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Fig. 1. We introduce a CT reconstruction method for objects that undergo rapid deformation during the scan. Shown here is a copper foam crumpling under a

compressive force during the scan. The whole complex animation is reconstructed using only 192 projection images that all correspond to different deformation

states of the foam.

Computed tomography has emerged as the method of choice for scanning

complex shapes as well as interior structures of stationary objects. Recent

progress has also allowed the use of CT for analyzing deforming objects and

dynamic phenomena, although the deformations have been constrained to

be either slow or periodic motions.

In this work we improve the tomographic reconstruction of time-varying

geometries undergoing faster, non-periodic deformations. Our method uses

a warp-and-project approach that allows us to introduce an essentially

continuous time axis where consistency of the reconstructed shape with the

projection images is enforced for the specific time and deformation state at

which the image was captured. The method uses an efficient, time-adaptive

solver that yields both the moving geometry as well as the deformation field.

We validate our method with extensive experiments using both synthetic

and real data from a range of different application scenarios.
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1 INTRODUCTION

X-ray computed tomography (CT) is widely used in computer graph-

ics and computer vision and even more frequently in medicine, bi-

ology and material science as a non-destructive imaging technique,

able to reveal inner structures of the studied object. Until recently,

X-ray CT was only used to scan static objects from different viewing

angles. The need for a dynamic tomography reconstruction arises

in applications where the scanned object undergoes deformation,

or if the target of study is the motion itself. Even in the static case,

tomography is often an ill-posed problem that requires hundreds of

projections to reconstruct high-quality volumes. When the scanned

object undergoes deformation, the number of projections for each

deformation state is often insufficient for reconstructing each state

with a traditional reconstruction methods. This makes the dynamic

tomography reconstruction a highly challenging task.

Recently, Zang et al. [2018b] proposed a non-parametric Space-

Time tomographic method (ST-tomography) to scan and analyze

deforming objects and dynamic phenomena. While this method

resulted in marked improvement of the state of the art, it does suf-

fer from several shortcomings that we address in this work: First,

ST-tomography was conceived for the case of relatively slow and

smooth motion fields, where the deformation is negligible for short

sequences of ≈ 10− 60 successive frames. Second, the method relies

on an explicit tradeoff between spatial and temporal reconstruc-

tion quality. Finally, the temporal sampling is uniform, resulting

in wasted computational effort for slow moving periods, as well as

poor reconstruction quality for fast moving periods.

In this work, we propose a new warp-and-project approach for

dynamic tomographic reconstruction. This new method, inspired

by ST-tomography, relaxes the assumption of slow deformations in

order to reconstruct objects with larger motion even between suc-

cessive projections, where the ST-Tomography fails. Our proposed
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method not only estimates the volume densities over time, but also

the motion field. To this end, we move from a coarsely discretized

time axis in ST-tomography to an essentially continuous time axis,

where each projection image has its own time stamp, and warping

is used to align the keyframes with the individual projections. We

would like to highlight that the complexity of a deformation has

no impact in our comparison to ST-tomography, only the speed

of the motion matters. We also decouple the frame rate of the re-

constructed volume sequence from the acquisition times for the

captured projections. Finally, the temporal sampling is also adaptive,

since additional volumes are reconstructed during periods of rapid

motion. These improvements translate into significant improve-

ments in the reconstruction results, as demonstrated by quantitative

comparisons on simulated data, as well as qualitative comparisons

on real data from a number of different application domains.

In summary, the main contributions of this work include:

• a new image formationmodel for dynamic tomography recon-

struction, that takes into account the deformation occurring

between successive captured projections.

• a temporal decoupling between the reconstructed key frames

and the captured projections.

• a non-uniform temporal up-sampling, which will improve

the quality of each reconstruction.

• a matrix-free solver for the proposed optimization algorithm.

• a strong evaluation of our approach both on simulated data,

controlled experimental data (where a ground truth can be

estimated) and several real data sets highlighting different

application scenarios.

2 RELATED WORK

Dynamic 3D surface reconstruction. from color and depth sensors

has been an active research topic in computer graphics. The state-of-

the-art techniques allow real-time 4D reconstruction of non-rigidly

deforming scenes using one [Innmann et al. 2016; Wang et al. 2018]

or more [Dou et al. 2016] or RGB-D cameras. These approaches

combine surface reconstruction over time with a parameterized

nonrigid motion tracking in an optimization framework. Priors on

motion are also integrated. In [Li et al. 2013; Zheng et al. 2017] a

3D scanner is used to capture 4D point cloud data, which is used

respectively to reconstruct the plant growth and the flower blooming

process. Furthermore, some approaches were developed for the

capture of time-varying fluid surfaces, where specific priors to the

fluid field are usually incorporated [Wang et al. 2009]. However,

these surface-based methods cannot reconstruct internal structures

of objects or occluded geometry.

Computed tomography. is a family of computational imaging tech-

niques that reconstruct a density volume from a set of 2D images

representing the projections of this volume along a set of directions.

The classical reconstruction approaches are based on the use of the

Radon transform and its inverse (e.g. the filtered back-projection

algorithm [Feldkamp et al. 1984]). On the other hand, the Algebraic

Reconstruction Technique (ART) [Gordon et al. 1970] and its nu-

merous variants like the Simultaneous Algebraic Reconstruction

Technique (SART) [Andersen and Kak 1984] use the Kaczmarz pro-

jection scheme, in order to iteratively update the reconstructed

volume in a matrix-free fashion.

During the last two decades, CT found many applications in com-

puter graphics and vision. Reche-Martinez et al. [2004] proposed

a volumetric method to capture and render trees from multi-views

photographs. Trifonov et al. [2006] developed a tomographic re-

construction method for transparent objects immersed inside a

fluid having the same refractive index. Furthermore, visible-light

tomography reconstruction has been widely used in fluid imaging,

for several purposes like: estimating the 3D velocity field using

the Tomo-PIV (Tomographic Particle Imaging Velocimetry) tech-

nique [Elsinga et al. 2006], reconstructing 3D flames [Hasinoff and

Kutulakos 2007; Ihrke and Magnor 2004], imaging gas flows by re-

constructing the refractive index variation of that gas due to the

inner temperature changes [Atcheson et al. 2008], and capturing

turbulent fluid mixtures [Gregson et al. 2014, 2012].

