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Discrete-event simulation modelling is a powerful systems analysis tool. However, in practice, several mistakes can
compromise a simulation study that might lead the decision maker to the wrong conclusion. Based on our review of the
literature on related topics, and our experience in applying simulation, we have compiled some ‘warnings’ for the user
community. These warnings are grouped into seven categories as follows: Data Collection, Model Building, Verification
and Validation, Analysis, Simulation Graphics, Managing the Simulation Process, and Human Factors, Knowledge,
and Abilities.
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1. Introduction

We are not the first to raise concerns about simulation

modelling. Recent examples include Salt (2008) who

discussed some habits that can lead to defective simulation

projects. Also, recently, Law (2008a) discussed critical

pitfalls in the simulation process. Additionally, Sadowski

(2007) presented ways that the simulation analyst can go

wrong when conducting a simulation. De Vin et al (2004)

has a brief mention of nine pitfalls. Schmeiser (2001)

presented errors that can occur with respect to probability

and statistical issues. We have collected all of the warnings

that we have raised in the past, provided some examples that

further explain these warnings, and rely on our experience

over the years to complete this presentation.

Our backgrounds are those of manufacturing and material

handling simulation and many of the warnings are given

with that focus in mind. However, much of what we discuss

relates to other applications. For example, we discuss

modelling of breakdowns. But, human servers can be

considered in a breakdown situation when they have a

scheduled rest or must leave their post in an unscheduled

manner due to an emergency. We also discuss other

application areas as appropriate, for example, military

simulation.

2. Warnings

The warnings are grouped into seven categories as

follows: Data Collection, Model Building, Verification and

Validation, Analysis, Simulation Graphics, Managing the

Simulation Process, and Human Factors, Knowledge, and

Abilities. We determined all of the warnings that we

considered important, then we sorted them. Seven categories

were needed, with some minor adjustments, to span all of

them.

3. Data collection

3.1. Anticipate having problems with input data

Sod’s law says that if it can go wrong, it will go wrong.

(If your toast falls on the floor, it will fall on the buttered

and jellied side). Sod’s law of data collection says that the

data available is never quite exactly the data you want

because it was originally collected for a purpose different

from your simulation study. There are many problems

that make for bad data. Consider the following, among

many others:

� Data is stale, too old, last year’s data instead of this year’s

data, for example.

� Sample size is too small, 20 observations rather than 100

observations, for example as discussed further in sub-

section 3.6.

� Data is in the wrong format, collected as discrete data

rather than continuous data, for example as discussed

further in subsection 3.7.

� Data is not representative, collected on the day shift for

Mondays for the previous month only, rather than

for both shifts and on all days, throughout the year, for

example.

� Data is in class intervals, rather than raw, as an example.

� There is collector bias in the data; outliers are omitted,

for example.

� There is survivor bias in the data, those that completed the

training programme only, for example.
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3.2. Choosing the wrong input distribution may hurt, but it
may not be that harmful

We conducted an experiment to determine whether it

matters or not to have the correct distribution and how

much it matters. Our simulation was of a single server queue.

We simulated three cases, II, III, and IV in Table 1, each

for 100 000min. The utilization or expected utilization, r,
is given by the arrival rate or expected arrival rate, l, divided
by the service rate or expected service rate, m. Thus,

r¼ (1/10)/(1/8)¼ 0.8 for every case in Table 1.

Case I in Table 1 required no simulation as it was

deterministic (using constant values). Assume that the input

data for interarrival times and service times are normally

distributed as indicated in Case II, but you used a triangular

distribution that has its minimum, most likely, and

maximum values as shown. The triangular distribution is

truncated, but the normal distribution has 0.00135 in each

tail to the left and to the right of the minimum and

maximum value of the triangular distribution. If the

performance measure is time in system, the difference

between Case II and Case III is small. If we use a uniform

distribution with spread of three on either side of the mean,

then the average time in system is somewhat higher than the

value using the normal distribution. Our summary is that

there is little difference when using a triangular distribution

with the same extremes to approximate a normal distribu-

tion in a single server queue when the utilization is 0.8.

A triangular distribution is often used to approximate a

unimodal distribution, certainly as a starting point in

simulation. But, as the utilization increases, the approxima-

tion gets worse. To illustrate this, we change the service times

shown in Column 3 of Table 1 to generate Table 2. Note the

larger differences in the last column due to increases in the

service times.

We take a lot of space to explain this warning. So, we

will stop our discussion here. The interested reader

can experiment further by answering questions like the

following:

� What happens if the distributions are mixed (normally

distributed arrival times and triangularly distributed

service times, for example)?

� Are the differences in the performance measures statisti-

cally significant at the 0.05 level?

� What happens as the utilization rate ranges (say, from

0.70 to 0.99)?

3.3. Choosing the wrong input distribution may hurt, but
it may be harmful

In the previous subsection, we gave instances where choosing

the wrong distribution may not be harmful. In this

subsection, we are more resolute in our warning. We give

some cases where the choice can have an impact on the

simulation. Here are some distributions that require your

consideration:

� Exponential: Services times rarely are exponential. They

are easy to use because they only have one parameter and

they have nice mathematical properties that lead to rather

simple steady-state equations to compute measures of

performance.

� Uniform: The uniform distribution does not happen in

practice. Its popularity is due to Geoffrey Gordon, who

included it as the only distribution in General Purpose

Simulation Systems (GPSS) in 1961 leading people to

believe that it regularly occurred.

