into logic can
be found in Section 4.2; details on translating database code into
logic can be found in Section 4.3.

Negative parameter tampering. Discovering attacks that uti-
lize variables not appearing in the client-side web form (i.e., neg-
ative parameter tampering attacks) is a natural side-effect of our
basic algorithm. Such variables appear in the server-side code, and
when the server processes any given input, fserver will therefore
include those variables. In our running example, line 14 checks if
the variable discount has a value. Therefore, every fserver gener-
ated from an input that fails to set discountwill always include the
constraint ¬required(discount). When the input fails to reach a
sensitive sink, fclient is augmented with required(discount), and
when the input succeeds in reaching a sensitive sink, the perturba-
tion process includes required(discount) as one perturbation. In
both cases, subsequent attempts to find satisfying inputs require
discount to be assigned a value.

Sanitization. Sometimes before validating user input, the server
sanitizes those inputs. Sanitization violates the premise that if the
client rejects an input so should the server. For example, instead of
rejecting a name value that is longer than 10 characters, the server
truncates name to 10 characters. WAPTEC can avoid triggering
false positives for some sanitization cases because of the way it
constructs fserver from a trace of the server’s code (§4.2).

4. WAPTEC ARCHITECTURE
The previous section outlined high level challenges in design-

ing a whitebox analysis tool to detect parameter tampering attacks.
Specifically, we note that different components of a web application
are written in different programming languages: client side code is
written in HTML / JavaScript, server side code is written in server
side programming languages such as PHP, JSP, etc., and finally,
database schema is written in languages such as SQL. To compute
formulas that represent restrictions imposed on inputs, we need to
bridge the gap between different programming languages and ex-
press constraints imposed by them uniformly in terms of first-order
logical formulas. Expressing constraints uniformly would then en-
able generation of benign and hostile inputs by solving formulas
involving fclient and fserver .

This section discusses technical challenges faced in assimilating
constraints from various components of a LAMP web application
and algorithms that address them. fclient is computed from the
client-side code and involves analysis of HTML / JavaScript code
relevant to a web form (Section 4.1). fserver is computed from
the server-side code and involves extracting constraints from PHP
server-side code (Section 4.2) and SQL databases (Section 4.3).

4.1 Extracting constraints from client-side
code

The client-side web form is typically expressed in HTML and
JavaScript both of which encode restrictions on user inputs. We
analyze HTML code of the web form to extract constraints implied
by various form fields e.g., a drop down menu implies a range con-
straint on value of the user input. JavaScript validation code asso-
ciated with the form is symbolically executed to extract conditions
that, if satisfied, indicate successful input validation at the client.
All restrictions imposed by HTML and JavaScript together then
provide the client-side formula fclient. Generation of fclient is
based on our prior work NOTAMPER[7] which provides a detailed
treatment.



Listing 3: Trace generated for running example
1 $main_ca = $_POST[’card’]; //
2 if($main_ca matches ’card-1|card-2’){ //
3

4 }
5

6 $main_n = $_POST[’name’];
7 if(! strlen($main_n) > 10 ) {
8 }
9

10 if($_GET[’op’] == "purchase"){
11

12 $main_cost = $_POST[’quantity’] * 100 + 10; //
where $price is 100

13

14 if(!isset($_POST[’discount’]){
15 }
16

17 $main_q = "INSERT INTO order (‘name‘,‘address‘, ‘
card‘, ‘cost‘)";

18 $main_q = "INSERT INTO order (‘name‘, ‘address‘,
‘card‘, ‘cost‘)" . "VALUES(’" . $main_n .
", ’" . $_POST[’address’] . "’" . $main_ca
. "," . $main_cost . ");";

19

20 mysql_query ($main_q);
21 $_wb_status = "SUCCESS"; // query

execution denoted by SUCCESS status
22

23 }

4.2 Extracting constraints from server-side
code

The formula fserver represents server side validation and san-
itization of user inputs. To generate fserver , we first capture a
trace comprising of statements that the server executed to process
user inputs. For the running example (Listing 2), Listing 3 shows
the generated trace for inputs card=’card-1’, name=’alice’,
address=’wonderland’, op=’purchase’ and quantity=1. Each
line in the generated trace Listing 3 corresponds to the line in the
running example Listing 2 that generated it.

To generate fserver , we need to identify statements in a trace that
correspond to validation / sanitization done by the server side code.
The server-side code may perform user input validation and saniti-
zation in the following three ways: a) explicit validation of desired
properties of user inputs in conditional statements and b) implicit
validation / sanitization of user inputs through inbuilt functions in
server-side code and c) implicit validation / sanitization of user in-
puts by database. In the running example (Listing 2), validation of
the card parameter at line 2 illustrates explicit validation, trunca-
tion of the name parameter at line 8 illustrates explicit sanitization
(as execution of line 8 ensures that value of the name parameter
will contain 10 or less characters) and rejection of null value for
the parameter address exemplifies database sanitization / valida-
tion. fserver is essentially computed by identifying and analyz-
ing all the three types of validation / sanitization constructs present
in a trace. We focus on the first two types of validation / saniti-
zation constructs here and the database validation / sanitization is
discussed in the next section (Section 4.3).

