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WARING RANK OF BINARY FORMS, HARMONIC

CROSS-RATIO AND GOLDEN RATIO

ALEXANDRU DIMCA AND GABRIEL STICLARU

Abstract. We discuss the Waring rank of binary forms of degree 4 and 5, without
multiple factors, and point out unexpected relations to the harmonic cross-ratio,
j-invariants and the golden ratio. These computations of ranks for binary forms
are used to show that the combinatorics of a line arrangement in the complex
projective plane does not determine the Waring rank of the defining equation even
in very simple situations.

1. Introduction

For the general question of symmetric tensor decomposition we refer to [3, 6, 8,
11, 10, 15, 16, 18, 19, 20, 21, 23], as well as to the extensive literature quoted at the
references in [3] and [16]. Consider the graded polynomial ring S = C[x, y], let Sd

denote the vector space of homogeneous polynomials of degree d in S, and let f ∈ Sd

be a binary form of degree d. We consider the Waring decomposition

(1.1) (D) f = ℓd1 + · · ·+ ℓdr ,

where ℓj ∈ S1 are linear forms in x, y, and r is minimal, in other words r = rank f
is the Waring rank of f . Hence, the nonzero binary form f has Waring rank r =
rank f = 1 if and only if f is the power of a linear form. Note that the Waring rank
of a form f of degree d depends only on the corresponding class [f ] in P(Sd), and
even on the corresponding SL2(C)-orbit of [f ] in P(Sd). It is clear that two forms f
and f ′ in Sd such that

(1.2) k = rank f = rank f ′ ∈ {1, 2}
give rise to the same SL2(C)-orbit in P(Sd). The rank two binary forms are discussed
in detail in [4].

In this note we discuss the Waring ranks of binary quartics and binary quintics,
assuming they have distinct factors. For binary quartics the generic rank is 3. We
describe precisely the quartic forms of rank 2 in terms of the harmonic cross-ratio

of the corresponding roots in P1, and explain why all the other binary quartics with
distinct factors have rank 3, see Theorem 3.1. For binary quintics with distinct
factors, those of rank 2 are closely related to the golden ratio. The generic binary
quintics still have Waring rank 3, and there is an algebraic curve parametrizing the
binary quintics with distinct factors and with rank 4, see Theorem 4.1.

2010 Mathematics Subject Classification. Primary 14J70; Secondary 14B05, 32S05, 32S22.
Key words and phrases. Waring decomposition, Waring rank, line arrangement, cross-ratio,

golden ratio.
1

http://arxiv.org/abs/2002.05617v3
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In the final section we use the previous results to show that the combinatorics of
a line arrangement A : F (x, y, z) = 0 in P2 does not determine the Waring rank of F
even in very simple situations, namely when F (x, y, z) = zf(x, y), see Theorem 5.1
and Example 5.2.

We would like to thank Alessandro Oneto for kindly drawing our attention to
several key results in [7], and to Laura Brustenga i Moncuśı for useful informations
concerning [4]. Computations with CoCoa [9] and Singular [12] also played a key
role in our results.

2. Sylvester’s Theorem

The Waring rank r = rank f can be described as follows. Let Q = C[X, Y ], where
X = ∂x and Y = ∂y. Then Q is the ring of differential operators with constant
coefficients and acts on S in the obvious way. For a binary form f ∈ S, we consider
the ideal of differential operators in Q killing f , namely

(2.1) Ann(f) = {q ∈ Q : q · f = 0},
also denoted by f⊥ and called the apolar ideal of f . Note that Ann(f) is a graded
ideal, whose degree s homogeneous component is given by ker[f ], where

(2.2) [f ] : Qs → Sd−s

is the morphism g 7→ g ·f . The matrix of this linear map with respect to the obvious
monomial bases in Qs and Sd−s is called the catalecticant matrix C(f)s of f in degree
s.

Example 2.1. As a example, if we take d = 4 and write

f = a0x
4 + 4a1x

3y + 6a2x
2y2 + 4a3xy

3 + a4y
4,

then

C(f)2 = 12





a0 a1 a2
2a1 2a2 2a3
a2 a3 a4



 .

The following result is perhaps well known.