� Normal: The notes for Averill Law’s presentation (2008b)

at the Winter Simulation Conference (WSC) included

the phrase, ‘The normal (distribution)ywill rarely be

(the) correct (choice)’. For the types of systems that we

usually model (manufacturing and material handling

Table 1 Does the correct distribution matter?

Case Interarrival time (min) Service time (min) Utilization Average time in system (min)

I Constant(10) Constant(8) 0.8 8.0
II Normal(10, 1) Normal(8, 1) 0.8 8.07
III Triangular(7, 10, 13) Triangular(5, 8, 11) 0.8 8.14
IV Uniform(10, 3) Uniform(8, 3) 0.8 8.50

Table 2 The effect of increasing utilization

Case Interarrival time (min) Service time (min) Utilization Avgerage time in system (min)

I Constant(10) Constant(9) 0.9 9.0
II Normal(10, 1) Normal(9, 1) 0.9 9.37
III Triangular(7, 10, 13) Triangular(6, 9, 12) 0.9 9.71
IV Uniform(10, 3) Uniform(9, 3) 0.9 10.71
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systems), this statement is entirely reasonable. (It is

possible to name instances where the normal distribution

is appropriate; dispersion of ballistic ordinance, naviga-

tional error, etc) Generally service times from manual

operations follow a lognormal distribution. Also, if we

assume that a distribution is normal, negative time can

be generated (unless the mean is greater than five standard

deviations). This is because the range of the normal

distribution is 7 infinity. (But, in a N(0, 1), the area less

than five standard deviations below the mean is the

complement of 0.999999426697, and that is really quite

small. Furthermore, we never see people whose height is

negative or ships that end up in the Arctic rather than the

Antarctic.). Also, Nassim Taleb (2007) has commented

loudly (negatively) on the use of the normal distribution

in practice.

� Triangular: We often use the triangular distribution in the

absence of data but the main problem with it is that it is

bounded. Frequently, we use a triangular distribution at

the commencement of a simulation to model process time.

But, as stated previously, manual process times frequently

follow a lognormal distribution. Consider Figure 1 that

shows the error if the distribution is lognormal but we

assume it to be triangular. If we compare the median of

the two distributions in Figure 1, the lognormal has a

median value of one while the triangular has a median

value of 1.18. With respect to the third quartile, the

lognormal has a value of 1.38 while the triangular has a

value of 1.72. So there are differences, especially on the

right side of the distributions.

3.4. Use up time, not time between breakdowns when
modelling

Consider a single server queueing system, which has an

average time to fail that is exponentially distributed with a

mean time of 60min and a repair time that is normally

distributed with a mean of 20min and a standard deviation

of 2min. How many failures can be expected in an 8-hour

shift? Many people will compute 480/60¼ 8 failures. But, the

correct answer is 480/(60þ 20)¼ 6 failures. Time between

breakdowns includes time to repair! Up times are followed

by down times which are followed by up times, and so forth.

The subject of modelling breakdowns correctly was

discussed extensively by Banks (1997). When a failure occurs,

the current entity is removed and when repair is completed,

processing is completed on that entity. There are many

options concerning what is to be done when a failure occurs.

For example, the unit in process could be scrapped. Or, the

unit could be removed and sent elsewhere for processing.

When a failure occurs, some will argue to ignore it when

modelling. Ignoring rare events might be acceptable, such as

a hurricane. There are some cases that we do not consider

breakdowns for another reason. For instance, consider a

manufacturing center. Say that the objective of simulation is

to evaluate the buffer of parts after this center. We want to

determine the average and peak size of this buffer. It is

assumed that the consumption profile of parts is known. In

order to evaluate the maximum peak area requirements, it is

convenient to assume that there are no breakdowns of

machines, or, in other words, assume that all the machines

are operating at their maximum productivity. That is

because if we consider breakdowns, the area requirements

will be lower (breakdowns cause productivity losses).

In most cases, however, we do model breakdowns. This is

because the impact of breakdowns can be significant.

Methods used for modelling breakdowns, some of which

are incorrect, are discussed in the next few paragraphs.

Some adjust the processing time by adding the breakdown

time into it. Some use a constant value for time to fail and

time to repair. Hopefully, most will model the breakdowns

correctly; using the appropriate distributions and remember-

ing that up times are followed by down times, which are

followed by up times as discussed above.

In, Banks (1997) a model of a single server was developed

with exponential times in minutes as follows:

� Processing B e(7.5)

� Interarrival times Be(10)

� Time to fail Be(1000)

� Time to repair Be(50)

Five replications each of 100 000min resulted in the

output shown in Table 3. The appropriate treatment of

Table 3 Treatment of breakdowns

Case Description Average time in
system (min)

I Ignore breakdowns 2.07
II Factor time into processing time 2.90
III Random processing, deterministic

breakdowns
3.11

IV All random 3.59

Figure 1 Comparison of triangular and lognormal.
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breakdowns, Case IV in Table 3, is important for correctly

computing measures of performance such as average time in

system.

In simulation we have planned breakdowns and un-

planned breakdowns. Planned breakdowns based on wall-

clock time are also called calendar-based maintenance. But,

basing the breakdown on busy time is another possibility.

For example, the number of (running) hours on an aircraft

engine might be used to determine when maintenance is to

occur. Another possibility is duty cycle—based maintenance.

On an aircraft, the tires might be replaced routinely after a

specified number of landings. Finally, breakdowns might be

measured on the basis of the number of items produced. For

example, after every 1000 items are produced on a centerless

grinder, the machine is thoroughly cleaned.