Extracting constraints due to explicit validation. Explicit
validation of user inputs is captured by IF statements appearing
in a trace e.g., four IF statements shown in the trace in Listing 3,
capturing validation of parameters card, name, op and discount,
respectively. To learn the constraint being checked by an IF state-
ment, we analyze its condition argument. Each such condition ar-
gument is then repeatedly expanded until it only contains user in-

puts, concrete values and operators. For example, the IF statement
on Line 2 (Listing 3) checks if
$main_ca matches ′card− 1|card− 2′. We expand $main_ca
with $_POST[′card′] because of the assignment statement on Line 1.
Intuitively, starting from the IF statement the above process walks
backwards in the trace and replaces server-side variables appearing
in conditions with values assigned to them until the condition is
expressed in terms of inputs, concrete values and operators.

A challenge in precisely capturing explicit validation in IF state-
ments stems from the presence of irrelevant statements. A naive ap-
proach that considers all IF conditions as relevant to a sink would
report imprecise results. For example, consider the first IF state-
ment in the trace (Listing 3). This IF statement checks the value of
parameter card and sets the HTML form to show the selected en-
try. Although the trace contains check on card, it does not prevent
the query computed at line 20 from using malicious values of card.
Similarly, a form may contain several parameters but a server side
sink may only use some of them. Therefore, our analysis must fac-
tor whether a tampered parameter is actually going to be used at a
sensitive operation.

WAPTEC identifies conditionals relevant to a given sink by em-
ploying data- and control-dependency analysis: the data depen-
dency analysis identifies conditionals that actually contributed data
to a sink, and the control dependency analysis identifies condition-
als that actually dictated control flow to a sink. For the running
example, the query executed at line 20 is neither data nor control
dependent on conditional statement at line 2 and hence this condi-
tional is ignored while analyzing sink at line 20.

For the trace in Listing 3 the above process contributes the fol-
lowing constraints to the fserver formula:

len(name) ≤ 10 ∧ op = ”purchase” ∧ ¬isset(discount).

Extracting implicit constraints due to sanitization. The server-
side sanitization of user inputs may inherently enforce constraints
on user inputs. For example, at line 8 (Listing 2) server-side vari-
able $n which contains value of the parameter name, is sanitized. In
specific, by truncating the name parameter with substr function,
the server-side code ensures that after this sanitization the contents
of $n variable will have 10 or less characters i.e., it implicitly en-
forces the constraint len (name) ≤ 10.

WAPTEC avoids analyzing paths that would result in generat-
ing false alarms due to such sanitization. To see, we revisit the ba-
sic process by which WAPTEC identifies paths to a success sink.
Notice that we demand that this path is satisfied by an input that
satisfies fclient. In the event the server chooses to apply sanitiza-
tion of input to satisfy fclient, such a path will not be considered
by WAPTEC for trace analysis, because a benign input will never
traverse that path. For example, in Listing 2, the statement in Line 8
will never be executed by WAPTEC.

Nevertheless, an application may have incomplete or partial sani-
tization. To handle these cases, we capture such implicit constraints
by analyzing the sink expression (e.g., SQL query), and demand-
ing that fclient be held true by the sink expression. We express the
sink expression purely in terms of user inputs and concrete values
by following a process similar to expansion of IF conditions. The
resulting SQL sink expressions are then parsed with a SQL parser
thus identifying data arguments to SQL queries which contain user
inputs (or a function of user inputs). Currently, the restrictions on
the operators appearing in the sink expression are limited to the
language (shown in Table 1) supported by the underlying solver (as
described in §5.2).



4.3 Extracting constraints from database
Database query operations present interesting consequences for

approaches that analyze server-side code. With respect to such op-
erations, many security analysis approaches limit their reasoning to
reachability, e.g., most tainting approaches aim to find if a tainted
data item can reach a database query execution location. Without
analyzing outcome of the query execution, such approaches will
result in imprecision as database engine may either sanitize hos-
tile inputs to comply with its schema or reject them. For black-
box approaches, database triggered sanitization may result in false
alarms. Additionally, whitebox approaches that ignore these con-
straints may never generate a benign set of inputs that will be truly
accepted at the sink. For our running example, without considering
database constraint (NOT NULL) on the address field, it is not
possible to generate acceptable benign inputs. Note that this also
forbids discovery of legitimately exploitable parameters for such
sinks, thus resulting in false negatives e.g., the quantity exploit
cannot be constructed without providing a non-null address value.

