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1 Introduction

Gauge-gravity duality, namely the equivalence between a quantum field theory in d dimen-

sions and a gravitational theory in d+1 dimensions via holography, has become one of the

cornerstones of modern theoretical physics. The best understood examples are provided

by the AdS/CFT correspondence and involve conformal field theories (CFTs) with a large

number of fields and their anti-de Sitter (AdS) dual space-times with large degrees of su-

persymmetry. Maldacena’s original paper [1] contained examples of such equivalences in

d = 2, 3, 4 and 6 and many more dual pairs have been uncovered in these dimensions since

then. However, what is almost entirely missing to date is any well understood example

of the AdS/CFT correspondence in dimension d = 5, namely between a 4+1 dimensional

CFT and its 5+1 dimensional dual AdS space-time.

One reason that d = 5 is special is the absence of maximally supersymmetric theories,

in which the 16 Poincaré supersymmetries of a 4+1 dimensional CFT would be enhanced

by 16 conformal supersymmetries to the maximum allowed number of 32 supersymmetries.

The complete classification of superconformal algebras [2] indeed shows that d = 5 is singled

out and does not support a maximally supersymmetric CFT. Unlike its lower dimensional

cousins, supersymmetric Yang-Mills theory with maximal Poincaré supersymmetry in 4+1

dimensions is not a conformal field theory at the origin of its moduli space. Instead, the

theory is believed to flow in the ultraviolet (UV) to the 5+1 dimensional (2, 0) theory, a

theory which itself features prominently in AdS/CFT (see for example [3]).
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What does exist, however, are supersymmetric CFTs (SCFTs) in 4+1 dimensions

with 8 Poincaré supersymmetries which are enhanced by 8 conformal supersymmetries to

a total of 16 supersymmetries. The superconformal algebra in this case is based on the

exceptional Lie superalgebra F (4). This Lie superalgebra has a real form whose maximal

bosonic subalgebra is SO(2, 5)⊕ SO(3) [4], which may be viewed as the direct sum of the

conformal algebra in 4+1 dimensions [4] and an R-symmetry. Explicit field theory examples

realizing this algebra have been uncovered in [5, 6]. They are based on supersymmetric

gauge theories which flow to a strongly coupled CFT in the UV, as long as the number of

matter fields coupled to the gauge field remains sufficiently small. The upper bound on

the number of matter fields depends on the gauge group and on the representations of the

matter content and can generically be determined from the 1-loop running of the gauge

coupling [6]. Since these supersymmetric theories allow for a large N limit, one may expect

that they will possess a holographic AdS6 dual.

String theory realizations of these 4+1 dimensional CFTs via brane embeddings are

known and can serve as a natural starting point to construct their AdS6 duals. For example,

4+1 dimensional SCFTs based on the gauge group Sp(N), with hypermultiplets in the

fundamental and anti-symmetric tensor representations of Sp(N), were realized in [5] via

a Type IIA string theory construction involving a stack of N D4 branes near a collection

of O8 planes and D8 branes. A Type IIA supergravity solution based on this construction

was given in [7] and generalized to quiver gauge groups in [8]. While some interesting

questions can be addressed in this geometry, its construction leads to singularities, because

the presence of the O8 planes forces the dilaton to blow up.

A much more general brane realization of these 4+1 dimensional CFTs can be given

via (p, q) brane webs [9, 10] in Type IIB string theory. In these brane webs, D5 branes

are suspended between NS5 branes, giving a 4+1 dimensional version of the construction

pioneered in [11] for 2+1 dimensional gauge theories. The brane webs can realize the gauge

theory at any point on its moduli space, as well as in the presence of relevant deformations

such as mass terms or a finite bare coupling. In the limit when all the branes essentially lie

on top of one another the webs do realize large classes of the 4+1 dimensional SCFTs of [6],

most naturally those based on SU(N) gauge theories, possibly with couplings to matter in

the fundamental representation.1 D7-branes can be added to the (p, q) webs [13], thereby

slightly expanding the set of SCFTs that can be realized. As we will see, the most general

supergravity Ansatz respecting the symmetries of the (p, q) web does allow for a non-

trivial axion winding which is required to accommodate D7-branes. When no D7-branes

are present, the (p, q) webs form a special sub-class for which the axion winding vanishes.

It is our goal to construct Type IIB supergravity solutions which are holographically

dual to the 4+1-dimensional CFTs realized via (p, q) webs in the large N limit. This will

require solving the difficult problem of obtaining fully localized solutions for the corre-

sponding intersecting branes. Examples where such solutions can give rise to warped AdS

1Alternatively these SCFTs can be realized in terms of M-theory compactifications on singular Calabi-

Yau (CY) 3-folds [6]. For the special case of toric CYs, this construction is T-dual to the (p, q) web [12]. In

any case, the realization in terms of branes serves as a more natural starting point for holographic consid-

erations, where field theory and AdS gravity are seen as two equivalent descriptions of a given brane setup.
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spaces were given in [14, 15]. Our approach will be to use the general Ansatz for the Type

IIB fields consistent with the symmetries, reduce the BPS equations to this Ansatz, and

then solve the BPS equations explicitly.

Earlier attempts at using the BPS equations appeared in [16–18], where reduced BPS

equations were obtained, but not generally solved. A Type IIB T-dual configuration of the

D4/D8 solution in Type IIA [7] was used to test these equations. This T-dual solution is

even more troublesome than the original Type IIA solution. In addition to the singularity

caused by the presence of the O8 plane on the IIA side, one now has an additional singularity

due to T-dualizing a U(1) subgroup of the SO(4) isometry associated with an internal

sphere. The circle that is being T-dualized shrinks to zero size at the poles of the sphere,

giving rise to a new singularity in the Type IIB solution. Nevertheless, this T-dual to the

D4/D8 system provides a useful check on the BPS equations obtained in [16–18] and we

will use it for a similar purpose.

In the present paper, we will construct the general Ansatz in Type IIB consistent with

the SO(2, 5) × SO(3) symmetries, derive the reduced BPS equations, and construct their

general local solutions in terms of two locally holomorphic2 functions A± on a Riemann sur-

face Σ. To connect these local supergravity solutions to the CFTs originating from the (p, q)

brane system requires that we impose the necessary physical regularity conditions on the

supergravity fields of the solutions. For this purpose, Σ must be compact, with or without

boundary, and geodesically complete. The conditions onA± needed to guarantee the proper

Minkowskian signature of the metric are local on Σ and given by the following inequalities,

0 < −|∂wA+|2 + |∂wA−|2

0 < |A+|2 − |A−|2 + B + B̄ (1.1)

where ∂w is the derivative on Σ with respect to a local holomorphic coordinate w, and B
is defined, up to an additive constant, by the relation ∂wB = A+∂wA− − A−∂wA+. As a

result, B is also locally holomorphic. If Σ has a boundary then the two inequalities of (1.1)

must hold strictly in the interior of Σ, and become equalities on the boundary of Σ.