Unplanned breakdowns are random failures. This is also

known as condition-based maintenance. It has increased in

its use while maintenance based on planned breakdowns has

decreased in use. For example, some fleets of military fighter

aircraft follow condition-based breakdown. The reason for

this is that so few components requiring replacement are

discovered during planned breakdowns. For example, under

condition-based maintenance the tires are replaced when the

tread thickness reaches a certain depth or when an anomaly

appears rather than after a fixed number of landings.

It should be noted that simulation models might have

many sources of breakdown. That is to say, there might be

one or more planned sources of breakdown and one or more

unplanned sources of breakdown.

There are situations where multiple minor defects can

occur, yet the system is not defective. Say, on a passenger

airplane, a seat will not recline. This is reported. Eventually,

these kinds of defects reach a critical number and the

airplane becomes defective, that is, it is now in a breakdown

mode. Lastly, not every report of a defect is actually real. For

example, the air bag warning light may be lit in an automobile,

but upon inspection the monitoring switch is faulty.

3.5. All forecasts are wrong!

The future is not only unknown, it is unknowable. This leads

to three warnings concerning forecasts: First, all forecasts

are wrong. Second, extrapolation is dangerous. Third, it is

easier to forecast the aggregate than the specific.

Forecasts, say of demand, are often based on time. If time

is the underlying cause and demand is the effect, then that

is acceptable. But, in many cases, it is not. Consider the data

given in Table 4 for the annual patent issuances related to

Radio Frequency Identification (RFID). (We used http://

www.google.com/patents to obtain the data shown in

Table 4, accessed 9 December 2009) We assume that the

data is linear since the number seems to go up each year,

except for 2008. Our assumption is a simple linear model

given by

Y ¼ B0 þ B1x;whereB0 is the intercept andB1 is the slope

Using a spreadsheet (we used in this case Microsofts Excel,

but there are others spreadsheets that have this capability)

we obtain the following estimating equation:

Yest ¼ �21; 092:7 þ 10:66x

So, in year 2009, we expect to see Yest¼�21092.7þ
10.66(2009)¼ 323 patent issuances. But, we doubt it. Be

aware of extrapolation! First, is time really the underlying

variable? Second, is a simple linear regression model

representative of what is happening?

Third, is the interest in RFID continuing to increase?

To learn more about that topic, we look at Google Trends

(http://www.google.com/trends?q¼rfid) where you will

undoubtedly see that the number of searches of the Google

database for RFID has declined appreciably since its high

in 2004.

Thus, when forecasting, it is important to go beyond the

obvious to better understand what is happening. Remember

that all forecasts are wrong.

3.6. The amount of data that you have is important

If you have more than 200 data points, in most cases an

empirical distribution is appropriate because most distribu-

tions are rejected upon testing for goodness-of-fit. If a fit is

found, an underlying mathematical model that captures

the important characteristics of the historical data, do use

that instead of an empirical distribution. If you have fewer

than 50 data points, you do not have enough information to

formulate a distribution. Between 50 and 200 data points,

you can use distribution analysis software. This is discussed

extensively in Banks and Gibson (1998).

The co-authors estimated that in 85% of the simulation

projects in which they had been involved, they had used

trace-driven data or an empirical distribution. An example

of trace-driven data is the actual demands on a distribution

center on the busiest day of the year. The simulation might

be constructed to see how a newly designed system will react

to such demands.

Table 4 Number of RFID Patent Issuances

Year No. of patents

2003 235
2004 275
2005 260
2006 312
2007 337
2008 262
2009 323 estimated
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3.7. Collect your input data properly

If your input data is continuous (say, time between arrivals),

collect it as such, analyze it as such, use it as such. If your

input data is discrete collect it as such, analyze it as such, and

use it as such.

Assume that the input data is the interarrival time. Time is

continuous. Collect your data to the most accuracy that you

have available, and that is likely to be more precise than the

nearest minute. Using a digital watch as an example, let us

say that the first arrival occurred at 15:34:16 (that is the

greatest level of accuracy for the actual time of occurrence

using an inexpensive digital watch, although the stop watch

feature has more accuracy). Consider that the next arrival

occurred at 15:39:38. The interarrival time is 0:5:22. It’s not

rounded down to 5min; it’s not rounded up to 6min. Can

you name some other continuous measures? Here is a hint;

weight and height are continuous.

If you are counting something, say, number of customers

arriving in a 5min interval, that’s discrete data. If there are a

finite number of possibilities, it is discrete.

4. Model building

4.1. Keep the model simple, but not too simple. Make the
model complex, but not too complex

Reading this warning, you might think that the authors are

speaking out of both sides of their mouths. But, we assure

you that we mean what we say. The model should be

complex enough only to answer the questions asked.

Any additions to complexity are unwarranted, and, perhaps,

expensive. They may even be harmful as they provide

additional confounding factors.

One of the authors had an interesting experience: He

was called upon to finish a model. The model had already

taken three months, and the due date was in one month.

The model was unduly complex. It had thousands of

variables and lines of code. The client argued that the model

was providing ‘nonsense’ responses. After looking at the

model it was decided to build another model using a

different paradigm. The new model was much simpler and

was completed by the required time.

Another example is the following: One of the authors was

asked to verify and validate an extremely large war game

for an unnamed office of the US Department of Defense.

(We discuss verification and validation further in the next

three subsections, and specifically in the next section.