We first note that the database schema is a sequence of SQL
queries that creates different tables and views and expresses cer-
tain restrictions on data that can be inserted into each column of a
table. Suppose we know that a user input u is being inserted into a
column c of a table, then all constraints implied on c by the database
schema, must be satisfied (if validation) or will be enforced when
data is added to the database (if sanitization). However, finding
the mapping between u (typically server-side variables) and c (col-
umn name in a database table) is challenging as it requires bridging
the namespace differences between application code and database
schema i.e., application code and database tables may refer to same
data with different names. WAPTEC analyzes database schema
and queries issued in traces to build a mapping between server-side
variables and database columns which enables it to then express
constraints imposed by database in terms of user inputs.

In the first step, this analysis parses the schema of an applica-
tion’s database. For each table creation statement we analyze the
column definitions that typically specify constraints on values that
can be stored e.g., “NOT NULL" clause enforces non-null values
whereas enum specifies domain of accepted values. We handle
MySQL formatted schemas and extract such conditions in the solver
language.

In the second step, we generate a symbolic query for SQL sinks
found in traces and parse them. This parsing enables us to map ta-
ble column names to program variables. For example, on parsing
a symbolic SQL query “insert into T (uid, ... values(

’$_GET[u]’,...", we can associate column uid of table T to
program variable $_GET[u]. Once this mapping is available, we
generate constraints by replacing column names with program vari-
ables in constraints generated by the first step e.g., if uid column
had a NOT NULL constraint, this analysis will yield a constraint
(NOT NULL u).

Discussion. The above discussion highlights the relationships
between server variable names, client form field names and database
field names as intended by typical web applications. These rela-
tions are important from the perspective of sanitization as well. We
already discussed a precise way to handle the effect of sanitization
that requires the client validation to hold at the sink expression,
(and is therefore safe for such operation). However, such an ap-
proach needs to make an assumption that the database field corre-
sponding to the sink expression represents a corresponding client
form field (that is transformed to the sink expression with some
form of sanitization). While the discussions in this section suggest
that such an assumption is reasonable across a large class of web
applications, and indeed holds in the applications that we analyzed,

it is very easy to construe examples where it could break. For in-
stance, consider a (contrived) web application which assigns a sink
expression to a value that does not satisfy client validation, and the
intention behind such an assignment may be beyond the inference
of any automated mechanism. More generally, the above discus-
sion raises the need for a specification that provides a mapping be-
tween client inputs and database fields. While such specifications
were not needed for the applications we analyzed, the availability
of such specifications will be able to broaden the applicability of
our analysis.

5. IMPLEMENTATION
To generate fserver , we need a trace of statements executed by

the server-side code. Section 5.1 provides the high-level details
behind a program transformation that enables PHP applications to
generate a trace and facilitate computation of fserver . Generating
benign and hostile inputs entails solving logical formulas and Sec-
tion 5.2 describes the implementation details of the solver.

5.1 Trace generation transformation
Computation of fserver entails reasoning about server-side pro-

cessing of user inputs e.g., properties of user inputs checked by the
server-side code. We capture the server-side processing of user in-
puts in traces which contain program statements executed by the
server-side code to process user inputs. To generate such traces we
perform source-to-source transformation of applications written in
PHP language. The transformed applications are then deployed and
generate traces apart from processing user inputs.

Alternate implementation. The other choice for capturing
such traces is to instrument a PHP interpreter itself. Although, this
approach requires less effort on a per application basis, it may re-
quire extensive changes to the PHP interpreter. Also, there are con-
siderable analysis needs that led us to adopt a program rewriting
route. First, we needed taint tracking to identify the flow of un-
trusted inputs. Second, we needed data and control flow analysis
required to identify conditions only relevant to the sink. Third, to
handle PHP5 object-oriented features, we need to unambiguously
identify each object in order to avoid name collisions. While these
can be done by hacking various internal parts of a PHP interpreter,
such changes would generally not be portable across revisions to
the interpreter. Our implementation does so in a much cleaner fash-
ion while retaining portability across various PHP interpreters and
is not broken by revisions to the interpreter.

Avoiding name collisions. Traces are straight-line PHP pro-
grams comprising only of assignments, calls to inbuilt functions
and IF-THEN statements. A challenge in reporting variable names
in traces is caused by the possibility of name collisions. As traces
are straight-line programs, all functions (except PHP inbuilt) exe-
cuted by the web application need to be in-lined. As this in-lining
merges variables from several lexical scopes it could result in name
collisions and could generate traces that misrepresent run of the
web application e.g., name-collisions could result in traces that in-
correctly capture use / reachability of an important variable. To
avoid name collisions, program transformation attaches a unique
prefix to each variable name being reported in the trace. To com-
pute these prefixes, we use function / method signatures and for
variables appearing in classes, a per object unique identifier is used
additionally (as described below).