The group SU(1, 1) acting linearly on the doublet (A+,A−) leaves the conditions (1.1)

invariant and induces the standard SU(1, 1) = SL(2,R) duality transformations on the

supergravity fields. Additionally, the supergravity solutions are invariant under constant

shifts A± → A± + a± for constants satisfying a− = ā+, which form the additive group

isomorphic to C. The SL(2,Z) duality symmetry of Type IIB string theory allows us to

consider supergravity solutions with identifications under SL(2,Z), namely with non-trivial

axion winding number. Mathematically, the problem then becomes to obtain holomor-

phic sections (A+,A−) of a holomorphic bundle over Σ with structure group contained in

SL(2,Z)× C, subject to the positivity conditions of (1.1).

In the simplest case where the Riemann surface Σ is compact and has no boundary, the

second inequality in (1.1) becomes trivial since the arbitrary constant in B can always be

chosen to satisfy the inequality. The associated mathematical problem then also simplifies,

2Throughout, we will use the terminology locally holomorphic to include the possibility that A± may be

multiple-valued on Σ, and/or have poles or other singularities on the boundary of Σ.
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and may be formulated directly in terms of a holomorphic bundle of one-forms ∂wA±

satisfying the first relation in (1.1). In this paper, we will provide a preliminary analysis

into the existence of such global solutions but leave a detailed investigation for future work.

We close the introduction with some remarks on the relation of this work to other

investigations into half-BPS solutions to Type IIB, M-theory, and six-dimensional super-

gravities on space-times built as products of an AdS space and one or several spheres

warped over a Riemann surface Σ. In each case, the isometries of the AdS space and the

sphere factors are used to reduce the BPS equations to a complicated set of non-linear

partial differential equations on Σ, which can be solved exactly in terms of harmonic or

holomorphic data on Σ. This strategy was employed successfully to the construction of a

large variety of novel supergravity solutions in different contexts. Type IIB supergravity

duals to four-dimensional N = 4 super-Yang Mills theory were found in the presence of a

planar interface [19] giving supersymmetric Janus field theories [20, 21] and in the presence

of Wilson loops [22]. M-theory duals to field theories in three and six dimensions were found

in the presence of various defect operators in [23–25]. Finally, six-dimensional supergravity

duals were found to two-dimensional conformal field theories with string junctions in [26].3

The unifying principle of this strategy was explained in [32] as follows. The integra-

bility conditions on the BPS equations produce Bianchi and field equations. With enough

supersymmetry, all the Bianchi and field equations may be obtained as integrability condi-

tions on the system of BPS equations, which therefore play a role somewhat analogous to

that of a Lax pair for integrable systems. Upon reduction to AdS6×S2 warped over Σ, the

BPS equations reduce to equations for functions on Σ and genuinely become a set of Lax

equations for a system that must therefore be integrable in the classic sense. The conformal

invariance of these systems lies at the origin of their solvability in terms of harmonic and

holomorphic data on a Riemann surface Σ.

We note that close cousins to the half-BPS solutions to Type IIB supergravity obtained

here are the half-BPS solutions on a space-time of the form AdS2 × S6 warped over a Rie-

mann surface Σ. The superconformal algebra is now a different real form of the exceptional

Lie superalgebra F (4), this time with maximal bosonic subalgebra SO(2, 1) × SO(7), and

16 supersymmetries as well. The two problems are related just as duals to Wilson loops

in [22] are related to the planar interface solutions in [19].

1.1 Organization

The outline of this paper is as follows. In section 2 we will review the basics of Type IIB

supergravity and introduce a suitable Ansatz. In section 3 we use the decomposition of the

supersymmetry generators onto Killing spinors of AdS6 and S2 to reduce the BPS equations

for the reduced supergravity fields to a system of algebraic and partial differential equations

on the surface Σ, which we partially solve. In section 4 we solve the reduced BPS equations

completely and obtain the most general local solutions to the BPS equation in terms of

holomorphic data. In section 5 we summarize the expressions for all the supergravity

fields in terms of the holomorphic data, analyze their behavior under SU(1, 1) symmetry

3See also [27–31] for related work on these systems using a variety of different strategies.
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of Type IIB supergravity, obtain the regularity conditions, recover the singular T-dual of

the D4/D8 system, and conclude the section with arguments in favor of monodromy of

the holomorphic data. We conclude with a discussion in section 6. In appendix A, a basis

for the Dirac-Clifford algebra adapted to our Ansatz is presented, while the geometry of

Killing spinors is reviewed in appendix B. Details of the derivation of the BPS equations

are in appendix C, of the Bianchi identities in appendix D, and of the expressions for the

supergravity fields in terms of holomorphic data are in appendix E.

2 Type IIB supergravity and AdS6 × S2 × Σ Ansatz

In this section, we provide a brief review of the Type IIB supergravity fields, Bianchi

identities, field equations and BPS equations, and their SU(1, 1) duality symmetry, and

go on to construct the general Ansatz for the bosonic fields of the solutions we seek to

construct. As laid out in the introduction, the bosonic symmetries of the Ansatz are

completely determined by the superconformal algebra.

2.1 Type IIB supergravity review

The bosonic fields of Type IIB supergravity [33, 34] consist of the metric gMN , a one-form

P and gauge connection Q representing the axion-dilaton field strengths, a complex three-

form field strength G, and a self-dual five-form field strength F5. The fields satisfy the

following Bianchi identities,

0 = dP − 2iQ ∧ P

0 = dQ+ iP ∧ P̄

0 = dG− iQ ∧G+ P ∧ Ḡ

0 = 8 dF(5) − iG ∧ Ḡ (2.1)

The field strength F(5) is required to be self-dual,

F(5) = ∗F(5) (2.2)

The field equations are given by,

0 = ∇MPM − 2iQMPM +
1

24
GMNPG

MNP

0 = ∇PGMNP − iQPGMNP − PP ḠMNP +
2

3
iF(5)MNPQRG

PQR

0 = RMN − PM P̄N − P̄MPN − 1

6
(F 2

(5))MN

−1

8
(GM

PQḠNPQ + ḠM
PQGNPQ) +

1

48
gMNGPQRḠPQR (2.3)

The fermionic fields are the dilatino λ and the gravitino ψM , both of which are complex

Weyl spinors with opposite 10-dimensional chiralities, given by Γ11λ = λ, and Γ11ψM =

– 5 –
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−ψM . The supersymmetry variations of the fermions are,

δλ = i(Γ · P )B−1ε∗ − i

24
(Γ ·G)ε

δψM = DMε+
i

480
(Γ · F(5))ΓMε− 1

96
(ΓM (Γ ·G) + 2(Γ ·G)ΓM )B−1ε∗ (2.4)

where B is the charge conjugation matrix of the Dirac-Clifford algebra.4 The BPS equations

are obtained by setting δλ = δψM = 0.

The Bianchi identities (2.1) for the field strengths P,Q,G, F(5) can be solved in terms

of a complex scalar B; a complex 2-form potential C(2), and a real 4-form potential C(4).

