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As the climate changes, warmer spring temperatures are causing earlier leaf-out1–6 and 36 

commencement of net carbon dioxide (CO2) sequestration2,4 in temperate deciduous forests, 37 

resulting in a tendency towards increased growing season length1,4,5,7–9 and annual CO2 38 

uptake2,4,10–14. However, less is known about how spring temperatures affect tree stem growth, 39 

which sequesters carbon (C) in wood that has a long residence time in the ecosystem15,16. 40 

Using dendrometer band measurements from 463 trees across two forests, we show that 41 

warmer spring temperatures shifted the woody growth of deciduous trees earlier but had no 42 

consistent effect on peak growing season length, maximum daily growth rates, or annual 43 

growth. The latter finding was confirmed on the centennial scale by 207 tree-ring 44 

chronologies from 108 forests across eastern North America, where annual growth was far 45 

more sensitive to temperatures during the peak growing season than in the spring. These 46 

findings imply that extra CO2 uptake in years with warmer springs10–12 is not allocated to 47 

long-lived woody biomass, where it could have a substantial and lasting impact on the forest 48 

C balance.  Rather, contradicting current projections from global C cycle models2,3,17,18, our 49 

empirical results imply that warming spring temperatures are unlikely to increase the woody 50 

productivity or strengthen the CO2 sink of temperate deciduous forests. 51 

In recent decades, Earth’s forests have sequestered ~20% of anthropogenic CO2 emissions, 52 

thereby slowing the pace of atmospheric CO2 accumulation and climate change19,20. A large 53 

portion of this CO2 sink occurs in temperate deciduous forests, which sequester >300 Tg C yr-1 54 

(>30% of the total forest C sink)21.  The future behavior of this CO2 sink will play an important 55 

yet uncertain role in influencing atmospheric CO2 and climate change20,22. 56 



In temperate deciduous forests, spring warming generally lengthens the period over which 57 

trees have photosynthetically active leaves1,7–9 and that over which the ecosystem is a net CO2 58 

sink2. Current models assume that longer growing seasons lead to increasing annual net CO2 59 

uptake (i.e., net ecosystem exchange, NEE)2,3,17. However, recent experimental and observational 60 

findings show that annual productivity can be limited by sink factors17,23,24, and that positive 61 

effects of warm springs are compensated by negative effects of accumulation of seasonal water 62 

deficits3. These studies suggest that warmer spring temperatures may not have the expected 63 

positive effect on forest CO2 sequestration. 64 

While responses of leaf phenology and seasonal NEE to warming spring temperatures have 65 

been documented1–4,7–9, little is known about how the longest-lived component of fixed C in 66 

trees, the woody growth, is responding to warming spring temperatures. In fact, we are aware 67 

of only one study that has documented stem-growth phenology of temperate deciduous forests 68 

over multiple years25.  The climate sensitivity of woody growth phenology in temperate 69 

deciduous trees and its link to annual growth has never been studied in-situ (but see Ref.24 for a 70 

controlled sapling experiment). 71 

Tree-ring records, which can be used to examine relationships of annual growth to temperature 72 

but not to understand growth phenology, reveal that growth of temperate deciduous trees 73 

tends to be most sensitive to temperature or potential evapotranspiration between late spring 74 

and early summer26,27,  with some hints that warmer springs may have a modest positive effect 75 

on growth27.  Thus, tree-ring evidence does not necessarily align with the finding that warming 76 

spring temperatures increase annual forest CO2 uptake2. Characterizing phenological responses 77 



of stem growth to warming spring temperatures is critical to bridging this conceptual 78 

disconnect and understanding how forest biomass growth is likely to change as the climate 79 

warms. 80 

Here, we evaluate how early spring temperatures affect stem growth phenology, growth rates, 81 

and annual growth of temperate deciduous trees across eastern North America. To test whether 82 

warmer springs extend the period of stem growth, we used dendrometer band measurements 83 

on 463 trees across two mid-latitude forests. To test whether spring temperatures consistently 84 

increased annual growth, we analyzed 207 tree-ring chronologies from 108 forests. 85 

Dendrometer band analysis 86 

Using dendrometer band measurements taken throughout multiple growing seasons at the 87 

