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ABSTRACT

Occasional corruption of stored data is an unfortunate byproduct
of the complexity of modern systems. Hardware errors, software
bugs, and mistakes by human administrators can corrupt important
sources of data. The dominant practice to deal with data corruption
today involves administrators writing ad hoc scripts that run data-
integrity tests at the application, database, file-system, and storage
levels. This manual approach is tedious, error-prone, and provides
no understanding of the potential system unavailability and data
loss if a corruption were to occur. We introduce the Amulet system
that addresses the problem of verifying the correctness of stored
data proactively and continuously. To our knowledge, Amulet is
the first system that: (i) gives administrators a declarative language
to specify their objectives regarding the detection and repair of data
corruption; (ii) contains optimization and execution algorithms to
ensure that the administrator’s objectives are met robustly and with
least cost, e.g., using pay-as-you cloud resources; and (iii) provides
timely notification when corruption is detected, allowing proactive
repair of corruption before it impacts users and applications. We
describe the implementation and a comprehensive evaluation of
Amulet for a database software stack deployed on an infrastructure-
as-a-service cloud provider.

Categories and Subject Descriptors

H.2.0 [Datbase Management]: Data Protection

General Terms

Management, Reliability, Verification

1. INTRODUCTION
Data corruption—where bits of data in persistent storage differ

from what they are supposed to be—is an ugly reality that database
and storage administrators have to deal with occasionally; often
when they are least prepared [6, 11, 14, 17, 25, 30]. Hardware
problems such as errors in magnetic media (bit rot), erratic disk-
arm movements or power supplies, and bit flips in CPU or RAM
due to alpha particles can cause data corruption. Bugs in software
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or firmware as well as mistakes by human administrators are more
worrisome. Bugs in the hundreds of thousands of lines of disk
firmware code have caused corruption due to misdirected writes,
partial writes, and lost writes [14]. Bugs in storage software [11],
OS device drivers, and higher-level layers like load balancers [21]
and database software [6] have caused corruption and data loss.
Recent trends make data corruption more likely to occur than ever:
• Production use of fairly new data management systems: A bug

in the CouchDB NoSQL system caused data loss because writes
were not being committed to disk [6]. A recent bug triggered
by a storage software update caused 0.02% of Gmail users to
lose their email data (which had to be restored from tape) [11].

• Use of large numbers of commodity “white-box” systems in
datacenters instead of more expensive servers. The lower price
comes from the use of less reliable hardware components that
are more prone to corruption and failures [3, 22].

• More software layers due to virtualization and cloud services:
Customers of the Amazon Simple Storage Service (S3) have ex-
perienced data corruption where the data they got back on reads
was different from the data they had stored originally [21].

Data loss can have serious consequences. It took only one unfortu-
nate instance of file-system corruption (which spread to data back-
ups), and the consequent loss of data stored by users, to put the
social-bookmarking site Ma.gnolia.com out of business [15].

Most systems have a first line of defense to corruption in the
form of detection and repair mechanisms. Storing checksums, both
at the software and hardware levels, is a common mechanism used
to detect corruption [18]. Storing redundant data—e.g., in the form
of error correcting codes (ECC) or replicas—as well as duplication
of work—e.g., writing to two separate hosts—lowers the chances
of data loss due to corruption from bit flips, partial writes, and lost
writes. Despite these mechanisms, recent literature [14] as well as
plenty of anecdotal evidence show that problems due to corruption
happen, and more frequently than expected [3, 22]. A particularly
dangerous scenario that the authors as well as others (e.g., [15, 17])
have come across involves the propagation of corruption from the
production system to critical backups.

Thus, systems have developed a second line of defense in the
form of data-integrity tests (hereafter, tests). A test: (a) performs
checks in order to detect specific types of data corruption, and/or
(b) repairs specific types of data corruption. Table 1 lists popular
tests for detecting and repairing corruption that occur in different
system layers Tests have the following characteristics:
• Tests perform more sophisticated detection and repair of cor-

ruption than is possible automatically during regular system op-
eration through mechanisms like checksums and RAID [25].

• Barring few exceptions, tests have been developed to be run of-
fline when the system is not serving a workload. If a workload



Test System Description Does Runs

Repair Online

Application Level

Eseutil,
Isinteg

Exchange
Server

Uses checksums and structure rules (knowledge of logical schema and physical properties) to check the mailbox database for
errors in messages, folders, or attachments; checks whether all data pages are correct and match their checksums [9]

Yes No

Tripwire Any file Creates a database with the hash and attributes of the content of all files in the system. Checks for mismatch between the current
state of the files and the information stored in the database [26]

No No

par, par2 Any file Uses an error correcting code to create parity data. Checks whether the given file’s content matches its stored parity data [20] Yes No

Database Level

myisamchk MySQL Uses checksums and structure rules (flags, table metadata) to check whether data pages and records are correct and indexes
point to correct records. This suite contains 5 distinct tests that do increasingly rigorous and time-consuming checks [16, 25]

Yes No

DBVerify Oracle Uses checksums and structure rules (head & tail info) to check the database content and data pages. Can check backups [19] No No

db2dart DB2 Uses checksums and structure rules (page headers, properties of records) to check the database, data pages, and records [7] Yes No

Checkdb,
Checktable

SQL
Server

Uses structure rules (page headers, properties of indexes) to check whether data pages are stored correctly and index entries
point to the correct records [24]

Yes No

File-System Level

xfs_check,
xfs_repair

XFS Uses the file-system’s journal (log of operations done) and verifies the integrity of the inode hierarchy and that the content of
the inodes is in sync with the stored file-system data. Checks superblock, free-space, and inode maps [28]

Yes No

fsck ext3,
ext4

Uses the journal (in ext4) and file structures (in ext3) to check the superblock, file pathnames, data block connectivity, and the
file and inode reference counts [10]

Yes No

ScanDisk,
Chkdsk

FAT*,
NTFS

Uses file structures to check the disk headers, file content, file attributes, lost disk space, and file crosslinks [5] Yes No

zpool scrub ZFS Uses built-in block checksums and block replication mechanisms in the ZFS file-system to check file content for errors [29, 30] Yes Yes

Storage Level

Scrubbing Disks Uses checksums stored at the level of disk media blocks to verify that each block’s content matches its checksum [23] No No

Scrubbing RAID Uses stored parity information or replicas at the RAID level (instead of per disk) to verify the content of each data block [14] Yes Yes

Table 1: Data integrity tests to detect and possibly repair data corruption at different levels of the database software stack

Description of Example Objectives in English

1 If the myisamchk test detects corruption in the lineitem table in my
MySQL OLTP DBMS, then I want to have immediate access to an
older corruption-free version of the table that is less than 1 hour old.

2 (A security vulnerability patch was applied in the ext4 file-system that
my production DBMS is using. I am afraid that the patch may inad-
vertently cause data corruption.) Run the fsck file-system test at least
once every hour. Notify me immediately of any corruption detected.

3 My production DBMS runs on an Amazon EC2 m1.large host. I have
the same objectives as in 1, but I am willing to spend up to 12 dollars
per day for additional resources on the Amazon cloud to meet these
objectives. How recent of a corruption-free version of the data can I
have immediate access to if a corruption were to be detected?

4 My objectives are a combination of 1 and 2, but I want the time in-
tervals to be 30 minutes instead of 60. I am cost conscious. What
minimum number of m1.small EC2 hosts should I rent to run tests?

Table 2: Examples of objectives that an administrator may

have regarding timely detection and repair of data corruption

changes the data concurrently with a test execution, the test
may detect (and worse, fix) spurious corruptions. The work-
load could also return incorrect results because of modifications
made by the test. As one example, it is recommended that the
file-system be unmounted while running the fsck test.

• Most of the tests are very resource-intensive.

Because of the above characteristics of tests, database and storage
administrators often struggle with questions on when and where to
run tests. If the administrator is not proactive in running tests, then,
when corruption strikes eventually, high system downtime and data
loss (and possibly, loss of the administrator’s job) will result.

Administrators usually have specific objectives in mind for proac-
tive detection and repair of data corruption. Table 2 gives examples
of such objectives. To our knowledge, no system today helps ad-
ministrators specify objectives like these easily, and automates the
nontrivial task of running tests to meet these objectives. The result
is usually a convoluted mix of ad hoc scripts and testing practices
with nobody having a clear idea of the downtime and data loss a
potential corruption can cause.

