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Abstract

Background: It is well-known that global warming has effects on high-latitude tundra underlain with permafrost.
This leads to a severe concern that decomposition of soil organic carbon (SOC) previously stored in this region,
which accounts for about 50% of the world’s SOC storage, will cause positive feedback that accelerates climate
warming. We have previously shown that short-term warming (1.5 years) stimulates rapid, microbe-mediated
decomposition of tundra soil carbon without affecting the composition of the soil microbial community (based on
the depth of 42684 sequence reads of 16S rRNA gene amplicons per 3 g of soil sample).

Results: We show that longer-term (5 years) experimental winter warming at the same site altered microbial
communities (p < 0.040). Thaw depth correlated the strongest with community assembly and interaction networks,
implying that warming-accelerated tundra thaw fundamentally restructured the microbial communities. Both
carbon decomposition and methanogenesis genes increased in relative abundance under warming, and their
functional structures strongly correlated (R2 > 0.725, p < 0.001) with ecosystem respiration or CH4 flux.

Conclusions: Our results demonstrate that microbial responses associated with carbon cycling could lead to
positive feedbacks that accelerate SOC decomposition in tundra regions, which is alarming because SOC loss is
unlikely to subside owing to changes in microbial community composition.

Background
High-latitude permafrost-underlain tundra ecosystems

have been a hotspot for climate change research, owing

to their substantial carbon (C) pool and high vulnerabil-

ity to climate warming [1–4]. Old C from plant and ani-

mal remnants has been sequestered in permafrost

regions for thousands of years under frozen soil condi-

tions [5]. Although accounting for only 15% of the total

global land mass, the northern hemisphere permafrost

regions at a depth of 0–3 m contain 1 672 Pg C, roughly

half of the global soil C pool [2, 6]. Since permafrost re-

gions have the potential to release a large amount of

previously stored soil C to the atmosphere in a warmer

world [3, 4], it is a significant variable that affects the fu-

ture trajectory of climate change [7].

Over the past 30 years, annual average temperatures in

high latitude regions have increased by 0.6 °C per dec-

ade, twice as fast as the global average [8], resulting in

the substantial thaw of permafrost soils. It has been esti-

mated that climate warming will cause a reduction of

30–70% of the total permafrost soils by the end of the

twenty-first century [9]. As a consequence, previously
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protected soil C becomes available for microbial decom-

position [2]. A number of studies have shown that tun-

dra soil C is highly vulnerable and responds rapidly to

the warming-induced thaw of permafrost soils [2, 4, 10].

Although the increase in soil C input by higher plant

productivity across the tundra regions could partially

offset soil C loss [11–13], there remains a lack of a

mechanistic understanding of microbial responses to cli-

mate warming, which makes it challenging to assess the

future C balance.

Only a few studies of permafrost ecosystems have exam-

ined microbial responses to climate warming [4, 7, 14].

For example, a substantial fraction of permafrost soil C

was available for microbe-mediated decomposition during

a lab incubation simulating warming [15]. Consistently, a

field study in a permafrost-based tundra (the same site as

this study) revealed that microbial community functional

potential was highly sensitive to a 1.5-year experimental

warming, despite the taxonomic composition remaining

unaltered [4]. As a result, soil C was more vulnerable to

microbial decomposition. However, it remains unclear

whether microbial responses to short-term warming per-

sist in the longer term.

Since a 1.5-year warming altered the microbial func-

tional structure but not the taxonomic composition of

soil microbial communities in permafrost-based tundra

[4], our central hypothesis was that 5 years’ warming

could induce changes in plant productivity, soil microcli-

mate, and soil microbial community structure. We ex-

pected three mutually exclusive outcomes after longer-

term warming: (i) similar to that observed after the 1.5-

year warming period, the microbial functional structure

would be altered, while the taxonomic composition

would remain similar to that of the control group (resist-

ance); (ii) the microbial communities that are acclimated

to experimental warming would manifest a functional

structure and taxonomic composition that approximates

that of the control group (resilience); or (iii) microbial

communities would continue to evolve into new states

and both functional structure and taxonomic compos-

ition would be altered by warming (sensitivity).