Smithsonian Conservation Biology Institute (SCBI; Virginia, USA; n = 123 trees from 2011-2020) 88 

and Harvard Forest (Massachusetts, USA; n = 340 trees from 1998-2003), we fit a logistic growth 89 

model28 to determine the days of year (DOY) when 25, 50, and 75% annual growth were 90 

achieved (𝐷𝐷𝐷𝐷𝑌𝑌25, 𝐷𝐷𝐷𝐷𝑌𝑌50, 𝐷𝐷𝐷𝐷𝑌𝑌75), peak growing season length (𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝 = 𝐷𝐷𝐷𝐷𝑌𝑌75-𝐷𝐷𝐷𝐷𝑌𝑌25), the 91 

maximum daily growth rates (𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚) and the DOY on which it occurred (𝐷𝐷𝐷𝐷𝑌𝑌𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚), and total 92 

annual increment in diameter at breast height (𝛥𝛥𝐷𝐷𝛥𝛥𝛥𝛥; Fig. 1). This analysis was performed 93 

separately for ring- and diffuse-porous species, which differ in growth phenology25. These stem-94 

growth milestones were compared to canopy foliage phenology (measured at ecosystem level 95 

via remote sensing). 96 



Figure 1 | Summary of temperate deciduous tree growth responses to warmer spring temperatures. (a) 98 
Schematic illustrating parameters of interest and summarizing how each responds to warmer maximum 99 
temperatures during a ‘critical temperature window’, defined as the period with the strongest control 100 
over DOY25; (b) Variable definitions and summary of responses to warmer spring temperatures at two 101 
temperate forests – Smithsonian Conservation Biology Institute (SCBI) and Harvard Forest – and for two 102 
groups of broadleaf deciduous species (RP=ring porous; DP=diffuse porous), where up and down arrows 103 
indicate significant increases and decreases, respectively, ‘-’ indicates no significant correlation, and 104 
‘mixed’ indicates a mix of significant and non-significant correlations, often in different directions. 105 



Growth milestones for both canopy foliage phenology and stem growth occurred 6-10 days 106 

earlier, on average, at SCBI than at Harvard Forest (Fig. 2, Extended Data Table 2). Consistent 107 

with the results of Ref25, ring-porous species began growing earlier, reaching the 𝐷𝐷𝐷𝐷𝑌𝑌25 108 

benchmark earlier (by 31 days at SCBI and 32 at Harvard Forest), and their growth was spread 109 

over a longer growing season (average 𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃 21 and 19 days longer at SCBI and Harvard Forest, 110 

respectively; Fig. 2, Extended Data Figure 2, Extended Data Table 2). Peak growing season 111 

length was similar across sites, with 𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃 being, on average, only two days longer at SCBI for 112 

ring-porous species and less than one day longer for diffuse-porous species (Extended Data 113 

Table 2). 114 



Figure 2 | Foliage (a,b) and stem growth (c,d) phenology at the Smithsonian Conservation Biology 116 
Institute (a,c) and Harvard Forest (b,d). Panels (a-b) show ecosystem-level canopy foliage phenology 117 
from 2001-2018, obtained from the MODIS Global Vegetation Phenology product (MCD12Q2.006), where 118 
G = Greenup, M=Mid-greenup, P=peak, and S=Senescence (i.e., beginning of green-down). Panels (c-d) 119 
show the dates at which stem growth milestones were achieved, on average, for sampled populations of 120 
ring-porous and diffuse-porous trees at SCBI (2011-2020) and Harvard Forest (1998-2003). Mean 121 
temperature was calculated for each wood-type/site combination over the respective critical Tmax 122 
window, then turned into a ratio and assigned a color on a gradient where the coldest year in the sample 123 
is blue and the warmest is red. 124 

 125 

Both MODIS-derived canopy foliage phenology and dendrometer band measurements of stem 126 

growth phenology generally shifted backwards as spring temperatures increased (Fig. 2, 127 

Extended Data Figures 4-5). We found a consistent effect of temperature (𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 or 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚) 128 



throughout the spring, but the strongest effects on stem-growth phenology were found using 129 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 during a critical temperatrue window (CTW). CTW was identified by measuring the 130 

correlation between all combinations of weekly 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐷𝐷𝐷𝐷𝑌𝑌25 from January 1 to mean 𝐷𝐷𝐷𝐷𝑌𝑌25 131 

for each xylem porosity-site combination (Extended Data Figure 3). The CTW was defined as 132 

the week(s) which had the strongest correlation with 𝐷𝐷𝐷𝐷𝑌𝑌25. 133 

For ring- and diffuse- porous species at both sites, warmer 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 in the CTW resulted in earlier 134 

achievement of phenological milestones. Consistent with findings from previous studies30, leaf 135 

phenological milestones advanced at both sites (Fig. 2a-b, Extended Data Table 2), with greenup 136 

(DOY when EVI2 first crossed 15% of the segment EVI2 amplitude) advancing 4.5 days/∘C at 137 

