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There is an increasing interest in quantum
algorithms for problems of integer program-
ming and combinatorial optimization. Clas-
sical solvers for such problems employ relax-
ations, which replace binary variables with
continuous ones, for instance in the form
of higher-dimensional matrix-valued problems
(semidefinite programming). Under the
Unique Games Conjecture, these relaxations
often provide the best performance ratios
available classically in polynomial time. Here,
we discuss how to warm-start quantum op-
timization with an initial state correspond-
ing to the solution of a relaxation of a com-
binatorial optimization problem and how to
analyze properties of the associated quantum
algorithms. In particular, this allows the
quantum algorithm to inherit the performance
guarantees of the classical algorithm. We il-
lustrate this in the context of portfolio op-
timization, where our results indicate that
warm-starting the Quantum Approximate Op-
timization Algorithm (QAOA) is particularly
beneficial at low depth. Likewise, Recursive
QAOA for MAXCUT problems shows a sys-
tematic increase in the size of the obtained
cut for fully connected graphs with random
weights, when Goemans-Williamson random-
ized rounding is utilized in a warm start. It
is straightforward to apply the same ideas to
other randomized-rounding schemes and opti-
mization problems.

1 Introduction

Gate-based quantum computers are expected to help
solve problems in quantum chemistry [1–3], machine
learning [4, 5], financial simulation [6–13] and com-
binatorial optimization [14, 15]. The quantum ap-
proximate optimization algorithm (QAOA) [16–18],
inspired by a Trotterization of adiabatic quantum
computing [19–21], runs on gate-based quantum com-
puters [22, 23]. This algorithm encodes a combinato-
rial optimization problem in a Hamiltonian ĤC whose

Daniel J. Egger: deg@zurich.ibm.com

Jakub Mareček: jakub.marecek@fel.cvut.cz

Stefan Woerner: wor@zurich.ibm.com

ground state is the optimum solution. The QAOA
first creates an initial state which is the ground state
of a mixer Hamiltonian ĤM . A common choice of
ĤM and initial state is −∑n−1

i=0 X̂i and |+〉⊗n, respec-
tively. Next, in a QAOA with depth p, a quantum
circuit applies exp (−iβkĤM ) exp (−iγkĤC) at each
layer k = 1, ..., p to create a trial state |ψ(β,γ)〉. A
classical optimizer seeks the optimal values of β and
γ to create a trial state which minimizes the energy
of the Hamiltonian ĤC . This algorithm has lacked
theoretical guarantees on its performance ratio and
for certain problem instances of MAXCUT it can-
not, with constant depth, outperform the classical
Goemans-Williamson randomized rounding approxi-
mation [24, 25].

Recent work has improved the original QAOA, for
instance, by aggregating only the best sampled can-
didate solutions [15] and carefully choosing the mixer
operator to improve convergence [26–29], empirically.
Reinforcement learning [30, 31], multi-start meth-
ods [32], and local optimization [33] help navigate
the QAOA optimization landscape. Algorithms such
as the Hamiltonian Variational Ansatz produce opti-
mization landscapes that are easier to navigate [34].
Furthermore, optimal β and γ values concentrate on
all typical instances generated by some reasonable
distributions which may allow optimization strategies
with fewer calls to the quantum computer [35]. Cer-
tain local classical algorithms match the performance
of QAOA for Ising-like cost functions with multi-spin
interactions [36] which has motivated the development
of Recursive-QAOA (RQAOA) [24, 37]. RQAOA it-
eratively reduces the problem size and outperforms
QAOA on certain forms of Ising Hamiltonians [24].
Implementing QAOA on noisy quantum hardware is
challenging as the number of gates can be high for cur-
rent gate fidelities [38, 39]. The circuits become espe-
cially deep when large p is required or when the native
hardware connectivity does not match the problem
structure, thence requiring SWAP gates [40]. There-
fore, in the near term, quantum computers will most
likely only run low-depth QAOA. Low-depth QAOA
results are improved by robust control [41] and by
mapping β and γ to parameters of the control pulses
[42, 43], a method available to cloud-based quantum
computers [44] with pulse-level control [45, 46].

Recently, there has been substantial progress [47] in
the study of continuous relaxations of NP-Hard com-
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binatorial optimization problems. The best-known
continuous relaxations of MAXCUT and many other
problems take the form of semidefinite programs [48].
These can be solved efficiently both in theoretical
models of computation [49], where a real-number
arithmetic operation can be performed in unit time,
and in practice1 [51]. Subsequently, the solution of
a continuous relaxation of a combinatorial optimiza-
tion problem is transformed into a good solution of the
discrete-valued problem by randomized rounding [52].
For instance, the celebrated Goemans-Williamson
(GW) random hyperplane rounding [53, 54] for MAX-
CUT finds cuts whose expected value is an α fraction
of the global optimum, for 0.87856 < α < 0.87857,
with the expectation over the randomization in the
rounding procedure. The Unique Games Conjec-
ture [55–57], introduced in Appendix A, suggests
that GW randomized rounding has the best possible
polynomial-time performance on MAXCUT.

Our work is motivated by the desire to provide at
least as good guarantees for QAOA as there are for
classical approximations. For example, we show that
for MAXCUT a warm-start can preserve the GW ap-
proximation ratio at any depth p [58]. Further, if
the Unique Games Conjecture were to be false even
stronger guarantees may be available, improving upon
those for randomized rounding. In simulations, our
variant of QAOA consistently performs as well as the
GW algorithm or better.

We discuss how to warm-start quantum opti-
mization in Sec. 2.2. We explore warm-starting
QAOA (WS-QAOA) numerically in Sec. 3 by relaxing
Quadratic Unconstrained Binary Optimization prob-
lems to continuous ones which provide QAOA with
a good initial solution. In Sec. 4 we use the GW al-
gorithm [53] to warm-start RQAOA. We discuss our
results and conclude in Sec. 5.

2 Warm-start Quantum Optimization

2.1 Preliminaries

Quadratic Unconstrained Binary Optimization
(QUBO) has been studied in Combinatorial Opti-
mization since the 1960s [59]. A common formulation
is

min
x∈{0,1}n

xT Σx+ µTx, (QUBO)

where x is a vector of n binary decision variables,
Σ ∈ R

n×n a symmetric matrix, and µ ∈ R
n a vector.

Since for binary variables x2
i = xi, µ can be added

to the diagonal of Σ, and in the following, we only
add µ when it simplifies the notation in the given

1Notice that the analysis of [50] shows the situation is less
trivial in the Turing machine and one may need to consider the
dimension or the number of constraints a constant, as it often
is for a particular relaxation.

context. Considering that any mixed-integer linear
program can be encoded in a QUBO [60], QUBO is
NP-Hard. Indeed, even checking local optimality is
NP-Hard [61], and hence only very special cases [62,
63] can be solved in polynomial time.

If Σ is positive semidefinite, the trivial continuous
relaxation of QUBO

min
x∈[0,1]n

xT Σx, (QP)

is a convex quadratic program and the optimal solu-
tion c∗ of the continuous relaxation is easily obtain-
able with classical optimizers [64].

If Σ is not positive semidefinite, one can apply the
well-known recipe [65] to obtain another continuous-
valued relaxation, known as semidefinite program-
ming (SDP):

max
Y ∈Sn

tr(ΣY ) (SDP)

diag(Y ) = e

Y � 0,

where S
n×n denotes the set of n × n symmetric ma-

trices, e is an n-vector of ones, and Y � 0 denotes
that Y must be positive semidefinite. Given the op-
timal solution Y ∗ to (SDP), there exist several ap-
proaches to generating solutions of the correspond-
ing (QUBO), often with approximation guarantees,
as discussed later in this section and Appendix B.
A classical laptop can solve instances of (SDP) re-
laxations of QUBO, where Σ has 1013 entries [51].
Furthermore, quantum computers offer the prospect
of some speed-ups in solving SDPs [66, 67], although
recent quantum-inspired algorithms for SDPs may re-
duce the potential speedup [68].