To test our hypothesis, we examined soil microbial com-

munities subjected to a 5-year winter warming treatment at

the Carbon in Permafrost Experimental Heating Research

(CiPEHR) site located in Alaska, USA. This site has been

extensively used to analyze the effects of climate warming

on plants, soil nitrogen (N) availability, and soil microbial

communities [4, 16–18]. A winter warming treatment was

carried out by snow fences (1.5 m tall and 8 m long), which

warmed the soil by maintaining thick snow layers as heat

insulators. We investigated both the taxonomic compos-

ition and functional structure of microbial communities

under warming, in addition to potential drivers and eco-

logical consequences of community changes. Specifically,

the taxonomic composition of microbial communities was

investigated by amplicon sequencing of 16S rRNA genes

for bacterial/archaeal community and internal transcribed

spacer (ITS) region for the fungal community. The micro-

bial functional structure was examined by a functional

microarray named GeoChip 5.0M [19].

Results
Edaphic factors, plant productivity, and ecosystem C

fluxes

As shown in Additional file 1: Table S1, the average win-

ter soil temperature increased by 0.63 °C (p = 0.037)

under warming and the maximum thaw depth increased

by 11.37 cm (p = 0.006), much more substantial than the

4.78 cm increase after the 1.5-year warming [4]. Above-

ground plant biomass at the end of the growth season

increased by 25.2% (p = 0.049) under warming, similar

to other observations in tundra regions [11–13]. Ecosys-

tem respiration increased by 72.8% (p < 0.001) under

warming, and CH4 flux increased by 218.8% (p = 0.004).

Microbial community composition

We examined the taxonomic composition of microbial

communities via high-throughput amplicon sequencing

of bacterial and archaeal 16S rRNA genes and the fungal

internal transcribed spacer (ITS) region. After resam-

pling at 34 673 reads per sample, 5 117 OTUs were gen-

erated by 16S rRNA gene amplicon sequencing. Almost

all of the OTUs (99.86%) and relative abundance

(99.88%) belonged to bacteria, with 2 740 OTUs map-

ping to 214 known genera. Proteobacteria was the most

abundant phylum (31.00% in relative abundance),

followed by Acidobacteria (30.61%), Actinobacteria

(12.08%), and Verrucomicrobia (8.34%) (Additional file 1:

Figure S1a). Among Proteobacteria, the relative abun-

dance of Alphaproteobacteria was 13.86% and that of

Gammaproteobacteria was 7.74%. For fungi, 1 465

OTUs were generated by ITS amplicon sequencing after

resampling at 19 242 reads per sample. Leotiomycetes

were the most abundant class (47.35% in relative abun-

dance), followed by Eurotiomycetes (18.85%), unidenti-

fied Ascomycota (16.06%), and Agaricomycetes (10.05%)

(Additional file 1: Figure S1b).

Warming increased the phylogenetic α-diversity of the

bacterial communities (Faith’s PD, p = 0.032, Fig. 1a) but

not the fungal communities, probably due to high fungal

variance among a limited number of biological replicates

(p = 0.406, Fig. 1b). Bacterial within-group β-diversity,

i.e., the difference within biological replicates, was also

increased in warmed samples (p < 0.001, Fig. 1c), indi-

cating that warming led to more divergent bacterial

communities. In contrast, fungal within-group β-

diversity remained unchanged (p = 0.143, Fig. 1d). All of

the nonparametric multivariate statistical tests of
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dissimilarity (MRPP, ANOSIM, and Adonis) showed that

warming altered the composition of the bacterial com-

munities but not the fungal communities (p < 0.040,

Table 1).

Microbial correlation networks

All bacterial and fungal networks generated from control

or warmed samples showed topological properties of

small-world, scale-free, and modularity, and were signifi-

cantly different from randomly generated networks

(Additional file 1: Table S2). The average connectivity of

the bacterial network in warmed samples was higher (p

< 0.001), but the average geodesic distance was lower (p

< 0.001) than those in the control samples, suggesting

that nodes were more connected in warmed samples. In

contrast, the average connectivity and the average

Fig. 1 Diversity indices of bacterial/fungal communities, including a bacterial Faith’s PD index (phylogenetic α-diversity index), b fungal Faith’s PD
index, c bacterial within-group β-diversity (Bray-Curtis distance), and d fungal within-group β-diversity (Bray-Curtis distance). Statistical
significances were determined by permutation t tests. Error bars represent standard error of the mean for n = 6 biological replicates
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geodesic distance of fungal networks were reduced by

warming (p < 0.001), owing to increased network modu-

larity (Additional file 1: Table S2).