SCBI (p=0.001) and 2.4 days/ ∘C at Harvard Forest (p=0.1). Similarly, at both sites, the stem 138 

growth milestones 𝐷𝐷𝐷𝐷𝑌𝑌25, 𝐷𝐷𝐷𝐷𝑌𝑌50, 𝐷𝐷𝐷𝐷𝑌𝑌75, and 𝐷𝐷𝐷𝐷𝑌𝑌𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 all decreased with mean 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 during the 139 

critical temperature window (Figs. 1, 2c-d; Extended Data Figures 4-5). Specifically, 𝐷𝐷𝐷𝐷𝑌𝑌25, 140 𝐷𝐷𝐷𝐷𝑌𝑌50, and 𝐷𝐷𝐷𝐷𝑌𝑌75 advanced 1.1-1.9 days/ ∘C for ring-porous species and 3.5-3.6 days/ ∘C for 141 

diffuse-porous species at SCBI, and 2.8-7.2 days/ ∘C for ring-porous species and 6.6-7.9 days/ ∘C 142 

for diffuse-porous species at Harvard Forest (Extended Data Table 2). 143 

Whereas the length of time between canopy greenup and senescence (i.e., the day when 144 

greenness dropped below 90% of its peak) increased in years with warmer temperatures during 145 

the critical temperature window compared to those with cooler temperatures (Fig. 2a-b), there 146 

was no consistent lengthening of 𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃 (Fig. 1, Extended Data Figures 4-5). 147 

In contrast to the pronounced effects of 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 on the timing of growth, its effects on 𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 and 148 𝛥𝛥𝐷𝐷𝛥𝛥𝛥𝛥 were weak and inconsistent (Figs. 1, Extended Data Figures 4-5). Specifically, 𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚, 149 



which occurred very close to 𝐷𝐷𝐷𝐷𝑌𝑌50 (on 𝐷𝐷𝐷𝐷𝑌𝑌𝑝𝑝.𝑚𝑚𝑚𝑚𝑚𝑚; Extended Data Table 2), displayed either no 150 

relationship to mean 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 during the critical temperature window (SCBI), or extremely small 151 

changes in opposite directions for ring- and diffuse- porous species (Harvard Forest). 𝛥𝛥𝐷𝐷𝛥𝛥𝛥𝛥 152 

displayed no relationship with mean 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 during the critical temperature window (Extended 153 

Data Figure 4). 154 

Tree-ring analysis 155 

To understand how annual growth increments have responded to spring temperatures at the 156 

centennial scale, we analyzed tree-ring chronologies of 12 species at SCBI27 and 4 species at 157 

Harvard Forest (Extended Data Table 1), along with an additional 191 chronologies from 106 158 

sites (Fig. 3; Extended Data Figure 1; Extended Data Table 3)26. In total, our analysis included 159 

207 chronologies representing 24 broadleaf species at 108 sites distributed from Alabama (Lat = 160 

34.35) to Michigan (Lat = 45.56) and spanning a 15 ∘C range in April 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚. Across all 161 

chronologies, the standardized ring-width index (RWI) was significantly (at p ≤ 0.05) positively 162 

correlated with April 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 for only 2% of chronologies: 1 of 142 ring-porous and 4 of 66 diffuse-163 

porous species-site combinations (Extended Data Table 3). In contrast, RWI was frequently 164 

negatively correlated with 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 during peak growing season months (May-August), with 165 

significant correlations for 52% (May: 45/141, Jun: 107/141, Jul: 91/141, Aug: 53/141) and 46% 166 

(May: 10/66, Jun: 52/66, Jul: 36/66, Aug: 23/66) of species-site-month combinations for ring-167 

porous and diffuse-porous species, respectively. 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 generally exibited weaker relationships to 168 

annual growth than 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚, with few significant correlations between spring 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 and RWI 169 

(Extended Data Figure 6). 170 



To test whether the negative effect of summer temperatures might offset an enhancement of 171 

growth by warmer spring temperatures, we tested for the joint effects of April and June-July 172 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 on RWI. Results were qualitatively similar to the univariate correlations (Fig. 3), with 173 

significant (at p = 0.05) positive correlations to April 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 for only 4% of chronologies and 174 

significant negative correlations with June-July 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 for 77% of chronologies, supporting that 175 

summer temperatures were the more important driver of annual stem growth (Extended Data 176 