Lemma 2.2. The graded ideal Ann(f) ⊂ Q of the binary form f of degree d
satisfies the following.

(1) Ann(f)0 6= 0 if and only if f = 0.
(2) Ann(f)0 = 0 and Ann(f)1 6= 0 if and only if f = xd after a linear change of

coordinates.

(3) Ann(f)1 = 0 and Ann(f)2 = Cℓ2 for some ℓ ∈ Q1 if and only if f = xd−1y
after a linear change of coordinates.

The following result goes back to Sylvester [24]. See also [10].
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Theorem 2.3. For a binary form f of degree d, the apolar ideal Ann(f) is a complete

intersection, namely there are two binary forms g1 and g2 in Q such that Ann(f) =
(g1, g2). The degrees dj of gj for j = 1, 2 satisfy d1 + d2 = d + 2. Moreover, if we

assume d1 ≤ d2, then the Waring rank r = rank f is determined as follows.

(1) If the binary form g1 has no multiple factors, then r = d1.
(2) Otherwise, r = d2.

According to Lemma 2.2, the interesting case is

2 ≤ d1 ≤ d2.

In this case we have the following, see also the Introduction in [5].

Theorem 2.4. If the binary form f of degree d satisfies rank f ≥ 2, then

rank f ≤ d

and the equality holds if and only if f = xd−1y after a linear change of coordinates.

Moreover, for a generic binary form f of degree d one has

rank f =

⌊

d+ 2

2

⌋

=

⌈

d+ 1

2

⌉

.

Proof. The first claim follows from Lemma 2.2, (3) and Sylvester’s Theorem 2.3. The
second claim is a special case of Alexander-Hirschowitz results in [2]. �

Example 2.5. When d = 3, a binary form f has rank f = 2 if and only if f has no
multiple factor, and then f is projectively equivalent to the binary form x3 + y3.

3. Binary quartics and the harmonic cross-ratio

In this section we investigate the Waring rank of binary forms of degree 4 having
no multiple factor. If we write

f = a0x
4 + 4a1x

3y + 6a2x
2y2 + 4a3xy

3 + a4y
4,

then the determinant

T (f) = det





a0 a1 a2
a1 a2 a3
a2 a3 a4



 = a0a2a4 + 2a1a2a3 − a32 − a0a
2

3 − a21a4,

which is, up to a constant factor, just detC(f)2 from Example 2.1, is called classically
the Hankel determinant, and the induced function on S4 given by f 7→ detC(f)2 is,
up to a constant factor, the catalecticant from classical Invariant Theory, see [14],
p. 10. In particular, the catalecticant is invariant with respect to the group SL2(C).
Another invariant of the binary form f is given by

S(f) = a0a4 − 4a1a3 + 3a22,

see [1, 14]. Using these two invariants, one defines

j(f) =
S(f)3

S(f)3 − 27T (f)2
.
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It is known that two binary quartics f and f ′, without multiple factors and regarded
as points in P(S4), are in the same SL2(C)-orbits if and only if

(3.1) j(f) = j(f ′).

We have the following.

Theorem 3.1. The Waring rank of a quartic binary form f having no multiple

factor is 2 if and only if j(f) = 1. Otherwise rank f = 3.

Proof. Up to projective equivalence a quartic binary form f having no multiple factor
can be written as

(3.2) f = xy(x+ y)(x+ ty),

with t ∈ C \ {0, 1}. Note that one has, using the above formulas,

j(f) =
4

27

(t2 − t + 1)3

t2(t− 1)2
.

Since f having no multiple factor, it is clear that rank f ≥ 2 by Lemma 2.2. On the
other hand, Theorem 2.4 implies that

rank f ≤ d− 1 = 3.

Moreover, Lemma 2.2 (3) and our hypothesis that t ∈ C\{0, 1}, implies that rank f =
2 if and only if Ann(f)2 6= 0. Using the formula for the catalecticant C(f)2 given in
Example 2.1 and the formula for f in (3.2), it follows that detC(f)2 = 0 exactly for
t ∈ {−1, 1

2
, 2}. For all these three values of t we get j(f) = 1.