2.2 Continuous warm-start QAOA

The solutions of either continuous-valued relaxation
(QP or SDP) can be used to initialize quantum-
classical hybrid algorithms, which is known as warm-
starting them [69]. In particular, we focus on warm-
starting QAOA.

In QAOA, each decision variable xi of the discrete
optimization problem corresponds to a qubit by the
relation xi = (1− zi)/2. Each zi is replaced by a spin
operator Ẑi to transform the cost function to a cost
Hamiltonian ĤC [70, 71]. Note that the final mea-
surement in QAOA can be considered as a random-
ized rounding. In the simplest variant of WS-QAOA,
we replace the initial equal superposition state |+〉⊗n

with a state

|φ∗〉 =

n−1
⊗

i=0

R̂Y (θi) |0〉n , (1)

which corresponds to the solution c∗ of the relaxed
Problem (QP). Here, R̂Y (θi) is a rotation around the
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θi

|0〉

|1〉
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Y

Figure 1: Intial state R̂Y (θi) |0〉 (red point) on the Bloch
sphere. The dashed blue line from |0〉 to |1〉 is the interval
[0, 1]. The red line is the solution c∗

i to the relaxed problem.
The regularization parameter ε restricts the range of allowed
rotation angles. The orange path shows the evolution of the
quantum state starting at |0〉 for c∗

i = 0, ε = 0.25 and
β = π/2 with the rotations R̂Y (−θi)R̂Z(−2β)R̂Y (2θi).

Y-axis of qubit i with angle θi = 2 arcsin
(√

c∗
i

)

and
c∗

i ∈ [0, 1] is the i-th coordinate of the optimum of the
continuous-valued relaxation (QP). The probability
to measure |1〉 in qubit i is thus c∗

i , see the geometric
representation in Fig. 1.

We also replace the mixer Hamiltonian ĤM =

−
∑n−1

i=0 X̂i with Ĥ(ws)
M =

∑n−1
i=0 Ĥ

(ws)
M,i where

Ĥ
(ws)
M,i =

(

2c∗
i − 1 −2

√

c∗
i (1− c∗

i )

−2
√

c∗
i (1− c∗

i ) 1− 2c∗
i

)

(2)

and has R̂Y (θi) |0〉 as ground state with eigenvalue
of −1. The ground state of Ĥ

(ws)
M is thus |φ∗〉

with eigenvalue −n [16]. Therefore, WS-QAOA ap-
plies at layer k a mixing gate which is given by the
time-evolved mixing Hamiltonian exp(−iβkĤ

(ws)
M ),

see Fig. 2. Since Ĥ(ws)
M,i = − sin(θi)X̂ − cos(θi)Ẑ the

time-evolved mixing Hamiltonian is a rotation around
the axis ~n = [− sin(θi), 0,− cos(θi)] on the Bloch-
sphere of qubit i and can be implemented using the
single-qubit rotations R̂Y (θi)R̂Z(−2β)R̂Y (−θi).

If a coordinate in the optimal solution of a continu-
ous relaxation is c∗

i = 0 or c∗
i = 1, qubit i would be ini-

tialized in state |0〉 or |1〉, respectively. In such cases,
the qubit will remain in its initial state throughout
the QAOA optimization when ĤC contains only ẐiẐj

and identity spin-operators. This creates a reacha-
bility issue when the optimal continuous and discrete
solutions do not overlap, i.e., d∗

i = 1 and c∗
i = 0 or

d∗
i = 0 and c∗

i = 1, where d∗ is the solution to the
(QUBO).

R̂Y (θ1)

e−iγkĤC

R̂Y (−θ1) R̂Z(−2βk) R̂Y (θ1)

R̂Y (θ2) R̂Y (−θ2) R̂Z(−2βk) R̂Y (θ2)

.

.

.

.

.

.

.

.

.

R̂Y (θN ) R̂Y (−θN ) R̂Z(−2βk) R̂Y (θN )
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Figure 2: Quantum circuit for WS-QAOA. The first R̂Y ro-
tations prepare the initial state |φ∗〉. The mixer operator, i.e.
R̂Y (θi)R̂Z(−2βk)R̂Y (−θi), is applied after the time-evolved
problem Hamiltonian ĤC .

To mitigate this effect, we introduce a variant of
WS-QAOA that utilizes a regularization parameter
ε ∈ [0, 0.5] and changes the rotation angle creating
the initial state according to

θi = 2 arcsin
(

√

c∗
i

)

if c∗
i ∈ [ε, 1− ε],

θi = 2 arcsin
(√
ε
)

if c∗
i ≤ ε,

θi = 2 arcsin
(√

1− ε
)

if c∗
i ≥ 1− ε.

The mixer Hamiltonian is adjusted accordingly. The
parameter ε provides a continuous mapping between
WS-QAOA and standard QAOA since at ε = 0.5 the
initial state is the equal superposition state and the
mixer Hamiltonian is the X operator. If all c∗

i ∈ (0, 1)
or ε > 0, WS-QAOA converges to the optimal solu-
tion of (QUBO) as the depth p approaches infinity
as does standard QAOA [16]. This directly follows
from the adiabatic theorem and the fact that we start
in the ground state of the mixer which overlaps with
all computational basis states including the optimal
solution. For large enough p, (WS-)QAOA therefore
reproduces the adiabatic evolution transforming the
ground state of the mixer into the ground state of
ĤC . The speed of the adiabatic evolution is limited
by the spectral gap of the intermediate Hamiltoni-
ans. If the evolution is too fast transitions to excited
states occur which may not result in the optimal so-
lution. The speed of the evolution can be related to
p, where a slow evolution, i.e., longer total evolution
time, implies a larger p. The idea of (WS-)QAOA is to
speed-up this evolution by optimizing the parameters
instead of following a fixed annealing schedule.

2.3 Rounded warm-start QAOA

Further variants of WS-QAOA randomly round the
optimum of the continuous-valued relaxation before
using it as the initial state. This is appealing to
quantum hardware with limited qubit numbers as
even for convex relaxations in dimensions that scale
super-linearly with the number n of binary variables
in (QUBO), such as (SDP) with dimension n(n+1)/2,
the representation of the rounded solution to (QUBO)
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Table 1: An overview of design choices in warm-starting a quantum optimization algorithm for (QUBO). Under “What to
round?”, columns are ordered left to right to suggest the increasing strength of the relaxations, although this is necessarily
fraught in the case of hierarchies of relaxations [72–74], where one column represents a potentially infinite number of relaxations.
Similarly, under “How to round?”, we order the options approximately by their performance.

Variant What to round? When to round? How to round?
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requires only O(n) qubits. Two notable examples
are the random-hyperplane rounding of SDP relax-
ations for MAXCUT [53], see Appendix B, and iter-
ative rounding of SDP relaxations for a wider variety
of problems, see Appendix D. Both of these exam-
ples provide initial states that already have the best
approximation guarantee available classically in poly-
nomial time.

We now elaborate on the example of Goemans-
Williamson random-hyperplane rounding of (SDP).
For a given GW cut we generate an initial state us-
ing Y -rotations with a ε ∈ (0, 0.5), as discussed in
Sec. 2.2. To warm-start QAOA such that we can re-
tain the GW bound on MAXCUT, we wish create a
quantum circuit that can both represent solutions of
the random-hyperplane rounding as well as deviate
from them. We therefore modify the mixer such that
its time-evolution is R̂Y (−θi)R̂Z(−2β)R̂Y (θi) instead
of R̂Y (θi)R̂Z(−2β)R̂Y (−θi), i.e., we multiply the off-
diagonal elements in (2) by −1. With this modifica-
tion, the value of the regularization parameter ε can
be set to 0.25 to generate states that differ from the
GW rounding as well as retain it by choosing β1 = π/2
and γ1 = 0. At these values the depth-one variational
form reduces to

R̂Y (−θi)R̂Z(−π)R̂Y (2θi) |0〉 , (3)

for each qubit, and creates the states −i |1〉 and −i |0〉
when c∗

i = ε and 1 − ε, respectively. Thus, the vari-
ational form can recover the solution given by the
GW rounding, considering that z and 1 − z repre-
sent the same cut, see the orange path in Fig. 1 as
example. Therefore, WS-QAOA is at least as good
as GW rounding. This adjustment also comes with a
drawback. Since the prepared initial state is no longer
an eigenstate of the mixer (otherwise we would not be
able to deviate from it) we cannot use the same argu-
ments as in [16] to derive the convergence of the al-

gorithm to the global optimum with increasing depth
p. We will analyze this numerically in Sec. 4.