To explore the relationship between network topology

and environmental factors, we included environmental

factors as nodes in the networks. Thaw depth had the

highest node connectivity in the bacterial network of

warmed samples (Additional file 1: Figure S2a), while

water table depth had the highest node connectivity in

the bacterial network of control samples (Additional file

1: Figure S2b). In contrast, thaw depth, bulk density and

soil N had the highest node connectivity in the fun-

gal network of warmed samples (Additional file 1:

Figure S2c), while bulk density and soil N showed

the highest node connectivity in the fungal network

of control samples (Additional file 1: Figure S2d).

Microbial community functional structure

A total of 38 484 probes on the GeoChip showed positive

signals. All of the nonparametric multivariate statistical

tests of dissimilarity (MRPP, ANOSIM, and Adonis)

showed that the overall functional structure of soil micro-

bial communities was altered by warming (p < 0.012,

Table 1), and positively correlated with bacterial and fun-

gal community composition (p < 0.015, Additional file 1:

Figure S3). The relative abundance of genes associated to

C, N, phosphorus (P), and sulfur (S) cycling was increased

by warming (Fig. 2 and Additional file 1: Figure S4). In

contrast, only nine functional genes, which mainly belong

Table 1 Dissimilarity tests of warming effects on microbial
taxonomic composition revealed by 16S rRNA gene and ITS
sequencing, and functional structure revealed by GeoChip

Dataset MRPPa ANOSIM Adonis

delta p r p r2 p

16S rRNA gene 1338.991 0.040b 0.152 0.028 0.162 0.015

ITS 0.610 0.741 0.067 0.722 0.070 0.738

GeoChip 0.001 0.012 0.296 0.012 0.166 0.009

aThree permutation tests were performed, including the multiple response

permutation procedure (MRPP), analysis of similarity (ANOSIM), and

permutational multivariate analysis of variance (Adonis). Bray-cutis distance

was used in the permutation tests
bBold values indicate p < 0.050

Fig. 2 Normalized signal intensities of representative genes involved in a C decomposition and b methane cycling, as revealed by GeoChip 5.0
analysis. Blue bars represent the average normalized signal intensity of probes of each gene of control samples, and red bars represent warmed
samples. Error bars represent standard error of the mean for n = 6 biological replicates. The differences of the functional gene relative abundance
between warming and control samples were tested using ANOVA, indicated by * when p < 0.050
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to functions related to virulence and virus, were signifi-

cantly (p < 0.05) decreased in relative abundance.

C cycling

We detected 50 genes associated with decomposition of

labile or recalcitrant C. Among them, 42 genes exhibited

higher relative abundance in warmed samples than con-

trol samples (p < 0.038, Fig. 2a), including amyA encoding

amylase, xylA encoding xylose isomerase, exoglucanase,

cellobiase, pectate lyase, phenol oxidase, vdh encoding

vanillin dehydrogenase, and ligninase.

A total of 13 methanogenesis genes were detected

(Fig. 2b). Among them, mcrA encoding methyl coen-

zyme M reductase, mrtH encoding tetrahydrometha-

nopterin S-methyltransferase, mtaB encoding methanol-

cobalamin methyltransferase, mtmB encoding mono-

methylamine methyltransferase, mtxX encoding methyl-

transferase, and hdrB encoding CoB/CoM heterodisulfide

reductase exhibited higher relative abundance in warmed

samples (p < 0.007), suggesting a higher functional poten-

tial of methanogenesis. In addition, both methane oxida-

tion genes, which are mmoX encoding soluble methane

monooxygenase and pmoA encoding particulate methane

monooxygenase, exhibited higher relative abundance in

warmed samples (p < 0.001, Fig. 2b).