Table 3). 177 



Figure 3 | Sensitivity of annual growth, as derived from tree-rings, to monthly mean maximum 179 
temperatures (Tmax), for 207 chronologies from 108 sites across eastern North America (Extended Data 180 
Figure 1). Colors indicate the correlation between monthly Tmax and a dimensionless ring width index 181 
(RWI) derived from the multiple trees that form each chronology and emphasizing interannual variability 182 
associated with climate. Chronologies are grouped by xylem porosity and ordered by mean April Tmax. 183 
Plots are annotated to highlight records from our two focal sites, the Smithsonian Conservation Biology 184 
Institute (SCBI) and Harvard Forest (HF) (Extended Data Table 1). Species analyzed and numbers of 185 
significant correlations to Tmax are summarized in Extended Data Table 3, and chronology details are 186 
given in SI Table 1. 187 



Discussion 188 

Together, our results demonstrate that warmer spring temperatures in the temperate deciduous 189 

forests of eastern North America advance the phenology of tree stem growth but have little 190 

effect on annual woody productivity (Figs. 1- 3). The observed phenological advance in the start 191 

of stem growth under warmer springs parallels phenological advances observed for canopy 192 

foliage (Fig. 2a-b)2,4,5 and NEE2,4. However, inconsistent with the concept that an earlier start to 193 

growth would increase annual woody productivity, we demonstrate that warmer springs 194 

hasten the cessation of stem expansion and thereby have negligible effect on total annual 195 

growth for most species and locations (Fig. 3). Our observations suggest that the cessation of 196 

rapid stem expansion, which occurs mid-summer near the time of peak canopy greenness 197 

(Extended Data Figure 2)4, is likely driven by cues other than photosynthate limitation, such as 198 

daylength or sink limitation, which also play an important role in autumn leaf senescence17,23,31. 199 

Our tree-ring analysis (Fig. 3) demonstrates that the primary effect of warming temperatures on 200 

annual tree growth is not an augmentation through an earlier start to growth, but rather a 201 

reduction associated to drought stress during the peak growing season26. Warm springs may 202 

also amplify summer drought stress in some times and places, effectively canceling out any 203 

positive effects of an extended growing period3,32; however, spring temperatures and summer 204 

Standardized Precipitation Evapotranspiration Index33 were uncorrelated within our 205 

dendrometer band analysis, implying that the effects of warm spring temperatures on growth 206 

phenology elucidated here (Fig. 1) were not attributable to summer drought. 207 



Our finding that interannual variation in woody growth is more strongly linked to conditions 208 

during the peak growing season than to growing season length aligns with parallel findings for 209 

NEE13,14. However, there is also a disconnect with findings that NEE is at least modestly greater 210 

in years with warm springs2 or long growing seasons4,13,14. Warming advances spring phenology 211 

and may advance or delay autumn senescence depending on timing of warming and water 212 

availability12,34,35, with delays more common across eastern North America,2–4 implying that 213 

warming temperatures are lengthening the period from peak stem growth to the cessation of 214 

CO2 uptake by the ecosystem. We show that the extra C fixation in years with warm springs 215 

does not substantially augment woody growth, but it remains unclear how it is allocated within 216 

the ecosystem. There are two main possibilities, which hold contrasting implications for the 217 

response of forest C balance to rising spring temperatures. 218 

One possibility is that extra photosynthate in years with warm springs may be allocated to 219 

woody growth without affecting diameter growth in the current year. It is theoretically possible 220 

that extra C is allocated to cell wall thickening, a process that lags behind stem expansion36, or 221 

to a thicker layer of higher-density latewood, resulting in formation of more C-dense wood in 222 

years with warm springs. However, existing evidence indicates that warm springs have a 223 

neutral or negative effect on latewood width37–39, which is more strongly controlled by summer 224 

drought stress37,38, suggesting that a positive effect of warm springs on the total C content of 225 

annual rings is unlikely. Extra C could also be saved within trees as non-structural 226 

carbohydrates and used towards growth the following year40,41, potentially including an earlier 227 

start to growth31. Extension of our tree-ring analysis revealed weak correlation between April 228 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 and growth the following year (sig. pos. correlations for 5/142 RP and 3/66 DP species-site 229 



combinations, Fig. Extended Data Figure 7), although predominantly positive (non-significant) 230 

correlations in RP species suggests that this dynamic may weakly influence their annual 231 

growth. Thus, warm springs are unlikely to provide substantial, sustained C sinks under 232 

warming spring temperatures. 233 

A second possibility is that any additional C fixed during years with warm springs may be 234 

allocated to plant functions other than stem growth, including respiration, reproduction, and 235 

production of foliage, roots24, or root exudates. Much of this C would have a relatively short 236 

residence time within the ecosystem, and C loss through fall or winter respiration may offset 237 