�

Corollary 3.2. The quartic binary forms f having no multiple factor and with War-

ing rank 2 form a single SL2(C)-orbit in P(S4). More precisely, rank f = 2 if and

only if the four roots of f , regarded as points in the projective line P
1, have a har-

monic cross-ratio.

Proof. It is known that j(f) = 1 corresponds exactly to the case when the four roots
of f , regarded as points in the projective line P1, have a harmonic cross-ratio. Recall
also our remark related to (1.2) in the Introduction. �

Remark 3.3. The fact that a binary quartic has Waring rank 2 when the catalec-
ticant C(f)2 vanish and the relation to harmonic cross-ration is stated as a remark
in [22], see middle of page 29, with a reference to an exercise in Gurevich book [17],
namely Exercise 25.7. We leave the interested reader to compare the two different
approaches and to notice the distinct terminology used by various authors.

4. Binary quintics and the golden ratio

In this section we investigate the Waring rank of binary forms of degree 5 having
no multiple factor. Up to projective equivalence such a form f can be written as

(4.1) fs,t = xy(x+ y)(x+ sy)(x+ ty) = xy(x+ y)(x2 + Sxy + Py2) = fS,P ,



WARING RANK OF BINARY FORMS, HARMONIC CROSS-RATIO AND GOLDEN RATIO 5

with s, t ∈ C \ {0, 1} and s 6= t. Here S = s+ t and P = st. Recall that the golden
ratio

ϕ+ =
1 +

√
5

2
is the positive root of the equation z2 − z − 1 = 0. We have the following.

Theorem 4.1. The Waring rank of the quintic binary form fs,t having no multiple

factor is 2 if and only if the pair (s, t) is one of the following 12 pairs

(ϕ±, 1+ϕ±), (1+ϕ±, ϕ±), (−ϕ±, 1+ϕ±), (1+ϕ±,−ϕ±), (−1+ϕ±, ϕ±), (ϕ±,−1+ϕ±),

where ϕ± are the two roots of the equation z2−z−1 = 0. Otherwise 3 ≤ rank f ≤ 4.
More precisely, the rank of the form fS,P is 4 exactly when the pair (S, P ) is a zero

of the polynomial

∆(S, P ) = −4S12 + 12S11P + S10P 2 − 22S9P 3 + S8P 4 + 12S7P 5 − 4S6P 6+

+12S11 + 30S10P − 202S9P 2 + 84S8P 3 + 292S7P 4 − 78S6P 5 − 102S5P 6 + 36S4P 7+

+S10−202S9P+190S8P 2+1176S7P 3−1198S6P 4−1234S5P 5+666S4P 6+188S3P 7−
−83S2P 8−22S9+84S8P+1176S7P 2−2640S6P 3−2264S5P 4+5392S4P 5+1236S3P 6−
−1532S2P 7 + 130SP 8 + 8P 9 + S8 + 292S7P − 1198S6P 2 − 2264S5P 3 + 9312S4P 4−
−1924S3P 5−8100S2P 6+1860SP 7+77P 8+12S7−78S6P−1234S5P 2+5392S4P 3−
−1924S3P 4−10570S2P 5+8010SP 6+120P 7−4S6−102S5P+666S4P 2+1236S3P 3−

−8100S2P 4 + 8010SP 5 − 410P 6 + 36S4P + 188S3P 2 − 1532S2P 3+

+1860SP 4 + 120P 5 − 83S2P 2 + 130SP 3 + 77P 4 + 8P 3.

Proof. As in the proof above, we see that rank f ≥ 2 and the equality holds if and
only if the catalecticant C(f)2 has not maximal rank 3. A direct computation shows
that

C(f)2 =









0 4 2(s+ t+ 1)
12 6(s+ t+ 1) 6(s+ t+ st)

6(s+ t + 1) 6(s+ t + st) 12st
2(s+ t+ st) 4st 0









.

