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Abstract

Autism spectrum disorder (ASD) is a neurodevelopmental disease which is characterized by a deficit in social
interactions and communication with repetitive and restrictive behavior. In altered cells, metabolic enzymes are
modified by the dysregulation of the canonical WNT/β-catenin pathway. In ASD, the canonical WNT/β-catenin
pathway is upregulated. We focus this review on the hypothesis of Warburg effect stimulated by the
overexpression of the canonical WNT/β-catenin pathway in ASD. Upregulation of WNT/β-catenin pathway induces
aerobic glycolysis, named Warburg effect, through activation of glucose transporter (Glut), pyruvate kinase M2
(PKM2), pyruvate dehydrogenase kinase 1(PDK1), monocarboxylate lactate transporter 1 (MCT-1), lactate
dehydrogenase kinase-A (LDH-A) and inactivation of pyruvate dehydrogenase complex (PDH). The aerobic
glycolysis consists to a supply of a large part of glucose into lactate regardless of oxygen. Aerobic glycolysis is
less efficient in terms of ATP production than oxidative phosphorylation because of the shunt of the TCA cycle.
Dysregulation of energetic metabolism might promote cell deregulation and progression of ASD. Warburg effect
regulation could be an attractive target for developing therapeutic interventions in ASD.
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Background
Autism spectrum disorders (ASD) is a neurodevelop-
mental disease which is characterized by a deficit in
social interactions and communication with repetitive
and restrictive behaviors [1], poor eye contact [2] and
disruption of cognitive and motor development [3]. ASD
is mainly diagnosed within the first three years of life.
Early diagnosis is critical for better prognosis and
therapeutic care [4, 5]. 10% of ASD cases are associated
with a “genetic syndromic ASD” and the other cases, as
“idiopathic ASD” and “primary ASD”, have no clearly
known causes. Several genetic factor and environmental
effects may contribute to the heterogeneity etiologic of
this disease [6]. However, the etiology of ASD remains
unknown.
Dysregulation of the core neurodevelopmental pathways

is associated with the clinical presentation of ASD, and
one of the major pathways involved in developmental

cognitive disorders is the canonical WNT/β-catenin
pathway [7]. Several genetic mutations observed in
ASD are linked with the deregulation of the canonical
WNT/β-catenin pathway by interactions between
chromodomain helicase DNA binding protein 8
(CDH8) and CTNNB1 (β-catenin) [8]. Canonical
WNT/β-catenin pathway has a critical role in the
development of the central nervous system (CNS),
and is over-expressed in ASD [7, 9, 10].
Metabolic enzymes are modified by the dysregulation

of the canonical WNT/β-catenin pathway. Upregulation
of WNT/β-catenin signaling leads to activation of pyru-
vate dehydrogenase kinase-1 (PDK-1), which decreases
the activity of the pyruvate dehydrogenase complex
(PDH). Upregulation of WNT/β-catenin signaling also
activates monocarboxylate lactate transporter-1 (MCT-1)
[11]. This do not allow the conversion of pyruvate into
acetyl-coenzyme A (acetyl-CoA) in mitochondria and its
entry into the tricarboxylic acid (TCA) cycle. At this stage,
cytosolic pyruvate is converted into lactate for the major
party. This phenomenon is called Warburg effect or
aerobic glycolysis despite the availability of oxygen [12].
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Mitochondrial deregulation is one of the main meta-
bolic abnormalities observed in ASD physiopathology
[13–17]. Several studies have shown a significant
increase in lactate dehydrogenase kinase A (LDH-A)
expression and pyruvate levels [18] with an increased
lactate/pyruvate ratio [19], and elevated levels of lactate
in ASD patients [20, 21].
There is some common denominator between these

metabolic abnormalities, which strongly suggests the
reprogramming of cellular energy metabolism with
increase lactate production induced by over-expressed
canonical WNT/β-catenin pathway in ASD.
We focus this review on the hypothesis of Warburg

effect induced by over-expressed canonical WNT/β-ca-
tenin pathway in ASD.