Higher functional capacities of microbial C degrad-

ation and methanogenesis in warmed samples could lead

to in situ C loss. Accordingly, we detected strong corre-

lations between functional structure of C decomposition

genes and in situ ecosystem respiration (R2 = 0.725, p <

0.001, Fig. 3a), and between the functional structure of

methanogenesis genes and in situ CH4 flux (R2 = 0.772,

p < 0.001, Fig. 3b).

N cycling

As a limiting nutrient in tundra ecosystems, N plays an es-

sential role in ecosystem productivity. All the detected

genes associated with N cycling exhibited higher relative

abundance in warmed samples (p < 0.025, Additional file 1:

Figure S4a), suggesting that warming enhanced microbial

functional capacity for N cycling. These genes included the

N fixation gene (nifH encoding nitrogenase reductase), ni-

trification gene (hao encoding hydroxylamine oxidoreduc-

tase), denitrification genes (e.g., narG encoding nitrate

reductase), dissimilatory nitrate reduction genes (e.g., napA

encoding periplasmic nitrate reductase), assimilatory nitrate

reduction genes (e.g., nasA encoding assimilatory nitrate re-

ductase), N mineralization gene (ureC encoding urease),

and ammonia assimilation gene (gdh encoding glutamate

dehydrogenase).

P and S cycling

P deficiency is common in global soil ecosystems. We

found that P cycling genes including phytase and ppx

encoding exopolyphosphatase (ppx) were in higher

relative abundance in the warmed samples (p < 0.001,

Additional file 1: Figure S4b), suggesting that warming

could potentially increase microbial functional capacity

of P cycling. Similarly, 27 genes associated with S cycling

were detected, of which 21 showed higher relative abun-

dance in warmed samples (p < 0.027, Additional file 1:

Figure S4c). These genes included dsrA/B-encoding

dissimilatory sulfite reductase, SiR- and cysI/J-encoding

sulfate reductase, and soxY-encoding sulfur oxidation

protein.

Microbial community assembly mechanisms and the

importance of thaw depth

To assess the importance of deterministic and stochastic

processes in shaping soil community composition, stochas-

tic ratios were calculated. Stochastic processes of bacterial

communities were reduced by warming from 91.5 to 65.9%

(p < 0.001, Additional file 1: Figure S5a), suggesting that en-

vironmental filtering was elicited by warming. Similarly,

stochastic ratios of fungal communities were reduced by

warming (p = 0.036, Additional file 1: Figure S5b).

To identify environmental factors that may have a

strong effect on the microbial communities, we performed

correlation tests between the beta-nearest taxon index

(βNTI, also known as phylogenetic β-diversity) [20] and

pairwise differences in all of 14 environmental factors.

Bacterial βNTI correlated with the thaw depth (R2 =

0.503, p < 0.001, Fig. 4a), and to a lesser extent with soil

moisture (R2 = 0.128, p < 0.001, Fig. 4b) and aboveground

plant biomass (R2 = 0.158, p < 0.001, Fig. 4c). Fungal βNTI

had weaker correlations with those factors than bacterial

βNTI, but correlated with thaw depth (R2 = 0.067, p =

0.038, Fig. 4d) and soil moisture (R2 = 0.085, p = 0.013,

Fig. 4e) while not with aboveground plant biomass (R2 =

0.001, p = 1.000, Fig. 4f).

We performed CCA to verify the importance of the

thaw depth in microbial community assembly. The bacter-

ial community composition correlated with thaw depth,

aboveground plant biomass, soil moisture, and winter soil

temperature, with soil moisture and aboveground plant

biomass being the most important variables (p = 0.007,

Additional file 1: Figure S6a). Similarly, thaw depth,

aboveground plant biomass, soil moisture, winter soil

temperature and soil C/N ratio correlated with the fungal

community composition (p = 0.012, Additional file 1:

Figure S6b) and with the microbial functional structure

(p < 0.001, Additional file 1: Figure S6c).