The fields P and Q are expressed as follows,

P = f2dB f2 = (1− |B|2)−1

Q = f2Im (BdB̄) (2.5)

while the fields G and F(5) are conveniently expressed in terms of C(2) and C(4) with the

help of the complex field strength F(3) = dC(2),

G = f
(
F(3) −BF̄(3)

)

F(5) = dC(4) +
i

16

(
C(2) ∧ F̄(3) − C̄(2) ∧ F(3)

)
(2.6)

The scalar field B is related to the complex scalar τ and the axion χ, and dilaton φ by,

B =
1 + iτ

1− iτ
τ = χ+ ie−2φ (2.7)

The expectation value of e2φ is related to the string coupling constant.

2.2 SU(1, 1) duality symmetry

Type IIB supergravity is invariant under SU(1, 1) = SL(2,R) symmetry. This symmetry

leaves the Einstein frame metric gMN as well as the 4-form C(4) invariant, acts on the field

B by Möbius transformations, and acts on the 2-form C(2) and its complex conjugate C̄(2)

by a linear transformation,

B → Bs =
uB + v

v̄B + ū

C(2) → Cs
(2) = uC(2) + vC̄(2) (2.8)

with u, v ∈ C and |u|2 − |v|2 = 1. In this non-linear realization of SU(1, 1) on B, the field

B takes values in the coset SU(1, 1)/U(1)q, and the fermions λ and ψµ transform linearly

4Our convention for the signature of the 10-dimensional space-time metric is η = diag(− + · · ·+); the

Dirac-Clifford algebra is defined by the relations {ΓM ,ΓN} = 2ηMNI32; and the charge conjugation matrix

B is defined by the relations BB∗ = I and BΓMB−1 = (ΓM )∗. We will use the convention that repeated

indices are to be summed; complex conjugation will be denoted by bar for functions and by star for spinors;

and we will use the notation Γ ·T ≡ ΓM1···MpTM1···Mp
for the contraction of any antisymmetric tensor field

T of rank p and the Γ-matrix of the same rank.
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under the isotropy gauge group U(1)q with composite gauge field Q. The transformation

rules for the field strengths are [33],

P → P s = e2iθP

Q → Qs = Q+ dθ

G → Gs = eiθG (2.9)

where the phase θ is defined by,

eiθ =

(
vB̄ + u

v̄B + ū

) 1

2

(2.10)

The SU(1, 1) = SL(2,R) symmetry will serve as a useful guide to organize the holomorphic

data in our local solution. As is well-known, the invariance of Type IIB supergravity under

the continuous group SL(2,R) is reduced in Type IIB string theory to invariance under the

discrete SL(2,Z) S-duality symmetry, due to the charge quantization of non-perturbative

one-branes, five-branes and D-instantons. In the construction of supergravity solutions, we

will always allow for the continuous symmetry.

2.3 The AdS6 × S2 × Σ Ansatz

We seek a general Ansatz in Type IIB supergravity with the following symmetry group,

SO(2, 5)× SO(3) (2.11)

The factor SO(2, 5) requires the geometry to contain AdS6, while the factor SO(3) requires

S2, so that our space-time is given by,

AdS6 × S2 × Σ (2.12)

Here Σ stands for the remaining two-dimensional space over which the product AdS6×S2 is

warped. In order for the above space to be a Type IIB supergravity geometry, Σ must carry

an orientation as well as a Riemannian metric, and is therefore a Riemann surface, possibly

with boundary. This SO(2, 5)× SO(3)-invariant Ansatz for the metric can be written as,

ds2 = f2
6 ds

2
AdS6

+ f2
2 ds

2
S2 + ds2Σ (2.13)

where f6, f2 and ds2Σ are functions of Σ only. We introduce an orthonormal frame,

em = f6 ê
m m = 0, 1, 2, 3, 4, 5

ei = f2 ê
i i = 6, 7

ea a = 8, 9 (2.14)

where êm and êi respectively refer to the orthonormal frames for the spaces AdS6 and S2

with unit radius, and ea is an orthonormal frame for the metric on Σ. In particular, we have,

ds2AdS6
= η(6)mn ê

m ⊗ ên η(6) = diag(−+++++)

ds2S2 = δij ê
i ⊗ êj

ds2Σ = δab e
a ⊗ eb (2.15)

– 7 –
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By SO(2, 5)× SO(3)-invariance, the fields P,Q,G and F(5) are given as follows,

P = pa e
a G = ga e

a ∧ e67

Q = qa e
a F(5) = 0 (2.16)

where e67 = e6 ∧ e7. The components pa, qa, and ga are complex. Note that the Bianchi

identity for the five-form field (2.1) is automatically satisfied with this Ansatz.

3 Reducing the BPS equations

The residual supersymmetries, if any, of a configuration of purely bosonic Type IIB su-

pergravity fields are governed by the BPS equations of (2.4). Our interest is in purely

bosonic field configurations which preserve 16 independent supersymmetries given by the

AdS6×S2×Σ Ansatz of the preceding section. It will turn out that any such configuration

automatically solves the Bianchi and field equations, and thus automatically provides a

half-BPS solution to Type IIB supergravity.

In this section, we will reduce the BPS equations to the AdS6 × S2 × Σ Ansatz by

decomposing the supersymmetry parameter ε of (2.4) onto the Killing spinors of AdS6×S2.

We will expose the residual symmetries of the reduced BPS equations, and solve those

reduced equations which are purely algebraic in the supersymmetry spinor components.

This will produce simple algebraic expressions for the metric factors f2, f6 in terms of

the spinors. The remaining reduced BPS equations will then gradually be solved for the

remaining bosonic fields as well as for the residual supersymmetries in subsequent sections.

The strategy employed here is very similar to the one used in [19] and so our discussion

will closely follow that work.

3.1 Killing spinors

The Killing spinor equations on AdS6 × S2 are,5

(
∇̂m − 1

2
η1 γm ⊗ I2

)
χη1,η2
α = 0

(
∇̂i −

i

2
η2 I8 ⊗ γi

)
χη1,η2
α = 0 (3.1)

where ∇̂m and ∇̂i stand for the covariant spinor derivatives respectively on the spaces AdS6

and S2 with unit radius. Recall that m, i, and a are all frame indices. The spinors χη1,η2
α

are 16-dimensional, and the parameters η1 and η2 can take the values ±1. The solutions

to these equation are 4-fold degenerate for each value of η1, η2, and this degeneracy will be

labeled by the index α = 1, 2, 3, 4. The chirality matrices act as follows,

(
γ(1) ⊗ I2

)
χη1,η2
α = χ−η1,η2

α(
I6 ⊗ γ(2)

)
χη1,η2
α = χη1,−η2

α (3.2)

5The decomposition of the 10-dimensional Dirac-Clifford matrices under the reduction to the AdS6×S2×

Σ Ansatz, and the details of the Killing spinor equations, are relegated to appendices A and B respectively.
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The way these equations should be understood is as follows. We begin with η1 = η2 = +,

and pick a basis χ++
α for the four-dimensional vector space of spinors for fixed η1, η2 such

that the action γ(1) and γ(2) is diagonal. Then, we can simply define the basis for χη1,η2
α

for the remaining three values of η1, η2 by the action of the chirality matrices above.