The main interest of using X-ray CT in computer graphics is to

capture the internal structures of opaque objects [Anirudh et al.

2018; Zhao et al. 2011], as well as to retrieve complicated surfaces

with occlusions like flowers [Ijiri et al. 2014; Stuppy et al. 2003; Zang

et al. 2018a].

Dynamic tomographic reconstruction. is a challenging task, which

becomes unavoidable in situations where the scan target deforms

or degrades during the scanning process in a way that cannot be

controlled or eliminated. Dynamic reconstruction also opens the

door to the use of X-ray CT imaging for studies of dynamic phenom-

ena, where the motion itself is the primary interest. Thus, several

strategies have been proposed deal with dynamic objects.

In the medical field, the motion of the scanned organs is often

periodic, e.g. for the heart or the lungs. Several methods have been

based on this observation to provide a dynamic reconstruction of

the heart or the lungs [Chen et al. 2012; Sonke et al. 2005]. Such

methods reconstruct each phase of the motion cycle independently,

by using only projections belonging to the same phase. This re-

quires a large number of projections to cover all the phases of the

cycle, which results in a higher radiation dose for the patient. In

addition, the obtained reconstruction presents clinically prohibitive

artifacts [Schmidt et al. 2014]. To overcome these issues, 4D itera-

tive reconstructions have been proposed [Mory et al. 2014; Schmidt

et al. 2014]. These methods employed either a spatial and temporal

total variation regularization or an optical flow based registration

between successive phases. However, the quality of the obtained

reconstructions is still impacted by the low number of projections

for each phase. Furthermore, a considerable effort has been made

in this field to estimate the motion of the scanned object during

the acquisition process [Li et al. 2007; Taubmann et al. 2015; Zeng

et al. 2007]. Then the retrieved deformation field is employed to

correct the reconstructed volumes. Often, this approach requires the

knowledge of the initial state of the reconstructed volume, which

will be used as a reference to estimate the motion.

On the hardware side, very fast CT scanning with hundreds of

projections per second is enabled by bright X-ray sources such as

synchrotrons [De Schryver et al. 2018]. This paves the way for
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mechanical engineering and material science to obtain a better un-

derstanding of some dynamic processes. Indeed, CT and micro-CT

devices are commonly used in these fields to study dynamic experi-

ments like the compression of a composite materials [De Schryver

et al. 2018; Weißenborn et al. 2016], fatigue cracks [Lachambre et al.

2015; Morgeneyer et al. 2013] or fluid flow in porous media [Shah

et al. 2016, 2013; Shastry et al. 2018]. However, even with this fast

hardware (which is far from commonly available), the acquisition

time is still three orders of magnitude too slow for true video rate

volume reconstruction using traditional algorithms, and so better

space-time reconstruction algorithms are still highly desirable.

As a result, many studies use as stop-motion style acquisition of

static states representing a supposedly continuous deformation [Hild

et al. 2014; Lachambre et al. 2015; Morgeneyer et al. 2013]. The mo-

tion field can then be found by digital volume correlation (DVC, es-

sentially 3D optical flow). Some variants of the DVC algorithm have

been proposed to deal with continuous deformations, that occur

during the scans. One improvement is made by projecting the vol-

umes onto a set of basis functions (e.g. finite element basis) [Neggers

et al. 2015]. Then the DVC is applied only on these basis functions,

in order to speed up the estimation of the motion and reduce the

degrees of freedom. Another variant is to use a projection-based

DVC (P-DVC) to estimate the deformation of a known reference

shape (template) from only few projections [Leclerc et al. 2015;

Taillandier-Thomas et al. 2016]. Finally, Jailin et al. [2018] proposed

a combination between a variant of the ART reconstruction and the

basis functions P-DVC approach to reconstruct a deforming volume

and retrieve its motion, in a multi-scale scheme. The main limitation

of these approaches is their specificity to certain types of deforming

objects, where it is easy to define the basis function and track the

motion through them. For some phenomena such as rising dough,

which undergoes significant topological change, these methods will

fail to reconstruct the volumes.

Our work is most similar to the recent approach proposed by Zang

et al. [2018b], which jointly reconstructs the 4D density volumes

and the deformation fields between successive time frames. This

method yields interesting results for many time-varying phenomena.

However, as mentioned in the introduction, it still suffers from a

number of shortcomings, most notably the inability to handle faster

motions. Our work aims to address these shortcomings.

3 CONTINUOUS TOMOGRAPHY RECONSTRUCTION

3.1 Image Formation Model

In dynamic x-ray tomography the aim is to reconstruct a 4D volume

h that represents the scanned deforming object, from Np acquired

projections. While previous work [Zang et al. 2018b] assumed that

the object motion between a small number of successive frames is

negligible, we target situations where the motion can be significant

even between two images taken in immediate succession.

Assume that the CT scan consists of Np projection images p =

{p1, . . . , pj , . . . , pNp
} taken at times {t1, . . . , tj , . . . , tNp

}. For the
description in the following we loosely assume that the projection

images are taken at regular intervals, i.e. tj = j · ∆t , although the

framework also works for irregular temporal sampling patterns.