gains from an earlier spring3,42. However, C allocated to nonstructural carbohydrates or 238 

relatively short-lived plant tissues would typically remain in the ecosystem beyond the end of 239 

the year40, such that the long-term effect of warm springs on the forest C balance would not be 240 

captured in analyses of interannual variation2,13,14. Studies within or including the temperate 241 

deciduous biome that examined long-term trends in growing season length and ecosystem C 242 

uptake2,4,10,11 – as opposed to their interannual variation – showed increasing trends in both 243 

variables, suggesting that the C not allocated to woody productivity within the current year has 244 

a multi-year residence time within the ecosystem. However, given our finding that warm 245 

springs do not significantly enhance woody productivity, this C is likely to have a relatively 246 

short residence time within the ecosystem. 247 

Thus, a distinction between interannual variation and directional change may be critical when 248 

considering how directional climate change is likely to affect tree growth and ecosystem C 249 

dynamics. As discussed above, temporal lags between C uptake and release imply that the full 250 



effects of warm spring temperatures on forest woody productivity and C cycling are unlikely to 251 

be apparent in analyses of interannual variation (including this analysis)43. Moreover, 252 

acclimation of trees to warming temperatures44 and, on longer time scales, species adaptations 253 

and shifts in community composition45 are likely to alter the phenology of forest C cycling. If we 254 

look across spatial gradients where the latter have had time to play out, we see that warmer 255 

spring temperatures are associated with earlier leaf-out6 and longer growing seasons, which in 256 

turn are are correlated with greater tree growth46, woody productivity47, and NEE48. Thus, 257 

warming spring temperatures are expected to increase the biophysical potential for annual tree 258 

growth, but that potential is not being realized on an interannual time frame. 259 

As climate change accelerates and spring temperatures become increasingly warmer, growing 260 

seasons will start earlier; however, barring rapid acclimation of forests to the warming 261 

conditions, an earlier onset of growth in the spring is unlikely to provide the sustained increase 262 

in CO2 sequestration and ensuant negative climate change feedback that is anticipated in most 263 

climate forecasting models2,3,17,18. Rather, the dominant effect of rising temperatures on forest 264 

woody productivity will be a negative effect of high summer temperatures, which constitutes a 265 

positive feedback to climate change. 266 

Methods 267 

Dendrometer band analysis 268 

Dendrometer band measurements were collected at SCBI49 and Harvard Forest4,25, both part of 269 

the Forest Global Earth Observatory (ForestGEO)50,51. SCBI (38.8935° N, 78.1454° W; elevation 270 



273–338 m.a.s.l.) is located in the Blue Ridge Mountains at the northern end of Shenandoah 271 

National Park, 5 km south of Front Royal, Virginia. The forest is secondary and mixed age, 272 

having established in the mid-19th century after conversion from agricultural fields49. Dominant 273 

canopy species within the 25.6 ha ForestGEO plot include tulip poplar (Liriodendron tulipifera L.), 274 

oaks (Quercus spp.), and hickories (Carya spp.)27. The climate is humid temperate, with 1950-2019 275 

mean annual precipitation of 1018 mm and temperatures averaging 1° C in January and 24° C in 276 

July46. 277 

Harvard Forest (42.5388° N, 72.1755° W, 340-368 m.a.s.l.) is located near the central 278 

Massachusetts town of Petersham. The forest is secondary and mixed age, having re-established 279 

around the beginning of the 20th century following agricultural use and significant hurricane 280 

damage in 1938. Dominant species within the 35 ha ForestGEO plot are hemlock (Tsuga 281 

canadensis (L.) Carrière), oak (Quercus spp.) and red maple (Acer rubrum L.). The climate is 282 

temperate continental, with 1950-2019 mean annual precipitation of 1104 mm and temperatures 283 

averaging -5° C in January and 22° C in July46. 284 

Metal dendrometer bands were installed on 941 trees within the SCBI and Harvard Forest 285 

ForestGEO plots. Bands were placed on dominant species, including two diffuse- and two ring-286 

porous species at SCBI and eight diffuse- and three ring-porous species at Harvard Forest 287 