Using the software SINGULAR, we see that the ideal of 3-minors of this matrix has
as zero set exactly the 12 pairs (s, t) listed above. Assume now that the catalecticant
C(f)2 has maximal rank 3, which implies that g1, the generator of Ann(f) of minimal
degree has degree d1 = 3. It follows that in this case rank(f) ≥ 3. If g1 = aX3 +
3bX2Y + 3cXY 2 + dY 3 is in Ann(f)3, it follows that (a, 3b, 3c, d) is in the kernel of
the matrix C(f)3, and hence in the kernel of the matrix





0 2 1 + S S + P
2 1 + S S + P 2P

1 + S S + P 2P 0



 ,
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obtained by dividing the rows in C(f)3 by 6,12 and 6. Let mi be the determinant of
the 3× 3 matrix obtained from this matrix by deleting the i-th column. Then, since
the matrix C(f)3 is essentially the transpose of the matrix C(f)2, we know that at
least one of the minors mi is not zero. It follows that one can take

(a, 3b, 3c, d) = (m1,−m2, m3,−m4),

and in this way a, b, c, d become polynomials in S, P . We define α = ac − b2, β =
ad− bc, γ = bd− c2 and

∆(S, P ) = β2 − 4αγ.

Then it is known that the binary cubic form g1 has no multiple factors if and only
if ∆(S, P ) 6= 0. In this case rank fS,P = 3, and otherwise rank fS,P = 4. This follows
from Sylvester’s Theorem 2.3, recalling that d1 + d2 = d+ 2 = 7 in our case. �

Remark 4.2. Note that a binary form of Waring rank two has necessarily distinct
factors, see [4, Corollary 4.1.1].

To the quintic form fs,t above we can associated 5 binary quartic forms without
multiple factors, namely h1 = fs,t/x, h2 = fs,t/y, h3 = fs,t/(x+y), h4 = fs,t/(x+ sy)
and h5 = fs,t/(x+ty). It is known that the SL2(C)-orbit of fs,t in P(S5) is determined
by the unordered list of 5 complex numbers

j(fs,t) := ((j(h1), j(h2), j(h3), j(h4), j(h5)),

see [1, Theorem 13].

Corollary 4.3. The quintic binary forms f with Waring rank 2 form a single

SL2(C)-orbit in P(S5). More precisely, rank f = 2 if and only if f has distinct

factors and

j(f) =

(

25

33
,
25

33
,
25

33
,
25

33
,
25

33

)

.

Proof. The fact that the 12 pairs (s, t) listed in Theorem 4.1 give rise to a single
SL2(C)-orbit in P(S5) follows from our general remark related to (1.2) in Introduc-
tion. A direct computation shows that

j(fϕ+,1+ϕ+) =

(

25

33
,
25

33
,
25

33
,
25

33
,
25

33

)

,

and this completes the proof. �

Remark 4.4. It is shown in [4, Theorem 4.14] that there are exactly

Nd =

(

d− 1

2

)

distinct forms in P(Sd) which are multiple of a fixed cubic form c ∈ S3 with distinct
factors, say c = xy(x + y). For d = 4 we get N4 = 3, which explains why we get 3
values for t in the proof of Theorem 3.1 above. Similarly, for d = 5 we get N5 = 6, and
the corresponding 6 forms are those listed at the beginning of the proof of Corollary
4.3 above.These specific binary forms are related to the map Γ, the dihedral cover
for the cubic xy(x+ y), see [4, Definition 4.7].
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Example 4.5. Consider the quintic binary form

f = xy(x+ y)(x2 + y2)

corresponding to the case t = i, s = −i with i2 = −1. The corresponding pair
(S, P ) = (s + t, st) is now (0, 1) and clearly ∆(0, 1) = 0. The corresponding form
g1 = (Y −X)(X + Y )2 has a multiple factor, and hence

rankxy(x+ y)(x2 + y2) = 4.

5. On the Waring rank of some ternary forms

Let f ∈ Sd = C[x, y]d be a binary form of degree d and rank rank f ≥ 2, and
consider the ternary form F = zf ∈ Rd+1, where R = C[x, y, z]. Assume, using
Theorem 2.3, that Ann(f) = (g1, g2) such that

2 ≤ d1 = deg g1 ≤ d2 = deg g2 and d1 + d2 = d+ 2.

Then it is clear that Ann(F ) in the ring T = C[X, Y, Z], where Z corresponds to ∂z,
it is given by

(g1, g2, Z
2).