Due to the continuous motion of the scan target, the volume is

𝑡𝑖−4 𝑡𝑖−3 𝑡𝑖−2 𝑡𝑖−1 𝑡𝑖 𝑡𝑖+1 𝑡𝑖+2 𝑡𝑖+3 𝑡𝑖+4time
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Fig. 2. Diagram of our method. S0: the key frames and the motion field

between the key frames are initialized to 0. S1: volume reconstruction. The

current volume estimate for a key frame is warped to the capture time of

each X-ray image, and a residual image is computed by comparing the X-ray

image with the projection of this warped volume. The residual is then back-

projected into 3D, and warped back to the time of the key frame to update

the volume estimate. S2: flow (velocity) reconstruction between subsequent

key frames. S3: temporal up-sampling. New key frames are inserted where

the motion is fast.

different at each capture time tj , and is denoted as h = {hj }. The
relationship between the captured projections and the time varying

volumes is then described as

©­­­­­­­­«

A1
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ANp
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.
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ª®®®®®®®®¬︸    ︷︷    ︸
p

, (1)

where Aj ∈ RM×Nv is the projection matrix for a single projection,

mapping the volume hj with Nv voxels to a projection image pj
withM pixels. Also see Figure 2.

We note that Equation 1 is a heavily ill-posed problem that cannot

be solved without additional priors such as motion models, since

a single 2D projection image pj is insufficient for reconstructing
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a whole 3D volume hj . At the same time, it is often not necessary

to reconstruct all Np volumes to get a good representation of the

shape and its deformation, since the changes can still be gradual

and smooth. We therefore subsample the volumes h into a set of

Nk key frames f = {f1, . . . , fk , . . . , fNk
} corresponding to times Tk .

The output of our reconstruction method is this set of key frames,

together with a set of motion fields u = {u1, . . . , uNk−1}, where
uk describes the deformation between fk and fk+1. We choose Nk

adaptively, starting with a small number and increasing it until the

deformation between key frames is small enough.

Given estimated key frames fk and motion fields uk , we can

approximate the volume at a time tj withTk ≤ tj < Tk+1 bywarping

(advecting) the key frame fk forward in time:

hj ≈ h̃j = warp(fk ,
tj −Tk

Tk+1 −Tk
uk ). (2)

The warping operator warp(fk ,
tj−Tk

Tk+1−Tk uk ) corresponds to the ad-

vection of the 3D volume fk by the 4D deformation field
tj−Tk

Tk+1−Tk uk .
In Equation 3 we illustrate how each voxel of the output field is

computed. A 3rd order spatial interpolation is used in our imple-

mentation of the warping.

h̃j
©­«
x

y

z

ª®¬
= fk

©­­­«

x − tj−Tk
Tk+1−Tk uk,1(x ,y, z)

y − tj−Tk
Tk+1−Tk uk,2(x ,y, z)

z − tj−Tk
Tk+1−Tk uk,3(x ,y, z)

ª®®®¬
(3)

Similarly, we can obtain another estimate by backward warping

the next key frame:

hj ≈ h̃j = warp(fk+1,
tj −Tk+1
Tk+1 −Tk

uk ). (4)

For ease of notation, we introduce warping operators W
f
j and

Wb
j that respectively perform forward and backward warping to

create two estimates of the intermediate frame h̃j from the previous

(resp. next) key frame, i.e. h̃j = W
f
j (fk ) and h̃j = Wb

j (fk+1). The
image formation model from Equation 1 then corresponds to two

separate data terms that can be utilized in an optimization-based

reconstruction:

A ·Wf (f) = p and (5)

A ·Wb (f) = p (6)

For implementing these data terms in an optimization approach,

we also require the adjoint operators Wf ,† and Wb,†. However,
these are easily implemented as the corresponding warps in the

opposite direction, followed by an averaging of all warped volumes

that contribute to a single keyframe.

Figure 2 shows a diagram of this warping-based interpolation of

the intermediate volumes from the neighboring key frames, which is

the key distinguishing characteristic of our method compared to the

existing state of the art. Without this warping-based approach, all

projections used in the reconstruction of a key frame are implicitly

assumed to have been taken at the same time (i.e. representing the

same shape). This is the approach taken by Zang et al. [Zang et al.

2018b], and it results in blurred reconstructions for faster motions.

3.2 Full Optimization Problem

Given the two data terms from above, we can now formulate an

objective function for reconstructing the deforming geometry jointly

with the motion field. Due to the ill-posed nature of this problem,

this requires additional regularizers for both the key frames and

the deformation field, which we adopt from the work of Zang et

al. [2018b]:

min
f,u

Np∑
j=1




AjW
f
j (fj− ) − pj




2
2
+

Np∑
j=1




AjW
b
j (fj+ ) − pj




2
2

+κ1

Nk−1∑
k=1

∥∇T fk + ∇S fk · uk ∥1 (7)

+

Nk∑
k=1

[
κ2 ∥∇S fk ∥Hϵ

+ κ3 ∥∇T fk ∥22
]

+

Nk−1∑
k=1

∑
i=x,y,z

[
κ4



∇Suk,i 

Hτ
+ κ5



∇T uk,i 

22
]
,

where fj− and fj+ refer to the key frames immediately before and im-

mediately after projection pj . Here, κ1, κ2, κ3, κ4 and κ5 are weights

of the different terms of the objective function. The operators ∇T
and ∇S correspond to the discrete temporal and spatial gradients,

implemented as one-sided divided differences. The first two terms

correspond to the two warping-based data terms derived in Sec-

tion 3.1. The second line in this objective function corresponds to a

3D version of the brightness constancy term in the Horn-Schunck

optical flow [Horn and Schunck 1981]. In order to deal with large

deformations we opted for a multi-scale implementation of the opti-

cal flow [Meinhardt-Llopis et al. 2013]. The next two terms in the

third line correspond respectively to the spatial and temporal regu-

larizations of the density volumes. A Huber penalty [Huber 2011] is

used on the spatial gradient with a positive parameter ϵ , while we

favor smooth behavior in the time domain with an L2-norm. Similar

regularizations are also used for the deformation field in the two

terms of the fourth line. τ is the positive parameter of the Huber

penalty on the spatial gradient of the deformation field.

The framework that we propose in this paper is presented in

Figure 2. A detailed description of this framework is also given as

pseudo-code in Algorithm 1. First, an initialization of the density

volumes and the deformation fields is performed (Step S0). Then,

a Warp-and-Project update scheme (step S1) is applied to improve

the quality of the reconstruction of the density volumes. Given the

updated volumes, we re-estimate the deformation fields (Step S2).