(Extended Data Table 1). Bands were measured with a digital caliper approximately every 1-2 288 

weeks within the growing season from 2011-2020 at SCBI and 1998-2003 at Harvard Forest. The 289 

number of bands measured at each site fluctuated slightly as trees were added or dropped from 290 

the census (e.g., because of tree mortality). Across years, the number of bands sampled 291 



averaged 129 (range: 91-138) at SCBI and 717 (range: 700-755) at Harvard Forest.  In total, our 292 

analysis included 2459 tree-years (Extended Data Table 1). 293 

Measurements were timed to begin before the beginning of spring growth and to continue 294 

through the cessation of growth in the fall. At SCBI, the median start date was April 14, which 295 

was adjusted forward when early leaf-out of understory vegetation was observed, with the 296 

earliest start date being March 30 (in 2020). Measurements were continued through to fall leaf 297 

senescence, with the median end date being October 17 and the latest end date November 26 298 

(2012). Timing of measurements at Harvard Forest were similar, with the median start date of 299 

April 23 and median end date of October 30. 1998 was an anomalous year where initial 300 

measurements were taken on January 5, but not taken again until April 15. The latest end date 301 

was November 11, 2002. 302 

The raw dendrometer band data were manually inspected before analysis. We screened the 303 

data for three classes of errors. First, when a measurement was drastically different from 304 

previous and following measurements, it was assumed to be a human error and the datapoint 305 

was removed. Second, when measurements remained essentially unchanged for several 306 

readings, followed by a sudden jump then return to a normal growth pattern, this was assumed 307 

to be a case where the band was stuck on the tree bark and then released. In these cases, the full 308 

annual record for the tree was removed. Third, data points that deviated substantially from 309 

normal growth patterns, but for unknown causes, were removed. If a majority of the data points 310 

fell into this class within a tree-year, the entire year was removed from the analysis. 311 



We fit a five-parameter logistic growth model28 to dendrometer band data from each tree-year 312 

to define phenological dates and growth rates (Fig. 1). In particular, we model the observed 313 

diameter at breast height (DBH) on a given day of the year (DOY; i.e., julian days) as: 314 

𝐷𝐷𝛥𝛥𝛥𝛥 = 𝐿𝐿 + 𝐾𝐾 − 𝐿𝐿
1 + 1/𝜃𝜃 ⋅ 𝑒𝑒𝑒𝑒𝑒𝑒[−𝑟𝑟(𝐷𝐷𝐷𝐷𝑌𝑌 − 𝐷𝐷𝐷𝐷𝑌𝑌𝑚𝑚𝑝𝑝)/𝜃𝜃)]𝜃𝜃 315 

Here, 𝐿𝐿 and 𝐾𝐾 are lower and upper asymptotes of the model, corresponding to DBH at the 316 

beginning and end of the year, respectively. 𝐷𝐷𝐷𝐷𝑌𝑌𝑚𝑚𝑝𝑝 is the day of year where the inflection point 317 

in growth rate occurs, 𝑟𝑟 shapes the slope of the curve at the inflection point, and 𝜃𝜃 is a tuning 318 

parameter controlling the slope of the curve toward the upper asymptote. The DOY on which 319 

maximum growth occurs, 𝐷𝐷𝐷𝐷𝑌𝑌𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 (Fig. 1), occurs on 𝐷𝐷𝐷𝐷𝑌𝑌𝑚𝑚𝑝𝑝 when 𝜃𝜃 = 1. The model was fit in R 320 

v4.0 using the functions developed in the Rdendrom package28. These functions take the time-321 

series of manual dendrometer band measurements and return maximum-likelihood optimized 322 

values of the above five parameters that best predict DBH for each day of year. We then 323 

modeled DBH using these optimal parameter values in our logistic growth model and extracted 324 

the intra-annual growth variables of interest (Fig. 1). 325 

After fitting the growth model, we removed tree-years with poor fits. Models were judged to be 326 

poorly fit if certain modeled growth characteristics fell outside of the logical range. Modeled fits 327 

for tree-years were removed under five conditions: (1) single day growth rates were ≥ 2 328 

standard deviations away from the mean for each wood-type (SCBI = 2, Harvard Forest = 34); 329 

(2) 𝐷𝐷𝐷𝐷𝑌𝑌𝑚𝑚𝑝𝑝 was ≥ 2 standard deviations away from the mean for its xylem architecture group, 330 

year, and site (SCBI = 53, Harvard Forest = 106); (3) tree-years with small or negligible total 331 



growth (𝛥𝛥𝐷𝐷𝛥𝛥𝛥𝛥 ≤ 0.02 mm; SCBI = 0, Harvard Forest = 66); (4) model fit predicted total yearly 332 

growth to take longer than 365 days, indicating poor model fit (SCBI = 150, Harvard Forest = 333 

199); (5) models with unexplained sharp spikes in growth rate (SCBI = 0, Harvard Forest = 3); 334 

and (6) poorly fit models that did not meet any of the above criteria (SCBI = 2, Harvard Forest = 335 