Verification is a response to the question, ‘Did we build

the model right?’ Validation is a response to the question,

‘Did we build the right model?’) A military officer

complained that there were too many components to the

model. That officer gave as an example the body bag

inventory component. This component maintained the

inventory count of the number of body bags available. As

you might imagine, this had little, if anything, to do with the

simulation of the advance in the forward edge of the battle

area, the FEBA, as it was called by the military agency.

There is also the issue of credibility or accreditation. In

Verification, Validation, and Accreditation of Army Models

and Simulations, dated 30 September 1999, Department of

the Army, Washington, DC, accreditation is the official

determination that a simulation is acceptable for a specific

purpose.

The document is available online from http://armypubs

.mil/epubs/pdf/p5_11.pdf, accessed on 12 May 2010.

Credibility should be firmly founded in the understand-

ing produced by successful use of the model over long

periods of time. Beware of a willingness to assign credibility

because the model is impressively complex and extremely

expensive.

4.2. Create a conceptual model prior to the
implementation of the computerized model

According to Robinson (2006), conceptual modelling is

not well explored in the simulation literature. Law (2007)

affirms that this is the most difficult and least explored phase

of the simulation process. In fact, there is no general

definition regarding the term ‘conceptual model’. We say

that the conceptual model is an abstraction of the real

system that is being studied. Further, the conceptual model

consists of:

1. Assumptions on system components.

2. Structural assumptions that define the interactions bet-

ween system components. These are expressed by means

of natural language and diagrams.

3. Input parameters and data assumptions.

After the conceptual model has been validated, the opera-

tional model, often a computerized representation, can be

started. Unfortunately many modelers ‘jump’ to the com-

puterized representation without constructing a conceptual

model. Although this is possible in practice, it is not advisable.

Some advantages of creating a conceptual model prior to the

next phase in modelling are:

� The conceptual model can be validated by the client in one

or more face-to-face meetings.

� According to Law (2008b), the process of validating the

conceptual model with the client (this process is called a

‘walk-through’ in software engineering) is of prime

importance.

� It is easier to correct the conceptual model than the

computerized model.

� The conceptual model documentation is important to any

post-audit process.

� With the appropriate conceptual model it is possible to

estimate time and effort of the implementation (research

on this topic is underway by the co-authors).
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Unfortunately, with the lack of a conceptual model, some

simulation analysts tend to adopt a method that in software

engineering is called ‘prototyping’. They build the first model

from scratch (not using a conceptual model as a framework)

and repeatedly correct the model until its completion. We

do not recommend this procedure since the model tends to

be ‘patched’ and more effort is usually required during this

kind of development.

Another important issue is that conceptual model

documentation is dynamic. The conceptual model evolves

as the simulation project develops.

4.3. Start simply, verify, validate, and grow the model,
verify, validate, and grow the model, etc

If you try to verify and validate an entire model after

constructing it, you are likely to fail miserably. For example,

upon constructing a textbook model with about 64 lines of

logic, some three errors were indicated to the author by

persons very familiar with the modelling language. Upon

making the necessary changes, another error was discovered

in the model for the material handling system. Expand this to

a real model with 2500 or so lines of logic, and you will get the

idea that it is advisable to start simply and grow the model.

When teaching a well-known modelling system to

professionals that are going to use it to solve real problems,

advice is given to first construct the logic without any ‘bells

and whistles’. Verify and validate. Next, add the first

material handling system (when using this modelling

language, there is usually one or more material handling

systems). Verify and validate. Add additional material

handling systems, if any, and verify and validate after

adding each. Next, add the special features such as failures

and shift schedules. Then, verify and validate. Lastly,

complete the remaining animation features. Then, verify

and validate the entire model.

Different modelling software may have different proce-

dures. But, the idea is the same. Start simply, verify and

validate, then grow the model until the entire model is

constructed.

4.4. Validate the conceptual model before proceeding with
model building

Ascertain that the scope and level of detail of the proposed

model are sufficient for the purpose at hand, and that all

assumptions are correct. Make sure that the conceptual

model contains all of the necessary details to meet the

objectives of the simulation study. More information on this

topic is available from Sargent (2008).

4.5. Maintain frequent interaction with the client

Keep the client involved. Have lots of small milestones,

not just one deadline. Continue to monitor the progress of

the project. If a mid-course correction is needed, take the

appropriate action to make the adjustment. Also, monitor

the budget to make sure that there are adequate resources to

complete the project.

5. Verification and validation

5.1. Do a lot of verification and validation, not a little

It’s easy to do too little, and hard to do too much

verification and validation (V/V). There are two possibilities.

The first one involves running a model to insure that it is

stable. The second is to run the model until it becomes

unstable. Consider the first case: Look everywhere to make

sure that the model is stable. For example, look at every

queue. If the model is non-terminating, let it run for much

longer than requested by the client. For example, if the

study period is 5 years, run the model for 10 years to make

sure that it is stable, and run it for multiple replications

of the study period. During that study period, no errors

or exceptions should be indicated. The simulation software

should indicate when such an exception occurs, for example

‘two automated guided vehicles crashed at xxxxx.xx

seconds’. Note that just because the model ran to completion

does not mean that it will never fail. With a different set

of random numbers, instability, or an exception, might

have occurred.

In the second case, we examine the model under varying

data inputs until it becomes unstable. That is, an explosive

situation is reached. The arrivals cannot be served without

some queue or queues growing without bound.