Notice that measuring an initial state provided by
a randomized rounding of the semidefinite program-
ming relaxation (SDP) yields the best approximation
guarantees available classically in polynomial time un-
der the Unique Games Conjecture [55–57]. There-
fore, any quantum circuit that preserves or improves
the performance ratio would preserve or improve the
overall performance guarantees.

Rounding in the classical pre-processing readily
leads to the warm-started recursive QAOA (WS-
RQAOA), illustrated in Fig. 3 and demonstrated in
Sec. 4. For MAXCUT of a graph Gn, we leverage a
GW pre-solver GW (Gn, N,M) to generate N good
cuts of which we retain the M < N best unique cuts.
These M cuts therefore initialize M WS-QAOA opti-
mizers with ε ∈ (0, 0.5). Each QAOA solver produces
an optimized variational state |ψ∗〉l =

∑2n−1
i=0 αil |i〉

for l = 1, ...,M . We then aggregate these M varia-
tional states by averaging the probability of sampling
each bit-string |i〉, i.e. p̄i = M−1

∑M
l=1 |αil|2, and

use these average probabilities to create the correla-
tion matrix M needed by RQAOA [24, 37], see Ap-
pendix E and F. At each iteration, RQAOA removes
one decision variable zi from the problem by replacing
it with sign(Mij)zj , where (i, j) = arg max(i,j) |Mij |.
This generates a new MAXCUT problem with a new
graph Gn−1, see Appendix G, for which we repeat
this procedure, illustrated in Fig. 3, until the reduced
graph reaches a certain size nstop. The graph Gnstop

is solved by diagonalizing the Hamiltonian ĤC or by
applying classical optimizers.
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Recursive warm-start MAXCUT for Gn

Pre-solver GW (Gn, N,M) generates cuts {c1, ..., cM}

WS-QAOA(c1, ε) WS-QAOA(cl, ε) WS-QAOA(cM , ε)... ...

c1 cl cM

Aggregator

|ψ∗〉
1

|ψ∗〉l |ψ∗〉M

Compute M & replace zi = sign(Mij)zj
to obtain a new graph Gn−1

{p̄i}

n− 1 < nstop?

End RQAOA, replacements

e.g. {z1 : (z4,−1), z2 : (z3, 1), ...}

Yes
No

Solve Gn−1

Figure 3: WS-RQAOA for MAXCUT. At each iteration we
run several WS-QAOAs that are initialized with different so-
lutions from the GW randomized rounding. The resulting
samples are aggregated to compute the combined correla-
tion matrix M needed by RQAOA to eliminate a decision
variable.

2.4 Further variants of warm-starting quantum

optimization

In Sec. 2.2 and 2.3, we gave first examples of how to
warm-start QAOA using a continuous relaxation and
a randomized rounding. The key algorithm-design
questions in warm-starting quantum optimization are:
what to round, when to round it, and how to round it.
For each of these questions, there are multiple options
available, as suggested in the previous discussion and
summarized in Tab. 1.

First, there are many options for what to round,
outside of the (QP) relaxation and the (SDP) re-
laxation. For example, the (QP) relaxation can be
seen as a second-order cone programming (SOCP) re-
laxation, and could be strengthened iteratively [74],
until its objective-function value coincides with the
objective-function value of the non-convex (QUBO),
albeit at the cost of an exponential growth of the re-
laxation. Similarly, one could strengthen the (SDP)
relaxation either by using an entropy-penalizing term
[76] or by using the Moment/SOS hierarchy [72] and
its sparse variant [73].

Second, there are two options for when to round:
either in the classical pre-processing — within the ini-
tial state preparation which leads to the WS-RQAOA
discussed in Sec. 2.3 on the example of the (SDP)
relaxation — or within the quantum circuit. In its
simplest form, the latter can be a quantum measure-
ment, as discussed in Sec. 2.2 on the example of the
(QP) relaxation.

Third, there are several options for the round-
ing procedure. Even the simplest rounding mecha-
nisms often perform well: on MAXCUT, for exam-
ple, disregarding the relaxation and coordinate-wise

assigning a value uniformly at random achieves a
0.5 approximation ratio [77] and can be derandom-
ized [78, Chapter 6]. The random-hyperplane round-
ing of GW [53], as explained in Appendix B, im-
proves the performance ratio on MAXCUT to α =
2
π

min0≤θ≤π
θ

1−cos θ
≈ 0.878. The same ratio can also

be obtained with an iterative procedure that rounds
coordinates that are close to being integral to integers
[79, 80] and removes them from further processing2,
as explained in Appendix D. Plausibly, the same ra-
tio could also be achieved with a number of novel and
very different iterative procedures, such as [81].

2.5 Discussion of warm-starting quantum op-

timization

On noisy quantum hardware it seems appealing to
use the WS-RQAOA with the strongest available re-
laxations [72–74] in the classical pre-processing. How-
ever, higher-order relaxations within these hierarchies
[72–74] require a run-time of the classical SDP solver
which is super-polynomial in the number n of integral
decision variables in (QUBO) and the order in the hi-
erarchy [72–74]. Therefore, we limit ourselves to the
use of WS-RQAOA with the basic (SDP) relaxation,
whose value can be approximated classically to any
fixed precision in polynomial time.

In contrast, one could extend the use of the
continuous-valued solution c∗ of the (QP) relaxation
to either the solution Y ∗ of the basic (SDP) relax-
ation, or its strengthened variants [72, 73], when
preparing the initial state. However, this may re-
quire more qubits than would be practical in the near-
term. For example, a naïve approach to prepare the
initial state would utilize Θ(n2) and Ω(n2) qubits to
represent the optimum Y ∗ of the basic (SDP) relax-
ation and its strengthened variants, respectively3. At
the same time, strong performance guarantees would
be readily available for such variants of warm-started
quantum optimization. For example, consider rep-
resenting the matrix-valued solution of a (SDP) re-
laxation in a O(n2)-qubit initial state, applying a
parametrized quantum circuit that allows for the iden-
tity in the unitary representation, at least for some
choice of its parameters, and then, measuring the
qubit register. This can be seen as a randomized-
rounding algorithm, and one can hence analyze the
quality of the measured output.

A recently-proposed [79] avenue for the analysis
of such randomized-rounding algorithms utilizes the
Sticky Brownian Motion [82], a well-known concept

2Notice that when the WS-QAOA leverages both a classical
optimization routine with a classical conditional statement and
a noisy quantum computer, such a rounding procedure can also
be considered.

3While more elaborate representations of the matrix have
been proposed [66, 67], it is not yet clear how to implement the
related oracles in practice.

Accepted in Quantum 2021-06-15, click title to verify. Published under CC-BY 4.0. 5



in Stochastic Analysis, possibly with a slowdown due
to the use of a speed-function [79], as explained in
Appendix D. In the case of a (SDP) warm start, one
can obtain approximation guarantees for rounded so-
lutions that match the best guarantees available clas-
sically in polynomial time, see Appendix D.

A particularly important question is whether any of
these variants would strictly improve upon the guar-
antees of GW [53]. Under the Unique Games Conjec-
ture [83, 84], it is strictly impossible to improve upon
the guarantees of GW using either quantum or classi-
cal algorithms unless a quantum computer can solve
NP-Hard problems in polynomial time, which is not
believed to be the case [85], or if P = NP. However,
a richer picture emerges if this conjecture were to be
false and it may be possible to improve approximation
ratios using both classical and quantum algorithms.