PHP object-oriented features. Object-oriented features are
often used in PHP programs (2 of the 6 applications we evaluated
were object-oriented and used inheritance). As multiple instanti-
ations of a class yield objects with same methods, method signa-
tures are same for all such objects. Thus prefixing signatures to



Class Examples Instances
Equality * =, 6= x 6= y
Numeric * +, ∗, −, /, <, > x < 7
Modal required required(x)
Regex * ∈, 6∈ x ∈ [abc]*
PHP trim, len, concat len(x) < len(concat(y, z))

Table 1: WAPTEC constraint language

variable names may still lead to name collisions in object-oriented
programs. Further, a member variable can be accessed using mul-
tiple namespaces e.g., by using the this operator (inside methods)
or by using names assigned to objects. Although, all such instances
are accessing the same memory region, a naive renaming scheme
may lose precision by failing to identify these accesses with a sin-
gle variable name.

The main changes required to classes are for computing unique
prefixes for variables. Here, the transformer adds an id member
variable to the class definition to hold the unique identifier for each
instance of the class. The constructor methods are augmented to
initialize the id variable to a unique value. Further, inheritance
is inherently handled in this scheme as the id member of inher-
iting class shadows the id member of base class. With the help
of id variable, accesses to a member variable through an object
($o→member1) or the this operator ($this→member1) are uni-
formly transformed as v_$id_member1. This enables subsequent
analysis to correctly identify accesses to a single memory location
from disparate namespaces.

As fserver mainly concerns processing of user inputs, the trans-
former ensures that the generated traces only contain statements
manipulating user inputs. We use standard taint tracking tech-
niques to track user inputs and only include statements manipu-
lating tainted arguments in traces. Special care was needed to ini-
tialize and propagate taint as PHP recursively defines some of the
inbuilt arrays e.g., super global array GLOBALS contains itself as a
member.

5.2 String solver
The string solver component analyzes logical formulae to con-

struct inputs that are fed to the server; some of those inputs the
system was designed to accept, while other inputs are intended to
expose server-side vulnerabilities. The string solver component of
WAPTEC was built on top of Kaluza [21], a state-of-the-art solver
that finds variable assignments satisfying string and numeric con-
straints. The main challenge in building the string solver compo-
nent was translating the WAPTEC constraint language into the lan-
guage supported by Kaluza.

Constraint language. WAPTEC allows all boolean combina-
tions of the atomic constraints shown in Table 1. The equality and
numeric constraints are standard; regular expression constraints re-
quire a variable to belong to a given regular expression; PHP con-
straints include functions from PHP and JavaScript such as trim
(found in e.g., the MyBloggie application) for removing whites-
pace from the ends of a string and strpos for computing the index
at which one string appears inside another string. Kaluza roughly
supports those categories of constraints marked with an asterisk,
plus functions for computing the length of a string and concatenat-
ing two strings. Thus, translating WAPTEC’s constraint language
to Kaluza’s language requires handling modals and PHP functions.

Static versus dynamic typing. Besides the difference in atomic
constraints, there is a more fundamental difference between the
constraint languages of Kaluza and WAPTEC. Kaluza requires ev-

ery variable to have a single type and does not provide functions
to cast from one type to another1, whereas PHP allows variables to
take on arbitrary values. This mismatch makes the translation dif-
ficult because a constraint such as x 6= 0 ∧ x 6= “0” causes a type
error in Kaluza but appears frequently in the semantics of PHP, e.g.,
when defining whether a variable evaluates to true or false.

Our approach approximates the semantics of PHP functions with
a combination of type inference to detect type mismatches, type
resolution to choose one type for mismatched arguments, static
casting to convert problematic arguments to the chosen types, and
type-based simplification to eliminate constraints that do not actu-
ally affect the satisfiability of the constraints but cause Kaluza to
throw type errors.

Untranslatable constraints. Some of WAPTEC’s constraints
cannot faithfully be translated into Kaluza’s constraint language.
For example, PHP employs a number of built-in data structures
not handled by Kaluza, and PHP functions often accept and re-
turn such data structures. For example, MyBloggie employs the
preg_replace function, which is a regular-expression version of
a string replacement operation. preg_replace can both accept and
return arrays as arguments. Arrays are difficult to translate to Kaluza
because they correspond to an unknown number of variables, and
Kaluza expects a fixed number of variables in the constraints. An-
other example of a function we did not translate is found in DCP-
Portal application: themd5 function computes the MD5 hash of its
argument.

For constraints that cannot be translated to Kaluza’s language,
WAPTEC simply drops those constraints, producing a constraint
set that is weaker than it ought to be, potentially leading to un-
soundness and incompleteness in the search for parameter tamper-
ing exploits. However, because WAPTEC always checks if the
variable assignment produced by the solver satisfies the original
constraints, unsound results are never reported.

Disjunction. As mentioned above, disjunction is employed
heavily by WAPTEC, and while Kaluza handles disjunction na-
tively, the search for parameter tampering exploits sometimes re-
quires finding different solutions for different disjuncts in a set of
constraints—functionality Kaluza does not support. Thus WAPTEC
manages disjunctions itself, sometimes converting to disjunctive
normal form (DNF)2 explicitly.