1.1 Amulet: Challenges and Overview
A typical database software stack that production systems use is

shown in Figure 1. Different levels of the software stack maintain
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Figure 1: Overview of Amulet’s optimization and orchestration

different sources of data. All these data sources have to be kept
corruption-free to guarantee correct behavior, good performance,
and availability of applications running on the software stack.

The database level has data in tables as well as plenty of meta-
data such as indexes, materialized views, and information in the
database catalog. Databases store their data and metadata as files
and directories in a file-system or directly as blocks on volumes.
The file-system level has files containing data stored by the database
level, as well as metadata such as the directory structure, inodes

(indexes storing file-to-block mappings) and journals (log of oper-
ations done). A file-system, in turn, stores its own data and meta-
data on a volume. A volume provides an interface to read and write
blocks of data. Beneath this interface, the volume may be a physi-
cal block device (e.g., a hard disk or solid state drive) or a logical
entity (e.g., representing storage on a networked server or a combi-
nation of partitions from multiple hard disks).

Proactive Testing for Data Corruption: Tests are run to verify the
correctness of data. Table 1 lists commonly-used tests at each level
of the database software stack. For example, MySQL’s myisamchk

suite contains five different tests invoked through distinct invoca-
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Figure 2: Actual execution timeline, in minutes, of a testing plan in Amulet for Example 1 from Table 2. Each box denotes a run of

the myisamchk (TM ) test on the respective snapshot Si. The horizontal width of each box corresponds to the test execution time.

tion options: fast, check-only-changed, check (default), medium-
check, and extended-check. These tests apply checks of increasing
sophistication and thoroughness to verify the correctness of tables
and indexes in the database. The checks include verifying page-
level and record-level checksums as well as verifying that each in-
dex entry points to a valid record in the corresponding table, and
vice versa. The fsck and xfs_check tests verify the correctness of
metadata and data in the ext3 and XFS file-systems respectively.
For example, they ensure consistency between the file-system jour-
nal and the data blocks, and verify that all the data block pointers
in the inodes are correct.

The first challenge that Amulet faces is how to run a test auto-
matically. Most of the tests in Table 1 cannot be run concurrently
with the regular workload on the production system because of per-
formance and correctness problems. The tests can consume signif-
icant CPU or I/O resources. The tests may also have to lock large
amounts of data, making response times for the production work-
load slow and unpredictable. Amulet addresses these problems us-
ing the following three-step approach to run tests automatically:
1. Create snapshot: A snapshot is a persistent copy of a point-

in-time version of the data needed for a test. Snapshots can
be taken at the database, file-system, or volume levels. In this
paper, we focus on volume-level snapshots because they cap-
ture the data needed for any test in the software stack. While
the time to create the first snapshot will depend on the volume
size, later snapshots only need to copy the changes since the
last snapshot (similar to incremental backups).1

2. Run tests: A snapshot is loaded on to one or more testing hosts

where tests are run. As shown in Figure 1, testing hosts are dif-
ferent from the production host to avoid performance problems.

3. Apply changes: If tests detect and repair corruption in a snap-
shot, then the administrator can choose to apply these changes
or load the repaired snapshot on the production system.

Amulet’s Declarative Language: Making it easy and intuitive for
administrators to declare objectives like those in Table 2 poses a
nontrivial language design problem. A dissection of the examples
in Table 2 reveals the important features that are needed:
• Specification of one or more tests t, and associating t with the

data and type of resources on which it should be run.
• Specification of tested recovery points to be maintained over

a recent window of time. These points enable quick system
recovery in case serious corruption is detected.

• Ability to declare different objectives such as the minimum
number of test runs per time window or a cost budget for pro-
visioning pay-as-you-go resources to run tests.

• Ability to combine multiple objectives as well as to specify an
optimization objective.

Angel, Amulet’s declarative language, is designed to support such
features. The semantics and simplified syntax of Angel are de-
scribed in Section 4 and Table 4.

Amulet’s Optimization Phase: Amulet can run a comprehensive
suite of tests, including new user-defined ones, to detect and pos-

1Production deployments that need near-real-time disaster recov-
ery take snapshots regularly and store them on cloud storage [27].

sibly repair data corruption anywhere in the software stack. To
use Amulet, as shown in Figure 1, a user or application submits a
declarative Angel program that references one or more volumes on
the production system. For each volume V , the program specifies:
(a) the tests to be run on data contained in V , and (b) the objectives
to be met. For volume V , Amulet’s Optimizer will generate an effi-
cient execution strategy—called a testing plan—using an optimiza-
tion algorithm that maximizes or minimizes one objective subject
to satisfying all other objectives. Amulet’s Orchestrator will exe-
cute the testing plan automatically and continuously by provision-
ing testing hosts and scheduling tests on a resource provider.

Figure 2 shows an actual execution timeline of a testing plan P

for an Angel program corresponding to Example 1 from Table 2.
Plan P uses one testing host that runs the myisamchk test on snap-
shots taken from the production host. One snapshot is tested every
30 minutes, and each test takes around 20 minutes to complete. As
we will see in Section 7, this plan minimizes execution cost while
meeting the objective of continuously maintaining a tested recov-
ery point for a past 1-hour window. This testing plan, while simple,
illustrates a number of challenges facing Amulet.

Characterizing the testing plan space: A testing plan has multiple
aspects. First, there is a provisioning aspect that determines how
many testing hosts are used to meet the specified objectives. Sec-
ond, there is a scheduling aspect that determines the rate at which
snapshots are tested and how test runs are scheduled on the provi-
sioned hosts. Third, there is a sustainability aspect that determines
whether the plan will continuously meet the specified objectives
as time progresses. Section 5 gives a formal characterization of a
testing plan in Amulet, thereby defining the space of testing plans.

Developing a cost model for tests: To find whether a plan enumer-
ated from the testing plan space will meet the objectives specified
in an Angel program, the Optimizer needs models to estimate the
execution times of tests scheduled by the plan. A novel component
of Amulet is a library of models to estimate test execution times.
The library currently covers tests for the MySQL database and the
ext3 and XFS file-systems; discussed further in Section 3.

Finding a good testing plan: For each volume referenced in an An-
gel program, the Optimizer has to find a good plan from a huge plan
space. We propose a novel algorithm for this optimization problem
that considers all three aspects of testing plans: provisioning testing
hosts, scheduling tests on snapshots and hosts, and ensuring plan
sustainability over time. While our algorithm is not guaranteed to
find the optimal plan, we show empirically—based on comparisons
with an exhaustive search algorithm—that our algorithm is very ef-
ficient and finds the optimal plan most of the time.

Amulet’s Orchestration Phase: After submitting an Angel pro-
gram, the administrator can view the testing plans generated, and
when satisfied, submit the plans to Amulet’s Orchestrator for ex-
ecution. The Orchestrator executes testing plans continuously by
working in conjunction with a Snapshot Manager and a resource
provider, both of which are external to Amulet. The Snapshot Man-
ager notifies the Orchestrator when a new snapshot of a volume
on the production system is available for testing. The Orchestra-
tor allocates testing hosts from the resource provider which, cur-



rently, can be any infrastructure-as-a-service cloud provider. A
major challenge faced by the Orchestrator is in dealing with un-
predictable events arising during plan execution:
• Repairs: It is impossible to predict when a corruption will be

detected and a repair action needs to be taken.
• Straggler hosts: A host used to run tests on the cloud may be-

come slow temporarily, causing the test execution schedule to
lag behind the optimizer-planned schedule.

• Wrong estimates: Lags in the testing schedule can also be caused
by inaccurate estimates of test execution times from the models.

Rather than complicating the Optimizer or making unrealistic as-
sumptions, Amulet’s solution is to reserve a cost budget in each
testing plan that the Orchestrator can use to provision additional
hosts on demand to deal with unpredictable events; discussed in
Section 6. The novel effect is that a testing plan has a statically-
planned component generated by the Optimizer as well as an adap-
tive component managed by the Orchestrator. Section 7 will present
comprehensive experimental results from a prototype of Amulet
running on the Amazon cloud.