Canonical WNT/β-catenin pathway
Wingless and integration site (called WNT) pathway is a
cascade of several signaling implicated in development,
growth, and metabolism [22]. WNT signaling is composed
by secreted lipid-modified glycoproteins [23]. WNT/β-ca-
tenin pathway is involved in numerous mechanisms
such as patterning, development of synapses in the
CNS [24, 25], synaptogenesis [26, 27] and the control
of synaptic formation [24, 28].
Dysregulation of the canonical WNT/β-catenin

pathway is observed in numerous diseases [29], such as
cancers, as gliomas [30, 31] and colon cancer [32],
and neurodegenerative diseases as Alzheimer’s disease
[33, 34], age macular degeneration [35, 36], amyotrophic
lateral sclerosis [37] and multiple sclerosis [38] (Table 1).
WNT family genes are 19 members which are classi-

fied as canonical and non-canonical WNT pathway.
Canonical WNT ligands are seven, as WNT1, WNT2,
WNT3, WNT8a, WNT8b, WNT10a and WNT10b).
They are activators of the WNT/β-catenin pathway.
Canonical WNT ligands are secreted by neurons and
immune cells in the CNS [39]. The non-canonical WNT
pathway is independent to β-catenin signaling and is
separated into the planar cell planar cell polarity path-
way and the WNT/Ca2+ pathway.
WNT extracellular ligands bind low density lipopro-

tein receptor-related protein 5 and 6 (LRP 5/6), Frizzled
(FZD) receptors, and then disheveled (DSH), resulting in
β-catenin accumulation and nuclear translocation. Thus,
N-nuclear β-catenin bind T-cell factor/lymphoid enhan-
cer factor (TCF/LEF) [40]. The complex formed TCF/
LEF–nuclear β-catenin leads to the stimulation and the
transcription of several WNT target genes (c-Myc, cyclin
D1) [41].
The absence of binding between membrane receptors

and WNT extracellular ligands characterizes the downreg-
ulation of WNT/β-catenin pathway. The β-catenin
complex destruction is formed by adenomatous polyposis

coli (APC), AXIN and glycogen synthase kinase-3β
(GSK-3 β). This complex binds β-catenin to degrade
it into the proteasome [42]. Activated GSK-3β down-
regulates β-catenin accumulation and its nuclear
translocation [42, 43].

WNT/β-catenin pathway and PI3K/Akt pathway
Phosphatidylinositol 3-kinase/serine/threonine kinase
(protein kinase B)/mammalian target of rapamycin (PI3K/
Akt/mTOR) pathway is implicated in proliferation,
growth, protein synthesis and metabolism [44–47]. WNT/
β-catenin pathway, through the inhibition GSK-3β activity
[48], is considered as one of the main activator of PI3K/
Akt/mTOR pathway [49]. GSK-3β, a major inhibitor
of the WNT ligands [50], is a specific intracellular
serine-threonine kinase which regulates numerous
pathophysiological pathways [51–53]. PI3K/Akt
pathway decreases the activity of GSK-3β in adipocyte
differentiation [54, 55]. In addition, decrease of β-
catenin levels downregulates the expression of PI3K/
Akt/mTOR pathway [56, 57].

Canonical WNT/β-catenin and PI3K/Akt pathways in ASD
Several studies have shown the major role of activated
WNT/β-catenin pathway in ASD [58–60]. Numerous
genetic components are correlated with ASD develop-
ment such as WNT2 ligand [61], hepatocyte growth
factor receptor (MET) which is a WNT target gene

Table 1 Canonical WNT/β-catenin pathway dysregulation

WNT/β-catenin
pathway

Pathologies References

Increase Age-macular degeneration [35, 36]

Aging [113]

Amyotrophic lateral sclerosis [37]

Atherosclerosis [114]

Cancers [97]

Colon cancer [115]

Diabetes 2 [32]

Fibrosis [116, 117]

Gliomas [30, 31]

Huntington’s disease [118]

Multiple sclerosis [34]

Radiation-induced fibrosis [119]

Decrease Alzheimer’s disease [33, 34, 120]

Arrhythmogenic right ventricular
cardiomyopathy

[121]

Bipolar disorder [122]

Osteoporosis [123]