Finally, new intermediate key frames may be introduced (Step S3) in

order to improve the temporal resolution and the spatial accuracy.

The estimation of the deformation fields is done according to a

multi-scale coarse-to-fine scheme [Meinhardt-Llopis et al. 2013].

The deformation fields are first estimated for the coarsest level

(s = Nscales ). Then, these fields are up-sampled scale-by-scale using

the operator ↑and re-estimated at each given scale. The output of
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Algorithm 1Warp-and-Project Tomography

1: procedureWP-Tomography(Ff ,Gf , Fu,Gu, F
W
u ,G

W
u , ρ)

2: // Step S0: initialize the key frames and deformation fields.

3: f ← 0; u← 0;

4: while not converged do

5: // Step S1: update volumes by comparing the projections

6: // of warped volumes with captured projections

7: f ←WarpAndProject(FWu ,GW
u )

8:

9: // Step S2: update deformation field between key frames

10: // from the coarsest scale to the finest

11: // generate multi-scale data

12: f1 ← f , u1 ← u

13: for s from 1 to Nscales − 1 do
14: fs+1 ←↓fs
15: us+1 ← ρ ↓us
16: end for

17: for s from Nscales − 1 to 1 do

18: us ← EstimateDeformations(Ffs (us ),Gfs (us ))
19: us−1 ← 1

ρ ↑us
20: end for

21: u← u1

22: end while

23:

24: // Step S3: temporal up-sample

25: if not converged and motion too fast then

26: f , u← TemporalUpSample(f , u)
27: end if

28:

29: return f and u

30: end procedure

this step are the estimated deformation fields at the finest scale

(s = 1). The up-sampling ↑and the down-sampling ↓are done by a

factor of ρ, using a cubic interpolation. The steps (S1, S2 and S3) are

repeated in a loop until convergence. For the last iteration, only the

steps S1 and S2 are performed in order to get the best reconstruction

at the last temporal sampling. The operators Ff ,Gf , Fu,Gu, F
W
u and

GW
u will are explained below.

3.3 Solver

3.3.1 Step S0: Initialization. In the initialization of the algorithm,

we set the deformation fields uk = 0. As a result, the warping

operators simplify to identity operators, which means that in the

first iteration the volume reconstruction (Step S1 below) is static

volume reconstruction without the warp-and-project approach.

We also initialize the number of key frames Nk to be small, giv-

ing a coarse temporal resolution, and causing the initial volume

estimates to be reconstructed from a large number of projections.

3.3.2 Step S1: Warp-and-Project based volume update. To solve the

joint optimization problem in Equation 7, we split it into two sub-

problems that we solve alternately. The sub-problem for reconstruc-

tion of the density volume is solved during this first step of our

framework. It is described by the following minimization problem:

f∗ = argmin
f

Np∑
j=1




AjW
f
j (fj− ) − pj




2
2
+

Np∑
j=1




AjW
b
j (fj+ ) − pj




2
2

+κ1

Nk−1∑
k=1

∥∇T fk + ∇S fk · uk ∥1 (8)

+

Nk∑
k=1

[
κ2 ∥∇S fk ∥Hϵ

+ κ3 ∥∇T fk ∥22
]

With the novel data terms used in this objective function, the

comparison of the captured pk and the simulated projection of the

forward-warped key frame, AkW
f

k
fk is performed between pairs of

projections corresponding to the same time ti , and hence represent

the same geometric configuration of the scan target. The same holds

for the backward-warped key frame in the second data term.

In the following, we will drop the f and b superscript, and simply

refer to the warping operator asW. To simplify the notation, we will

further use the non-linearW like a matrix, and refer to its adjoint

operator asWT .

To solve the optimization problem in Equation 8, we use a first-

order primal-dual framework [Chambolle and Pock 2011] as shown

in Algorithm 2. This optimization problem is then split into two

sub-problems, that we solve alternately using proximal operators.

The first sub-problem contains only the least squares data fitting

terms of this equation, that we denote as FWu . The remaining terms,

denoted as GW
u , are grouped together into the second sub-problem.

Algorithm 2 CP-based method for tomographic reconstruction

1: procedure WarpAndProject(FWu ,G
W
u )

2: while not converged do

3: // update slack variable

4: gj+1 ← prox
λ1G

W
u
∗ (gj + λ1Ku f̄

j )
5: // update volume variable

6: f j+1 ← proxµ1FW
u
(f j − µ1KT

ug
j+1)

7: // update dual variable

8: f̄ j+1 ← 2 · f j+1 − f j
9: end while

10: return f

11: end procedure

The Algorithm 2 shows the pseudo-code used to solve the Warp-

and-Project strategy, which is based on the CP-algorithm. The no-

tations g, f̄ , prox
λ1G

W
u
∗ and proxµ1FW

u
are used respectively for the

slack and dual variables, and the proximal operators of the functions

GW
u
∗
and FWu . The operator Ku is defined by:

Ku =
(
∇S , ∇T , W

)T
(9)

Since we are using the same priors for the density volumes as Zang

et al. [2018b], the proximal operator prox
λ1G

W
u
∗ is also the same,

and we refer to their paper for the details.
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On the other hand, we proposed a new derivation to solve the

proximal operator proxµ1FW
u
, given by:

proxµ1FW
u
(fv ) = argmin

f

∥AWf − p∥22 +
1

2µ1
∥f − fv ∥22 . (10)

This proximal operator problem is equivalent to solving the fol-

lowing minimization problem:

argmin
X̂




X̂


2
2

(11)

subject to: Â · X̂ = p̂.

where:

p̂ =
√
2µ1 (p − AW · fv )

Â =
[
I
√
2µ1AW

]
(12)

X̂ =
[√

2µ1 (p − AWf) f − fv
]T

In the pseudo-code detailed in the Algorithm 3, we present the

solver that we used for the proximal operator in Equation 10. For

each key frame k , we warp the density volume fk to the times

tj of its neighboring projections. Then, we project the obtained

volume h̃j using the corresponding viewing angle θ j , and compute

the residual image with respect to the captured projection pj . A

correction volume ∆h̃j is then computed by back-projecting the

residual image ∆p. Finally, this correction volume is warped from

the time tj of the j
th projection to the time Tk , and is then used to

update the key frame fk .