Since ε∗ appears in the fermion variations of (2.4), we also need to understand how to

express the complex conjugate spinor in this basis. If χη1,η2
α satisfies (3.1), then by complex

conjugating the entire first equation and using (γm)∗ = B(1)γmB−1
(1) , we conclude that

B−1
(1) ⊗ I2(χ

η1,η2
α )∗ satisfies the same equation, with the same values of η1, η2. Proceeding

analogously for the second equation, we conclude that I6 ⊗ B−1
(2)(χ

η1,η2
α )∗ also satisfies the

same equation, with the same values of η1, η2. As a result, we must have the following

linear relation,

(B−1
(1) ⊗B−1

(2))(χ
η1,η2
α )∗ =

4∑

β=1

Mη1,η2
αβ χη1,η2

β (3.3)

for some matrix Mαβ for each pair η1, η2.

We will now show that one may choose a basis for the Killing spinors χη1,η2
α in which

M = I. Iterating the complex conjugation, we conclude that (Mη1,η2)∗(Mη1,η2) = I, for all

values of η1, η2. Specializing first to η1 = η2 = +, we have a single matrix M+,+ satisfying

(M+,+)∗(M+,+) = I. Now every such matrix may be rotated to the identity by a general

linear complex-valued 4× 4 matrix U , using the relation M+,+ = (U∗)−1 U . An easy way

to construct U is as follows. An arbitrary invertible complex matrix M in GL(4,C) may be

written as an exponential, M = exp(iH) of a complex matrix H. Given M , the matrix H

is not unique. The condition M∗M = I requires H to be real-valued. Thus, we choose the

solution U = exp
(
i
2H
)
to the equation M+,+ = (U∗)−1 U , and the relation for η1 = η2 = +

may be diagonalized as follows,

(B−1
(1) ⊗B−1

(2))(χ
+,+
α )∗ = χ+,+

α (3.4)

for α = 1, 2, 3, 4. For the other values of η1, η2 we use (3.2) to express χ
η1,η2
α in terms of χ+,+

α ,

χ+,+
α = (γ(1) ⊗ I2)χ

−,+
α

= (I6 ⊗ γ(2))χ
+,−
α

= (γ(1) ⊗ γ(2))χ
−,−
α (3.5)

Using the fact that γ(1) commutes with B(1), while γ(2) anti-commutes with B(2), we find,

(B−1
(1) ⊗B−1

(2))(χ
η1,η2
α )∗ = η2 χ

η1,η2
α (3.6)

for all values of η1, η2, α. Since this decomposition is now canonical in terms of the degen-

eracy index α, we will no longer indicate it explicitly.

3.2 Decomposing onto Killing spinors

An arbitrary 32-component complex spinor ε may be decomposed onto the above Killing

spinors as follows,

ε =
∑

η1,η2=±

χη1,η2 ⊗ ζη1,η2 (3.7)
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where ζη1,η2 is a complex 2-component spinor for each η1, η2, and the 4-fold degeneracy has

not been indicated explicitly. As a supersymmetry generator in Type IIB, the spinor ε must

be of definite chirality Γ11ε = −ε, which places the following chirality requirements on ζ,

γ(3)ζ−η1,−η2 = −ζη1,η2 (3.8)

The charge conjugate spinor is given by,

B−1ε∗ = iB−1
(1) ⊗ γ(2)B

−1
(2) ⊗B−1

(3)

∑

η1,η2

(χη1,η2)∗ ⊗ ζ∗η1,η2 (3.9)

Since γ(2) anticommutes with B(2), we obtain,

B−1ε∗ = iI8 ⊗ γ(2) ⊗ I2
∑

η1,η2

(
B−1

(1) ⊗B−1
(2)(χ

η1,η2)∗
)
⊗
(
B−1

(3)ζ
∗
η1,η2

)
(3.10)

It will be convenient to denote the result as follows,

B−1ε∗ =
∑

η1,η2

χη1,η2 ⊗ ⋆ζη1,η2 ⋆ ζη1,η2 = −iη2σ
2ζ∗η1,−η2 (3.11)

As in [19] we will use the τ matrix notation introduced originally in [29] in order to com-

pactly express the action of the various γ matrices on ζ. Defining τ (ij) = τ i ⊗ τ j with

i, j = 0, 1, 2, 3, τ0 the identity matrix and τ i with i = 1, 2, 3 the standard Pauli matrices,

we can write,

(τ (ij)ζ)η1,η2 ≡
∑

η′
1
,η′

2

(τ i)η1η′1(τ
j)η2η′2ζη′1η′2 (3.12)

3.3 Symmetries of the reduced BPS equations

Using the decomposition of ε into Killing spinors and the streamlined notation of the τ

matrices we can finally write down the BPS equations in a reduced form. The reduced

dilatino equation is,

0 = −4paγ
aσ2ζ∗ + gaτ

(03)γaζ (3.13)

while the reduced gravitino equations take the following form,

(m) 0 = − i

2f6
τ (21)ζ +

Daf6
2f6

γaζ − 1

16
gaτ

(03)γaσ2ζ∗ (3.14)

(i) 0 =
1

2f2
τ (02)ζ +

Daf2
2f2

γaζ +
3

16
gaτ

(03)γaσ2ζ∗

(a) 0 =

(
Da +

i

2
ω̂aσ

3 − i

2
qa

)
ζ +

3

16
gaτ

(03)σ2ζ∗ − 1

16
gbτ

(03)γa
bσ2ζ∗

The derivative Da is defined with respect to the frame ea, so that the total differential d

takes the form d = eaDa, while the U(1)-connection with respect to frame indices is ω̂a.

Before we move on to solving these equations, let us briefly look at their symmetries.

The axion/dilaton field B transforms non-linearly under SU(1, 1) of Type IIB supergravity

and takes values in the coset SU(1, 1)/U(1)q. Global SU(1, 1) transformations on the fields
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are accompanied by local U(1)q gauge transformations, given in (2.9), and which induce

the following symmetry transformations on the fields of the reduced BPS equations,

U(1)q ζ → eiθ/2 ζ

qa → qa +Daθ

pa → e2iθ pa

ga → eiθ ga (3.15)

The reduced BPS equations are also invariant under the following discrete symmetries,

ζ → I ζ = −τ (11) σ3 ζ

ζ → J ζ = τ (32) ζ (3.16)

which leave all the bosonic fields invariant. Both I and J commute with U(1)q. Finally,

complex conjugation is naturally combined with U(1)q, and we have,

ζ → K ζ = eiθ τ (22) σ2 ζ∗

qa → K qa = −qa + 2Daθ

pa → K pa = e4iθ p̄a

ga → K ga = −e2iθ ḡa (3.17)

The chirality requirement of Type IIB restricts the spinor ζ to the subspace,

I ζ = −τ (11) σ3 ζ = ζ (3.18)

In the next subsection, we will investigate the restrictions to the eigen-spaces of J and

K imposed by the reduced BPS equations. The symmetries I,J ,K commute with one

another, so that we may diagonalize them simultaneously, and restrict to any one of their

common subspaces.