Parkinson’s disease [124]
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[62, 63], and chromo-helicase domain protein 8
(CHD8) and DYRK1A which can both modulate
WNT/β-catenin pathway [64–66].
Several studies has shown a main role of numerous

compounds of the WNT/β-catenin pathway in ASD,
such as WNT1 [67], WNT2 [61], WNT3 [68], WNT7A
[69], APC [70–72], β-catenin [8, 73], TCF4 [74, 75] and
TCF7 [76].
The knockout of the gene encoding phosphatase

and tensin homolog protein (PTEN), a cytoplasmic
protein suppressor of WNT/β-catenin pathway, has
been identified as a high-risk ASD susceptibility gene
[77–80]. PTEN is also a negative regulator of PI3K/
Akt pathway [81] and deletion of PTEN expression
leads to stimulate proliferation and migration through
the activation of mTOR activity [82]. Knockout of
PTEN in Purkinje cells impairs social relation,
behavior and deficits in motor learning [83, 84].
PTEN and β-catenin regulate each other leading to
normal growth of the brain [85].

Valproate and ASD
Valproate (or Valproic acid, VPA) is an anti-convulsing
agent discovered in 1963 and used for treatment of
bipolar disorders or migraine [86, 87]. VPA decreases
GSK-3β activity and then stimulates WNT/β-catenin
pathway [88–90].
In neural stem cells of the CNS, VPA can increase

WNT3a expression and β-catenin accumulation [90]. In
rat models, treatment with VPA activates WNT/β-ca-
tenin pathway and inhibits GSK-3β activity, which stim-
ulates PI3K/Akt/mTOR pathway [89, 91]. VPA increases
the risk of ASD in pregnant woman during prenatal de-
velopment through the stimulation of WNT/β-catenin
pathway [92].

Warburg effect
The Warburg effect (also named aerobic glycolysis)
consists to a conversion of a large part of glucose into
lactate regardless of oxygen [12]. Activated PDK1 phos-
phorylates the PDH in order to stop the conversion of
pyruvate into acetyl-coA in mitochondria [93]. This con-
version is proportionally diminished with a consequent
reduction of acetyl-CoA entering the tricarboxylic acid
(TCA) cycle. Then, cytosolic pyruvate being towards the
formation of lactate which is then expelled from the cell
by the upregulation of both lactate dehydrogenase A
(LDH-A) and MCT-1. The higher production of lactate
through this action favors anabolic production of
biomass, and nucleotide synthesis [94]. However, the
oxidative phosphorylation stays more efficient in
terms of ATP production than aerobic glycolysis
because of the shunt of the TCA cycle. PDK

transcription is also regulated by insulin, glucocorti-
coids, thyroid hormone and fatty acids [95] which
allow the metabolic flexibility [94].

Warburg effect activation through canonical WNT/β-catenin
pathway stimulation (Fig. 1)
Several studies have shown that aerobic glycolysis is
induced by overactivation of the WNT/β-catenin
pathway through a direct activation of PDK1 and
MCT-1 [31, 35, 96, 97]. β-catenin activation induces
the expression of PI3K/Akt signaling [56, 57].
Increase rate of glucose metabolism is associated with

the overactivation of PI3K/Akt pathway [98]. Activation
of PI3K/Akt pathway stimulates HIF-1α (hypoxia-indu-
cible factor 1-α) [99], which induces stimulation of
glycolytic enzymes such as Glut, LDH-A, PDK1 and
PKM2 [99, 100].
Glut-1 and Glut-3 are mainly important for the

insulin-sensitive homeostasis of glucose transport [101].
Then, the conversion of phosphoenolpyruvate (PEP) and
ADP into pyruvate is the final step in glycolysis after
glucose entered the cell. The enzyme pyruvate kinase
(PK) catalyzes this reaction. PK have four isoforms:
PKM1, PKM2, PKL, and PKR. The dimeric form of
PKM2 has low affinity with PEP [102]. Under high glu-
cose concentration, PKM2 is translocated to the nucleus
through the action of peptidyl-prolyl isomerase 1 (Pin1)
[103], which reduces its activity and targets PKM2
toward lysosome-dependent degradation [104]. Nuclear
PKM2 binds nuclear β-catenin and then induces c-Myc-
mediated expression of glycolytic enzymes including
Glut, LDH-A, PDK1, and PKM2 [105].
Activated c-Myc also activates glutaminolysis and

tends to nucleotide synthesis [106] by activating HIF-1α
which controls PDK1 [107]. A minor part of the
pyruvate is converted into acetyl-CoA which enters the
TCA cycle and become citrate for promoting protein
and lipid synthesis.