0). At Harvard Forest the tag years removed through this method were proportional to the 336 

original sample size, indicating that no species or size class was disproportionately removed 337 

compared to others. At SCBI, a higher proportion of ring-porous trees were removed, the 338 

majority falling under condition 4. 339 

Canopy foliage phenology data for the years 2001-2018 were extracted for SCBI and Harvard 340 

Forest from the MCD12Q2 V6 Land Cover Dynamics product (a.k.a. MODIS Global Vegetation 341 

Phenology product)52 via Google Earth Engine. Extracted pixels were those containing the 342 

NEON tower at each site. Using daily MODIS 2-band Enhanced Vegetation Index data (EVI2) at 343 

a spatial resolution of 500m, the product yields the timing of phenometrics (vegetation 344 

phenology) over each year, including timing of greenup, midgreenup, and senescence as used 345 

in this study. 346 

For the dendrometer band and leaf phenology analyses, climate data corresponding to the 347 

measurement periods were obtained from local weather stations at each focal site. For SCBI, 348 

weather data were obtained from a meteorological tower adjacent to the ForestGEO plot, via the 349 

ForestGEO Climate Data Portal v1.0 (https://forestgeo.github.io/Climate/)53. The R package 350 

climpact (see www.climpact-sci.org)54 was used to plot temperatures for visual inspection and to 351 

identify readings that were >3 standard deviations away from yearly means, which were 352 

https://forestgeo.github.io/Climate/


labeled as outliers and removed from the dataset. Gaps in the SCBI meteorological tower data 353 

were subsequently filled using temperature readings obtained from a National Center for 354 

Environmental Information (NCEI) weather station located in Front Royal, Virginia 355 

(https://www.ncdc.noaa.gov/cdo-web/datasets/GHCND/stations/GHCND:USC00443229/detail). 356 

Daily temperature records for Harvard Forest, which had already been gap-filled based on 357 

other local records, were obtained from the Harvard Forest weather station55,56. For each site, we 358 

used records of daily maximum (𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚) and minimum temperatures (𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚). 359 

The critical temperature window (CTW, Fig. 1), defined as the period over which 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 was 360 

most strongly correlated with 𝐷𝐷𝐷𝐷𝑌𝑌25, was determined using the R package climwin57. This 361 

package tests the correlation between one or more predictor climate variable and a biological 362 

outcome variable over all consecutive time windows within a specified time-frame. It does so 363 

by reporting the correlation and 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥, the difference in Akaike Information Criterion corrected 364 

for small sample size relative to a null model for each window. Here, we tested for correlation 365 

between temperature predictor variables (𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚, 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚) and biological outcome variable 𝐷𝐷𝐷𝐷𝑌𝑌25 366 

over the time-frame from January 1 to the mean 𝐷𝐷𝐷𝐷𝑌𝑌25 for the species group (by xylem porosity) 367 

and site (Extended Data Table 2). The time period yielding the lowest 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥 was selected as the 368 

CTW. Because 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 proved to have a generally stronger influence over 𝐷𝐷𝐷𝐷𝑌𝑌25 and other growth 369 

parameters, we focused on this variable in our ultimate model, as opposed to 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚. We defined 370 

CTW for 𝐷𝐷𝐷𝐷𝑌𝑌25, as opposed to other growth phenology parameters, because spring 371 

temperatures should have the most direct influence on this variable. 372 

https://www.ncdc.noaa.gov/cdo-web/datasets/GHCND/stations/GHCND:USC00443229/detail


To ensure that patterns were robust under an alternative definition of CTW, and to parallel the 373 

monthly time windows used in our tree-ring analysis (detailed below; Fig. 3, Extended Data 374 

Figure 6-7), we also ran analyses where we fixed the CTW to be the month of April. This was 375 

consistent with the periods identified by climwin for ring- and diffuse-porous species groups at 376 

both sites, all of which included all or part of April (Extended Data Table 2). 377 

Correlation between the dendrometer band-derived growth parameters (𝐷𝐷𝐷𝐷𝑌𝑌25, 𝐷𝐷𝐷𝐷𝑌𝑌50, 𝐷𝐷𝐷𝐷𝑌𝑌75, 378 𝐷𝐷𝐷𝐷𝑌𝑌𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚, 𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃, 𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚, and 𝛥𝛥𝐷𝐷𝛥𝛥𝛥𝛥}, Fig. 1) and spring temperatures were assessed using a linear 379 

mixed model in a hierarchical Bayesian framework. Analyses were run for both 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚, 380 

with qualitatively similar results, but we present only results for 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚, which had overall 381 

stronger correlation with growth parameters. Mixed effects models were used to test the 382 

response of growth phenology variables to fixed effects of xylem porosity and mean 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 (or 383 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚) during the CTW, along with random effects of species and of individual tree. We ran 384 

separate models for each species group at each site, and for the response of all growth 385 

phenology variables to 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 (or 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚). This mixed-effect model was run within a hierarchical 386 