3 Simulations with Continuous-Valued

Warm-start

As a first computational illustration of WS-QAOA, we
solve combinatorial-optimization problems framed as
a financial-portfolio optimization with a budget con-
straint [15]. An optimal portfolio minimizes risk and
maximizes return by exploiting imperfect correlations
in a covariance matrix Σ between n assets with ex-
pected returns µ [86]. Selecting B assets out of n
with equal weights thus requires solving

min
x∈{0,1}n

qxT Σx− µTx (4)

such that 1
Tx = B, (5)

where q controls the risk-return trade-off.
We create random instances of this problem with

n = 6 assets by simulating the time-series of the
asset prices and computing the covariance matrix
and returns, see Appendix H. We enforce a budget
constraint B = 3 with a large quadratic penalty
term λ(1Tx − B)2 where we chose λ = 3 as it
is much larger than Σ and µ. Each instance is
mapped to an Ising Hamiltonian ĤC . To mea-
sure the performance of standard and warm-start
QAOA we compute the energy of the optimized trial
state 〈ψ(β∗,γ∗)|ĤC |ψ(β∗,γ∗)〉 labeled as E∗

cold and
E∗

warm, respectively. We normalize E∗
cold and E∗

warm to
the minimum energy E0 found by diagonalizing ĤC .
Since the state-vector simulator in Qiskit [87] evalu-
ates the quantum circuits the only source of random-
ness is the initial guess for β and γ chosen uniformly
from ±2π given to the COBYLA optimizer we use
to find β∗ and γ∗. The optimal solution c∗ of the
continuous relaxation of the problem used to warm-
start QAOA is found with IBM® ILOG® CPLEX®

12.10.0 (CPLEX). The probability of sampling the op-
timal binary solution d∗ is more than 5 times higher
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Figure 4: (a) Probability to sample the optimal state |d∗〉
from the optimized trial state |ψ∗〉 and (b) energy of |ψ∗〉
for warm-start and standard QAOA at different depths for
n = 6 assets and q = 2. The optimal discrete and
continuous solutions are d∗ = (0, 0, 1, 1, 1, 0) and c∗ ≃
(0.17, 0, 0.97, 0.73, 1.0, 0.14), respectively. QAOA is run ten
times with different initial random guesses for (β,γ) chosen
uniformly from ±2π. The thick lines show the median of the
ten runs while the shaded areas indicate the 25% and 75%
quantiles. The gray dashed line shows E0.

with WS-QAOA then standard QAOA for the sim-
ulated depths 1 ≤ p ≤ 5, see Fig. 4(a). Further-
more, the quality of the solution found by WS-QAOA
is better than standard QAOA since E∗

warm is closer
to E0 than E∗

cold, see Fig. 4(b). At depth p ≥ 4 stan-
dard QAOA has enough free parameters to satisfy
the budget constraint, as shown by the low energy in
Fig. 4(b), but still fails to produce a trial state which
contains the optimal solution with high probability.

We investigate the role of the warm-start mixer op-
erator Ĥ(ws)

M by replacing it with the standard mixer
−∑n−1

i=0 X̂i while using the initial state given by the
continuous solution c∗. Under these conditions the en-
ergy of the optimized state does not converge to the
minimum energy, see blue triangles in Fig. 4(b). The
probability of sampling the optimal discrete solution
is between warm-start and standard QAOA but de-
pends heavily on the initial point given to COBYLA,
see Fig. 4(a). These results further justify the use of
the modified mixer in WS-QAOA.

To further illustrate the advantage of a warm-
start at low depth we solve 250 random portfolio in-
stances with warm-start and standard QAOA, both
at depth p = 1. Here, the standard QAOA pro-
duces variational states that poorly approximate the
ground state, see the histogram of E∗

cold in Fig. 5(a).
However, WS-QAOA produces optimized variational
states that are much closer to the minimum energy of
each problem Hamiltonian. Furthermore, we find that
WS-QAOA tends to produce better solutions when
the overlap d∗T c∗/B between the optimal solutions
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Figure 5: Improvement of depth-one WS-QAOA over stan-
dard QAOA for 250 random portfolio instances with q = 2.
(a) Histogram of the energy of the optimized trial states
|ψ(β∗,γ∗)〉 with (orange) and without (blue) warm-start nor-
malized to E0. We found |ψ(β∗,γ∗)〉 with COBYLA seeded
with random initial guesses for β and γ chosen uniformly
from ±2π. The minimum energy E0 is found by direct
diagonalization. (b) Energy difference of WS-QAOA with
the optimal solution, i.e. ∆warm = E∗

warm − E0, normalized
to the energy difference obtained with standard QAOA, i.e.
∆cold = E∗

cold −E0, as a function of the overlap between the
optimal solution of the problem with binary weights and con-
tinuous weights. ∆warm/∆cold < 1 implies that WS-QAOA
improved the energy of the trial state and ∆warm/∆cold = 0
implies that WS-QAOA found the optimal portfolio.
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Figure 6: Energy of the quantum state normalized to
[min(ĤC),max(ĤC)] after Trotterized annealing for the
warm-start mixer (a) and the equal superposition mixer (b).
The triangles in (a) and (b) indicate the points for which the
time-resolved energy in (c) was obtained.

to the discrete and relaxed problems is closer to 1, see
Fig. 5(b).

We now illustrate the advantage of a warm-start
in the context of quantum annealing. We simulate
annealing by Trotterizing the time-evolution start-

ing form the ground state of the mixer Hamiltonian.
At time step k ∈ {0, ..., N} we apply the opera-
tor exp(−iβkĤM) exp(−iγkĤC) where the annealing
schedules are βk = 2δt(1 − i/N) and γk = 2iδt/N
with δt = T/N . We compute the energy as function
of T , which controls the total annealing time, and N
using the equal-superposition mixer

∑n−1
i=0 X̂i and the

warm-start mixer Ĥ(ws)
M . Warm start requires less an-

nealing time T and a smaller number of steps N than
the equal superposition mixer to minimize the energy,
as can be seen by comparing (a) and (b) in Fig. 6.
This is further confirmed by computing the energy
at each time step for T = 40 and N = 60. When
the warm-start mixer Ĥ(ws)

M is used, the initial and
final energies are lower than when the equal superpo-
sition mixer is used. These data emphasize, from an
annealing point of view, that WS-QAOA converges
faster than QAOA.

4 Simulations with Rounded Warm-

Start

Next, we discuss warm-starting QAOA for MAX-
CUT. The maximum cut of an edge-weighted graph
G = (V,E) with nodes V , edges E, and weights
ωij , {i, j} ∈ E is a partitioning of the set of nodes
V in two such that the sum of the edge weights ωij

where i and j are in different parts is maximized. This
is cast as

max
1

2

∑

(i,j)∈E

ωij(1− zizj) (6)

such that z ∈ {−1, 1}|V |,

where the binary variable zi indicates which side of
the cut node i is on. In the case of positive edge
weights ωij , for any ǫ, the problem cannot be ap-
proximated within the ratio of 16/17 − ǫ classically
in polynomial time [88], unless P = NP. In the case of
the real-valued edge-weights ωij , the hardness factor
is 11/13 − ǫ [75]. In both cases, under the Unique
Games Conjecture [55–57], the best guarantees ob-
tainable classically in polynomial time are those of
the random-hyperplane rounding [53, 54, 75], as we
detail in Appendices B and C.