6. EVALUATION
We evaluated the effectiveness of WAPTEC on a suite of 6 open

source PHP applications that were chosen to reflect prevalent appli-
cation domains in commonplace settings. Table 2 provides back-
ground information on these applications (lines of code, number
of files, and functionality). The test suite was deployed on a Mac
Mini (1.83 GHz Intel, 2.0 GB RAM) running the MAMP applica-
tion suite, and WAPTEC was deployed on an Ubuntu workstation
(2.45Ghz Quad Intel, 2.0GB RAM).

Experiments. We evaluated our approach by conducting two
sets of experiments. In the first set of experiments, we ran WAPTEC
to automatically analyze the chosen web forms and identify param-
eter tampering exploits that are correct by construction. In the sec-
ond set of experiments, we ran NOTAMPER, a blackbox version of
WAPTEC developed in our previous work [7], on the same web
forms. We compared the results of the two experiments to quantify

1Type casting functions, while included in the documentation, were
unavailable at the time of evaluation.
2In our experience, converting to DNF was usually inexpensive
(despite its worst-case exponential behavior) because of the struc-
tural simplicity of the constraint sets.



Application Size Files Use Exploits
(KLOC)

SnipeGallery 9.1k 54 Image Mgmt 2
SPHPBlog 26.5k 113 Blog 1
DcpPortal 144.7k 484 Content

Mgmt
32

PHPNews 6.4k 21 News Mgmt 1
Landshop 15.4k 158 Real Estate 3
MyBloggie 9.4k 59 Blog 6

Table 2: Summary of WAPTEC results

the benefits of using whitebox analysis over blackbox analysis in
the context of parameter tampering attacks.

Results summary. The outcome of the first set of experiments is
summarized in Table 2. We evaluated one form in each application.
WAPTEC found a total of 45 exploits. We manually verified all
of these exploits. For each application shown in column 1, the last
column shows reported exploits. As shown in this table, WAPTEC
successfully generated one or more exploits for each application in
the test suite underscoring a widespread lack of sufficient replica-
tion of the client-side validation in the corresponding server-side
code. A detailed report of exploits found by WAPTEC can be
found at http://sisl.rites.uic.edu/waptec. We discuss a few inter-
esting exploits below and use them to motivate discussion in Sec-
tion 6.2 that discusses improvements made by WAPTEC (white-
box) over our prior work NOTAMPER (blackbox).

6.1 Exploits
Privilege escalation. The dcpportal application allows guests

to register for an account. The registration form solicits standard
information, such as name, e-mail, username, password, etc. Upon
normal registration, a user is provided with an account having ba-
sic privileges. When the form is submitted, the server-side form
processing code validates the provided information and checks if
a cookie make_install_prn is set. When this cookie is set to
1, the user is registered with administrative privileges. By setting
this cookie, it is possible for an attacker to register an account with
escalated privileges.

Discovery of the above vulnerability required WAPTEC to con-
struct a negative parameter tampering exploit i.e., the client-side
formula fclient for this form did not contain any restriction on the
parameter make_install_prn however the server side formula
fserver checked its value. The whitebox view of the server-side
code enabled WAPTEC to set this additional parameter and esca-
late privileges of user being registered to an administrator.

After confirming the exploit, we analyzed the application to un-
derstand the root cause of this flaw. We found that the applica-
tion used cookie make_install_prn during initial installation to
allow creation of an administrator account. To patch this vulner-
ability, the application can use additional server-side state (e.g.,
sessions) to avoid depending on the cookie value alone or have a
separate form for this purpose.

Duplicate users. The dcpportal application requires unique
usernames comprising of at most 32 alphanumeric characters for
new account registrations. The client-side allows only 32 alphanu-
meric characters, while the server-side enforces uniqueness by check-
ing that the database does not contain a matching username be-
fore creating an account. Further, during insertion of new user de-
tails, the database enforces the length by truncating usernames to
32 characters.

During vulnerability analysis, WAPTEC recognized that the server

fails to enforce the length constraint before checking for existing
usernames. For this vulnerability, WAPTEC generated hostile in-
puts that exceeded 32 characters, which in this case caused the
username existence check to always return false. This is because
usernames stored in the database are truncated to 32 characters and
checking for usernames of length > 32 will always return false. In
addition to this, the server also fails to replicate the alphanumeric
constraint on username and WAPTEC generated a hostile input
that contained invalid characters. When confirming these exploits,
we were able to refine them. Although true account duplication
works only for long usernames, it is possible to create imposter ac-
counts by appending url encoded whitespace to existing usernames.

Blog category hijacking. mybloggie, a blogging application,
allows registered users to submit posts to the blog. When submit-
ting a post, users are asked to choose a category for the current post
from a drop-down list of existing categories. By submitting a value
not in that list, an attacker can submit posts that will appear in a
category that will be created in the future. This may negatively im-
pact effectiveness / quality of the future category thus this attack
can hijack a future blog category. WAPTEC computed formulas
fserver and fclient for this form, revealed missing validation of
submitted category value by the server-side code and was exploited
by supplying an out of range value.