Discussion
Given the tremendous amount of soil C stored within

permafrost regions and its high vulnerability to climate

warming, microorganisms have been recognized as the

key to mediate the impact of climate warming on
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permafrost region soil C [21]. In contrast to the previous

observation at our study site that bacterial community

taxonomic composition was unaltered by 1.5-year warm-

ing [4], we showed here that 5-year warming caused sig-

nificant changes in the bacterial community

composition, functional structure, and correlation net-

works (Table 1 and Additional file 1: Table S2). Our

findings support the hypothesis that bacterial communi-

ties continue to evolve and diverge into new states (sen-

sitivity) after long-term warming. Consequently, the

higher functional capacity of microbial decomposition of

soil C under warming contributes to higher soil respir-

ation and CH4 flux, which in turn accelerates tundra C

loss. Those observations are likely arising from changes

Fig. 3 Linear regressions between a in situ ecosystem respiration and the first detrended principle component (PC1) of C decomposition genes,
and b in situ methane flux and PC1 of methanogenesis genes. Each point represents a biological replicate of warming (diamonds) or control
(circles) samples
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by the winter warming treatment because soil

temperature in the growing season remained unchanged

(Additional file 1: Table S1).

Thaw of permafrost regions has long been considered to

have profound effects on local hydrological, thermal, and

C dynamics [3, 18, 22, 23]. We found that warming in-

creased the thaw depth [24], which was the strongest fac-

tor linking to bacterial phylogenetic assembly (Fig. 4a),

community composition (Additional file 1: Figure S6a),

and network topology (Additional file 1: Figure S2). Con-

sistently, deterministic processes (e.g., selection) played a

more crucial role in shaping bacterial communities under

warming (Additional file 1: Figure S5a). These results are

consistent with a recent study of permafrost regions show-

ing that changes in thaw depth induced changes in soil

diazotrophic communities [25]. Moreover, the divergence

of bacterial communities observed in this study under ex-

perimental warming manifested as increases of within-

group β-diversity (Fig. 1c), might be a phenomenon

generalizable to other ecosystems, since bacterial commu-

nities in a tallgrass prairie site were also divergent within

warming replicates [26]. In sharp contrast, fungal commu-

nities remained unaltered by warming (Table 1). This

could arise from the large variability of fungal communi-

ties as shown by the larger standard error of Faith’s PD for

the fungi than for the bacteria (Fig. 1a, b).

The bacterial network of warmed samples exhibited

higher average connectivity and shorter average geodesic

distance than that of control samples (Additional file 1:

Table S2), suggestive of a more complex network and

denser interactions. The dense network is likely associ-

ated with deterministic processes (e.g., environmental

filtering) [27]. Accordingly, we detected a higher contri-

bution of deterministic processes under warming condi-

tions (Additional file 1: Figure S5a).

Similar to the results of the 1.5-year warming at our

study site [4], the relative abundance of functional genes

associated with both aerobic and anaerobic C decompos-

ition was increased by 5-year warming. These results

could be crucial in assessing C dynamics in permafrost

regions since the warming-induced thaw of permafrost

regions exposes previously protected C stock to micro-

bial activity. These findings also provide a mechanistic

explanation for the recent observation that warming at

our study site increased the annual cellulose decompos-

ition rate at a soil depth of 0–10 cm by a factor of two

[24]. In addition, the relative abundance of functional

genes associated with recalcitrant C decomposition (e.g.,

aromatics and lignin, Fig. 2a) was increased by warming,

which is in accordance with our finding that the relative

abundance of the genus Chitinophaga, a strong chitino-

lytic taxa [28], was also increased by warming. There-

fore, a potential increase in the decomposition of

recalcitrant C is expected.

Field warming experiments have demonstrated that an

initial increase of CO2 flux gradually subsides over time,

returning to pre-warming values [29–34]. However, we

observed persistent, enhanced ecosystem respiration

Fig. 4 Linear regressions between pairwise microbial community phylogenetic turnovers (Beta Nearest Taxon Index, βNTI) and pairwise
differences of plant and soil factors. Phylogenetic turnover metrics are related to changes in a soil thaw depth, b soil moisture and c

aboveground plant biomass for bacterial communities, and changes in d soil thaw depth, e soil moisture and f aboveground plant biomass for
fungal communities. The 66 points in each sub-figure represent the 66 pairwise differences generated from the 6 warmed samples and 6
control samples
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after 5-year warming, which could result from a stimu-