Since we cannot relax MAXCUT to a (QP) with
a positive semi-definite matrix, without a projection
onto the cone of positive-semidefinite matrices, we
now warm-start QAOA with a binary solution ob-
tained using the GW rounding. Here, the varia-
tional form can only produce states different from
the initial GW cut when the regularization param-
eter ε > 0. We study the effect of ε by minimizing
the energy of depth-one WS-QAOAs applied to ten
fully connected graphs with 30 nodes and edge weights
uniformly chosen from {−10,−9, ..., 0, ..., 9, 10}. For
each graph we generate ten GW cuts and study the
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five best cuts with WS-QAOA. To find the optimal
β1 and γ1 we seed COBYLA with an initial point
obtained as follows. We perform a grid search in
γ1 with 25 equally spaced values from −2π to 2π.
For each value of γ1 we evaluate the energy for the
two points β1 ∈ {3π/4, 3π/8} and fit the result
to a sin(2β1) + b sin(4β1) to find the β1 that mini-
mizes the energy without having to perform a two-
dimensional grid scan. The (β1, γ1) with the lowest
energy is given as initial point to COBYLA. At ε = 0
the median energy, normalized to the energy of the
maximum cut, is 0.907 and corresponds to the energy
of the GW cuts used to warm-start QAOA, see Fig. 7.
As ε increases, the normalized energy decreases. How-
ever, around ε = 0.15 the median energy starts to in-
crease, and for ε = 0.25 rises beyond the energy of the
GW cut to 0.929, which suggests that warm-starting
quantum optimization may lead to algorithms which
can outperform the GW randomized rounding. This
increase in ε is not observed when the mixer from
Eq. (2) is used, see Appendix I.

Next, we illustrate the WS-RQAOA algorithm out-
lined in Sec. 2.3 at depth one by searching for the max-
imum cut of arbitrary graphs with n = 20, and n = 30
nodes. Two types of graphs are solved, one where each
edge appears with a pE = 1/2 probability and has a
1/2 probability of having a positive or negative unit
weight. The second type of graphs are fully connected
with uniformly distributed edge weights sampled from
{−10,−9, ..., 0, ..., 9, 10}. We expect that finding the
maximum cut for the fully connected graphs will be
harder than those with pE = 1/2 [89] and that the
resulting QAOA circuits will be deeper as they have
more edges [90]. For each graph size and type we
randomly generate 100 graphs. At each iteration a
GW pre-solver generates N = 10 cuts of which we
select the best M = 5 unique cuts to warm-start five
QAOA solvers with a depth p = 1 and ε = 0.25, cho-
sen based on the results from Fig. 7. We chose a lowN
to avoid systematically giving QAOA the maximum
cut, see Appendix B. This only holds for the small
graphs with which we illustrate WS-RQAOA. For
larger graphs we would, however, choose a much larger
N as GW cuts can be efficiently generated. The stan-
dard and warm-start depth-one RQAOA algorithms
are efficiently simulated by computing the correla-
tions 〈ẐiẐj〉 at each iteration, see Appendix F. The
parameters β1 and γ1 are optimized with COBYLA
which is initialized with a good initial point obtained
from a grid search, as discussed above, to avoid local-
minima. When a graph reaches nstop = n/2 nodes
we diagonalize the corresponding Hamiltonian to find
the maximum cut of this reduced problem. Together
with the replacements from RQAOA we obtain an ap-
proximation of the maximum cut of the original graph
with n nodes. We compare WS-RQAOA with stan-
dard RQAOA.

Our simulations indicate that WS-RQAOA outper-

Figure 7: Energy, normalized to the energy of the maximum
cut, as a function of ε for ten graphs each solved five times
with different GW cuts. The shaded area indicates the 25%
to 75% quantiles and the line shows the median. Each small
dot is the energy from one WS-QAOA. The dotted line shows
the median normalized energy at ε = 0.25.

forms standard RQAOA, see Fig. 8, and that the num-
ber of maximum cuts found decreases with graph size.
Fully connected graphs with 30 nodes are the hard-
est to solve among the graphs we consider. Still, for
the graphs in Fig. 8, we observe that the optimal β∗

1

and γ∗
1 are systematically found. This indicates that

when warm-start and standard RQAOA fail, it is be-
cause the depth-one variational form is not versatile
enough to capture the correlations in the maximum
cut. At ε = 0.25 we often observed that β∗

1 = π/2
and γ∗

1 = 0, see Fig. 9. We therefore benchmark
WS-RQAOA against a classical recursive optimiza-
tion procedure, where the average correlation matrix
of the five best GW cuts is used to eliminate decision
variables in each iteration, similarly to RQAOA, see
black bars in Fig. 8. This classical algorithm performs
better than standard RQAOA, but slightly worse than
WS-RQAOA.

We now investigate WS-QAOA for p > 1 in a
non-recursive setting. Since the efficient algorithm
outlined in Appendix F is not valid for p > 1
we solve a small, fully connected graph with six
nodes and edge weights uniformly distributed in
{−10,−9, ..., 0, ..., 10}, see Fig. 9(a). The maximum
cut of this graph has size 27. By comparing the en-
ergy landscape E(β1, γ1) of a depth-one and depth-
three WS-QAOA initialized with the cut 001111, of
size 23, we observe that the optimal trial state of
deeper variational forms is no-longer the initial GW
cut, see Fig. 9(b-d). We study the probability of sam-
pling the maximum cut as a function of p by running
30 WS-QAOAs each with a random initial β and γ

chosen uniformly from [0, 2π] and ±2π, respectively,
for depths p = 1, ..., 6. The probability to sample the
maximum cut for this graph increases with p while
the energy of the optimized trial state decreases, see
Fig. 10. This matches our expectations from the-
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Figure 8: Histograms of cut sizes, relative to the maximum cut found by CPLEX, for the best out of ten cuts generated by
GW on the initial graph (blue), standard RQAOA (orange), WS-RQAOA (red), and the recursive classical solver based on GW
(black). (a) and (b) correspond to random graphs with 20 and 30 nodes, respectively, pE = 1/2 and edge weights in {−1, 1}.
(c) and (d) correspond to fully-connected graphs with 20 and 30 nodes, respectively, with edge weights uniformly distributed
in {−10,−9, ..., 0, ..., 10}. The number of maximum cuts found is shown in the gray shaded sub-plots and not the main plot.
The dashed line shows the hardness factor 11/13.
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Figure 9: (a) The graph used to study the energy-landscape
as a function of β1 and γ1 for depth-one (b) and depth-three
(c) WS-QAOA. The initial cut is 001111 and ε = 0.25. Edge
and node colors indicate the edge weight and maximum cut
with value 27, respectively. (d) Ten highest probability cuts in
the optimized depth-three trial state. The numbers indicate
the cut-size. In (c) the values of βi and γi for i = 2, 3 are
given by COBYLA after minimizing the energy E(β,γ) and
correspond to the best point in Fig. 10. The inset in (d) is
a zoom of (c) around the optimal point (orange dot) found
by COBYLA.

ory since the circuit at depth p + 1 can reproduce
all states of the depth p variational form while be-
ing more flexible. Since the energy landscape is non-
convex and contains many local minima it is chal-
lenging to find globally optimal parameters starting
from random guesses of β and γ [32, 91–93]. Even at
depth-one with random initial guesses for β1 and γ1

COBYLA does not always find the optimal β1 = π/2
and γ1 = 0, see Fig. 9 and Fig. 10(b). The complexity

of the energy landscape, even for this six-node graph,
may therefore explain why the energy of the optimized
trial state decreases slowly with p.
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Figure 10: (a) Probability of sampling the maximum cut of
the six-node graph shown in Fig. 9(a) from the optimized
trial state and (b) its energy as a function of QAOA depth p.
The shaded areas indicate the 25% and 75% quantiles of 30
runs represented as small dots. Their medians are the large
dots. The green triangle is the energy of the depth-one trial
state with β1 = π/2 and γ1 = 0.

5 Discussion and Conclusion

We hope to have contributed towards a framework
for the design of quantum optimization algorithms
with a warm start, and towards reasoning about their
properties. Currently, these algorithms can achieve
the same guarantees as the classical relaxations upon
which they are based. If the Unique Games Con-
jecture is true, these guarantees cannot be improved
upon by classical or quantum algorithms running in
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polynomial time, unless we can solve NP-Hard prob-
lems in polynomial time. However, if this conjecture is
false then both quantum and classical algorithms may
be able to improve the existing performance guaran-
tees.