Algorithm 3 Solver for the proximal operator in Equation 10

1: procedureWarping-Correction(u, fv )

2: initialize: α ∈ R, f = fv and q = f − fv = 0

3: for k from 1 to Nk do

4: while not converged do

5: for all j with Tk−1 ≤ tj ≤ Tk+1 do
6: // warp the key frame to a given time (Eqs. 2, 4)

7: h̃j =Wfk
8: // residual in image space

9: p̂j =
√
2µ1

(
pj − Ah̃j

)
10: X̂j =

[√
2µ1

(
pj − Ah̃j

)
qk

]T
11: ∆pj = p̂j − Â · X̂j

12: // compute the correction volume

13: ∆h̃j = ÂT · ∆pj
14: // warp the residual to key frame and update

15: fk = fk + αW
T
∆h̃j

16: qk = qk + α∆pj
17: end for

18: end while

19: end for

20: return f

21: end procedure

One can notice that the proximal operator in Equation 10 is very

similar to the case of a linear least squares problem [Parikh et al.

2014] where the solution is given by:

proxµ1FW
u
(fv ) =

(
2µ1 (AW)T AW + I

)−1 (
2µ1 (AW)T p + fv

)
(13)

Actually, our proposed solver is also quite similar to this solution,

except that the warping operatorW and its adjoint are non-linear

operators that are implemented procedurally.

3.3.3 Deformation field estimation (S2). After reconstructing vol-

ume estimates with the warp-and-project strategy, the deformation

fields between successive key frames have to be updated. For this

purpose, we solve the deformation field estimation sub-problem

derived from the Equation 7. This optimization sub-problem is de-

scribed as follows:

u∗ = argmin
u

κ1

Nk−1∑
k=1

∥∇T fk + ∇S fk · uk ∥1 (14)

+

Nk−1∑
k=1

∑
i=x,y,z

[
κ4



∇Suk,i 

Hτ
+ κ5



∇T uk,i 

22
]

The adopted approach to solve this optimization is the same as

in the ST-tomography framework [Zang et al. 2018b].

3.3.4 Temporal up-sampling (S3). In the state-of-the-art 4D CT

reconstruction methods, the temporal sampling is dependent on the

number of captured projections Nθ used to reconstruct the density

volume for one key frame. However, one of the advantages of the

proposed warp-and-project strategy is to decouple the key frames

from their association to these sets of Nθ captured projections.

This allows us to adjust the temporal sampling by choosing the

number of key frames, without taking into account the number of

captured projections Nθ needed to initialize the reconstruction of

each key frame. Then, we can on the one hand increase the temporal

resolution of our reconstruction. On the other hand, we also increase

the accuracy of our reconstruction as we will show in Section 4. In

addition, the combination between the warp-and-project strategy

and the temporal up-sampling opens the way to the reconstruction

of fast phenomena with a good accuracy.

The temporal up-sampling is performed only if a deformation

field uk exceeds a given threshold velocity. In this case, we introduce

an intermediate key frame between the key frames fk and fk+1. The

density volume for this new key frame fk ′+1 is computed bywarping

fk to the time Tk ′+1 using the deformation field uk . Moreover, the

deformation field uk , is split linearly into two parts, each covering

half the motion. For the last outer iteration of our framework (see

Algorithm 1), the temporal up-sampling is skipped. This is to ensure

the final density volumes reconstruction result has been updated by

the Warp-and-Project strategy. The obtained temporal sampling for

the key frames is mostly non-uniform. With this sampling choice,

we reduce the memory cost for saving the density volumes as well

as the deformation fields.

4 RESULTS AND DISCUSSION

In the following, we first validate our proposed approach by quan-

titative comparisons on both simulated data (fluid flow) as well
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as real data where ground truth is available from high resolution

scanning using a stop-motion approach (copper foam). Then we

show the results of our reconstruction on six different data sets,

where the deformation is relatively fast. All experiments use the

low-discrepancy view sequence proposed by Zang et al [2018b].

In the experiments shown in this section, many parameters are

common. For themulti-scale optical flow calculation, we useNscales =

3, σ = 0.65, and ρ = 0.5. The weights for the Huber penalty priors

are set to κ2 = 0.08 and κ4 = 1.2. We tested a range of parameters

and observed that the ranges (0.01, 0.1) for κ2, (0.8, 1.5) for κ4, and
(0.01, 0.05) for κ5 provide good results. For volume density recon-

struction, κ1 = 0.25, the relaxation parameter α for SART is set

to 0.3, and two inner SART iterations are applied for all methods.

For the proximal framework, λ1 = µ1 = 0.3. Our algorithm was

implemented in C++. The run times for the density volume recon-

struction and the flow field estimation, the dynamic range of density

levels, and other specific acquisition parameters are given in Table 2.

Comparisons are made with two reference methods. The first is

SART-ROF, a state-of-the-art static tomographic reconstruction

method that incorporates the Rudin-Osher-Fatemi Total Variation

prior [Getreuer 2012]. The resulting optimization problem per frame

is solved using a primal-dual scheme, and the SART algorithm is

used as the solver for the data term. The second reference method is

the Space-Time Tomography (ST-Tomography) proposed by Zang

et al. [2018b].

4.1 Quantitative validation

4.1.1 Synthetic plume data. Our first validation experiment is done

using synthetic fluid flow data, generated by mantaflow [Thuerey

and Pfaff 2018]. The purpose of this data set is to quantify the quality

of the estimated deformation field, since simulation is the only way

to generate dense ground truth motion. The quality of the volume

reconstructions is assessed with real scans later in this section.