The following result is a special case of [7, Theorem 4.14]. We include a proof,
essentially the same as the proof given in [7, Theorem 4.14], just for the reader’s
convenience.

Theorem 5.1. The Waring rank of the ternary form F = zf(x, y) is exactly d1d2,
and all the linear forms ℓj occurring in a minimal length Waring decomposition (1.1)
have the forms ℓj = ajx+ bby + cjz with cj 6= 0 for all j = 1, ..., r = d1d2.

Proof. Since Ann(f) is a complete intersection, it follows that g2 can be chosen
without multiple factors. With such a choice, we claim that the ideal

I = (g1(X, Y ) + Zd1 , g2(X, Y )) ⊂ Ann(F ) ⊂ T

is a smooth complete intersection V , containing d1d2 simple points in P
2. Take a

point (p : q : r) ∈ P2 in the zero set of this ideal I. Note that r 6= 0, since the
equations

g1(X, Y ) = g2(X, Y ) = 0

have only the trivial solution (p, q) = (0, 0) in C2. Hence we can take r = 1 and
compute the Jacobian matrix of the mapping (g1(X, Y )+Zd1 , g2(X, Y )) at the point
(p : q : 1). This matrix has rank 2, due to the fact that g2 was supposed without
multiple factors, and hence g2(p, q) = 0 implies that the gradient of g2 at (p, q) is
non-zero. It follows that

I(V ) = I ⊂ Ann(F ).

It is known that the Waring rank rankF is the minimal cardinality of a finite set
W in P2 such that I(W ) ⊂ Ann(F ). The set V constructed above shows that this
minimal number is |W | ≤ d1d2. Let W ′ = W \ L, where L is the line Z = 0. Then
one has the following

(1) The cardinality |W ′| is equal to the Hilbert polynomial of the quotient T/I(W ′),
which is a constant;
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(2) Since Z is not a zero-divisor on T/I(W ′), the above Hilbert polynomial is
just the C-dimension of the Artinian algebra T/(I(W ′) + (Z);

(3) Since I(W ) ⊂ Ann(F ), we have

I(W ′) = I(W ) : (Z) ⊂ Ann(F ) : (Z) = (g1, g2, Z).

It follows that

|W ′| = dim
T

I(W ′) + (Z)
≥ dim

T

(Ann(F ) : (Z)) + (Z)
= dim

T

(g1, g2, Z)
.

On the other hand, we have

dim
T

(g1, g2, Z)
= dim

Q

(g1, g2)
= d1d2,

and this proves our claim. �

Example 5.2. In the previous sections, we have given examples of quartic bi-
nary forms f (respectively quintic binary forms f) without multiple factors and
such that (d1, d2) = (2, 4) and (d1, d2) = (3, 3) for quartic forms, and respectively
(d1, d2) = (2, 5) and (d1, d2) = (3, 4) for quintic forms. Note that the associated line
arrangements in P2, namely

A(F ) : zf(x, y) = 0,

have a very simple combinatorics, namely a pencil of 4 or 5 lines through a common
point, plus a transversal line. However, the Waring rank of F can be 8 or 9 for a
quartic form f , and 10 or 12 for a quintic form f . In particular, the combinatorics
of the line arrangement A(F ) cannot determine the Waring rank of the defining
equation F = zf of the line arrangement.

Remark 5.3. Note the following analog of Lemma 2.2 (3) above. A line arrangement
A : F (x, y, z) = 0 in P

2 satisfies Ann(F )1 = 0 and Ann(F ) = Cℓ2 for some linear
form ℓ ∈ R1 if and only if A has the same combinatorics as the line arrangements
considered in Example 5.2, namely a pencil of d lines through a point of P2 plus a
transversal line. Note that any such arrangement, regarded as a central arrangement
in C

3 is free with exponents (e1, e2, e3) = (1, 1, d − 1), which are the degrees of a
basis for the free R-module of derivations D(A), see for instance [13, Chapter 8] for
generalities on free arrangements. On the other hand, the generators of the ideal
Ann(F ) ⊂ T , as we have seen above, have degrees (2, d1, d2) with d1+ d2 = d+2. It
does not seem to be a simple relation between the module of derivations D(A) and
the ideal Ann(F ), even in this simple situation.
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