2. RELATED WORK
A number of recent empirical studies show that corruption of

critical data is a reality and occurs much more commonly than
assumed previously. It is perhaps surprising that the database re-
search community has paid little attention to this problem.

2.1 The Dangers of Data Corruption
The authors of [3] analyzed corruption instances recorded in

more than 10,000 production and development storage systems.
Their main focus was on studying silent data corruption which
is corruption undetected by the disk drive or by any other hard-
ware component. Among corruption instances logged over a 41-
month period among a total of 1.53 million disk drives of various
types, the authors found more than 400,000 instances of checksum
mismatches. The study also showed that cheaper nearline SATA
disks (and their adapters) develop checksum mismatches an order
of magnitude more often than the more expensive and carefully-
engineered SCSI disks. However, corruption can also occur in the
latter which are enterprise-class drives.

The authors of [22] analyzed memory errors collected over a pe-
riod of 2.5 years in the majority of servers used by Google. The
authors found that the rate of data corruption in DRAM is orders of
magnitude higher than previously reported, with more than 8% of
dual in-line memory modules (DIMMs) affected by errors per year.
Memory errors can be classified into soft errors, that corrupt bits
randomly but do not leave physical damage; and hard errors, that
corrupt bits in a repeatable manner because of a physical defect.
Memory errors found in the study were dominated by hard errors,
rather than soft errors as assumed previously.

Injecting faults into the database software stack provide insights
into system behavior and data loss under different types of corrup-
tion. A recent study used fault injections into a popular open-source
DBMS (MySQL) to show that certain types of data corruption can
harm the system, e.g., causing system crashes, data loss, and in-
correct results [25]. The authors also point out that concurrency
control and recovery features of database systems are not designed
to detect or repair corrupted data or metadata resulting from hard-
ware, software, or human errors. A similar study has been done for
the ZFS file-system that, compared to popular Linux file-systems
like ext3 and XFS, has novel features like end-to-end checksums

for corruption detection [30]. The authors show that while ZFS is
very resilient to disk-level corruption, memory-level corruption can
lead to crashes and incorrect results.

2.2 Dealing with Data Corruption
The techniques categorized as the first line of defense in Section

1 check for data correctness during reads and writes in the pro-
duction workload; usually based on additional stored information
like parity bits and checksums. These techniques are not sufficient
to prevent or detect corruption caused by complex issues such as
lost and misdirected writes due to bugs in the software stack [3].
For example, the authors of [14] show the inability of techniques
like parity-based RAID to avoid data corruption. The authors also
show how common techniques used in RAID can spread data cor-
ruption across multiple disks and cause data loss. The first line of
defense adds performance overheads during workload execution.
Enterprise systems have historically preferred performance over
the (wrongly assumed) rare chance of data corruption. Amulet ad-
dresses these problems by enabling complex and resource-intensive
tests like those in Table 1 to be run in a timely fashion. To our
knowledge, Amulet is the first system of its kind that works across
different point-in-time copies of data to detect and repair data cor-
ruption efficiently in the end-to-end software stack.

Modeling the performance of tests or improving their efficiency
has received little attention. For example, most tests still use single-
threaded execution and cannot exploit multicore CPUs. Currently,
every test t is an opaque execution script to Amulet apart from the
model used to estimate t’s execution time. With more visibility
into tests, Amulet can do a better job of optimizing t’s execution.
A promising development in this regard is the writing of tests in
declarative languages like SQL as done in [12].

Amulet’s goal of early detection and repair of data corruption
forms a crucial part of disaster recovery planning. The authors of
[27] argue that cloud computing platforms are well suited for offer-
ing disaster recovery as a service due to (a) the cloud’s pay-as-you-
go pricing model that can lower costs, and (b) the cloud’s use of
elastic virtual platforms. Amulet is a proof-of-concept system for
this argument applied to the problem of data corruption.

The concept of declarative system management is gaining cur-
rency. Chef, Puppet, and Microsoft SQL Server’s policy-driven
manager are now popular tools that take declarative specifications
as input, and then configure and maintain systems automatically
[13]. However, unlike Amulet, these tools do not support objec-
tives that are specified declaratively and optimized automatically.

3. MODELING OF TESTS
For each test t, Amulet’s Optimizer needs a model to estimate

t’s run-time behavior—e.g., execution time, usage of CPU, mem-
ory, and I/O resources—when t is run on given data and system re-
sources. We divide the input parameters for a test model into three
categories: (i) data-dependent attributes, (ii) resource-dependent
attributes, and (iii) attributes to capture transient effects. In this sec-
tion, we discuss attributes in the test model and their impact for the
myisamchk, fsck, and xfs_check tests from Table 1. Our focus is
on models for estimating test execution time. Note that we generate
separate models for the same test when invoked with significantly
different options. For example, fsck has separate models based on
whether it is invoked to check file-system metadata compared to
data. The fsck metadata test involves verifying the superblock, in-
odes, and free block list, while the data test does a full scan to find
all bad blocks.

3.1 Data-dependent Attributes
Data-dependent attributes have a first-order impact on test execu-

tion times. Fortunately, this impact can be captured fully based on
properties that correspond to the size of the data and are easily mea-
surable. Different data-dependent attributes are relevant depending
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(b) Varying the number of used in-
odes for xfs_check on XFS
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Figure 3: Effect of data-dependent attributes on the completion time of the fsck, xfs_check, and myisamchk tests
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Figure 4: Effect of resource-dependent attributes and concurrent test execution on the execution time of myisamchk tests

on whether the test is at the application, database, file-system, or
storage levels. For fsck and xfs_check, we explored a wide range
of attributes to capture the file-system data: size of the file-system,
total number of inodes, number of used inodes, average file size,
files per directory, and size of inodes and data blocks. Based on
a comprehensive empirical analysis, we found that there are three
attributes with the most impact: total inodes, used inodes, and aver-
age file size. Total inodes represents the total available capacity of
the file-system, while used inodes are indicative of the used space.

The block check version of fsck on the ext3 file-system veri-
fies the correctness of the used portion of the file-system as well
as that of the unused inodes and free blocks. Thus, as shown in
Figure 3(a), the execution time of the fsck data test depends on the
file-system size. In contrast, the optimized xfs_check test for the
XFS file-system verifies only the used portion of the file-system.
Thus, the execution time of xfs_check depends on the number of
used inodes as shown in Figure 3(b), and is independent of the total
file-system size.

For the myisamchk tests, the total input data size to the test is
the primary data-dependent attribute. Figure 3(c) shows the linear
effect of the input data size on test execution time. In addition
to the data size, the number of indexes present on table columns
affects the execution time of certain myisamchk tests. Once again,
the effect is linear as shown in Figure 3(d).

3.2 Resource-dependent Attributes
The execution time of a test is expected to vary with the hardware

and software resources allocated to run the test. The trend among
infrastructure-as-a-service cloud providers is to provide hardware
resources such as CPU, memory, and storage in terms of a small
number of discrete choices. For example, the hardware resource
space is discretized into micro, small, medium, and large node con-
figurations on the Amazon cloud. Such discretization vastly sim-
plifies Amulet’s task of modeling test execution times for varying
resource properties.

Figure 4(a) shows the execution times of myisamchk tests for
different Amazon EC2 host types for a total database size of 14
GB. We observe a 100% speedup for the myisamchk extended test
between a small host (1.7 GB memory with 1 EC2 compute unit)
and a large host (7.5 GB memory with 4 EC2 compute units). In
general, we observed that the more thorough myisamchk tests are
both compute- and memory-intensive. Execution times of fsck did
not vary significantly across the different Amazon EC2 host types.
fsck is I/O-intensive and does not exploit the increased CPU or
memory resources when going from the small to the large hosts.

Software-level resources like caches can also impact test execu-
tion times. For example, the myisamchk tests use a cache called
the key buffer. The size of this cache, given by the key_buffer_size
input parameter, affects the execution time of certain myisamchk
tests. Figure 4(b) shows the variation in the execution time of the
myisamchk extended test for input data of size 12 GB.

3.3 Transient Effects
Test execution times can vary due to transient effects like warm

versus cold caches or resource contention when tests are run con-
currently. A major advantage Amulet enjoys in this context is that
Amulet’s Orchestrator can ensure that tests are run in configura-
tions similar to the ones used during test modeling. Furthermore,
as we discuss next, Amulet’s Optimizer prioritizes predictable be-
havior (i.e., robust testing plans) over potential optimality since the
former is more important in proactive testing.