3.4 Restricting to a single subspace of J

We will assume that pa does not vanish identically. We now use the dilatino equation to

derive a first set of bilinear relations. Multiply the dilatino equation to the left by ζtTσ2

and choose the τ -matrix T so that the flux part vanishes,

gaζ
tTτ (03)σ2γaζ = 0 (3.19)

Since σ2γa is symmetric for a = 8, 9, this condition will require T to satisfy the condition

that the product Tτ (03) is anti-symmetric, which has the following solutions,

T ∈ T = {τ (01), τ (11), τ (31), τ (20), τ (22), τ (23)} (3.20)

The equation implied on pa is then given by the complex conjugate of,

p̄aζ
†Tγaζ = 0 (3.21)
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When pa 6= 0, we can draw from this equation only an orthogonality relation. To obtain a

full vanishing condition, we make further use of the chirality condition, and obtain,

p̄aζ
†Tτ (11)γaσ3ζ = 0 (3.22)

We obtain such a relation when both T and Tτ (11) belong to T , which is the case for only

a single pair, namely T = τ (20), τ (31). As a result, we have the equivalent relations,

ζ†τ (20)γaζ = ζ†τ (31)γaζ = 0 (3.23)

Next, we analyze the gravitino equations. We multiply equations (m) and (i) of (3.14)

on the left by ζ†Tσp for p = 0, 3, and obtain cancellation of the last term when Tτ (03) is

antisymmetric (which is the same condition we had for the dilatino equation),

0 = − i

2f6
ζ†Tτ (21)σpζ +

Daf6
2f6

ζ†Tσpγaζ

0 =
1

2f2
ζ†Tτ (02)σpζ +

Daf2
2f2

ζ†Tσpγaζ (3.24)

In view of (3.23), the second term will cancel when T = τ (20) and T = τ (31), so that we

obtain the following relations from the remaining cancellation of the first term,

ζ†τ (01)σpζ = 0 p = 0, 3

ζ†τ (22)σpζ = 0 (3.25)

and their chiral conjugates, obtained by using the chirality condition τ (11)σ3ζ = −ζ,

ζ†τ (10)σpζ = 0 p = 0, 3

ζ†τ (33)σpζ = 0 (3.26)

Next, we use the general result of [19] that the bilinear equation ζ†Mζ = 0 is solved by

projecting ζ onto a subspace with the help of a projection matrix P that anti-commutes

with M . This result was established for the case of 2-dimensional M , which is in fact the

case also here by reduction. Thus, we must find a projector P which commutes with I and

with the following properties,

[P, τ (11)σ3] = {P, τ (01)σp} = {P, τ (22)σp} = 0 (3.27)

The solutions to these conditions are τ (32) and τ (23), possibly multiplied by a factor of σ3.

These four possibilities are pairwise equivalent under the chirality relation. Now the pro-

jector P = τ (32) precisely corresponds to the symmetry J , so imposing a restriction on the

spinor space by this operator is the only consistent restriction. Therefore, we will impose,

τ (32)ζ = νζ ν = ±1 (3.28)

which solves all the above bilinear relations. One must pick one value of ν or the other in

the projection.
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Imposing the chirality relation (3.18), τ (11) σ3 ζ = −ζ, as well as the projector (3.28)

we just derived, we may solve for the relations between the components of ζ. Denoting the

components by ζabc, which take values ±, the a, b components labels the τ -matrix basis,

while c labels the chirality basis in which σ3 is diagonal. We then have two independent

complex-valued components which we denote by α and β, and which are defined as follows,

ᾱ = ζ+++ = −ζ−−+ = −iνζ+−+ = +iνζ−++

β = ζ−−− = +ζ++− = −iνζ−+− = −iνζ+−− (3.29)

To reduce the equations to a basis of complex frame indices z, z̄, we will use the following

conventions,

ez =
1

2

(
e8 + ie9

)
γz =

1

2

(
γ8 + iγ9

)
=

(
0 1

0 0

)

ez̄ =
1

2

(
e8 − ie9

)
γ z̄ =

1

2

(
γ8 − iγ9

)
=

(
0 0

1 0

)
(3.30)

In particular, we have,

δzz̄ = 2 δzz̄ =
1

2
(3.31)

It will also be convenient to have the following results of γa
b σ2,

γz
z σ2 = −γz̄

z̄ σ2 = iσ1 (3.32)

3.5 The reduced BPS equations in component form

Using the solution (3.29) we found for the projection condition on the preserved supersym-

metries, the reduced dilatino equations become,

4ipz α− gz β = 0

4ipz̄ β̄ + gz̄ ᾱ = 0 (3.33)

The algebraic gravitino equations are,

1

2f6
ᾱ+

Dzf6
2f6

β − i

16
gz α = 0

− 1

2f6
β +

Dz̄f6
2f6

ᾱ+
i

16
gz̄ β̄ = 0

ν

2f2
ᾱ+

Dzf2
2f2

β +
3i

16
gz α = 0

ν

2f2
β +

Dz̄f2
2f2

ᾱ− 3i

16
gz̄ β̄ = 0 (3.34)
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Finally, the component decomposition of the differential equations is as follows,

(
Dz +

i

2
ω̂z −

i

2
qz

)
ᾱ− i

4
gzβ̄ = 0

(
Dz −

i

2
ω̂z −

i

2
qz

)
β +

i

8
gzα = 0

(
Dz̄ +

i

2
ω̂z̄ −

i

2
qz̄

)
ᾱ− i

8
gz̄β̄ = 0

(
Dz̄ −

i

2
ω̂z̄ −

i

2
qz̄

)
β +

i

4
gz̄α = 0 (3.35)

In addition, we have the complex conjugate equations to all of the equations above. Note

that since G and P are complex-valued, we have in general (gz)
∗ 6= gz̄ and (pz)

∗ 6= pz̄.

3.6 Determining the radii f6, f2 in terms of the spinors

We begin with the two equations that involve Dzf6,

1

2f6
ᾱ+

Dzf6
2f6

β − i

16
gz α = 0

− 1

2f6
β̄ +

Dzf6
2f6

α− i

16
(gz̄)

∗ β = 0 (3.36)

To eliminate the contributions from the first term in each equation, we add the first line

times β̄ to the second line times ᾱ, and we obtain,

Dzf6
2f6

(αᾱ+ ββ̄) =
i

16
gzαβ̄ +

i

16
(gz̄)

∗ᾱβ (3.37)

Proceeding analogously for Dzf2, we have,

ν

2f2
ᾱ+

Dzf2
2f2

β +
3i

16
gz α = 0

ν

2f2
β̄ +

Dzf2
2f2

α+
3i

16
(gz̄)

∗ β = 0 (3.38)

To eliminate the contributions from the first term in each equation, we add the first line

times −β̄ to the second line times ᾱ, and we obtain,

Dzf2
2f2

(αᾱ− ββ̄) =
3i

16
gzαβ̄ − 3i

16
(gz̄)