Prepare your plan for V/V in advance. Conduct the most

demanding tests first in the sense of those most likely to find

an error. For each test that you conduct, enter the results in

your V/V documentation. If possible, have more than one

tester so as to reduce bias. Testers should be sceptical people

by nature. They should approach V/V with the attitude that

‘there are problems with the model and I want to find them’.

A successful test is one that finds an error! So, if a test fails,

that means no error was found.

In an ideal world, testers should not be swayed by time

pressure. They should continue the mission until it is

completed. In the real world, expect time pressure; expect

to want to conduct additional tests.

5.2. It’s possible to invalidate a simulation model, but
impossible to validate a simulation model

Some declare a model valid. But, that is like declaring

a person innocent in a criminal court of law. It is not

done; either a person is guilty or not guilty. The highest

compliment that could be paid a simulation model is that it

cannot be invalidated.
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5.3. Check basic principles of queuing before the
simulation commences so that you can examine the
appropriate range of policy options

There are queueing systems where steady state is of interest

and other queueing systems where the transient state is of

interest. For many queueing systems of the first type, we can

use the utilization rate r¼ l/(cm) o1 to determine whether a

steady state is theoretically possible. Here, l is the arrival

rate, m is the service rate, and c is the number of servers.

Solving for c gives c4l/m. The well-knownM/M/c queueing

system follows this analysis where M is the arrival process

(M for Markovian), and the second M is the service process

(again, Markovian). The G/G/c queueing system follows the

process as well (G for generalized), as do many others.

So if an average of 20 arrivals per hour join the queue in

one of those systems mentioned in the above paragraph

and the resource can process an average of 3.6 per hour, the

number of resources must be 20/3.6 or higher. That is to say,

a minimum of six resources is needed to avoid an explosive

condition.

One of the strengths of simulation modelling is in the

analysis of systems that begin empty and idle in which we

wish to understand the transient conditions. Such an

examination is difficult using queueing theory.

6. Analysis

6.1. Do not simulate outputs when you should not.
Simulate outputs when you should

Certainly, this sounds like double-speak. First, the warning

is not to do something. Then, the warning is reversed to say

that something should be done. Consider the following: The

client says, ‘Every afternoon, at about 3:00 PM, a bottleneck

occurs before Operation 70 with about 30 loads waiting to

be processed. There is no room to store all of that work in

process (WIP). Make sure that you use that information

when you build your simulation model’. ‘But’, we tell the

client, ‘That is an output of the simulation, not an input’.

Based on an analysis of that output, we may be able to

understand why it is happening so that changes can be made

to the system to overcome the problem.

We use time to fail as an input. We try to determine

some statistical distribution to represent it, or we use an

empirical distribution. But, time to fail is the result of many

interactions in the mechanical, electrical, hydraulic, and

control systems. If we are really omniscient and have lots

and lots of time, we can construct a model of the internal

components of the system and determine when the next

failure will occur. But, this is really expensive compared

to the expected gains. So, we use a distribution of the

time to fail and generate values at random from that

distribution.

6.2. Avoid point estimates

Most simulations have random inputs so that they are

statistical experiments. If a single value is given, it is very

likely that the result will not be the observed value when the

real system is constructed. Consider that a single replication

is conducted and the mean value is reported. Consider

further that the report is that the processing time is 4.07 h

based on that replication. But, when the system is

constructed, the processing time averages 4.30h. You could

say, ‘Close enough’, and try to get away with it.

On the other hand, consider that five replications are

made and the results are 4.07, 4.13, 4.34, 4.28, and 4.41h.

The mean value is 4.246h. Say that the level of significance is

a¼ 0.05. The standard deviation of the estimate is 0.14258h.

The half-width of the interval is 0.125h. So, we could report

the confidence interval as (4.121, 4.371). That is to say, in

approximately 95 out of 100 cases, the true mean of the

population will be between 4.121 and 4.371h.

Observe that the first replication generated the mean of

4.07h, the lowest of the five replications. Note also that the

highest replication with a mean value of 4.41 h is also a

possibility. If you reported a point estimate using the first

value generated or the last value generated, you might

mislead your client. Output data analysis is a major topic in

discrete-event simulation. If you want to see more on the

topic take a look at Banks et al (2010) or Law (2007).

Bottom line: Avoid point estimates. If you ever have to

report one, it is likely to be wrong.

6.3. Know when to warm up a system (non-terminating)
and when not to warm up a system (terminating)

A non-terminating system continues forever or over a long

period of time. For example, the Internet is always

functioning. While one of the authors is sleeping the night

away in the Eastern Standard Time zone, people in China

are uploading pictures to their Facebook account, down-

loading music from iTunes, and sending Twitter messages.

A continuous production system rarely stops. For example,

a system producing fiber glass insulation cannot easily

shut down for the night and start again the next morning.

The melted glass in the oven will harden into a serious mess

if it shuts down. In simulating a system like this, you want to

look at the steady-state operation of the system. You will

want to examine the output beginning with the time that the

system reached steady state, that is, the completion of the

warm up period. Note: To avoid numerous warm ups, the

method of non-overlapping batch means could be used in

which the output of a steady-state system is broken up into

many segments (batches).

A terminating system is like a bank. It opens at 9:00 AM

and closes at 4:00 PM, five days per week. It starts empty

and idle. The transition time from empty and idle until the
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bank is in steady state may be of interest. Or, it can be

included in the output. Or, it can be excluded from the output.