The simulation domain (resolution 100 × 150 × 100) contains a
cylindrical source emitting a (spatially and temporally) non-uniform

density. The aim of this non-uniformity is to introduce some texture

inside the plume for tracking. The emitted density is transported

through the domain by a 3D incompressible flow over 300 time

steps. For this experiment, the velocity of the density transport

is controlled by the buoyancy parameter in the domain. We used

5 different values for this parameter (v = 0.1, 0.41, 0.73, 1.28 and

3.0 voxels/∆t ). Frames from the fastest animation are shown in

Figure 3. The leftmost image shows the starting configuration, which

is the same for all simulations.

Only the volumes having an odd index have been employed for

the reconstruction of the plumes, but all 300 simulated volumes

are used later for the comparison between the different obtained

reconstructions and the ground truth. From each volume with an

odd index a projection is computed with view points according to

the low discrepancy view sampling strategy [Zang et al. 2018b] The

reconstruction methods (ST-tomography and our method) are then

performed using these 150 projections with the following strategies

to select the number of key frames. For ST-tomography, we com-

bine 10 projections together to reconstruct each key frame. For our

method, 5 levels of uniform temporal up-sampling are performed to

obtain 15, 30, 60, 120 or 150 key frames. Here, the level 1 is the level

with the smallest number of reconstructed key frames.

Table 1. Numerical comparisons with ground truth data for different algo-

rithms: average end-point error (EE) in voxels and average angular error

(AE) in degrees.

Speed ST- Ours

(voxels/∆t ) tomo. L1 L2 L3 L4 L5

3.0 0.58 0.49 0.42 0.36 0.33 0.32

1.28 0.44 0.37 0.32 0.27 0.25 0.21

EE 0.73 0.37 0.32 0.28 0.23 0.21 0.19

0.41 0.31 0.27 0.24 0.20 0.18 0.17

0.1 0.27 0.24 0.21 0.18 0.16 0.15

3.0 17.5 17.1 16.2 14.6 13.9 13.8

1.28 15.8 15.4 14.5 13.3 11.9 11.5

AE 0.73 14.3 14.1 13.3 12.2 11.3 10.9

0.41 13.3 12.9 12.0 11.2 10.7 10.5

0.1 12.7 12.0 11.2 10.7 10.3 10.2

Table 1 shows comparisons of the Average Endpoint Error (EE)

and the Mean Angular Error (AE) for the competing methods. EE

and AE are standard error metrics for assessing optical flowmethods.

Shown are ST-tomography and several levels of our method. We can

see that our method dominates ST-tomography even after just one

iteration, and then continues to improve over the next few iterations

as the adaptive temporal sampling and the warp-and-project method

improve the motion estimates. Furthermore, the method degrades

gracefully with increased speed.

4.1.2 In-situ transformations of a copper foam. To perform quan-

titative evaluation of the volume reconstructions, we turn to real

X-ray images of copper foam. This dataset is inspired by composite

material analysis in mechanical engineering, where the deformation

characteristics of such metal foams and similar kinds of materials

are being investigated. Two controlled transformations (translation

and compression) were conducted using a CT5000 5kN compression

load stage (Deben UK Ltd., Suffolk, UK). This stage contains two

parallel surfaces: a fixed one (top) and a moving one (bottom). The

latter is controlled with high precision using a software interface.

This setup allows us to capture high quality scans of many poses of

the deformation using a stop-motion approach.

Vertical translation of the copper foam. For this experiment, a thin

slice of copper foam (dimensions: 8.69×8.42×1.73mm3) was set on

the moving part of the compression stage. The fixed part of the stage

has been removed for this experiment. The sample was scanned

for 42 different positions, using 90 viewing angles each. Between

successive times, the sample was translated by 0.1mm.

The Figure 4 illustrates 4 positions of the sample during the

translation. While the first row shows projections of the sample

at the same viewing angle, the second row shows the obtained

reconstruction of the copper foam using the SART-ROF algorithm.

This reconstruction is very accurate, since the object is static for

each position, and we use a large number of projections. For the

following comparison of the different reconstruction methods these
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Fig. 3. Several frames from the fastest fluid animation.

10 mm

Fig. 4. The translation of the copper foam. First row: captured projections,

second row: reconstructed volumes at time frame 2, 12, 30, 40.

reconstructed volumes are considered as the ground truth volumes

for the copper foam at each position.

For the dynamic reconstructions, from each position only 6 pro-

jections are used. Moreover, the projections from each 5 successive

positions are combined in one time frame for the SART-ROF and the

ST-tomography as well as for the initialization of our method. After

convergence, the SART-ROF and the ST-tomography approaches

reconstruct only 8 volumes, while with our method a volume is

reconstructed for each position of the copper foam.

Ground Truth

A
b

s
o

lu
te

 e
rr

o
r

OursST-TomographySART-ROF

Fig. 5. Absolute error for SART-ROF, ST-Tomography and ours for time

frame 25. The dynamic range of density values is (0, 1800).

For one intermediate volume the absolute error is given in Figure 5

between the ground truth and the different reconstruction methods.

This figure shows the improved accuracy of our reconstruction

compared to the state-of-the-art methods.

Compression of the copper foam. In this experiment, we scanned

the foam crumpling under a compressive force using the setup

shown in Figure 6. This is a real-world scenario that is of interest

in mechanical engineering applications. In order to obtain ground-

truth data, we again employed a stop-motion scanning strategy, this

(a)

(b)

(c)

Sensor Compression stage

X-ray source

(d)

Fig. 6. (a-b): The height (inmm) of the copper foam before and after the

compression process, respectively. The total displacement during the com-

pression is 3.77mm, uniformly distributed over 192 scans. 60 projections

are obtained for each scan. (c): the states of the foam after 192 scans. (d)

The Micro-CT setup for the in-situ compressions of the foam.

time acquiring 192 individual scans with 60 projections each. To test

our method against the competing approaches, we then selected 1

projection for each scan according to the low-discrepancy sequence.