∗ᾱβ (3.39)

These combinations suggest that we should evaluate the covariant derivatives Dz(αᾱ±ββ̄)

out of the differential equations (3.35) for α, β, ᾱ, β̄, and we find,

Dz(αᾱ+ ββ̄) =
i

8
gzαβ̄ +

i

8
(gz̄)

∗ᾱβ

Dz(αᾱ− ββ̄) =
3i

8
gzαβ̄ − 3i

8
(gz̄)

∗ᾱβ (3.40)
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We may now eliminate all flux dependences between (3.37), (3.39) and (3.40), and we find,

Dzf6
f6

(αᾱ+ ββ̄) = Dz(αᾱ+ ββ̄)

Dzf2
f2

(αᾱ− ββ̄) = Dz(αᾱ− ββ̄) (3.41)

Given that the arguments of the derivatives are real functions, we conclude,

f6 = c6
(
αᾱ+ ββ̄

)

f2 = c2
(
αᾱ− ββ̄

)
(3.42)

for constant c2, c6. In obtaining the equation for f2 from the last equation in (3.41), we

have assumed that |α|2 − |β|2 does not vanish identically.

3.7 Solving the remaining algebraic gravitino equations

To obtain the results of the previous subsection, we have taken only pairwise linear com-

binations of the algebraic gravitino equations. Here, we take the orthogonally conjugate

pairwise linear combinations, multiplying the first equation by ᾱ and the second by −β.

The determinant of the two linear combinations is αᾱ+ ββ̄ 6= 0, so that the four resulting

bilinear equations are guaranteed to be equivalent to the original four algebraic gravitino

equations. The terms in Dzf6 and Dzf2 cancel out, and we are left with,

1

2c6
− i

16
gzα

2 +
i

16
(gz̄)

∗β2 = 0

ν

2c2
+

3i

16
gzα

2 − 3i

16
(gz̄)

∗β2 = 0 (3.43)

The last equation may be simplified with the help of the first and yields,

c2 = −ν

3
c6 (3.44)

Recall that ν can take the values ν = ±1.

3.8 Summary of remaining equations

We may summarize the remaining equations as follows. The dilatino equations are the

only ones involving pz, and may be viewed as determining pz,

4ipz α− gz β = 0

4ipz̄ β̄ + gz̄ ᾱ = 0 (3.45)

Next, we have the radii in terms of the spinors,

f6 = c6
(
αᾱ+ ββ̄

)

f2 = −ν

3
c6
(
αᾱ− ββ̄

)
(3.46)
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and the algebraic relation between the spinors and the fluxes,

1

2c6
− i

16
gzα

2 +
i

16
(gz̄)

∗β2 = 0 (3.47)

and finally the differential equations,

(
Dz −

i

2
ω̂z +

i

2
qz

)
α+

i

8
(gz̄)

∗β = 0

(
Dz −

i

2
ω̂z −

i

2
qz

)
β +

i

8
gz α = 0

(
Dz +

i

2
ω̂z −

i

2
qz

)
ᾱ− i

4
gz β̄ = 0

(
Dz +

i

2
ω̂z +

i

2
qz

)
β̄ − i

4
(gz̄)

∗ᾱ = 0 (3.48)

along with their complex conjugates.

4 Local solutions to the BPS equations

In the previous section the BPS equations were reduced and solved for the radii f6, f2.

The remaining equations are all complex-valued and are organized as follows: we have one

algebraic relation (3.47) and four differential equations (3.48) for the spinor components

α, β, the reduced flux fields gz, g
∗
z and their complex conjugates. Two further algebraic

equations give the axion-dilaton field pa in terms of the spinors and the fluxes. In this

section we will solve completely for the local solutions to this system. Specifically, we will

derive expressions for all supergravity fields that satisfy the BPS equations, the Bianchi

identities, and the supergravity field equations, in terms of two locally holomorphic func-

tions A+,A− on Σ. We will discuss the conditions on the local solutions imposed by the

proper Minkowski signature of the metric and the absence of singularities in section 5.

The construction of the local solution is involved and proceeds in a number of steps

which we will now outline, and carry out in this section in detail. First, we will eliminate the

reduced flux fields gz and gz̄ in favor of the reduced axion-dilaton fields pz, pz̄ and similarly

for their complex conjugates. Second, we will use the expression for the reduced axion-

dilaton fields pz, pz̄, qz, qz̄ in terms of ρ and B to decouple and integrate one pair of the dif-

ferential equations, and obtain the spinor components ᾱ, β̄ in terms of two holomorphic one-

forms κ± as well as B and ρ. Third, we will eliminate the spinor components α, β in favor

of κ±, ρ, and B as well, and thereby produce three nonlinear partial differential equations

for the complex field B and the real field ρ. Being non-linear, these equations are not easy

to solve, and give rise to a situation reminiscent of [19]. However, in a fourth step we will

identify a sequence of two changes of variables which decouples these non-linear differential

equations. In a final fifth step, we will solve all decoupled equations in terms of two holomor-

phic functionsA± which are related to κ± by κ± = ∂wA±. For the reader who wishes to skip

this entire derivation we have summarized the final result in the introduction to section 5.2.
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4.1 Eliminating the reduced flux fields (step 1/5)

First, we eliminate the reduced flux fields gz, gz̄ and their complex conjugates in favor of

pz, pz̄ and their complex conjugates, using the dilatino BPS equations (3.45),

gz = 4ipz
α

β
(gz̄)

∗ = 4i(pz̄)
∗ β

α
(4.1)

The algebraic relation (3.47) becomes,

pz
α3

β
− (pz̄)

∗ β
3

α
+

2

c6
= 0 (4.2)

The differential equations (3.48) take the following form,

(
Dz −

i

2
ω̂z +

i

2
qz

)
α− 1

2
(pz̄)

∗ β
2

α
= 0

(
Dz −

i

2
ω̂z −

i

2
qz

)
β − 1

2
pz

α2

β
= 0

(
Dz +

i

2
ω̂z −

i

2
qz

)
ᾱ+ pz

αβ̄

β
= 0

(
Dz +

i

2
ω̂z +

i

2
qz

)
β̄ + (pz̄)

∗ ᾱβ

α
= 0 (4.3)

Equations (4.2) and (4.3) are the remaining relations to be solved. The integrability condi-

tions on the differential equations reproduce the Bianchi identities for the fields P and Q.