Banks et al (2010) and Law (2007) explain the output

analysis for these two types of systems including the analysis

using the method of batch means.

6.4. Steady state to me may not be steady state to you
because it is usually determined visually

Numerous methods for detecting warm up are given by

Robinson (2002). Although some of them are quantitative

(Schruben, 1982, for example), they have not gained much

traction, and a visual method (Welch, 1983) is still the

accepted procedure. But, what one simulation analyst observes

and what a second simulation analyst observes is not always

the same. First, look at the situation shown in Figure 2. Most

people will agree that 4h is enough to reach steady state. The

simulation analyst could stretch that perhaps to 8h.

But, sometimes, it is really hard to tell when steady state is

reached, or just what to do next. This is observed in

Figure 3. Here, the possibilities are to change the averaging

window, include more replications, increase the replication

length, or look at other output variables. In Figure 3, it is

not straightforward like in Figure 2. (In Figures 2 and 3, a

replication is called a snap.)

It is quite possible to continue showing these graphics

and it is possible to conclude a warm-up time, but you

may well not agree with what we say. The reader is

referred to Chapter 15 of a downloadable manual (Banks,

2004) in which the subject of warm-up time is explored in

depth.

A practical rule used if you cannot determine exactly the

beginning of the steady-state, since computational power

nowadays is not a constraint, is that you double what you

have determined (ie if you determined that the warm-up

period is 4 h then set it at 8 h). Then the probability that the

system is in steady state is higher.

6.5. Have an appropriate performance measure. It’s not
always appropriate to find the system that has the lowest
average number of loads (or, lowest average time that
loads spend in the system), but the one that minimizes cost
or maximizes profit

In Banks and Chwif (2010), the authors discuss systems that

may or may not have better results as additional resources

are added. This is the case as the total cost or the total profit

must be considered.

For instance, consider an automated guided vehicle

system (AGVS). Initially, the average time in the system

and the average amount of WIP in the system decrease as

more AGVs are added. Eventually, the average WIP begins

to rise as the AGVs start to clog up the system. If we look

only at these measures we will consider buying the highest

number of AGVs that minimize the average WIP. However,

the tradeoff that comes from the decrease in WIP versus the

Figure 2 Easy to make a determination of warm-up time.
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added cost of another AGV is not always achieved. Thus,

the addition of one AGV might save $X/year (in terms of

reducing the investment in WIP), while costing $2X/year in

(added AGV) capital and operating costs. The point of the

referenced article is that increasing resources can sometimes

have the opposite of the intended impact.

Figure 3 Warm-up time not as straightforward.

Figure 4 Screenshot of two different models.
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6.6. If you have a ‘push’ system, production is not an
appropriate output measure

Consider systems of two categories; ‘pull systems’ and ‘push

systems’. A push system has external arrivals at some arrival

rate (ie entities are pushed into the system), while a pull

system demands entities to feed it (ie entities are pulled into

the system). So long as a push system is not explosive (as

discussed previously in this article, r¼ l/(cm)o 1), what

enters must leave. Thus, productivity (entities per hour

leaving the system, for example) will reflect the input. Higher

inputs reflect higher outputs. Therefore, in order to find the

maximum capacity of a system we can transform a push

system into a pull system by initializing the model with an

infinite queue of entities. Then the productivity result will

reflect the maximum capacity of the system.

6.7. Avoid a type III error

There are the well-known Type I and Type II errors in

statistical analysis including simulation. A Type I error, with

probability a, occurs when we reject a true hypothesis.

A Type II error, with probability b, occurs when we accept

a false hypothesis. We denote a Type III error, with

probability g, which occurs when we develop an elegant

solution to the wrong problem, even using good data. To

minimize the chance of this error, you should maintain close

contact with the user as discussed elsewhere in this article.

Have much more than an initial kickoff meeting and then a

final presentation as your only two interactions with the

client.

7. Simulation graphics

7.1. Do not get over impressed by fancy graphics

We say that a picture is worth 1000 words. But, a good

analysis is worth 1000 pictures. It’s not necessary to imitate

the highly acclaimed results of Pixar Animation Studios

(http://www.pixar.com/) when preparing the graphics for a

simulation. There are three reasons for graphics in simula-

tion. First, graphics can aid in the validation of a model. For

example, while watching the graphic animation of an AGVS,

it was observed that the rear vehicle seemed to pass through

the one in front of it. Obviously, that cannot occur. The

model was revised to correct this error.

Second, graphics can aid in the understanding and

acceptance of a simulation model by managers. Consider

that we want to reorganize the order pickers in a distribution

warehouse using bucket brigades, a technique developed by

Bartholdi and Eisenstein (http://www.bucketbrigades.com/).

It is much easier to see the technique in operation on the

website than to follow the explanation from a written

description.

Third, graphics can aid in sales. Animated graphics seem

to have a mesmerizing effect on the simulation novice. It is

therefore important that graphics are honestly delivered.

Nothing should be shown in the animation that is not

simulated by the model. A case in point is the phenomenon

of ‘special effects’ in high-fidelity combat models. These

typically include smoke, dust, and muzzle flashes. But, are

smoke, dust, and muzzle flashes part of the simulation?

Are they having an impact on target acquisition, or,

vice-versa? When simulation is used for training, this

subterfuge, when it occurs, is acceptable. But, when

simulation is used for decision-support, it is not acceptable.

7.2. Organize the model on the screen so that viewers have
a general view of the process

Here is some advice on organizing the model on the screen:

� Place processes in the order of their performance.