Results for a single frame are shown in Figure 7. The top row shows

the reconstructions, while the bottom row shows the error of the

different methods. We can see that our new method significantly

reduces the reconstruction error compared to both SART-ROF and

ST-tomography. Please also refer to the video.

To quantify this effect further, we show numerical results in Fig-

ure 8 and Table 3. Figure 8 plots the PSNR of each key frame for

SART-ROF, ST-tomography, and several iterations of our method. As

expected, the stationary reconstruction by SART-ROF has the worst

performance, with ST-tomography improving the result by a 2−dB
on average. Our warp-and-project method is slightly superior to

ST-tomography even in the first iteration, and then continues to im-

prove by 2− 3dB over the next 4 iterations. This is because the adap-

tive insertion of key frames allows for more accurate estimations of

the motion field, which in term allow for better reconstructions of

the volume densities with the warp-and-project approach. Table 3

shows numerical results of the same experiment, aggregated over all

frames, but with separate statistics for the top, middle, and bottom

parts of the volume. These exhibit different motion speeds since

the foam is only compressed from the bottom, while the top edge is

stationary. To test multiple virtual scan speeds, we also performed

temporally sub-sampled reconstructions in which only every other

or every third time step is used (i.e. reconstructions from 96 and 64
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Fig. 7. Algorithm comparison for the compression of copper foam. First

row: results from different reconstruction methods compared to the ground

truth; Second row: the absolute error for time frame 150. The dynamic range

of density values is (0, 4600).
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Fig. 8. PSNR values of the volume reconstructions for each key frame. We

compare SART-ROF, ST-tomography, and several iterations of our method.

Please see text for details.

projections, respectively). From the results presented in Table 3, we

notice that with the third experiment (Sampling 3), we have a PSNR

lower than 20 for the bottom region of the foam corresponding to

the fastest motions. We can consider this experiement as the fail-

ure case of our method. In this experiment, a 30% compression of

the foam is performed approximately over 64 "scans", which corre-

sponds to a 0.47% compression per scan. We illustrate in Figure 9

the degradation of the reconstruction quality when the number of

the used projections in the reconstruction is reduced.

4.2 Application to additional real scans

We also provide qualitative results for a number of fast-moving

data sets. The algorithm parameters for the individual dataset are

shown in Table 2 along with the reconstruction times. In addition

(a) 192 projections (b) 96 projections (c) 64 projections

Fig. 9. The degradation of the reconstruction quality with reduced number

of used projections, for the bottom part (i.e. fastest region) of the compressed

copper foam. (a-c): 192, 96 and 64 projections are respectively involved for

the reconstruction.

to the visual results presented here, we also encourage the reader

to consult the video for the full time-varying reconstruction results.

Rising dough. The first data set is a scan of fast rising dough,

shown in Figures 13, 11, and 10. As the dough rises due to the yeast

secreting CO2 gas, we see bubbles forming at both microscopic and

mesoscopic scales. The microscopic bubbles manifest themselves as

a change in the density of the dough, while the meso-scale bubbles

result in drastic topology changes of the dough that are resolved well

with our method, but are blurred out in the comparison methods

(see slices in Figure 11). A quantitative analysis is also conducted by

comparing the PSNR and SSIM between the acquired projection im-

age from real scan, and the projected images from the reconstructed

volumes using different methods, as shown in Table 4. Note that the

projection used for this comparison is not involved in the different

reconstructions.

Frame 001 Frame 017 Frame 105

Fig. 10. Rising dough reconstructed by our method. First row: direct volume

rendering. Second row: bubble surfaces.
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Fig. 11. Comparison between SART-ROF, ST-tomography and ours for a

slice visualization of the dough dataset.

Capillarity effect in porous rock. The next experiment is a stan-

dard test deployed in geology, and specifically oil and gas explo-

ration [Shah et al. 2013]. The goal of such studies is to measure the

porosity or the permeability of rock samples in order to quantify
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Table 2. Parameters used in the acquisition and for the tomographic reconstruction.

Dataset # proj. Cap. time Nθ Keyframes Volume size S1 step S2 step # Outer κ3 κ5 Dynamic

[h:mm] (ST-tomo.) (Ours) [h:mm] [h:mm] iterations range

rock 800 1:22 20 80 400×500×400 4:42 6:30 5 0.3 0.05 (0.0, 86.3)

fungus 600 0:38 30 128 250×300×250 2:20 4:36 4 0.2 0.03 (0.0, 19.5)

hydro-gel 640 0:43 16 70 423×320×423 3:15 5:20 5 0.3 0.05 (0.0, 24.8)

liquids 600 0:46 30 120 180×200×180 3:44 5:50 4 0.1 0.03 (0.0, 110.2)

pills 30 0:02 3 30 400×200×400 1:20 2:25 5 0.1 0.03 (0.0, 38.5)

Table 3. Calculated PSNR [dB], and SSIM for different reconstruction meth-

ods: SART-ROF, ST-Tomography, and our method.

Region
Top

(slowest)

Center

(medium)

Bottom

(fastest)