Warm Vs. cold caches: Data caching for the memory/disk interface
within a host does not benefit tests such as fsck and xfs_check that
access data directly at the block level. However, as mentioned be-
fore, such caching benefits higher-level tests such as myisamchk.
Data caching at the host/network interface while using networked
storage benefits most tests. We have observed up to 2x differences
in test execution times for warm Vs. cold caches in this context.
The test models have been enhanced to account for these effects.



Name Description

O1-On SSO, RPO, SIO, TCO, or CO objectives specified per vol-
ume in an Angel program (Table 4 gives a summary)

Oopt Optimization objective for a volume in an Angel program

t, s, h, τ ,
x, and d

Used to denote respectively tests, volume snapshots, hosts,
time intervals, numeric constants, and currency values

τrpo The time interval in an RPO (see Table 4)

dco The maximum cost budget in a CO (see Table 4)

P Testing plan for a volume in an Angel program

PW Plan P ’s window. The plan repeats every PW time units

PI Time interval between successive snapshots in plan P

PM Test-to-snapshot mapping in plan P

PS Schedule of test execution in plan P

PR P ’s cost budget reserved to handle unpredictable events

ExecTime(t) Execution time of test t

Time(si) Time when ith snapshot si, 1 ≤ i ≤ PW

PI
, is available in

plan P relative to the start of the plan window PW

start(h) Time when host h is first used in the plan window

end(h) Time when host h will finish its last scheduled test for the
plan window (end(h) can be > PW )

cost(PS),
cost(h)

Cost incurred for the plan schedule PS or a host h for one
plan window

Table 3: Notation used in the paper

Concurrent execution of tests on the same host: Concurrent exe-
cution makes test execution times difficult to estimate. Figure 4(c)
illustrates this complexity. Test sets 1 and 2 are runs of two my-
isamchk tests on two different tables. The tests in each set lead to
different outcomes when run in concurrent versus sequential fash-
ion. The tests in set 2 cause memory thrashing when run concur-
rently. Since the number of distinct tests is not large,2 we can train
models to estimate execution times for tests run concurrently in
pairs. As such, if Amulet’s Optimizer does not have a model to
estimate the running time of concurrent tests, it will simply choose
not to consider testing plans with concurrent tests. The goal of the
Optimizer is to find a robust testing plan, where a robust plan is one
whose performance is almost never much worse than promised.

4. ANGEL DECLARATIVE LANGUAGE
Recall from Section 1.1 that an Angel program specifies tests and

the objectives to be met while running the tests. We now discuss
the main statements in Angel. Table 4 provides a summary.

Tests: Angel’s Test statement defines a test t by specifying the
command to run t as well as references to t’s input data (specified
by a Data statement) and the type of host on which to run t (spec-
ified by a Host statement). Angel’s Repair statement enables a
repair action to be associated with a test t for invocation if t detects
a corruption (as indicated by a specific return code from t).

Data: Angel’s Data and related statements define the input data
for a test, including the volume that the data belongs to, the data
type (from a set of supported types), and the data properties. The
properties, which are specific to the type of data, form inputs to
the models that the Optimizer uses to estimate test execution times.
The Optimizer does semantic checks to ensure that the Angel pro-
gram specifies values for all input parameters required by the model
for each test in the program. While helper tools are available to
extract these values from the corresponding input data, the admin-
istrator can also specify values based on their domain knowledge.

Hosts: The primary use of Angel’s Host statement is to define
a host type (from a set of supported types) for a test t so that the
Orchestrator will always run t on testing hosts of that type.

2From our experience, most administrators prefer to use standard
tests that come with each system, rather than writing new tests.

Name Simplified Specification Syntax

Test Test(Data: data, Host: host, exec scripts, . . .)

Input data for test Data(Volume: V , type, properties, . . .)

Host to run test Host(type, setup scripts, . . .)

Volume Volume(Host: production host where V is lo-
cated, path on host, volume id, properties, . . .)

Repair action Repair(Test: t, t’s return code, exec scripts, . . .)

SSO: Safe Snap-
shot Objective

List of tests {t1, t2, . . . , tk}, for volume V

RPO: Recovery
Point Objective

Recovery_point ≤ τ , for volume V

SIO: Snapshot In-
terval Objective

Snapshot_interval Op τ , for volume V

TCO: Test Count
Objective

Test_count(t) Op x, in time interval τ , for vol-
ume V

CO: Cost Objec-
tive

Cost≤ d, in time interval τ , with reservation x%,
for volume V

Oopt: Optimiza-
tion Objective

Maximize (when Op is ≥ in an SIO or TCO),
Minimize (when Op is ≤ in an RPO, SIO, or CO)

Notification SQL triggers on event tables in log database

Table 4: Summary of important Angel statements. Op ∈ {≤
,≥}. t, τ , x, and d are constants of respective types test, time

interval, numeric, and currency

ExecTime(t)

Time (si) Time (si+1)Time (si-1)

rpo

Figure 5: Illustration of RPO

4.1 Objectives
An Angel program can specify one of five types of objectives.

These objectives can be used independently or combined together
to specify a variety of requirements for running tests. Each objec-
tive O references a unique volume. The Optimizer will partition the
objectives in an Angel program based on the volumes referenced,
and generate one testing plan per volume.

Safe Snapshot Objective (SSO): An SSO for a volume V specifies
the full list of tests t1,. . .,tk to be run on a given snapshot s for
V before s can be labeled corruption-free. If none of the tests
t1,. . .,tk find corruption in s, then s is labeled corruption-free. If a
test ti detects a corruption in s, then s is labeled corrupted and any
repair action associated with ti will be run on s.

Recovery Point Objective (RPO): When corruption is detected in
the data in a volume V , it is useful to have immediate access to a
tested recovery point for V from the recent past. A recovery point is
a corruption-free snapshot of V from which the database software
stack can be brought back online quickly. Recovery points are an
essential part of disaster recovery planning strategies [27].

Figure 5 shows two successive snapshots si−1 and si for a vol-
ume on which a test t is run. If a corruption were to be detected
when t runs on si, then the administrator wants si−1 to be a recov-
ery point. An RPO expresses this requirement. RPO specifies the
maximum (sliding) time interval τrpo into the past within which
a recovery point must exist for a volume if corruption were to be
detected on a snapshot. Amulet should ensure that the sum of test
t’s expected running time and the snapshot interval between si−1

and si is not greater than τrpo (as illustrated in Figure 5). Using
notation from Table 3, the RPO mandates:

ExecTime(t) + Time(si)− Time(si−1) ≤ τrpo (1)

An RPO together with an SSO with a list of tests t1,. . .,tk is a
powerful combination to express recovery points. Now Amulet
should ensure that all of t1,. . .,tk will finish on si in time ≤ τrpo



Find the Least-Cost Plan P=〈PW ,PI ,PM ,PS ,PR〉 that Satisfies the n

Objectives O1-On (without Oopt) for a Volume V in an Angel Program

1. Use Fig. 7 to pick the snapshot interval PI for O1-On;
2. Select the plan window PW , and scale O1-On to PW (Section 5.3);
3. Use Fig. 8 to pick the test-to-snapshot mappingPM for O1-On,PW ,PI ;
4. Pick test execution schedule PS for PW ,PI ,PM (details given in [4]);
5. PR is available from the CO in O1-On, or a default is used;

Figure 6: Finding the least-cost plan for given objectives O1-On

− (Time(si) − Time(si−1)). If any of these tests were to detect
a corruption in si, then si−1 will serve as a recovery point that is
not more than τrpo into the past. At this point, the administrator
or the Snapshot Manager can decide how to proceed regarding the
production system: restart the system with snapshot si−1, ignore
the corruption for now, etc. Amulet does not interfere here.

Snapshot Interval Objective (SIO): For a volume V , an SIO has
the form: Snapshot_interval Op τ , for time interval τ and
Op in {≥,≤}. Snapshot_interval refers to the expected
time interval between two successive snapshots of V . Note that
Amulet does not control the Snapshot Manager which collects snap-
shots from the production system. SIOs express the feasible snap-
shot intervals that Amulet should consider during plan selection.