4.2 Integrating the first pair of differential equations (step 2/5)

In the second step, we show that the first two equations of (4.3) can be solved in terms of

holomorphic functions. Multiplying the first equation of (4.3) by α and the second equation

of (4.3) by β, we get equivalently,

(Dz − iω̂z + iqz)α
2 − (pz̄)

∗ β2 = 0

(Dz − iω̂z − iqz)β
2 − pz α

2 = 0 (4.4)

We switch to conformally flat complex coordinates (w, w̄) on Σ, such that the metric reads

ds2Σ = 4ρ2dwdw̄ and we have,

ez = ρdw Dz = ρ−1∂w ω̂z = iρ−2∂wρ

ez̄ = ρdw̄ Dz̄ = ρ−1∂w̄ ω̂z̄ = −iρ−2∂w̄ρ (4.5)

The extra factor of ρ−1 in the derivatives Dz, Dz̄ is due to z, z̄ being frame indices. We

then express pz and qz in terms of the complex field B using (2.5), to recast (4.4) as follows,

∂w(ρα
2) = −1

2
f2
(
B∂wB̄ − B̄∂wB

)
ρα2 + f2(∂wB̄)ρβ2

∂w(ρβ
2) = +

1

2
f2
(
B∂wB̄ − B̄∂wB

)
ρβ2 + f2(∂wB)ρα2 (4.6)
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By taking suitable linear combinations it is straightforward to verify that the following two

equations are equivalent to (4.6),

∂w

(
ln{ρ(α2 − B̄β2)}+ ln f

)
= 0

∂w

(
ln{ρ(Bα2 − β2)}+ ln f

)
= 0 (4.7)

These equations are solved in terms of two independent holomorphic 1-forms κ±, as follows,

ρf
(
α2 − B̄β2

)
= κ̄+

ρf
(
β2 −Bα2

)
= κ̄− (4.8)

Inverting the relation (4.8), we get expressions for the spinor components α, β, and their

complex conjugates ᾱ, β̄,

ρα2 = f(κ̄+ + B̄κ̄−) ρᾱ2 = f(κ+ +Bκ−)

ρβ2 = f(Bκ̄+ + κ̄−) ρβ̄2 = f(B̄κ+ + κ−) (4.9)

The right side of all four equations involves only the holomorphic data κ± and the B-field

and their complex conjugates. It remains to solve for the ρ and B-fields.

4.3 Solving the second pair of differential equations (step 3/5)

In the third step we express the third and fourth equation of (4.3) in terms of B, ρ and the

local complex coordinates giving,

(
∂w − 2(∂w ln ρ)− f2B∂wB̄

) (
fρᾱ2

)
+ 2f2(∂wB)fρ

αᾱβ̄

β
= 0

(
∂w − 2(∂w ln ρ)− f2B̄∂wB

) (
fρβ̄2

)
+ 2f2(∂wB̄)fρ

ᾱββ̄

α
= 0 (4.10)

Next, we compute the derivatives of ᾱ and β̄ using (4.3). After taking suitable linear

combinations, with coefficients (B̄, 1) and (1, B) of the resulting equations, we find the

following equivalent system,

−(∂wB̄)fρᾱ2 − 2(∂wB̄)ρf
ᾱββ̄

α
+

2

f2
(∂w ln ρ)fρβ̄2 = B̄∂wκ+ + ∂wκ−

−(∂wB)fρβ̄2 − 2(∂wB)ρf
αᾱβ̄

β
+

2

f2
(∂w ln ρ)fρᾱ2 = ∂wκ+ +B∂wκ− (4.11)

One now eliminates the spinor components using (4.9) in terms of B, f and ρ, and we

obtain, after some simplifications,

2∂w ln ρ− f2(∂wB̄)
κ+ +Bκ−
B̄κ+ + κ−

− 2f2(∂wB̄) e+iϑ =
B̄∂wκ+ + ∂wκ−

B̄κ+ + κ−

2∂w ln ρ− f2(∂wB)
B̄κ+ + κ−
κ+ +Bκ−

− 2f2(∂wB) e−iϑ =
∂wκ+ +B∂wκ−

κ+ +Bκ−
(4.12)
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Here we have used the following abbreviation for the phase angle ϑ,

e2iϑ =

(
κ+ +Bκ−
κ̄+ + B̄κ̄−

) (
Bκ̄+ + κ̄−
B̄κ+ + κ−

)
(4.13)

Note that by subtracting the two equations (4.12) the dependence on the metric factor ρ

can be eliminated and one arrives at an equation for B and B̄ only in terms of κ±,

f4(∂wB)(B̄κ+ + κ−)
2 − f4(∂wB̄)(κ+ +Bκ−)

2

+2f4(κ+ +Bκ−)(B̄κ+ + κ−)
(
(∂wB) e−iϑ − (∂wB̄) e+iϑ

)

= κ+∂wκ− − κ−∂wκ+ (4.14)

The equations (4.12) are of course supplemented by their complex conjugates. While

eq. (4.14) seemingly depends on both holomorphic one-forms κ+ and κ−, in fact it depends

only on their ratio. Assuming that κ− does not vanish identically, we define the holomorphic

or meromorphic function λ by,

λ =
κ+
κ−

(4.15)

it is straightforward to show that (4.14) depends on λ alone and takes the form,

f4(∂wB)(B̄λ+ 1)2 − f4(∂wB̄)(λ+B)2

+2f4(λ+B)(B̄λ+ 1)
(
(∂wB)e−iϑ − (∂wB̄)eiϑ

)
= −∂wλ (4.16)

where the phase of (4.13) is now given by the expression,

e2iϑ =
(λ+B)(Bλ̄+ 1)

(λ̄+ B̄)(B̄λ+ 1)
(4.17)

The last equation we have to deal with is the algebraic relation (4.2). As before, it

may be expressed in terms of B, ρ and the local complex coordinates giving,

f2(∂wB)
ρα3

β
− f2(∂wB̄)

ρβ3

α
+

2ρ2

c6
= 0 (4.18)

Eliminating ρα2 and ρβ2 using (4.9), we obtain,

f3 (∂wB)
(κ̄+ + B̄κ̄−)

3

2

(Bκ̄+ + κ̄−)
1

2

− f3 (∂wB̄)
(Bκ̄+ + κ̄−)

3

2

(κ̄+ + B̄κ̄−)
1

2

+
2ρ2

c6
= 0 (4.19)

Its dependence on κ± cannot be reduced to a dependence solely on λ since the one-form

κ̄− is needed to combine with ρ2 to produce an equation in which all terms transform as

(1, 0) forms, and we obtain,

f3 (∂wB)
(λ̄+ B̄)

3

2

(Bλ̄+ 1)
1

2

− f3 (∂wB̄)
(Bλ̄+ 1)

3

2

(λ̄+ B̄)
1

2

+
2ρ2

c6 κ̄−
= 0 (4.20)

In summary, we have reduced the remaining BPS equations and expressed them in terms of

complex differential equations given by (4.12) and (4.19) along with their complex conjugate

equations. We will show in appendix D that these equations imply that the Bianchi identi-

ties are satisfied, and that there are hence no more constraints to take into account. Inte-

grating these equations will give the complex scalar field B and the metric field ρ in terms

of the holomorphic one forms κ±. In the next section we will perform several variable redef-

initions which bring the equations into a form where they can be decoupled and integrated.
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4.4 Decoupling by changing variables (step 4/5)

In this subsection, we will perform two consecutive changes of variables to decouple the

remaining equations. The corresponding choices will be motivated first and then carried

out on the equations.