Additional exploits. Below we briefly describe one exploit from
each of the other four applications we evaluated.

phpnews, a news management application, allows administra-
tors to modify certain files through a form which contains name of
the file as a hidden field. The server-side code fails to validate that
the file name is not tampered and as a result attackers can update
existing files, create arbitrary files and / or corrupt files of other
applications deployed on the same web server.

snipegallery, a photo album application, allows users to arrange
albums hierarchically by selecting a parent category for each new
album from a drop down list. By selecting a value not in that list,
the new album becomes invisible; furthermore, additional analysis
shows that a carefully constructed parent album value leads to a
SQL injection attack.

landshop, a real estate application, includes a form with a hidden
field not pertinent to that form. When the value of this field is set
to the ID of an existing listing (which are displayed prominently
on the site), that listing is deleted from the application whether the
user is the owner or not.

sphpblog, a blogging application, allows users to choose a lan-
guage for the blog from a drop down menu. By selecting a lan-
guage value not in the drop down menu, an attacker can make the
application unusable and thus conduct a denial-of-service attack.

6.2 Comparison of whitebox and blackbox
results

The results of the comparison are summarized in Table 3. For
each application, this table reports the number of confirmed ex-
ploits found by NOTAMPER (column 2) and WAPTEC (column
3). The next two columns report false positives reported by NO-
TAMPER, which were eliminated in WAPTEC, and false negatives
reported by WAPTEC that NOTAMPER failed to find. In total, the
blackbox approach resulted in 23 false positives, and 24 fewer con-
firmed exploits when compared to the whitebox approach. Further,
for dcpportal and mybloggie applications WAPTEC found sev-
eral exploitable sinks for each negated disjunct of fclient e.g., for
dcpportal column 3 shows 16(32) - each hostile input generated
by negating 16 fclient disjuncts was used in 2 distinct sinks and
hence were exploitable (total 32 exploits). We wish to note that all



Application Conf. exploits False pos. False neg.
BlackB. WhiteB. BlackBox BlackBox

SnipeGallery 2 2 1 0
SPHPBlog 1 1 0 0
DcpPortal 13 16(32) 9 19
PHPNews 1 1 0 0
Landshop 3 3 1 0
Mybloggie 1 5(6) 12 5
Total 21 45 23 24

Table 3: Comparing whitebox and blackbox analysis results

these disjuncts would have contributed to one hostile each, at best,
in NOTAMPER.

In the rest of this section we will refer to exploits described in
Section 6.1 to highlight features of WAPTEC (whitebox) that en-
able it to produce better results than NOTAMPER (blackbox).

Multiple sink analysis. A single form input can be used by
the server at multiple sensitive operations and can potentially cause
problems at each such operation. The duplicate user exploit in
dcpportal demonstrates a case where a single hostile input ex-
ploited multiple sinks. When WAPTEC negated the 32 alphanu-
meric character length constraint, it produced an invalid string that
was used at two sinks. The string was first used in a sink that
checked if a duplicate username exists in the database, and later it
was inserted into the database at a second sink. WAPTEC detected
that the malformed username was used at both sinks and reported
an exploit for each. On the contrary, NOTAMPER reported a single
vulnerability for a similar hostile input. This is because NOTAM-
PER is incapable of reasoning about multiple sinks and, therefore,
suffers from false negatives.

Negative tampering. WAPTEC showcased that it can uncover
negative tampering vulnerabilities by discovering the privilege es-
calation exploit in dcpportal. While exploring additional server-
side form processing code, WAPTEC found a conditional that de-
pended on value of a parameter make_install_prn which is not
found in the client-side formula. To explore this branch, it satis-
fied the conditional by setting the cookie make_install_prn to
1. By analyzing data and control dependencies, it then determined
that this branch modifies parameter values used in the sink, and
therefore, reported the exploit. NOTAMPER is inadequate to dis-
cover such exploits because that requires analysis of server-side
form processing logic to uncover hidden functionality, which is out
of scope for a blackbox tool.

Sanitization. As mentioned in Section 4.2, WAPTEC funda-
mentally avoids paths that may sanitize inputs by computing benign
inputs that satisfy fclient and hence are not needed to be sanitized.
For cases where filter functions appear in conditional expressions,
WAPTEC maps built-in functions to constraints implied by them.
In contrast, NOTAMPER is unable to detect the presence of saniti-
zation routines on the server-side beyond using simple heuristics to
guess. To account for database constraints, WAPTEC adds them
into fserver and checks for errors / warnings on database opera-
tions. Ignoring database constraints can lead to false positives e.g.,
during testing of the registration form for dcpportal, database
constraints helped to avoid a false positive. In this example, the
hostile input was produced by negating a range constraint on the
birthdate parameter in fclient, and fserver did not contain the
range constraint. The server’s response returned a success page,
so NOTAMPER recognized a vulnerability. However, the default
action by the database converted the invalid date to ’0000-00-00’.
Another example was found while testing the snipegallery ap-