� Use colours and cross-hatching to separate different

functions. (Using colour alone is not acceptable as up to

7% of males cannot distinguish red from green or they see

red and green differently than other people in the United

States, for example. This is reported in http://www

.hhmi.org/senses/b130.html, accessed 25 May 2010.)

� Make connections as short as possible.

� Connect processes with as few crossing lines as possible.

� Use standard symbols whenever possible.

Figure 4a shows a model that does not follow these

principles. But, Figure 4b does follow them. Which of these

do you prefer?

In addition, use the above graphics principles to

distinguish different entities flowing through the model and

the indication of significant events, for example, status of a

resource (busy, idle, down, etc). For more information on

the topic of visualization see Tufte (2001) or Cleveland

(1993).

8. Managing the simulation process

8.1. The simulation process is a project and thus all
principles from project management should be followed

The simulation process is a project in the sense that it has a

beginning and an end. This ‘project’ is sliced into pieces that

we call simulation steps. Banks et al (2010) show 12 steps in

the complete process (1. Problem formulation, 2. Setting of

objectives and overall project plan, and so on). Other

authors show slightly different steps (Shannon, 1975;

Gordon, 1978; Law, 2007).

However the steps are configured, the simulation process

should follow the practices of project management. A

recommended reference for the practice of project management
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is PMBOKs (PMBOK, 2008). It defines nine knowledge

areas, three of which are discussed within the next several

warnings; project scope management, human resource

management, and project time management.

Also, project management can be supported by software

tools. Examples of project management software tools are

Microsoft Project and Oracles Primavera. But remember

that simply having a good project management software tool

does not mean that you will correctly manage the project.

8.2. One of the first definitions in a simulation study is
its objective

Recall Lewis Carroll’s Alice in Wonderland: Through the

looking glass when Alice is lost in the forest and she stumbles

across the Cheshire Cat. Alice says to the Cheshire Cat, ‘I’m

lost. Which way should I go?’ And the Cheshire Cat says

‘Where do you want to go?’ Alice replies ‘Well, it doesn’t

really matter, as long as I get somewhere’. The Cheshire Cat

says, ‘Well it doesn’t matter which way you go!’

Without knowing what is to be accomplished, we are as

hopeless as Alice. We need to know the goal of the

simulation study, or we will be wandering aimlessly.

8.3. Do not promise the sun and deliver only the moon.
Simulation is not a panacea that will solve every problem

There are many ways to explain this. First, this warning can

be looked at as two separate warnings.

Consider the first part. In their willingness to make the

customer happy, or because of fear of the word ‘no’, there

are simulation analysts that promise too much. They

promise accomplishments that are beyond the limits of

simulation. For example, they promise a guaranteed optimal

solution, when only a good solution can be achieved. Or,

they promise exact results when we know that most

simulations are based on randomness, that is, random

interarrival times, random service time, and random failures,

to name a few. The promises made by operations research

analysts were discussed in a recent article by Banks and

Musselman (2009).

Now, for the second part, there are those that see every

problem as a nail and simulation as a hammer. Obviously,

every problem is not a nail and there are lots of tools

available. ‘When all else fails, use simulation’ was an old

statement that seems to have disappeared about 1990 (Balci,

1998). Simulation is recognized as an integral tool of

operations research/systems analysis, but it is one of many

tools. And, it may be used in concert with other tools.

8.4. Do not accept any assignments unless the resources
are there to make it happen

In an article by Banks and Gibson (1997), readers are

warned against accepting fewer resources, that is to say,

money, than will be required to conduct the entire steps in

the simulation process. As mentioned above, Banks et al

(2010) show 12 steps in the complete process. The steps that

usually suffer the most when there are not enough resources

are verification and validation. After that, the analysis step

will suffer. This is risky business.

8.5. Do not cut phases of the simulation modelling process
in order to reduce the time and cost of a simulation study

Another resource is time. Let us say that you have computed

carefully the time needed to complete all of the required

steps of a simulation study as 10 weeks. The firm says

that the window of opportunity, during which the results

of the simulation study could be useful is five weeks from

now. Should you take the job? Again, this is risky business.

We advise against it.

8.6. Determine how close to reality you need to represent.
Acquire the right level of power in your software

The closer your model comes to reality, the more expensive it

is to build a simulation. Absolute reality is not affordable

because it is reality itself. We need to construct models that

are close enough to answer the questions asked. It is not

necessary to get any closer to reality.

But, if you need a certain level of reality, acquire the

software that will achieve it. For example, if you need to

represent very accurately the merge and diverge operations

of a high-speed conveyor, obtain software that will do that.

Of course, if you have already software that can easily

model detailed material handling systems (like conveyors,

AS/RS, and so forth), it is possible to model simple queuing

systems with that software as well.

On the other hand, if you are going to represent some

processes that do not involve material handling, and, you

need software, there are many from which to choose. The

cost and the learning curve for that software are usually less

than the software mentioned in the above paragraph. In fact,

there is also free software that will accomplish the desired

results (eg SimPy, written in Python).

8.7. The manager of the simulation project should
understand the simulation process in order to adequately
manage it

Unfortunately, in practice we have seen managers that are a

contradiction to the above statement, and they cause a lot of

problems for themselves and the success of the simulation

study. We aren’t saying that the manager needs to be an

outstanding simulation modeller to manage a team of

simulation modellers. But, it is quite useful if these managers

understand the 12-step simulation process (as mentioned

previously) or, whatever variation is endorsed by their firm,

the inputs to each step, the outputs from each step, plus the
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type and amount of resources needed for the accomplishment

of each step. In addition, key stakeholders in a simulation

project should also have awareness of the simulation process.