An implementation of WS-QAOA is available in
Qiskit [94], the open-source software development kit
for working with quantum computers. Our simu-
lations show that warm-starting quantum heuristics
provides an advantage at low depth. This is partic-
ularly important for dense optimization problems in-
tended to be solved on noisy quantum hardware that
struggles to implement deep quantum circuits. The
portfolio optimization simulations indicate that WS-
QAOA finds better solutions than standard QAOA.
Here, future work could investigate tying budget con-
straints into the quantum circuit of WS-QAOA [95].

We have also demonstrated how to continuously
transform WS-QAOA to conventional QAOA using
the regularization parameter ε. We also showed how
to improve QAOA for MAXCUT using the GW algo-
rithm to warm-start RQAOA, albeit by introducing
an inconsistency between the mixer and the initial
state. By using a grid scan at depth one, we mitigated
the effect of local optima. We applied WS-RQAOA at
depths p > 1 on a single graph. The results suggest
that the algorithm provides better solutions as p in-
creases. Future work may extend these simulations to
more graphs with different sizes. Further work could
also exploit other possible warm-starts, e.g., based on
polynomially-solvable special cases [62, 63], where one
could for example consider low-rank approximations
of Σ or the SDP [96] as well as analysis of the con-
vergence properties when using a modified mixer that
does not have the initial state as eigenstate. One may
also investigate RQAOA in the context of the con-
tinuous warm-start discussed in Sec. 3. Furthermore,
we may also warm-start quantum optimization algo-
rithms from candidate solutions obtained with classi-
cal solvers such as CPLEX or GUROBI with a time-
limit termination criterion.

We expect warm-start to be applicable to other
problems within Combinatorial Optimization and In-
teger Programming, for which a good solution can be
found through randomized rounding [52], possibly fol-
lowing an encoding into a QUBO [70, 71, 97], a mixed-
integer linear optimization problem [60], or a polyno-
mial unconstrained binary optimization problem [90].
Indeed, both the recipe to obtain SDP relaxations [65]
and the analytical tools of Appendix D are applicable
to linearly constrained problems equally well. For ex-
ample, the particle-hole representation for VQE can
be seen as a form of warm-start [98]. We anticipate
that WS-QAOA is also applicable to other binary op-
timization problems for which an approximate solu-
tion can easily be found using relaxed versions of the
problem, without the use of randomized rounding, al-
beit more research needs to be done in this direction.
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A The Unique Games Conjecture

We now summarize the Unique Games Conjecture
(UGC) without presenting any original material. In-
approximability results suggest that finding an ap-
proximate solution of a certain problem-dependent
approximation ratio is no easier than finding the op-
timal solution. The PCP theorem [99–101] shows
that in a constraint satisfaction problem, the frac-
tion of satisfiable constraints is NP-Hard to approxi-
mate within some constant factor. In particular, for
a constraint satisfaction problem with at most k vari-
ables per constraint, it suggests there is a constant
0 < α < 1, such that it is NP-Hard to decide whether
either all constraints are simultaneously satisfiable or
whether every assignment satisfies fewer than an α
fraction of the constraints. We refer to [102, Chap-
ters 18 and 19] for an excellent overview.

By building on the PCP theorem Khot suggested
the Unique Games Conjecture [103] which can be
formulated with two-prover one-round games as well
as unique label cover problems. Here, we state the
UGC with the unique label cover problem as it re-
lates to MAXCUT [55]. In a unique label cover prob-
lem there is a bipartite graph G = (V,W,E) with
partition V , W and edges E, an alphabet M , and
a bijection πe : M → M for every edge e ∈ E. We
denote this by L(V,W,E,M, {πe}E). Given the as-
signments AV : V → M and AW : W → M ,
an edge e = (v, w) ∈ E is satisfied if and only if
πe(AW (w)) = AV (v). Now let opt(L) be the maxi-
mum weight of edges satisfied by any assignment. The
Unique Label Cover problem with parameter δ, de-
noted ULC(δ), is the problem of deciding, given an in-
stance L(V,W,E,M, {πe}E), whether opt(L) ≥ 1− δ
or opt(L) ≤ δ, see examples in Fig. 11. Then:

Conjecture 1 (Unique Games Conjecture [103]). For
arbitrarily small constants ζ, δ > 0, there exists a con-
stant k = k(ζ, δ) such that it is NP-Hard to determine
whether a unique label cover instance with the label set
size k, i.e. k = |M |, has optimum at least 1− ζ or at
most δ.
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(a) (b)

(c) (d)

Figure 11: Unique label cover. (a) and (c) are examples of
unique label cover problems with a graph with four nodes and
four edges denoted La and Lc, respectively. The alphabet
has two colors: orange and blue. (b) An assignment of node
colors for La where all edges are satisfied, i.e. opt(La) = 1.
(d) An assignment of node colors for Lc where one edge is
not satisfied. We have opt(Lc) = 3/4.

Under the UGC a canonical semidefinite program-
ming relaxation of a constraint satisfaction prob-
lem provides the best possible approximation ratio
[55, 104, 105]. Nevertheless, the UGC itself has been
neither proven nor disproven, despite much effort.
The closest to proving the UGC, namely Khot et
al. [106], essentially proved the so-called 2-to-2-Games
Conjecture, which is a specialisation of the UGC to fi-
nite fields on two elements. Independently, [107, 108]
have shown that there is a subexponential time ap-
proximation for the original Unique Games problem,
which utilizes a hierarchy of LP [108] or SDP [107] re-
laxations. This seems to point to the full UGC being
true, but does not prove it yet.

Research in quantum complexity is still ongoing.
The EPR paradox [109] and the Tsirelson problem
[110] can be seen as two-prover one-round games in
which the provers may share entanglement while the
verifier and all communication are classical. In this
spirit, Kempe et al. [84] showed that the “unique
games with entangled provers” is false by rounding
an SDP relaxation of the value of a unique game with
entangled provers and with more than two possible
answers, in polynomial time. The “games quantum
PCP conjecture”, where one wishes to distinguish be-
tween the cases when the provers of a game with a
classical verifier have a strategy using entanglement
that succeeds with probability 1, or when no such
strategy succeeds with probability larger than 1/2,
has been shown to be true under randomized reduc-
tions [111]. By contrast, the “constraint satisfaction”
variant of the quantum PCP conjecture [112], which
considers constant-factor approximations to the min-
imal energy of a local Hamiltonian normalized to 1,
remains open.

B Goemans-Williamson Algorithm

The GW algorithm [53] first solves the continuous re-
laxation of MAXCUT

max
1

2

∑

i<j

ωij(1− vT
i vj) (7)

with positive edge weights ωij , where the decision
variables vi are n-dimensional vectors with unit Eu-
clidean norm instead of binary variables zi ∈ {−1, 1}.
We denote this vi ∈ Sn with S in plain font, in con-
trast to S

n for symmetric matrices. The relaxation (7)
is efficiently solvable as a semidefinite programming
problem [48] to get the optimal vectors v∗

i .
Next, the GW algorithm generates a cut by select-

ing a vector r uniformly at random on the unit sphere
and assigning zi = sign(rT v∗

i ) for each node, where
the sign function returns 1 for non-negative inputs
and -1 elsewhere. That is, the rounding depends on
which side of the hyperplane (defined by r) passing
through the origin the node lies.

Informally speaking, cuts generated in this way are
guaranteed to be on average 87.9% of the size of the
maximum cut [53], when averaging over the choice of
the random hyperplane in the case of the positive edge
weights. Formally,

Proposition 2 (Based on Theorem 3.1 in [53]). The
expected value, with respect to the random hyper-plane
defined by the vector r, of the cut size W generated by
rounding of the MAXCUT SDP relaxation (7) is:

E
[

W
]

=
∑

1≤i<j≤n

ωij Prob[sign(rT vi) 6= sign(rT vj)]

=
1

π

∑

1≤i<j≤n

ωij arccos(vT
i vj)

≥ αW ∗, (8)

where W ∗ denotes the value of the maximum cut and
the hardness factor is

α =
2

π
min

0≤θ≤π

θ

1− cos θ
≈ 0.878. (9)

Further, conditional on the Unique Games Conjec-
ture [55–57], this is the best possible guarantee that
can be obtained by any classical algorithm in polyno-
mial time.