Application Formula
Complexity

Avg. trace
size (KB)

Time
(sec)

SnipeGallery 11 5 11 5 41
SPHPBlog 37 1 1 1 4
DcpPortal 187 2 48 135 10,042
PHPNews 1 1 1 1 12
Landshop 20 2 8 20 60
MyBloggie 37 5 4 738 2,082

Table 4: Additional WAPTEC results

plication. The hostile input was produced by negating a length
constraint found in fclient, and fserver did not contain the repli-
cated length constraint. However, database implicitly enforced the
length check and this attack did not succeed. Without considering
sanitization and database constraints, such false positives cannot be
avoided.

Required variables. Another source of false positives for NO-
TAMPER is attributed to required variables that are enforced only
at the server-side. In these cases, the client contains insufficient in-
formation to generate a truly benign input that satisfies the server’s
demand for certain variables. Any required variables in fserver can
easily be identified in a whitebox approach through code analysis,
but have to be heuristically determined in a blackbox approach.
For example, NOTAMPER failed to catch the category hijacking
exploit in the mybloggie application because of missed required
variables. In this example, the server-side code required the client
to set value of either submit or preview parameter. As NOTAM-
PER failed to set any of these values, the server generated a response
page containing the same form for both benign and hostile inputs
thus resulting in a false positive.

WAPTEC demonstrated that a whitebox approach produces im-
proved results over the blackbox approach used by NOTAMPER.
WAPTEC uncovered a greater number of exploits and eliminated
false positives and false negatives by precisely reasoning about
form inputs across the entire application (client and server). In
contrast, NOTAMPER is limited to using constraints implied by the
client-side code and employs heuristics to determine if the server-
side code accepted / rejected inputs and thus inherently suffers from
false positives and false negatives.

Although WAPTEC results are consistently better than NOTAM-
PER, both of these approaches have their own utility. As NOTAM-
PER does not rely on analyzing server-side code, it could be em-
ployed to analyze a wider range of applications and websites. How-
ever if the source code is available, a whitebox analysis based ap-
proach like WAPTEC could be employed to perform deeper code
analysis to pinpoint more security problems. Further, by ensur-
ing production of exploits by construction, the whitebox approach
can reduce the human effort in confirming exploits that may be un-
avoidable in blackbox approaches.

6.3 Complexity and performance
For each evaluated application, Table 4 captures complexity of

generated formulas (column 2 - client-side constraints, column 3 -
server-side constraints, column 4 - database constraints), average
size of generated traces (column 5 - kilo bytes) and average time
taken to run the tool (column 6 - seconds).

Outliers. The most notable application we tested, dcpportal,
included the largest formula complexities, the largest number of
exploits, and the longest running time. The larger the formula com-
plexity, the larger and more complex the form; hence, a longer
running time is to be expected. The large number of exploits is



partially attributed to large formula complexity because the poten-
tial number of exploit generation attempts is larger; however, the
presence of a large number of confirmed exploits points to poor
server-side validation of inputs.

Manual intervention. In a preliminary analysis of the cho-
sen applications, we selected forms that contained interesting client
side specifications and collected login credentials necessary to ac-
cess them (in 5 applications). We also extracted form action param-
eters in cases where applications reused processing code between
multiple forms (total of 4). These hints were necessary to facilitate
automatic analysis and to restrict exploration of server-side code
pertaining to other forms. Overall, it required typically less than 5
minutes to collect this data for each form.

7. RELATED WORK
The related work is organized along the dimensions of various

contributions of WAPTEC.
Multi-tier reasoning of web applications. Web applications,

those following LAMP model in specific, are inherently multi-tiered:
client-side code written in HTML / JavaScript, server-side code
written in PHP and database schema expressed in MySQL. To pre-
cisely construct parameter tampering exploits, WAPTEC reasons
across these tiers and expresses them uniformly in the language of
the solver. To the best of our knowledge, WAPTEC is the first
work that offers a systematic multi-tiered analysis for legacy web
applications. Most existing works on web application analysis do
not reason across all tiers. Balzarotti et al. [5] offer a system that
tries to reason across modules of a web application to find data and
work flow attacks on web applications and in doing so offer limited
support for finding URLs embedded in JavaScript and HTML code.
Programming languages such as Links [9, 10] and frameworks such
as [1, 8] offer principled construction of multi-tiered applications,
however do not assist analysis of legacy web applications. In con-
trast, WAPTEC offers a much powerful analysis framework that
combines concolic analysis of the HTML / JavaScript with static
analysis of runtime traces for legacy web applications.