Lactate production in ASD
Up to now, few studies have described the expression of
the different glycolytic enzymes in ASD. However,
several studies have shown elevated lactate levels in ASD
patients [14, 18–21, 108–110]. In the same way, produc-
tion of pyruvate is stimulated [20, 110] but with an
increased ratio lactate-to-pyruvate [19, 20]. A recent
study has observed a significant increase in LDH-A
expression and pyruvate levels in ASD [18]. A recent
study have shown a decrease level of pH associated with
the overproduction of lactate in ASD [111]. These find-
ings may suggest an elevation of glycolysis through the
phenomenon of aerobic glycolysis in ASD since the
dysregulation of this balance has been proposed as a
candidate cause of ASD [112].
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The canonical WNT/β-catenin pathway is upregulated
in ASD, and is one of the major pathways involved in
developmental cognitive disorders. In the present review,
we examine accumulating evidence of the reprogram-
ming of cellular energy metabolism induced by over-
expressed canonical WNT/β-catenin pathway for a shift
in energy production from mitochondrial oxidative
phosphorylation to aerobic glycolysis as the alternative
of ATP despite the availability of oxygen; a phenomenon
called Warburg effect. Over-activation of the WNT/β-
catenin pathway induces the transduction of WNT/β-ca-
tenin target genes, c-Myc and cyclin D1, and activates
PI3K/Akt pathway, leading to HIF-1α stabilization. Both
transcription of WNT-responsive genes and HIF-1α

stabilization induce the transactivation of genes encod-
ing aerobic glycolysis enzymes c-Myc, PDK, LDH-A,
and MCT-1, which might explain the decreased glucose
entry into the TCA cycle in mitochondria, and the con-
version of a large part of glucose into lactate in cytosol,
observed in the ASD. Dysregulation of cellular energy
metabolism induced by over-expressed canonical WNT/
β-catenin pathway might promote dysregulation and
progression of the core neurodevelopmental pathways
associated with the clinical presentation of ASD.
Warburg effect regulation might be an innovative mech-
anism for therapeutic development in ASD, through the
canonical WNT/β-catenin pathway as potential thera-
peutic target.

Fig. 1 Relation between activated WNT/β-catenin pathway and Warburg effect in ASD. Mutations in ASD lead to activate the presence of WNT
ligands. Then, WNT binds both Frizzled and LRP 5/6 receptors to phosphorylate the AXIN/APC/GSK-3β complex. Thus, β-catenin phosphorylation
is stopped and this inhibits its degradation into the proteasome. β-catenin accumulates in the cytosol and translocates to the nucleus to bind the
complex TCF/LEF co transcription factors. WNT target gene transcription is activated by nuclear β-catenin (PDK, c-Myc, cyclin D1, MCT-1). Glucose
also activates the WNT signaling. MCT-1 favors lactate expulsion out of the cell. WNT/β-catenin pathway activates tyrosine kinase receptors (TKRs)
activity. Activated PI3K/Akt pathway stimulates glucose metabolism. Akt-transformed cells protect against reactive oxygen species stress (ROS) by
inducing HIF-1α, which suppresses glucose entry into the TCA cycle. Stimulation of HIF-1α activity activates the expression of the glycolytic
enzymes (GLUT, HK, PKM2, LDH-A). Aerobic glycolysis is observed with the increase of lactate production and the decrease of mitochondrial
respiration. HIF-1α induced PDK phosphorylates PDH, which resulting in cytosolic pyruvate being shunted into lactate by inducing LDH-A
activation. PDK inhibits the PDH complex into the mitochondria, thus pyruvate cannot be fully converted into acetyl-CoA and enter the TCA cycle.
c-Myc and cyclin D1 also stimulates LDH-A activity which converts cytosolic pyruvate into lactate. Activated PKM2 translocates to the nucleus to
bind β-catenin and then to induce the expression of c-Myc
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