C Extensions towards QUBO

MAXCUT is a special case of (QUBO)4. The GW
performance ratio is valid only for MAXCUT, as the

4Consider the matrix Σ, where for each edge weight ωij

there is an entry Σij = Σji = −ωij , and for all other values
there are zeros.

Accepted in Quantum 2021-06-15, click title to verify. Published under CC-BY 4.0. 11



101 102 103 104 105

Number of cuts N allowed per graph
0

20

40

60

80

100
Cu

t s
ize

 (%
 o

f m
ax

. c
ut

) (a)

Average Maximum Minimum
20

40

60

80

100

%
 g

ra
ph

s w
ith

 m
ax

. c
ut

 fo
un

d

101 102 103 104 105

Number of cuts N allowed per graph
0

20

40

60

80

100

Cu
t s

ize
 (%

 o
f m

ax
. c

ut
) (b)

Average Maximum Minimum
20

40

60

80

100

%
 g

ra
ph

s w
ith

 m
ax

. c
ut

 fo
un

d
Figure 12: (a) and (b) show the size of GW cuts relative to
the maximum cut for the graphs in Fig. 8(b) and (d), respec-
tively. For each graph, N GW cuts are generated and the
averages, minima, and maxima of the per-graph objective-
function values are computed. These averages, minimums,
and maximums are then averaged over the 100 graphs. The
dotted-dashed green line shows the fraction of graphs for
which the maximum cut was found. It is harder to find
the maximum cut on fully connected uniform random graphs
than random graphs with pE = 1/2.

special case of (QUBO) [75], and likewise the con-
stants in the inapproximability results.

One can, however, encode most problems in combi-
natorial optimization into a so-called constraint sat-
isfaction problem [75, 104, 113], for which there is an
well-known SDP relaxation and a subsequent round-
ing procedure [75, 104, 113]. Likewise, one can derive
optimal inapproximability results conditional on the
Unique Games Conjecture [55–57]. See, for example,
Figure 2 of [56].

For example, for MAXCUT with real-valued edge
weights [75], which actually generalises the QUBO we
have presented, as it does not assume Σ is symmetric,
we have:

Proposition 3 (Based on Lemma 6 in [75]). Let w
stand for the total weight of edges in a MAXCUT in-
stance, where it is NP-Hard to decide whether the op-
timal cut is larger or equal than k or less than αk,
where α is the hardness factor (9) for MAXCUT.
Then for every ǫ > 0 it is NP-Hard to distinguish
instances of QUBO with optimum greater or equal to
2k−w from instances of QUBO whose optimum is at
most 2αk − w. The ratio of these two bounds on the
optimum is

2αk − w
2k − w = α+ w

α− 1

2k − w. (10)

Moreover, the optimum hardness factor is achieved by

the randomized rounding of an SDP relaxation [75].

This can be used to prove the inapproximability re-
sults for MAXCUT with real weights [75], both con-
ditional and independent of the Unique Games Con-
jecture.

We illustrate the performance of GW on the ran-
dom graphs with 30 nodes used in Sec. 4. For each
graph we generate N cuts with GW and normal-
ize them to the maximum cut which is found with
CPLEX. We next calculate the minimum, maximum,
and average size of these N cuts for each graph. Fi-
nally, we average the minimum, maximum, and av-
erage of the 100 graphs, see Fig. 12. The average is
stable at 85.2% and 83.7% for the random graphs with
pE = 1/2 and the fully connected graphs, respectively,
see Fig. 12(a) and (b). These averages are slightly be-
low the GW approximation ratio5. When N > 100
the maximum cut for more than 80 of the 100 graphs
in Fig. 12(a) is found which is why we chose N = 10
in Sec. 4. When the graphs are fully connected the
GW algorithm does not find as many maximum cuts.
For instance, 61 maximum cuts are found at N = 105

for fully connected graphs, see Fig. 12(b).

D A Stochastic-Analysis Viewpoint

Many randomized rounding procedures can be seen
from the viewpoint of stochastic analysis: one ob-
tains random unit vectors u1, . . . , un ∈ Sn and pro-
duces signs σ1, . . . , σn ∈ {−1, 1}. In a natural view of
[79], the sign is extracted when an associated stochas-
tic process {uT

i B(t)}t≥0 first reaches {−1, 1}, where
{B(t)}t≥0 is a Brownian motion in R

n adapted to the
filtration {Ft}t≥0. The corresponding Sticky Brown-
ian Motion ∀ i ∈ {1, . . . , n} is

σi := uT
i B(Ti), (11)

where

Ti := min{t ≥ 0 : |uT
i B(t)| = 1}. (12)

This can be extended to “Slowed-down” Sticky Brown-
ian Motion [79, 80]. Considering first a speed function
ϕ : [−1, 1]→ [0,∞) that satisfies

lim
s→1−

ϕ(s) = lim
s→−1+

ϕ(s) = 0 (13)

and
∀ s ∈ (−1, 1), ϕ(s) > 0 (14)

and second a stochastic process {Wϕ
u (t)}(u,t)∈Rn×[0,∞)

that satisfies:

∀(u, t) ∈ R
n × [0,∞), Wϕ

u (0) = 0, (15)

5This could be seen as an instance of a phase transition [114],
beyond which the problem becomes computationally difficult
for classical algorithms running in polynomial time. Notice
that the MAX-2-SAT of [114] is closely related to MAXCUT
[115].
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and
dWϕ

u (t) = ϕ
(

Wϕ
u (t)

)

uT dB(t), (16)

one obtains, under mild assumptions [79, 80],

σϕ
u := lim

t→∞
Wϕ

u (t) ∈ {−1, 1} a.s. (17)

For the “Slowed-down” Sticky Brownian Motion [79,
80], one can show:

Proposition 4 (Based on [79]). For u ∈ R
n and

t ≥ 0 write W ξ
u(t) = Wu(t) and σξ

u = σu ∈ {−1, 1},
where

∀ s ∈ [−1, 1], ξ(s) = (1− s2)α, (18)

for α > 0. Then,

∀u, v ∈ Sd−1, E
[

σuσv

]

≈ 0.878. (19)

We note that the constant in (19) is not exactly the
constant of the Goemans-Williamson [53] work. (See
also Appendix B.) However, one can consider a dif-
ferent speed-function ξ to obtain the GW constant.
In particular, by seeing the processes as Krivine dif-
fusions, one can obtain:

Proposition 5 (Based on [80]). For u ∈ R
n and

t ≥ 0 write W ξ
u(t) = Wu(t) and σξ

u = σu ∈ {−1, 1},
where

∀ s ∈ [−1, 1], ξ(s) =

√
2√
π
e− 1

2 Φ−1
(

1−s
2

)2

, (20)

where Φ : R→ R is the standard Gaussian cumulative
distribution function, i.e.,

∀x ∈ R, Φ(x) =
1√
2π

∫ x

∞

e− s2

2 ds. (21)

Then,

∀u, v ∈ Sd−1, E
[

σuσv

]

=
2

π
arcsin(uT v). (22)

Compare this to the statement of Proposition 2,
noting that arccos(t)+arcsin(t) = π/2 for −1 ≤ t ≤ 1.
The proof relies in seeing the process as discrete-time
Krivine diffusions [80] and applying Theorem 3 of [80].