Specification inference. AutoISES [25] is an approach for
C program bug detection that mines for common security-related
patterns and identifies deviations from these as vulnerabilities. En-
gler [12] detects security bugs in C programs by mining temporal
safety patterns and checking for inconsistencies. Srivastava [23]
et al. exploit the difference between multiple implementations of
the same application programming interface to detect security vio-
lations. Felmetsger et al. [13] monitor normal execution of a web
application to infer a set of behavioral specification to find paths in
program that will likely violate these specifications and hence may
indicate missing checks. In contrast to these approaches, in our
problem context, we are analyzing the two distinctive code bases
of a single web application and have developed techniques to check
consistencies between these two code bases.

Test input generation. A rich literature exists on automating
the task of test input generation [21, 16, 19, 11, 14, 15, 22]. Sax-
ena et al. Kudzu [21] combines the use of random test generation
and symbolic execution for testing JavaScript applications with a
goal to find code injection vulnerabilities in the client-side code
that result from untrusted data provided as arguments to sensitive
operations. Halfond et al. [16] employ symbolic execution and
constraint solving to infer web application interfaces for improved
testing and analysis of web applications. Kieżun et al. [19] use
symbolic execution and a library of attack strings to find code injec-
tion attacks in web applications. Sen et al. [22] propose a technique
that combines concrete and symbolic execution to avoid redundant
test cases as well as false warnings. Authors of [15, 14] propose

techniques to record an actual run of the program under test on ei-
ther a well-formed input [15] or random inputs [14], symbolically
evaluate the recorded trace, and gather constraints on inputs captur-
ing how the program uses these. The collected constraints are then
negated one by one and solved with a constraint solver, produc-
ing new inputs that exercise different control paths in the program.
Although WAPTEC aims to find hostile inputs and in that sense
is similar to these approaches, our formulation of the parameter
tampering problem as one checking the consistency of the server
and client codebases and development of web application specific
methods such as perturbation that are specialized to this problem
makes it distinctive.

Emmi et al. [11] concolically execute server-side code and an-
alyze executed SQL queries to find missing database records to
improve branch coverage in testing. WAPTEC tests legacy ap-
plications that typically contain relevant records in databases and
extracts database constraints to improve precision of results. A key
technical difference is that Emmi et al. decode WHERE clauses to
reason about “missing records" in the current database and do not
elaborate satisfying “database metadata" (typically database table
schema) to generate such inputs. WAPTEC’s database handling
criteria is based on such schema analysis. In particular, it relies on
the insight that database schema encodes constraints that must be
satisfied by acceptable hostile and benign inputs.

Input validation. The lack of sufficient input validation is a ma-
jor source of security vulnerabilities in web applications, including
the type of vulnerabilities reported in this paper. As a result, there is
a fairly well developed body of literature in server side techniques
that attempt to curb the impact of untrusted data. Attacks such
as SQL injection and Cross-site Scripting are well studied (e.g.,
[24] and many others) examples in which untrusted data can result
in unauthorized actions in a web application. WAPTEC is simi-
lar to such studies in the sense that it can find vulnerabilities that
could be exploited by SQL injection or Cross-site Scripting attacks.
However, WAPTEC uses client-side code as a specification of the
expected server-side behavior and hence is able to also find logic
vulnerabilities that do not necessarily require code injection. Few
recent works have focused on automatically discovering parameter
pollution [3] and parameter tampering vulnerabilities [7]. Bethea
et al. [6] discuss enforcement strategies for misbehaving clients
in the context of online games. Jayaraman et al. [18] present an
approach to enforce intended sequence of requests in web applica-
tions to prevent request integrity attacks.

Sanitization. Sanitization of inputs is an effective layer of de-
fense for attacks that ride user inputs. Typically sanitization aims
to re-write hostile inputs to render them benign. Unfortunately,
there is no standard technique to sanitize user inputs which often
results in vulnerable applications that inadequately sanitize inputs.
Saner [4] attempts to identify and validate adequacy of sanitization
routines in web applications. It models sanitization performed by
web application as an automata and detects inadequacy by finding
nonempty intersections with automata characterizing successful at-
tacks. Recently, BEK [17] proposes a language for writing sani-
tizers that enables systematic reasoning about their correctness. To
select a server-side control path to analyze, WAPTEC generates
inputs that satisfy the client-side validation. In general, this leads
to selection of paths in the server-side code that do not sanitize
user inputs. For cases where sanitization is performed on all con-
trol paths, WAPTEC offers a limited reasoning of sanitization. In
summary, all of the above research works provide the much needed
starting points for sound reasoning about sanitization in web appli-
cations, an important area that needs further research.



8. CONCLUSION
In this paper, we presented WAPTEC, an approach and tool for

automatically generating exploits for parameter tampering vulner-
abilities. Our approach uses a combination of formal logic and
constraint solving, symbolic evaluation and dynamic analysis. We
presented an evaluation of six open source applications and our tool
was able to find at least one exploit in every single application.
Our paper illustrates that it is indeed possible to extract and use
specifications of intended behavior from its own (client side) code.
The numerous exploits found by our approach further illustrate that
there does exist a gap between validation checks that must happen
in a web application and those that actually happen.
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