lated microbial decomposition of soil organic C (Add-

itional file 1: Table S1). This phenomenon may arise

from three mechanisms: (1) continuous warming in-

creases the thaw depth, creating a crucial difference in

the soil environment between warming and control

plots, so acclimatization of microbial communities to

warming is unlikely to occur; (2) since the temperature

sensitivity of recalcitrant SOC is higher than labile SOC

[16, 30], a higher microbial functional capacity of recal-

citrant C decomposition under warming can aggravate

soil C instability related to ecosystem respiration; and

(3) the warming effect in permafrost regions is often

more substantial for deeper soils [25], which contributes

to ecosystem respiration. Therefore, we project that the

soil microbial community would continue to provide

positive feedback to climate warming.

All N cycling-associated genes exhibited higher relative

abundance in warmed samples (Additional file 1: Figure

S4a), which was consistent with the observations that

both inorganic N availability and foliar N pools were in-

creased by warming at our study site [12], and that soil

nutrient contents were generally stimulated by warming

in the tundra ecosystem [12, 13]. The larger nutrient

pool available to plants could increase aboveground

plant biomass (Additional file 1: Table S1). However,

this higher plant productivity may only partially offset C

loss, as a previous study of the Alaskan tundra observed

a negative net ecosystem exchange due to a larger loss

of C in deep soils than was increased by plant produc-

tion [35]. Similarly, adding organic N to the active layer

above the permafrost soils increased SOM decompos-

ition by 2–3-fold [36]. Therefore, an increased soil nutri-

ent availability associated with warming may further

amplify C loss and consequently impose positive feed-

back to climate warming.

Collectively, our results show that 5-year warming sig-

nificantly altered the bacterial composition and func-

tional structure of microbial communities in permafrost

regions, revealing an evolving sensitivity to warming. Soil

thaw depth was the strongest factor shaping bacterial

taxonomic composition, C decomposition potential, and

network topological properties, demonstrating that

warming-induced thaw of permafrost regions fundamen-

tally restructures the associated bacterial communities.

Therefore, we project that microbial responses to long-

term warming will lead to positive feedback enhancing C

decomposition in tundra regions.

Methods
Field site description and soil sampling

Established in 2008, the CiPEHR project is located

within a discontinuous permafrost region in the north-

ern foothills of the Alaska Range (~ 670 m elevation) at

the Eight Mile study site, AK, USA (63°52′59′′ N, 149°13′

32′′ W) [11, 37]. Soils in the experimental site are gelisols

and comprise a 45–65-cm-thick organic horizon above a

cryoturbated mineral mixture of glacial till and loess. The

active layer, which thaws annually, is 50–60 cm thick. The

site had a mean annual air temperature of − 1.45 ± 0.25 °C

from 1977 to 2013 and a mean growing season precipita-

tion of 216 ± 24 mm from 2004 to 2013. The dominant

vegetation is a tussock-forming sedge, Eriophorum vagina-

tum. More detailed information on this site is available

elsewhere [37].

Soils have been warmed since 2008 via snow fences

(1.5 m tall, 8 m long), which act as insulators to increase

the depth of the snow layer. Six snow fences are ar-

ranged in three blocks of two each, with each fence

representing a warming-control plot pair. Each block is

approximately 100 m apart and fences within a block are

5 m apart. Snow removal is conducted in the early

spring (March 8–15) to avoid moisture and meltdown

effects of the additional snow. In May 2013, surface soil

samples at a depth of 0–15 cm were collected from both

warming and control plots (6 replicates each), and then

used for microbial community and environmental factor

analyses.