Sampling 1: 192 projections

Metric PSNR SSIM PSNR SSIM PSNR SSIM

SART-ROF 29.14 0.68 26.27 0.56 24.11 0.28

ST-Tomo. 32.11 0.72 27.85 0.64 24.68 0.41

Ours (level 1) 32.28 0.72 28.48 0.65 24.90 0.46

Ours (level 2) 32.72 0.75 29.10 0.67 26.25 0.53

Ours (level 3) 33.32 0.77 29.93 0.68 28.08 0.56

Ours (level 4) 33.74 0.78 30.57 0.70 29.18 0.61

Ours (level 5) 33.78 0.78 30.87 0.72 29.35 0.62

Sampling 2: 96 projections

SART-ROF 28.55 0.65 23.61 0.24 21.31 0.19

ST-Tomo. 31.41 0.69 24.76 0.47 23.14 0.36

Ours (level 1) 31.51 0.69 25.14 0.50 23.39 0.37

Ours (level 2) 31.86 0.71 26.29 0.56 23.95 0.39

Ours (level 3) 32.43 0.72 27.84 0.60 24.45 0.43

Ours (level 4) 32.59 0.72 28.88 0.63 24.72 0.44

Ours (level 5) 32.88 0.73 29.08 0.64 24.87 0.46

Sampling 3: 64 projections

SART-ROF 26.83 0.58 21.48 0.19 16.85 0.13

ST-Tomo. 28.73 0.63 22.92 0.33 17.92 0.19

Ours (level 1) 28.79 0.63 22.92 0.34 17.96 0.19

Ours (level 2) 28.94 0.64 23.28 0.37 18.25 0.20

Ours (level 3) 29.11 0.65 23.68 0.40 18.72 0.23

Ours (level 4) 29.28 0.67 23.98 0.42 18.94 0.24

Ours (level 5) 29.35 0.67 24.17 0.44 19.08 0.24

Table 4. Calculated PSNR [dB] and SSIM for projection-based comparison

over the dough data set. We compare here the acquired projection at time

frame 8 with the projections obtained from the different reconstruction

methods: SART-ROF, ST-Tomography, and our proposed method.

Metric SART-ROF ST-Tomography Ours

PSNR 27.61 29.89 30.25

SSIM 0.82 0.86 0.90

the ability of the rock to store oil. Here, a cylindrical sample of

the rock is placed in a dish with the bottom dipped into a liquid

contrast agent. Due to capillary action, the liquid is absorbed into

the sample over the duration of the scan (one hour and 22 minutes).

A 3D visualization of this experiment showing the absorbed liquid

can be found in Figure 12.

Frame 02 Frame 07 Frame 72Frame 45

(a) (b) (c)

(d)

Fig. 12. Reconstruction results for the porous rock dataset. Images (a) and

(c) represent respectively the rock before and after the scan. Some represen-

tative CT projections are given in (b). The rendering results in (d) show the

absorption of liquid over time.

Dried snow fungus. Next, we show the re-hydration of dried mush-

rooms (tremella fuciformis, Figure 14). A direct comparison with the

reference methods shows significantly improved detail and recon-

struction quality compared to both SART-ROF and ST-tomography.

Note that the first iteration of our algorithm produces approximately

similar results to ST-tomography, but later iterations improve the

result due to both the added key frames and the warp-and-project

method using the estimated motion fields.

Objects in high viscosity liquid. In Figure 15 we show an experi-

ment where solid objects were dropped into a high viscosity fluid

and sink to the bottom under gravity. In this case the motion is fast

enough to violate the assumption of negligible deformation between

successive frames, which ST-tomography is based on. As a result,

the shapes are blurred out and fine detail is lost, while our method

manages sharp reconstructions of the solid.

Pills dissolved in water. In many medical pills, the drug is coated

with a protective hull that dissolves in water, releasing the drug at a

designed rate. Figure 16 shows the results of capturing this process

in a CT scan. This is a challenging data set, since the motion is

initially quite fast, and the drug particles are quite small. The whole

sequence is only 3 minutes long and consists of 30 projections. As
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Fig. 13. 3D reconstructions of the dough dataset, with corresponding 2D X-ray images, as well as before-and-after photographs.
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Fig. 14. Re-hydration of dried tremella fuciformis. This process results in a rapid volume expansion that tends to blur out the thin structures of the fungus in

the comparison methods, while our method manages to reconstruct fine detail. From left to right: slice visualizations, 3D renderings, acquired projections

during scanning and photographs of the sample.

with the previous datasets, we can see that our method produces

crisper, more detailed results than the comparison methods.

Hydro-gel balls. Finally, in Figures 18 and 17 we show 2D slice

visualizations and 3D renderings of Hydro-gel balls (Orbeez) ab-

sorbing water. Since the density of the water and the Hydro-gel

balls is very similar, there is very little contrast between the two in

the X-ray images or in the reconstruction. However, we can again

see that the rapid absorption of water and the associated volume

change create fast motions that cannot reliably be reconstructed

by the competitor methods, whereas our approach produces sharp,

clearly defined shapes for the balls.

5 CONCLUSIONS AND FUTURE WORK

In summary, we have presented a new method, warp-and-project

tomography, for tomographic reconstruction of deforming objects.

We perform quantitative comparisons on simulated data, as well

as qualitative comparisons on real data from a number of different

application domains. These experiments clearly show a significant

improvement in the reconstruction quality compared to the state-

of-the-art in both static and dynamic tomographic reconstruction.

We observed two major limitations of our method. First, the

tracking algorithm requires features in order to work. If we are

scanning a nearly feature-less volumetric object, the reconstruction

of themotion field will only work on the boundary, but not inside the

feature-less region. Second, our method will degrade with increasing

speed of motion and an increasing geometric complexity of the

volume. For example, objects that have a lot of high frequency

details generally require more scans in a static reconstruction. For

these objects our method can only work with slower motions. Also

as a minor limitation, we do not consider motion blur during the

acquisition of a single frame.

We believe that the developed method has significant applications

in many domains. In fact the metal foam and rock data sets are

already starting points of applications in mechanical engineering

and geology / oil and gas exploration. In the future we plan on deeper

investigations of these applications in collaboration with domain

experts. We also intend to combine the method described here with
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Fig. 15. Metal objects being dropped into a high viscosity liquid. First row:

(a) and (b) show the metal objects respectively before and after the scan.

Image (b) illustrates the scan acquisition. On the other rows, we represent

the 3D results, where our method produces the sharpest reconstructions.
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Fig. 16. Pills dissolving in water. This is our fastest dataset with only 30

projections captured in 3 minutes.

other X-ray tomography techniques such as phase contrast imaging,

in order to boost the contrast in certain problematic data sets, such

as the hydro-gel balls.
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Fig. 17. 3D rendering of water absorption by Hydro-gel balls, with a slice comparison of the ST-tomography approach (lower left) and our method (upper

right).
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Fig. 18. Slice rendering of water absorption by Hydro-gel balls.
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