Bayesian framework and fit using the rstanarm R interface to the Stan programming 387 

language58,59. In all cases unless otherwise specified, all prior distributions are set to be the 388 

weakly informative defaults.  389 

To rule out the possibility that observed patterns were strongly influenced by summer drought, 390 

we examined the relationship between spring tempreatures and summer Standardized 391 

Precipitation Evapotranspiration Index33. The latter was obtained from the ForestGEO Climate 392 

Data Portal v1.0 (https://forestgeo.github.io/Climate/)53,60,61. Linear models were run with 4-, 6-, 393 

https://forestgeo.github.io/Climate/


and 12-month SPEI values of June, July, and August vs April 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 to determine if warm spring 394 

temperatures lead to greater summer drought stress. No significant correlations were found (all 395 

p>0.05). 396 

Tree-ring analysis 397 

We analyzed tree-ring records for 108 sites, including our focal sites. All cores had been 398 

previously collected, cross-dated, and measured using standard collection and processing 399 

methodologies62. 400 

Dominant tree species were cored at both SCBI27,49 and Harvard Forest4,63,64 following sampling 401 

designs that covered a broad range of DBH. We analyzed records for the ring- and diffuse- 402 

porous species at each site (Extended Data Table 1), but excluded species with other xylem 403 

architectures (Juglans nigra L. at SCBI, Tsuga canadensis at Harvard Forest). We studied a total of 404 

976 cores which included 12 species at SCBI and 4 species at Harvard Forest (Extended Data 405 

Table 1). 406 

The tree-ring records from our focal sites were complemented with a much larger collection 407 

spanning 106 deciduous and mixed forest sites in Eastern North America26,65. Again, records 408 

were limited to broadleaf deciduous species with clearly defined xylem porosity (i.e., excluding 409 

semi-ring porous). 410 

For each species-site combination, we converted tree-ring records into the dimensionless RWI to 411 

emphasize interannual variability associated with climate.66 A 2/3rds n spline was applied to 412 

each core using ARSTAN to produce standardized ring-width series; n is the number of years in 413 



each series66,67. An adaptive power transformation, a process that also stabilises the variance 414 

over time68, was used to minimize the influence of outliers in all series. Low series replication, 415 

often in the earliest portions of a chronology collection, can also inflate the variance of tree-ring 416 

records69. The 1/3rds spline method was chosen when replication in the inner portion of each 417 

chronology (ca. inner 30–50 yr of each record depending on full chronology length) was less 418 

than three trees. When replication was greater than n = 3 trees, we used the average correlation 419 

between raw ring-width series (rbar) method. The robust biweight mean chronology (RWI) for 420 

each species-site combination was calculated from the ring-width indices following variance 421 

stabilisation67. We defined chronology start year (Extended Data Table 1) as the year where 422 

subsample signal strength (SSS) passed a threshold of SSS = 0.8, or where ≥ 80% of the 423 

population signal was captured in the chronology. 424 

For the analysis of correlation between RWI and climate variables, we obtained monthly 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 425 

and 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 data for 1901-2019 from CRU v.4.04.70 Correlations between monthly climate and 𝑅𝑅𝑅𝑅𝛥𝛥 426 

were assessed using ‘dplR’71 and ‘bootRes’72 in R v 4.0 (R Core Team, 2020), which correlated 427 

functions and bootstrapped confidence intervals for these relationships73. We analyzed these 428 

correlations for January through September of the current year (presented in Fig. 3, Extended 429 

Data Figure 6). To test for potential lag effects of spring temperatures on growth the following 430 

year, we also ran a version of the analysis extending back to include climate of every month of 431 

the previous year (Extended Data Figure 7). Correlations and significance levels for months 432 

April-August are given in SI Table 1. 433 



We used a multivariate model to test for joint effects of April and summer 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 on RWI. We 434 

began by testing univariate correlations of 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 over three summer windows: June, June-July, 435 

and May-August. Having determined that, among these, June-July explained the most 436 

variation, we then analyzed the joint effects of April 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 and June-July 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 on RWI for each 437 

chronology independently using the base lm() function in R. Slopes and p-values for each 438 

chronology are given in SI Table 1. 439 
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