Test Count Objective (TCO): For a volume V , a TCO has the
form: Test_count(t) Op x, in a time interval τ for a test t.
Here, Test_count specifies the number of unique snapshots of
V in the interval τ on which Amulet should run test t. The typical
use of TCOs are to express requirements of the form: “Run t at
least four times every day.” A plan chosen by the Optimizer for
this TCO will do the intuitive thing of spacing out the four test runs
uniformly in the specified time interval of 1 day.

Cost Objective (CO): A CO for a volume V has the form: Cost
≤ d, in a time interval τ , with (optional) reservation x. Here, d is
a cost measure for the resource provider from which the Orches-
trator will allocate resources to run tests. The CO applies to the
entire testing plan that the Optimizer generates for V . A CO can be
specified only if the pricing model that the resource provider uses
to charge for resource usage is input to Amulet. Section 7 describes
the pricing model that we use in our evaluation.

The CO also specifies a fraction of the overall cost budget that
is reserved for the Orchestrator to respond to three types of unpre-
dictable events that can occur during the execution of the testing
plan: repairs, straggler hosts, and inaccurate estimates of test exe-
cution times by the models used in the Optimizer. Section 6 will
discuss how the Orchestrator uses the reserved cost budget to pro-
vision hosts on demand to handle these unpredictable events. By
default, the reservation is set to the cost of using one testing host.

Optimization Objective (Oopt): An appropriate Maximize or
Minimize optimization objective (Oopt) can be specified along
with an RPO, SIO, TCO, or CO for a volume V in an Angel pro-
gram. Maximize can be used when Op in the objective is ≥,
and Minimize can be used when Op is ≤. Specifically, applying
Maximize to an SIO or TCO of the form value ≥ const asks to
make const as high as possible. Applying Minimize to an RPO,
SIO, or CO of the form value ≤ const asks to make const as low
as possible. One and only one Oopt is allowed per volume. The
default is Minimize CO if no Oopt is specified in the program.

5. OPTIMIZER
In this section, we will discuss the algorithm used by Amulet’s

Optimizer. Given an Angel program, the Optimizer first partitions
the objectives in the program based on the volumes referenced, and

then selects one testing plan per volume. The selection of the test-
ing plan is treated as the following optimization problem:

Testing-plan Selection Problem for Volume V : Given n objec-

tives O1-On (each of type SSO, RPO, SIO, TCO, or CO) and an

optimization objective Oopt (of type Maximize or Minimize on

one of O1-On) for a volume V , find the testing plan (if any) that

meets all of O1-On while giving the best (maximum or minimum,

as appropriate) value for Oopt.

5.1 Testing Plans in Amulet for a Volume V

Formally, a testing plan P contains five components:
1. Snapshot interval PI is the uniformly-spaced minimum time

interval between consecutive snapshots that the plan needs to
test to meet all the objectives specified.

2. Window PW is a time interval such that the plan repeats every
PW time units. The plan processes PW

PI
snapshots per window.

3. Test-to-snapshot mapping PM specifies, for each snapshot s in
the plan window, the set of tests that need to be run on s.

4. Test execution schedule PS specifies the number and respective
types of testing hosts to use, and when to run each test from
PM on these hosts.

5. Reserved cost budget PR is the part of the plan’s total cost
budget that is reserved for the Orchestrator to deal with unpre-
dictable events that can arise during plan execution.

The core of Amulet’s Optimizer is a cost-optimal planning algo-
rithm that can find the minimum-cost plan (if valid plans exist) to
meet a given set of objectives. We will begin in Sections 5.3–5.5 by
describing the stages in which the cost-optimal planning algorithm
works. As illustrated in Figure 6, each stage selects one of the five
components of the minimum-cost plan, going in the order PI , PW ,
PM , PS , and PR. Section 6 will describe how the Orchestrator
uses the reserved cost budget PR.

If the Angel program’s optimization objective is not cost mini-
mization, then Amulet uses a higher-level planning algorithm. This
algorithm, discussed in Section 5.6, repeatedly invokes the cost-
optimal planning algorithm with a series of increasingly stricter
objectives until no valid plan can be found. The optimal plan can
be identified at that point.

5.2 Selecting the Snapshot Interval
The Optimizer’s goal in this stage is to pick the maximum value

that PI can have while meeting all the RPO, SIO, and TCO objec-
tives specified. Maximizing PI translates into minimizing the num-
ber of snapshots that need to be processed. Consequently, the cost
of the plan is minimized—which is our goal—since more snapshots
mean higher test execution and host requirements.

Figure 7 shows the steps involved in this stage. The algorithm
goes through the objectives one by one, while maintaining an upper
(Pmax

I ) and lower (Pmin
I ) bound on feasible values of PI . Finally,

the largest feasible value of PI , if any, is selected.

5.3 Selecting the Plan Window
Recall from Section 4 and Table 4 that the objectives RPO, TCO,

and CO for a volume V in an Angel program specify time intervals.
The plan window PW serves as a mechanism for the Optimizer to
consider the intervals in all objectives in a uniform fashion. PW is
picked as the least multiple of PI (PW = n×PI , n ∈ N) such that
PW is greater than or equal to the maximum among: (a) the time
intervals in RPO, TCO, and CO objectives, and (b) ExecTime(t) for
each test t specified in an SSO or TCO objective. Picking PW >

ExecTime(t) for all tests (i.e., Case (b) above) is needed to ensure
the sustainability of schedules as we will explain in Section 5.5.

Once PW has been determined, the corresponding parameters in



Selecting the Plan Snapshot Interval PI in a Testing Plan

Inputs: Objectives O1-On (with syntax from Table 4)

1. Pmin
I = Snapshot interval from the Snapshot Manager;

2. Pmax
I = ∞; τrpo = ∞;

3. if (O1, . . . , On contains RPO: Recovery_point ≤ τ ) {

4. τrpo=τ ; Pmax
I =

τrpo
2

; /* test ≥2 snapshots in τrpo to meet RPO */}
5. for (every Objective O in O1, . . . , On) {
6. if (O is SSO: List of tests {t1, . . . , tk}) {
7. for (Test t in t1, . . . , tk)
8. Pmax

I = Min[Pmax
I , τrpo - ExecTime(t)]; } /* Equation 1 */

9. if (O is TCO: Test_count(t) ≥ x, in time interval τ )
10. Pmax

I = Min[Pmax
I , τrpo - ExecTime(t), τ

x
]; /* Equation 1 */

11. if (O is SIO: Snapshot_interval ≥ τ )

12. Pmin
I = Max[Pmin

I , τ ];
13. if (O is SIO: Snapshot_interval ≤ τ )
14. Pmax

I = Min[Pmax
I , τ ];

15. }

16. if (Pmax
I < Pmin

I ) return “No feasible PI exists for O1-On”;
17. else set PI = Pmax

I ;

Figure 7: Selection of PI (notation used from Tables 3 and 4)

all TCO and CO objectives are scaled proportionately to PW . For
example, a CO that specifies a cost budget (dco) of U.S. $10 in 1
hour, will be scaled to a cost budget of U.S. $15 for PW = 1.5
hours. Note that the time interval in an RPO (τrpo) is independent
of PW , and should not be scaled.

5.4 Selecting the Test-to-Snapshot Mapping
For the PW

PI
snapshots in a plan window, this stage decides which

tests need to be run on which snapshots. Figure 8 shows the steps
involved. For each test t specified in an SSO or TCO, the algorithm
in Figure 8 maintains upper (COUNTmax

t ) and lower (COUNTmin
t )

bounds on how many snapshots t should be run on. Test t is mapped
at uniformly-spaced intervals to the minimum number of snapshots
that t needs to be run on. Note that the tests in an SSO should be
run on all PW

PI
snapshots (Lines 4-6 in Figure 8).

5.5 Selecting the Schedule of Test Execution
After the test-to-snapshot mapping PM has been generated, the

Optimizer selects the test execution schedule as well as the mini-
mum number of hosts needed for running these tests. This stage is
by far the most complex one in the Optimizer. Note that the Op-
timizer is only identifying a good schedule. The schedule will be
executed—including actual allocation of testing hosts and running
of the tests on the resource provider—only after the selected testing
plan is submitted to the Orchestrator.