If you are a new manager of simulation, and you are not a

simulation practitioner, we advise that you look at an

introductory simulation book written at a managerial level.

An example book is by Harrell and Tumay (1995).

We recommend also your perusing the Proceedings of a

recent WSC. These are available at http://www.informs-sim

.org/wscpapers.html. Look at the applications in your area

of interest. Also, look carefully at the introductory tutorials.

These tutorials are given by well-known persons in the field

of simulation. At a recent WSC, there were tutorials that

began with an introduction to the topic, followed by

optimization in simulation, model building, validation, input

modelling, output analysis, and others.

If you can attend a WSC, you will profit handsomely.

You can listen to experts in the field giving these tutorials

in person. You can learn more about WSC at http://www

.wintersim.org/.

9. Human factors, knowledge, and abilities

9.1. Relearn your basic statistics so that you can explain a
Type I error, Type II error, confidence interval, and so on

This terminology may have been quite well known by you at

some time in the past. But, unless it is used frequently, it can

become quite hazy. Even a reminder such as ‘the Type II

error is the probability of accepting a false hypothesis’ can

have little impression on your manager. The next thing that

the manager may ask is for a picture of the situation and

some examples. Unless you have a photographic mind, the

drawing of that picture will be difficult. So, many people just

eliminate the using basic statistics. They make one long

simulation and report the mean value.

But, even reporting the mean can be inappropriate. For

example, when reporting income data, the median can be

much more meaningful. The median has 1
2 the cases above it

and 1
2 the cases below it. If there is a community of 100

people in which 99 people have an income of $20 000 per

year, and one person has an income of $10 000 000 per year,

the average income is close to $30 000, but that is $10 000

more than 99 out of 100 people earn. The median is $20 000,

which is much more representative of what is happening.

9.2. We communicate through spreadsheets. Do become
very good at using them

We collect data using spreadsheets. We transmit data that

way. We use spreadsheets as an interface to our simulation

models. And, we use spreadsheets for output analysis. We

can even conduct some simple simulations for learning

purposes using spreadsheets. That is because many spread-

sheets have a function that generates a uniformly distributed

number on the interval (0, 1). Alternatively we can use an

add-in or even programme a random number generator

function into our spreadsheet.

We want to expand on one of the uses above. That is the

use of spreadsheets as an interface to our simulation models.

This is especially the case when we have prepared a model

that will be used by others, say, a client. Very likely, we do

not want the client to get involved with the actual model.

The client might change some structural component, and

then when the model fails to work or gives the wrong results,

the client blames us simulation analysts. We allow the client

to enter data through a spreadsheet template. The template

cannot be changed (by the client).

9.3. The most critical component for a simulation project
is not software. Neither is it hardware. It is ‘human ware’.
Beware of the SINSFIT principle: Simulation is no
substitute for intelligent thinking

One of the most disturbing statistics about general aviation

accidents is that more than 75% of them are made because

of pilot error (Plane & Pilot, accessed 1 December 2009,

http://www.planeandpilotmag.com/proficiency/pilot-skills/

top-10-pilot-errors.html?tmpl¼component&print¼1&page¼).
The same probably holds true for simulation except that no

governmental agency is trying to determine the cause of

failures. Here is a true example, two sides of the same story,

both occurring very recently. The first was during a morning

walk one of the authors was having with a good friend, a

former student, who sells simulation software. He stated that

on a recent sales visit to a firm he was told that the firm

purchased software X (unmentioned here) but the firm never

built one model successfully. That is why the firm was taking

a look at the software that he represents. Later, that same

day, your co-author attended a MS Thesis defense for which

he was an examiner. The student used software X to conduct

one of the best simulations by a graduate student that your

co-author has ever seen. The point is that intelligent thinking

probably has a lot more to do with success than the software

selected.

At the WSC, there are numerous exhibitors (maybe, as

many as 10), among many other exhibitors, that are selling

simulation software. For most problems, any of these

software packages will suffice. The only differences are in

specialization, amount of programming required, graphics,

and world view. Say, 80% of all problems solved using

simulation could be solved by any of these software packages.

Virtually any computer costing US$400 or more with a

Pentium, or equivalent, CPU can successfully run a

simulation. The only reason that we mention Pentium is

that virtually all software is tested with this CPU. So, if you

run the model on any popular brand of computer, you will

get the same result.

As stated at the opening of this Warning, it’s not the

software and it’s not the hardware. It’s the human ware!
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9.4. Becoming a good modeler takes time and experience

It was stated in a 1998 article (Rohrer and Banks) that it

takes six months to one year to train a simulation analyst to

the point where that person can be responsible for modelling

a system. A follow-up to this article was a panel session

conducted at the WSC (Banks, 2001). The panel session was

based on the responses of simulationists representing various

segments of practice including academia, government,

industry, military, and research. If you read both articles,

you will see quite a difference between what background is

needed for industry and what is needed for the other four

areas. Let us say that the time and experience to which we

are referring in this article is for success as a modeler solving

real problems in industry.

10. Final remarks

This article has no conclusion. That is because it is a

‘potpourri’ of good practices from various perspectives. We

are not trying to present a census of every pitfall in the

simulation process. We have selected some important issues

from our perspective. We can only suggest that you consider

them in your next simulation project.
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