Measurement of environmental factors

Soil temperature at the depths of 5 and 10 cm was mea-

sured every half an hour in each plot using constantan-

copper thermocouples and recorded using CR1000 data

loggers (Campbell Scientific, Logan, UT, USA). Site-

calibrated CS616 water content reflectometer probes

(Campbell Scientific, Logan, UT, USA) were used to

measure volumetric water content (moisture) at a depth

of 0–15 cm. CS450 pressure transducers (Campbell Sci-

entific, Logan, UT, USA) were used to continuously

measure water table depth. The thaw depth was mea-

sured weekly during the growing season using a metal

probe. Aboveground biomass was determined by a non-

destructive point-frame method using a 60 × 60 cm

frame with 8 × 8 cm grids, and species identity and tis-

sue type (leaf, stem or fruit) for plants touching the rod

(“hits”) were recorded as previously described [11]. Soil

C and N contents were measured using an ECS 4010

Elemental Analyzer (Costech Analytical Technologies,

Valencia, CA, USA). CH4 fluxes from each plot were

measured as previously described [24], using a HP 5890

gas chromatograph (Hewlett-Packard, Palo Alto, CA,

USA) equipped with a flame ionization detector and a

molecular sieve 13X packed column. Ecosystem respir-

ation was measured using an LI-820 infrared gas

analyzer (LI-COR Biosciences, Lincoln, NE, USA) con-

nected to a chamber placed on the plot base and covered

by a dark tarp to exclude photosynthesis. The mean

values of growing season soil temperature, soil moisture,
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water table depth, thaw depth, ecosystem respiration,

and CH4 flux data from the 2012 growing season and

winter soil temperature during the winter of late 2012–

early 2013 were calculated.

Soil DNA extraction

Soil DNA was extracted from 3 g of each soil sample by

freeze-grinding mechanical cell lysis as described previ-

ously [38] and then purified with a PowerMax Soil DNA

Isolation Kit (MO BIO, San Francisco, CA, USA). A

NanoDrop ND-1000 spectrophotometer (NanoDrop

Technologies Inc., Wilmington, DE, USA) was used to as-

sess DNA quality using absorbance ratios of 260:280 and

260:230 nm. Final DNA concentrations were quantified

using a Quant-iT PicoGreen dsDNA Assay kit (Invitrogen,

Carlsbad, CA) with a FLUOstar OPTIMA fluorescence

plate reader (BMG LabTech, Jena, Germany).

High-throughput amplicon sequencing and raw data

processing

The V4 hypervariable region of 16S rRNA gene was

amplified with the primer pair 515F (5′-GTGCCAGC

MGCCGCGGTAA-3′) and 806R (5′-GGACTACH

VGGGTWTCTAAT-3′). The fungal internal transcribed

spacer (ITS) was amplified with the primer pair ITS7F

(5′-GTGARTCATCGARTCTTTG-3′) and ITS4R (5′-

TCCTCCGCTTATTGATATGC-3′). A two-step PCR

protocol was used to avoid bias introduced by long se-

quencing primers [39], which was an initial denaturation

at 94 °C for 1 min, then 10 cycles (first step) or 20 cycles

(second step) of 94 °C for 20 s, 53 °C (16S rRNA gene)

or 52 °C (ITS) for 25 s, 68 °C for 45 s, followed by a final

10-min extension at 68 °C. The amplicons were paired-

end sequenced (2 × 150) on a MiSeq sequencer (Illu-

mina, San Diego, CA, USA). Sequences were denoised

and processed on an online pipeline (www.ou.edu/ieg/

tools/data-analysis-pipeline). Specifically, sequences were

trimmed using BTRIM with a threshold quality score

greater than 20 within a 5 bp window size and a mini-

mum length of 100 bp. Forward and reverse reads with

at least a 50 bp overlap and no more than 5% mis-

matches were joined using FLASH [40]. After removing

sequences with ambiguous N bases, joined sequences

with lengths between 245 and 260 bp for 16S rRNA, and

between 100 and 450 bp for ITS were subjected to

chimera removal by U-Chime as previously described

[41, 42]. OTUs were clustered through Uclust at a 97%

similarity level [41]. Taxonomic assignment was con-

ducted through the RDP classifier [43] with a confidence

cutoff of 0.5, and singletons were removed. The

remaining sequences were randomly resampled to a

depth of 34 673 reads per sample for 16S rRNA gene se-

quences, and 19 242 reads per sample for fungal ITS.