The complete details of the algorithm used in this stage are given
in the online technical report [4]. This greedy algorithm goes through
the snapshots si in one plan window in order from i=1 to i=PW

PI
,

as well as the tests tij that have been mapped to si. A host hk is
identified to run tij on si in one of three ways as discussed next.

The first way is by means of test grouping, where tij will be run
concurrently with another test or group of tests on a host that has
already been allocated to the plan. Recall that Amulet strives to
generate a robust testing plan, i.e., a plan whose chances of per-
forming worse than estimated is low [2]. If there is no model to
estimate how the concurrent execution of a set of tests will per-
form, then the Optimizer will take the low-risk route of avoiding
such executions.

While selecting the test execution schedule, the algorithm also
addresses the important issue of schedule sustainability which en-
sures that the plan generated for one window can be run contin-
uously for any number of windows that come one after the other.
Using notation from Table 3, let start(h) denote the time (relative

Selecting the Test-to-Snapshot Mapping PM in a Testing Plan

Inputs: Scaled objectives O1-On, Plan Window PW , Snapshot Interval PI

1. for (every test t referenced in an SSO or TCO in O1, . . . , On) {

2. COUNTmin
t = 0; COUNTmax

t =
PW

PI
; }

3. for (every Objective O in O1, . . . , On) {
4. if (O is SSO: List of tests {t1, . . . , tk}) {

5. for (Test t in t1, . . . , tk) /* t has to run on all
PW

PI
snapshots */

6. COUNTmin
t = Max[COUNTmin

t ,
PW

PI
]; }

7. if (O is TCO: Test_count(t) ≥ x, in time interval PW )

8. COUNTmin
t = Max[COUNTmin

t , x];
9. if (O is TCO: Test_count(t) ≤ x, in time interval PW )
10. COUNTmax

t = Min[COUNTmax
t , x];

11. }
12. PM = ∅;
13. for (every test t referenced in an SSO or TCO in O1, . . . , On) {

14. if (COUNTmax
t < COUNTmin

t ) return “No feasible PM exists”;
15. else {

16. Map test t to COUNTmin
t snapshots spread uniformly across the

PW

PI
snapshots in the plan window. Add the mappings to PM ; }

17. }

Figure 8: Selection of PM (notation used from Tables 3 and 4)

to the start of the plan window) when a host h is first used to run
a test in the window. end(h) denotes the corresponding time when
host h will finish its last scheduled test for the window. (end(h)
can be greater than PW .) For the schedule to be sustainable across
multiple successive windows, we need:

PW + start(h) > end(h) (2)

This condition ensures that by the time host h is needed to run
tests for a plan window, all tests scheduled on h for the previous
plan window will have completed. In fact, tests scheduled on h for
all past windows will have completed because our technique from
Section 5.3 to select the window size PW ensures that no test run
will span more than two consecutive windows.

The second way to schedule test tij is to run tij on a host hk

after all tests currently scheduled on hk complete. Apart from the
standard checks for RPO violation and sustainability, the algorithm
also checks whether tij can be started over si on hk before the next
snapshot si+1 arrives. The aim here is to achieve a balanced test
execution workload (to the extent possible) throughout the window.

If it is not feasible to schedule tij on a testing host that is al-
ready allocated in the plan, then the third way is to schedule tij on
a new testing host added to the plan. This step will use the resource
provider’s pricing model to ensure that the addition of a new test-
ing host will not overshoot the cost budget specified in the Angel
program. Note that the allocation of a new testing host to run tij
will not violate schedule sustainability because ExecTime(tij) ≤
PW (from Section 5.3).

5.6 Handling Non-cost Optimization Objectives
So far we focused on finding a testing plan that minimizes cost

while meeting all the given objectives. Amulet’s Optimizer can
handle non-cost optimization objectives as well, and does so by
repeatedly invoking the cost-optimal planning algorithm with in-
creasingly stricter objectives until no valid plan can be found. The
complete details of two algorithms that we have developed for non-
cost optimization are given in the online technical report [4]. These
algorithms differ in how the stricter objectives are generated: one
algorithm does so in linear increments while the second algorithm
uses a binary-search technique to improve efficiency.

Consider the objective of minimizing the interval τrpo in an RPO.
(Example 3 from Table 2 has this optimization objective.) It emerges



Cloud Manager

Snapshot  

Receiver 

Snapshot-to-Plan Mapper

Plan Manager Plan Manager Plan Manager

Host  

Manager

Cloud Provider

Snapshot  Collect or 1 Snapshot  Collect or 2 Snapshot  Collect or n

Snapshot  

Receiver 

Snapshot  

Receiver 

Orchestrator

Host  

Manager

Host  

Manager

Host  

Manager

Host  

Manager

Host  

Manager

Host

Host

Host

Host

Host

Host

Figure 9: Amulet’s Orchestrator

from Equation 1 that the way to achieve lower values of τrpo is
by reducing the snapshot interval PI = Time(si) − Time(si−1).
(ExecTime(t) cannot be changed for the host type specified by the
Angel program to run test t.) Given a current valid plan P , this
rationale can be used to check whether lowering the snapshot in-
terval in P to add one or more snapshots to the plan window will
still give a valid testing plan Pnew. This process of adding stricter
objectives continues until no valid plan can be found; at that point,
the minimum feasible τrpo is known, namely, it is the RPO interval
in the valid plan found for the previous set of objectives.

6. ORCHESTRATOR
Recall from Section 1 and Figure 1 that testing plans are sub-

mitted to Amulet’s Orchestrator for execution. The Orchestrator
will execute each submitted plan continuously by working in con-
junction with the Snapshot Manager and resource provider. Fig-
ure 9 shows the multi-threaded design of the Orchestrator which
has three concurrent execution paths—snapshot management, host
management, and plan management—that we will discuss next.

Snapshot Management: The external Snapshot Manager (see Fig-
ure 1) informs the Orchestrator about the availability of a new snap-
shot s by sending a descriptor for s. Snapshots are never copied to
the Orchestrator. Since s is at the level of a volume V , the Plan

Manager in charge of the testing plan for V is notified. In turn, the
Host Managers responsible for hosts allocated to this plan from the
external resource provider get notified. Recall that the plan gener-
ated by the Optimizer was based on PW

PI
uniformly-spaced snap-

shots per plan window. The Plan and Host Managers determine
which snapshot in the window, if any, s should be mapped to.

Host Management: A Host Manager is responsible for using and
monitoring a host allocated to a testing plan from the resource
provider. Amulet’s implementation supports any infrastructure-
as-a-service cloud provider (e.g., Amazon Web Services, Joyent,
Rackspace) as the resource provider by using an appropriate Cloud

Manager (Figure 9). The Host Manager uses the API provided by
the Cloud Manager to allocate, establish connections with, and ter-
minate hosts as well as to load snapshots on to allocated hosts.

Plan Management: A Plan Manager is responsible for shepherd-
ing the execution of a testing plan P through one or more plan
windows until P is terminated. The Plan Manager’s role is straight-
forward at the conceptual level if P behaves as the Optimizer es-
timated when P was generated. The challenge is when the Plan
Manager has to deal with unpredictable lags in the actual sched-

ule of execution from the Optimizer-estimated schedule, and with
repair actions that need to be run when corruption is detected.

Dealing with Lags: This process involves two steps: (i) identifying
straggler hosts on which the lag is observed; and (ii) allocating one
or more helper hosts for each straggler host subject to the reserved
cost budget PR earmarked for the Orchestrator to deal with unpre-
dictable events. A testing host h is marked as a straggler when two
conditions hold:
1. The actual execution time of tests for a snapshot s on h has

overshot the corresponding estimated time by more than an al-
lowed slack. (The slack is used to prevent overreaction.) Strag-
gler hosts are prioritized based on the age of s.

2. The next snapshot s′ on which host h is scheduled to run tests
has become available.

Each helper host h′ for a straggler host h will take a share of h’s
workload adaptively. The helper host h′ will be terminated if, on
completing the execution of tests on a snapshot, it is found that the
corresponding testing host h is no longer a straggler.