E Recursive QAOA

RQAOA [24] is a recursive algorithm to find
the ground state of an Ising Hamiltonian Ĥn =
∑

i,j Ji,jẐiẐj +
∑

k JkẐk with Ji,j , Jk as arbitrary real
coefficients and n decision variables. At each step of
the recursion a standard QAOA is run to find the state
|ψ∗〉 = Û(β∗,γ∗) |+〉⊗n that minimizes the energy
〈ψ∗|Ĥn|ψ∗〉. For each edge (i, j) ∈ E the correlator
Mi,j = 〈ψ∗|ẐiẐj |ψ∗〉 is computed. Next, the deci-
sion variable zi for which |Mij | is largest is replaced

with sign(Mi,j)zj to generate a new Ising Hamilto-
nian Ĥn−1 with n−1 decision variables. The recursion
stops once the number of variables is below a thresh-
old nstop. The remaining problem is solved with a
classical solver. We refer to Appendix C of [24] for
the pseudocode and detailed discussion.

F Depth-one RQAOA

Depth-one RQAOA can efficiently be simulated classi-
cally [91]. Here, we show the algorithm we used to effi-
ciently simulate depth-one WS-RQAOA. To evaluate
the correlator 〈ẐiẐj〉 = Tr{ρi,jẐiẐj} we only need the
density matrix ρi,j of qubits i and j, see the circuit in
Fig. 13. Qubits i and j are first prepared in the state
(
√

1− c∗
i |0i〉+

√

c∗
i |1i〉)⊗ (

√

1− c∗
j |0j〉+

√

c∗
j |1j〉).

For each qubit k 6= i, j, the cost Hamiltonian applies
the gate Ûi,k ⊗ Ûj,k, where Ûi,k is

Û1(γωi,k)⊗ Û1(γωi,k) · C-Phase(−2γωi,k). (23)

Here, the single-qubit gate Û1(φ) is diag(1, eiφ).
Since the controlled-phase gate C-Phase(φ) =
diag(1, 1, 1, eiφ) commutes with the Û1 gate we move
all Û1 gates to the front of the circuit an apply
the phases Û1(γ

∑

k 6=i,j ωi,k) and Û1(γ
∑

k 6=i,j ωj,k)
to qubits i and j, respectively. Next, we include
the effect of the controlled-phase gate of each qubit
k 6= i, j, initially in the state

√

1− c∗
k |0〉 +

√

c∗
k |1〉,

on the density matrix ρi,j by computing (1−c∗
k)ρi,j +

c∗
kÛijkρi,jÛ

†
ijk where Ûijk = diag(1, e−2iγωi,k ) ⊗

diag(1, e−2iγωj,k ). Then we apply the two-qubit
operation from the ωi,jẐiẐj term, i.e. Ûi,j =
diag(1, eiγωi,j , eiγωi,j , 1), and finally apply the mixer
operator before measuring. This is summarized in
Alg. 1.

Algorithm 1: Depth-one RQAOA

Initialization: qubit i and j in state |0〉.
Output: Correlator 〈ẐiẐj〉
Apply R̂Y (θi) and R̂Y (θj) to qubit i and j.

Apply Û1(γ
∑

k 6=i,j ωi,k) to qubit i.

Apply Û1(γ
∑

k 6=i,j ωj,k) to qubit j.

for k 6= i, j do

ρi,j ← (1− c∗
k)ρi,j + c∗

kÛijkρi,jÛ
†
ijk

end

Apply ρi,j ← Ûi,jρi,jÛ
†
i,j

Apply mixer

e−iβ(Ĥ
(ws)

M,i
⊗Ĥ

(ws)

M,j
)ρi,je

iβ(Ĥ
(ws)

M,i
⊗Ĥ

(ws)

M,j
)

Measure correlator 〈ẐiẐj〉 = Tr{ρi,jẐiẐj}
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|0〉k R̂Y (θk) Û1(γωi,k) • Û1(γωj,k) • e−iβĤ
(ws)
M,k

|0〉i R̂Y (θi) Û1(γωi,k) Û1(−2γωi,k)

Ûi,j

e−iβĤ
(ws)
M,i

|0〉j R̂Y (θj) Û1(γωj,k) Û1(−2γωj,k) e−iβĤ
(ws)
M,j

Ûi,k Ûj,k

Figure 13: Quantum circuit used to compute the correlator 〈ẐiẐj〉. The gates highlighted in red do not need to be taken into
account.

G MAXCUT reduction

Here we show that replacing Ẑi by±Ẑj in a MAXCUT
problem results in a new MAXCUT problem with one
node less. Without loss of generality we label the
nodes from 1 to n such that the spin operator Ẑn of
node n will be replaced by Ẑn = αẐk with α = ±1 and
k < n. The MAXCUT Hamiltonian of the weighted
graph is

Ĥ =
1

4

n
∑

i,j=1

ωi,j

(

1− ẐiẐj

)

(24)

=
1

4

n−1
∑

i,j=1

ωi,j

(

1− ẐiẐj

)

+
1

2

n−1
∑

i=1

ωi,n

(

1− ẐiẐn

)

We now replace Ẑn = αẐk in the last term and, since
ωi,n

(

1− αẐiẐk

)

= αωi,n

(

1− ẐiẐk

)

+ ωi,n(1 − α),
we may write

n−1
∑

i=1

ωi,n

(

1− ẐiẐn

)

=

n−1
∑

i=1

ωi,n(1− α)

+

n−1
∑

i=1

αωi,n

(

1− ẐiẐk

)

. (25)

We neglect the first sum since it is an energy offset
that does not affect the optimization. The Hamilto-
nian of the reduced problem is therefore

Ĥn−1 =
1

4

n−1
∑

i,j=1

ωi,j

(

1− ẐiẐj

)

+
1

2

n−1
∑

i=1

αωi,n

(

1− ẐiẐk

)

(26)

This Hamiltonian corresponds to a new graph E′ in
which the weights ω′

i,j with i, j = 1, ..., n−1 have been
updated according to

ω′
ij =

{

ωi,j if j 6= k,
ωi,j + αωi,n if j = k.

(27)
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Figure 14: Energy, normalized to the energy of the maximum
cut, as a function of ε for a depth one WS-QAOA. The graphs
are the same as those in Fig. 7 but we used the mixer from
Eq. (2) which cannot reproduce the GW at ε = 0.25 and
depth one.

H Portfolio data

The return vectors and covariance matrices used in
Sec. 3 are obtained by simulating the price of each
asset following a Geometric Brownian motion for N =
250 days. The price of asset i on the kth day is

Si,k = Si,0 exp
[

(µi − σ2
i /2)k/N + σiWk

]

. (28)

Without loss of generality we set the initial price
Si,0 = 1. We randomly chose each mean µi and
standard deviation σi uniformly form [−5%, 5%] and
[−20%, 20%], respectively. The Brownian motion is
given by Wk =

∑j
l=0 zl/

√
N where zl is drawn from

the normal distribution. The return of asset i on the
kth day is ri,k = Si,k/Si,k−1 − 1. The average of ri,k

gives the mean return of asset i and the covariance
of asset i and j is obtained from ri,k and rj,k where
k = 1, ..., N .

I WS-QAOA for MAXCUT with the

warm-start mixer

In the main text we modified the WS mixer to retain
the GW cut. Here, we explore WS-QAOA for MAX-
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Figure 15: Histograms of cut sizes, relative to the maximum cut found by CPLEX, for WS-RQAOA with the modified mixer
(red, same data as in Fig. 8), and the WS-QAOA with the mixer from Eq. (2). The dashed line shows the hardness factor
11/13.

CUT with the mixer of Eq. (2). By repeating the
analysis done in Fig. 7 we observe that the energy,
normalized to the maximum, decreases as a function
of ε and does not recover at ε = 0.25, see Fig. 14.

In addition, we repeat the analysis done in Fig. 8
but with the mixer of Eq. (2) and compare it to WS-
RQAOA with the modified mixer. Both algorithms
have a similar performance, see Fig. 15, which sug-
gests that the amount of correlation between the vari-
ables at each iteration, e.g. as in Fig. 14, is still suf-
ficient for WS-RQAOA to produce good results even
though the GW cut cannot be sampled with certainty
at each iteration. As the size and complexity of the
graphs is increased the performance of WS-RQAOA
with the mixer from Eq. (2) decreases compared to
WS-RQAOA with the modified mixer and indicates
the importance of being able to retain the GW cut.
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