GeoChip 5.0 analyses and raw data processing

Microbial functional genes were analyzed using the 180

K version of GeoChip 5.0M (Agilent Technologies Inc.,

Santa Clara, CA, USA), which contains 161 961 probes

targeting 1 447 gene families involved in 12 major func-

tional categories, such as C, N, P, and S cycling [19]. For

each sample, 1 μg of soil DNA was labeled with Cy3

using random primers, dNTP solution and Klenow, puri-

fied with the Qiagen QIAquick Kit (Qiagen, German-

town, MD, USA) and dried using a SpeedVac (Thermo

Fisher Scientific Inc., Waltham, MA, USA). Labeled sam-

ples were hybridized onto GeoChip at 67 °C in the pres-

ence of 10% formamide for 24 h. After hybridization, the

arrays were washed, dried, and scanned at 100% laser

power and photomultiplier tube on an MS200 Nimble-

gen microarray scanner (Roche Nimblegen, Madison,

WI, USA). Scanned images were processed and trans-

formed into signal intensities with Agilent’s Data Extrac-

tion software. Raw signal intensity files were uploaded

onto an online pipeline (www.ou.edu/ieg/tools/data-anal

ysis-pipeline) for further data quality filtering,

normalization and data analyses. We normalized the sig-

nal intensity of each spot by relative abundance among

all samples, removed spots with a signal-to-noise ratio

(SNR) < 2, a signal intensity < 1.3 of background, or out-

liers based on judgements of 2 standard deviations.

Molecular ecological network analysis

Phylogenetic molecular ecological networks (pMENs)

were constructed from both the 16S rRNA gene and ITS

sequences, using a random matrix theory (RMT)-based

network pipeline (http://ieg4.rccc.ou.edu/MENA/) [44].

To ensure reliability, only OTUs detected in all six repli-

cates were used for network construction. In brief, a

matrix containing Spearman’s rho correlation between

any pair of OTUs was generated. The threshold of similar-

ity coefficients (r values of the Spearman’s rho correlation)

for network construction was automatically determined

when the nearest-neighbor spacing distribution of eigen-

values transitioned from Gaussian orthogonal ensemble to

Poisson distributions [45]. Consequently, a threshold of

0.980 was used for bacterial networks of warming and

control samples, 0.915 was used for the fungal network of

control samples, and 0.920 was used for the fungal net-

work of warming samples. To identify environmental fac-

tors important for network topology, environmental

factors were also incorporated into networks, as RMT-

based networks were designed to allow the use of multiple

data types [45]. Random networks corresponding to all

pMENs were constructed using the Maslov-Sneppen pro-

cedure with the same network size and average number of

links to verify the system-specificity, sensitivity, and ro-

bustness of the empirical networks [46]. Network graphs

were visualized with Cytoscape 3.5.1 software.
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Statistical analyses

Various statistical analyses were conducted with the

package vegan (v2.3-2) [47] in R software version 3.2.2

[48]. Two-tailed Monte-Carlo permutation t tests and

permutation analysis of variance (PERMANOVA) were

used to examine the statistical significance of differences

between microbial taxa, functional gene abundance or

environmental factors (10000 permutations were gener-

ated for each test). Three complementary dissimilarity

tests (multi-response permutation procedure [49], ana-

lysis of similarity [50], and non-parametric multivariate

analysis of variance [51]) and detrended correspondence

analysis [52] (DCA) were used to examine community

differences. Canonical correspondence analysis (CCA)

was used to detect linkages between microbial commu-

nities and environmental factors, with a threshold vari-

ance inflation factor of less than 20 to select

independent environmental factors. To evaluate commu-

nity assembly mechanisms, stochastic ratios were calcu-

lated with a modified stochastic ratio method [53] on

the IEG Statistical Analysis Pipeline (www.ou.edu/ieg/

tools/data-analysis-pipeline) based on phylogenetic

(Beta-Mean Nearest Taxon Distance, βMNTD) metrics.

Linear models were constructed to detect correlations

among microbial communities and C fluxes with the

package stats (v3.5.2) in R [48], and tested for signifi-

cance by permutation tests with the package lmPerm

(v2.1.0) [54].
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gene probes in warming samples. Error bars represent standard errors. The
differences between warming and control samples were tested using
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canonical correspondence analysis (CCA) of (a) bacterial communities (red
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environmental variables. All CCA models are significant (p < 0.050).
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