Handling Repairs: This process also involves two steps:
1. The first test t that detects a corruption on a snapshot s, and

has an associated repair action, will cause a repair host to be
allocated to run the repair. Repairs for any future tests that de-
tect corruption on s will be run on the same host in order to
generate a single fully-repaired snapshot. Note that applying
repairs offers much less scope for parallel execution compared
to running tests to detect different types of corruption.

2. Once the repairs complete, a snapshot is taken to preserve the
repaired version of s, and the repair host is terminated.

When a new helper or repair host is needed, the Plan Manager
checks whether it has enough remaining budget from PR to allo-
cate a new host. If not, the Plan Manager will repeat the check
at frequent intervals. In the worst case—e.g., if estimates of test
execution times from models were significantly lower than actual
execution times—an RPO or TCO objective will eventually get vi-
olated before a host can be allocated. In that case, the Orchestrator
will terminate the plan and send a notification to the administrator.

7. EXPERIMENTAL EVALUATION

7.1 Experimental Methodology and Setup
Methodology: We have implemented Amulet with all the com-
ponents and algorithms as described in the previous sections. We
now present a comprehensive evaluation of Amulet when run using
the Amazon Web Services platform [1] as the infrastructure-as-a-
service cloud provider. Section 7.2 considers the end-to-end execu-
tion, with both optimization and orchestration, of Angel programs
in Amulet. For ease of exposition, we consider four scenarios that
are simple in terms of Amulet’s functionality, but illustrate the chal-
lenges that Amulet has to deal with. Amulet’s power will become
more clear in Section 7.3 where we consider both the efficiency
(how fast?) and effectiveness (how good is the selected plan?) of
the Optimizer while generating testing plans for huge plan spaces.

Database software stack and tests: For the production system,
we choose a popular database software stack composed of MySQL
as the database system, XFS or ext3 as the file-system, and Ama-
zon’s Elastic Block Storage (EBS) volumes for persistent storage
(we used 50GB volumes) [8]. For each layer of the stack, we chose
a representative test from Table 1: myisamchk for MySQL database
integrity checking, and fsck and xfs_check for file-system integrity
checking. Execution-time estimation models for these tests were
trained and validated on the Amazon cloud (see Section 3).

Snapshots and storage: We implemented a Snapshot Manager



that automates periodic volume-level snapshots (currently, the only
type supported by the Amazon cloud). When the XFS file-system
is used, the Snapshot Manager freezes the MySQL database as well
as the XFS file-system (all caches are flushed to the disk) before a
volume-level snapshot is taken [8]. This process finishes within
seconds. For the ext3 file-system, only the database is frozen since
ext3 does not support the freeze feature of XFS.

Amazon provides two persistent storage services: Simple Stor-
age Service (S3) and Elastic Block Storage (EBS). EBS provides
much faster data access rates than S3, but has lower redundancy.
Amazon supports snapshots of EBS volumes with the caveat that
these snapshots are stored in S3. Specifically, when the Snapshot
Manager initiates a snapshot, Amazon copies the EBS volume data
to S3. All but the first snapshot request to the same EBS volume
will copy to S3 only the changed data since the last snapshot.

Amazon does not provide direct access to data in a snapshot
s. Instead, Amulet can create an EBS volume from s, and at-
tach this volume to a testing host h that needs to run tests on s.
This process copies data in a background fashion from the snap-
shot stored in S3 to h—prioritizing block read/write requests from
h—making the volume accessible in h before the data movement
is complete. Snapshot creation and restore times depend on band-
width constraints and the amount of data that needs to be copied
from S3 to EBS or EBS to S3. In our experiments, we observed
an average bandwidth of 20 MB/s in both directions. This process
can be made much faster by removing the intermediate copy to S3,
which is part of our future work.

Plan costs: Recall from Section 4.1 that a pricing model for the
resource provider has to be input to Amulet in order to specify cost
objectives in Angel programs. For evaluation purposes, we used a
pricing model motivated by how resource usage is charged in a pay-
as-you-go fashion on the Amazon cloud [1]. Table 5 outlines this
pricing model in terms of how the four main types of resources used
in a testing plan are charged. Given a testing plan P , Amulet’s Op-
timizer will use the pricing model to find how much P ’s use of each
resource will cost in one plan window; and add all the per-resource
costs to estimate P ’s total cost per plan window. The total number
of block I/O requests to persistent storage is computed based on the
total input data size for each test and the file-system’s block size.
This strategy was chosen based on our empirical observations. En-
hancing each test model to estimate the number of I/O requests that
the test will make is part of our future work.

7.2 End-to-end Processing of Angel Programs

7.2.1 Case 1: Maintaining a Tested Recovery Point

Angel program: We first submit to Amulet the Angel program
corresponding to Example 1 from Table 2. The program specifies
two objectives, an RPO and an SSO, for a single volume. The
time interval τrpo in the RPO is 60 minutes. The SSO specifies a
single test: a myisamchk medium test (denoted TM ) on a database
table of size approximately 10 GB with no indexes. The test has
to be run on hosts of type Small (m1.small on the Amazon cloud).
The Snapshot Manager sends snapshot descriptors announcing new
snapshots to Amulet every 15 minutes on average.

Testing Plan from the Optimizer: The model for estimating TM ’s
execution time returns an estimate of 20 minutes when invoked by
the Optimizer for this setting. The minimum-cost plan P generated
by the Optimizer’s algorithm in Figure 6 for this setting has:
• PI = 30 minutes
• PW = 60 minutes (PW

PI
= 2 snapshots s1 and s2 per window)

• PM consists of test TM mapped to both snapshots in PW

• PS assigns one Small host to run TM on s1 and s2

Resource Used Pay-as-you-go Pricing Method

Testing hosts
Hosts of the Small type (see Figure 4(a)) cost $0.085 per hour.
Medium / Large types cost $0.17 / $0.34 per hour respectively

Storage $0.10 per month per 1 GB of persistent storage used

I/O to storage $0.10 per 1 million block I/O requests to persistent storage

Snapshot access $0.05 per 1000 store or load requests for snapshots

Table 5: Pricing model used in our evaluation

• Since no CO is specified, PR takes the default value which in
this case is the cost of one Small host (see Section 4.1)

Orchestration Timeline: Figure 2 shows the actual execution time-
line of plan P when it is submitted to and run by the Orchestrator
on the Amazon cloud. The meaning of each important symbol used
in the figure is described at the top. The execution of P is shown for
three plan windows, i.e., a total of 3 hours. When P is submitted,
the Orchestrator starts by requesting the needed testing host from
the cloud provider. When the host is available, the Orchestrator
starts the plan execution (0 minutes in the timeline in Figure 2).

The Orchestrator is continuously executing the schedule PS given
by the Optimizer for each plan window. As part of this process,
the Orchestrator (actually the Plan and Host Managers from Sec-
tion 6) has to map the snapshots si, 1 ≤ i ≤ PW

PI
, identified by

the Optimizer in the plan window to actual snapshots Sj collected
by the Snapshot Manager. Notice from Figure 2 that the Snapshot
Manager is submitting snapshot descriptors every 15 minutes on
average, while the snapshot interval PI in the plan is 30 minutes.

At Time(si), 1 ≤ i ≤ PW

PI
, in the plan window, the Orchestrator

checks whether a snapshot S is available from the Snapshot Man-
ager; if so, S will be tested. Otherwise, the Orchestrator waits for a
slack interval to see whether a new snapshot is submitted. If no new
snapshot arrives, then the last submitted snapshot will be tested. If
this snapshot has already been tested, then an error notification is
generated. The Host Manager uses PS to find out whether it has to
load a submitted snapshot (and if so, which tests it needs to run on
the snapshot and how). Notice from Figure 2 that every other snap-
shot submitted is tested. The boxes with notation SjTM in Figure
2 denote the actual run of test TM on snapshot Sj submitted by the
Snapshot Manager. The width of each box is the actual execution
time of the test. These times are in the 18-22 minutes range which
matches the estimated execution time of 20 minutes.

7.2.2 Case 2: Multiple Tests and Multiple Objectives

Angel program: We now consider a more complex Angel pro-
gram with more tests as well as more and stricter objectives. The
program specifies an RPO, an SSO, and an SIO for a single vol-
ume. The time interval τrpo in the RPO is reduced to 30 min-
utes from before. The SSO specifies three tests: two myisamchk
medium tests respectively on a 2.4 GB lineitem table and a 1 GB
orders table (with no index on either table), and an fsck metadata
test. All tests have to be run on Small hosts. The SIO specifies
Snapshot_interval ≤ 10 minutes. The Snapshot Manager
sends snapshot descriptors announcing new snapshots to Amulet
every 10 minutes on average.

Testing Plan from the Optimizer: The minimum-cost plan P gen-
erated by the Optimizer is more complex than before:
• PI = 10 minutes
• PW = 30 minutes (PW

PI
= 3 snapshots s1, s2, s3 per window)

• PM has all three tests mapped to all three snapshots in PW

• PS assigns one host to run the fsck test (estimated to run in 6
minutes). The two myisamchk tests are run concurrently on a
second Small host, with estimated times of 9 and 7 minutes.

• PR takes the default value as in Case 1

Orchestration Timeline: Figure 10 shows the actual execution
timeline of the above plan P . Note that PI = 10 minutes causes
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Figure 10: Actual execution timeline on the Amazon Cloud for Case 2 in our evaluation

all submitted snapshots to be tested. TML denotes the myisamchk
test on lineitem, TMO denotes the myisamchk test on orders, and
TF denotes the fsck test. While there is some variance in the actual
execution times of the grouped test (1-2 minutes deviation from the
estimates), the plan works as the optimizer estimated.

7.2.3 Case 3: Dealing with Unpredictable Lags

Here we run the same Angel program as in Case 2. Thus, the
same plan P is picked and run as in Section 7.2.2. However, in this
case, we cause a problem on Host1 which causes the TML test on
the host to run almost 2x slower than expected. Figure 11 shows
the actual execution timeline.

Notice that test TML on snapshot S4 now takes around 16 min-
utes to run compared to the estimated time of 9 minutes. The Plan
Manager will mark Host1 as a straggler because the two conditions
for stragglers from Section 6 get satisfied at around 52 minutes in
the timeline. Host1 has overshot the estimated time, and the next
snapshot S5 on which Host1 has to run tests is ready. (A slack inter-
val of 2 minutes is used.) The Plan Manager will use the reserved
cost budget PR to request a helper host at time 52 minutes. The
helper host is available at time 54 minutes, and takes over the run-
ning of the TML and TMO tests on snapshot S5 from Host1. These
tests complete at time 63. At that point, a check reveals that Host1
is no longer a straggler host; thus, the helper host is released back
to the resource provider. Intuitively, the helper host was pulled in
adaptively to help the plan tide over a transient problem.

7.2.4 Case 4: Corruption Detection and Repair
In this case, we cause a data corruption in the production system

that manifests itself in two snapshots. We create a scenario where
a corruption happens due to a software bug that does a misdirected
write on the production system. We run the Angel program from
Case 2 with one change. The modified program associates repair
actions with the myisamchk tests on the lineitem and orders tables.
The repair actions invoke myisamchk with the “-r” option.

Figure 12 shows the actual execution timeline in this case. We
inject the misdirected write in the interval between 30 and 40 min-
utes in the timeline, which corrupts the data in the lineitem table.
Snapshots S4 and S5 submitted by the Snapshot Manager contain
this corruption. The corruption will be detected by TML when ex-
ecuted on S4 (S4, TML in Figure 12). The corruption is reported
to the Plan Manager which uses the reserved cost budget PR to
request a repair host. The repair action is run on the repair host.
When the repair finishes around time 60, a snapshot of the repaired
data is taken and the Snapshot Manager is notified. Around that
time, the Plan manager gets notified of the corruption detected in
S5. The repair on S5 is run on the same repair host, and the re-
paired snapshot is available at time 66. Since no pending repairs
exist at this point, the repair host is released.

7.3 Evaluation of Amulet’s Optimizer
To understand the space of testing plans and to evaluate the qual-

ity and efficiency of Amulet’s Optimizer, we developed an Exhaus-

tive Optimizer (EOpt). EOpt works by enumerating the (nearly)
full space of possible testing plans per volume as follows:
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Figure 11: Actual execution timeline for Case 3
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Figure 12: Actual execution timeline for Case 4

• PW is set to the maximum among intervals in all objectives.
• The number of uniformly-spaced snapshots in PW is varied

from 1 to PW

Pmin
I

, where we set the minimum snapshot interval

Pmin
I to 5 minutes.

• For each number of snapshots in PW , EOpt enumerates all pos-
sible test scheduling combinations starting from all tests run-
ning on a single host (if all tests specify the same host type,
otherwise, the minimum distinct host types), and finishing at a
separate host per test.

Plan space size: We consider the Angel program with an RPO
and an SSO from Case 1 in Section 7.2.1, and add more tests to
the SSO. For each distinct number of tests in the SSO, we varied
the τrpo in the RPO. For each unique Angel program generated in
this manner, Figure 13(a) shows the total number of plans obtained
by running EOpt. Note the log10 scale in Figure 13(a) on the z-
axis which shows the total size of the plan space. The plan space
increases drastically as the number of tests increase because the
size of the space is exponential in the number of tests.

Cost distribution of valid plans: More than 99% of the plans in
the space enumerated by EOpt were invalid for most Angel pro-
grams, i.e., their test schedules (PS) violate one of the specified ob-
jectives or are unsustainable (see Equation 2). Figure 13(b) shows
the distribution of valid plans according to their respective total cost
for an Angel program with τrpo = 60 minutes and an SSO with 4
tests. The figure shows that there is more than one optimal (in this
case, minimum cost) plan. In this case—as well as in all cases
where we could run EOpt in a reasonable time frame—Amulet’s
Optimizer generated one of the optimal plans.

Scalability: Given the large plan space per volume and the speed
at which it grows (Figure 13(a)), we measured the time that each
optimizer takes to find a testing plan per volume. We fixed τrpo
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Figure 13: Characteristics of the testing plan space and the performance of Amulet’s Optimizer

Figure 14: Amulet Optimizer’s running time for non-cost opti-

mization

to 60 minutes in the RPO, and varied the number of tests in the
SSO from 1 to 6. EOpt’s times increased rapidly from 0.5 seconds
to 30+ minutes. (With 6 tests, we killed EOpt after 35 minutes.)
Amulet’s Optimizer ran in under 0.5 seconds in all these cases. We
further increased the number of tests up to 16 (which would be a
high-end number for tests on a single volume). Our Optimizer’s
running time remained under 0.5 seconds.

Next, we increased the τrpo interval in the RPO, and specified
an SIO with a maximum snapshot interval of 1 minute to force our
Optimizer to come up with a plan where a snapshot is tested every
minute. Figure 13(c) summarizes the results. Planning for 3000
snapshots on each of which 16 tests should be run on average, gave
an Optimizer running time under 1 minute. We can see this result
as: If the snapshot interval PI is 5 minutes, then Amulet’s optimizer
needs less than a minute to produce a plan with a window PW

spanning 10 days (3000 snapshots at PI=5 minutes per snapshot).
We conclude that Amulet’s Optimizer is efficient for today’s needs.

Finally, Figure 14 shows how Amulet’s Optimizer continues to
remain efficient even under non-cost optimization objectives. The
binary-search algorithm from Section 5.6 was used. We defined a
TCO and varied the time interval and the number of tests that are
part of the TCO. No cost objective was specified. The goal was to
maximize the number of tests in the plan. While non-cost optimiza-
tion is more expensive, the trend in Figure 14 is similar to what we
observed for the cost optimization objective in Figure 13(c).

8. CONCLUSIONS AND FUTURE WORK
Hardware errors, software bugs, and mistakes by human admin-

istrators can corrupt important sources of data. Current approaches
to deal with data corruption are ad hoc and labor-intensive. We
introduced the Amulet system that gives administrators a declar-
ative language to specify their objectives regarding the detection
and repair of data corruption. Amulet automatically finds and or-
chestrates efficient testing plans that run integrity tests to meet the
specified objectives in cost-effective ways. We believe that Amulet
provides a general framework for administrators to analyze cost
versus risk tradeoffs regarding data protection. Although we proto-
typed Amulet on a cloud platform, Amulet can be applied to con-
ventional enterprise environments with minor modifications. We
intend to build on the current framework in future, and explore sev-
eral directions including adaptive techniques for plan optimization.
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