4.4.1 First change of variables, from B to Z

A first change of variables replaces B by a complex field Z and is designed to parametrize

the phase eiϑ in (4.16) without the square root required from its definition in (4.17). The

following rational change of variables eliminates B in terms of a complex function Z by,

Z2 =
λ+B

Bλ̄+ 1
B =

Z2 − λ

1− λ̄Z2
(4.21)

and will allow us to express eiϑ and f2 as rational functions of Z and its complex conjugate,

eiϑ =
Z

Z̄

(
1− λZ̄2

1− λ̄Z2

)
f2 =

(1− λZ̄2)(1− λ̄Z2)

(1− |λ|2)(1− |Z|4) (4.22)

The derivatives of B and B̄ take the following form,

∂wB =
1− |λ|2

(1− λ̄Z2)2
∂wZ

2 − ∂wλ

1− λ̄Z2

∂wB̄ =
1− |λ|2

(1− λZ̄2)2
∂wZ̄

2 +
Z̄2(Z̄2 − λ̄)∂wλ

(1− λZ̄2)2
(4.23)

Implementing this change of variables on equation (4.16) produces the following form,

(2 + 4|Z|2)∂wZ − Z2(4 + 2|Z|2)∂wZ̄

=
2Z̄(1 + |Z|2 + |Z|4)− λ̄Z(1 + 4|Z|2 + |Z|4)

1− |λ|2 ∂wλ (4.24)

Equation (4.16) was just one linear combination of the two equations in (4.12), given by

the difference of the two equations (4.12). We will take the first equation of (4.12) as the

complimentary independent equation, and eliminate its B-dependence in favor of Z,

∂w ln

(
ρ2

κ−κ̄−

|1− Z2λ̄|(1− |Z|2)
f |Z|(1− |λ|2)(1 + |Z|2)

)
=

1

2
∂w ln

Z

Z̄
− Z̄

Z

(
∂wλ

1− |λ|2
)

(4.25)

Finally, eliminating B in favor of Z in the algebraic flux equation (4.20) as well, we obtain,

(1− |λ|2)∂w
(
Z2 + Z̄−2

1− |λ|2
)
− 2∂wλ

1− |λ|2 + 2ρ̂2κ−
|Z|
Z̄3

(1 + |Z|2)2 = 0 (4.26)

It remains to solve the system of equations (4.24), (4.25) and (4.26).
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4.4.2 Second change of variables, from Z to R,ψ

A second change of variables is inspired by the form of equation (4.25), in which the norm

of Z and its phase enter in distinct parts of the equation. We express the complex field Z

in terms of two real variables, the absolute value R of Z, and its phase ψ,

Z2 = Reiψ (4.27)

It will also be useful to change variables from ρ to ρ̂ in the following way,

ρ̂2 =
ρ2

κ−κ̄−

|1− Z2λ̄|(1− |Z|2)
f |Z|(1− |λ|2)(1 + |Z|2) (4.28)

In terms of these variables (4.25) takes the form,

∂w ln ρ̂2 − i

2
∂wψ + e−iψ ∂wλ

1− |λ|2 = 0 (4.29)

while (4.24) becomes,

(1−R2)
∂wR

R
+ (1 + 4R+R2)

(
i∂wψ +

λ̄∂wλ

1− |λ|2
)
− 2e−iψ(1 +R+R2)

1− |λ|2 ∂wλ = 0 (4.30)

and (4.26) becomes,

(
R− 1

R

)
∂wR+ (R2 + 1)

(
i∂wψ +

λ̄∂wλ

1− |λ|2
)
− 2R∂wλ

1− |λ|2 e
−iψ + 2ρ̂2κ−e

iψ/2(1 +R)2 = 0

(4.31)

The three equations (4.29), (4.30), and (4.31) are the basic starting point for the complete

solution of the full system of reduced BPS equations.

4.4.3 Decoupling the equations for ψ and ρ̂2

Adding (4.30) and (4.31) cancels the terms proportional to ∂wR. Remarkably, and the

secret to decoupling the equations, is now that the entire R-dependence of this sum resides

in an overall multiplicative factor of (1 +R)2. Omitting this factor, the sum becomes,

2i∂wψ +
2λ̄∂wλ

1− |λ|2 − 2∂wλ

1− |λ|2 e
−iψ + 2ρ̂2κ−e

iψ/2 = 0 (4.32)

Together with (4.29), which we repeat here for convenience,

∂w ln ρ̂2 − i

2
∂wψ +

∂wλ

1− |λ|2 e
−iψ = 0 (4.33)

equation (4.32) forms a system of equations for only two of the three real fields of the

system, namely ψ and ρ̂2. This system is very similar to the one solved in [19], and we

will approach it with similar methods. We note in passing that the integrability condition

on (4.33) viewed as an equation for ρ̂2 as a function of ψ and given λ is given by,

2∂w∂w̄ψ + ∂w̄

(
2i∂wλ

1− |λ|2 e
−iψ

)
− ∂w

(
2i∂w̄λ̄

1− |λ|2 e
+iψ

)
= 0 (4.34)
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which is a conformal invariant field equation for ψ of the sine-Gordon Liouville type [35],

very similar to equation (1.3) of [19]. The equation for R will be dealt with in section 4.5.2.

Adding twice (4.33) to (4.32) eliminates the term proportional to e−iψ, and we obtain,

∂w ln ρ̂2 +
i

2
∂wψ − ∂w ln(1− |λ|2) + ρ̂2κ−e

iψ/2 = 0 (4.35)

Clearly, this equation involves only the following specific complex combination of ρ̂2 and ψ,

ξ =
1

ρ̂2 eiψ/2
(4.36)

in terms of which we may express (4.35) as follows,

∂w

(
ξ(1− |λ|2)

)
= κ−(1− |λ|2) = κ− − κ+λ̄ (4.37)

where we have used the relation κ+ = λκ−.

With the help of this sequence of changes of variables, the integrable structure of

the system of equations (4.24), (4.25) and (4.26) has been brought out clearly. Indeed,

equation (4.37) involves only the field ξ, which is the particular combination of ρ̂ and ψ used

in (4.36). Having solved for ξ, either equation (4.33) or (4.35) becomes an equation for only

a single variable, either ρ̂ or ψ, and may be solved. Finally, having ρ̂ and ψ, equation (4.30)

becomes an equation for R only, and we will see below that it may be solved as well.

4.5 Solving for ψ, ρ̂2 and R in terms of A± (step 5/5)

Having decoupled the reduced BPS equations in the preceding subsection, we will solve the

decoupled equations in the present section. To do so, we begin by solving equation (4.37)

for ξ, and then obtain ψ, ρ̂2 and R. Introducing locally holomorphic functionsA± such that,

∂wA± = κ± (4.38)

the function λ may be expressed in terms of A± by,

λ =
∂wA+

∂wA−
(4.39)

Given the one-forms κ±, the functions A± are unique up to an additive constant for each

function. Viewed as equations for the supergravity fields in terms of A±, the reduced BPS

equations are therefore invariant under shifting the holomorphic functions A± by arbitrary

complex constants.

4.5.1 Solving for ξ

In terms of A± equation (4.37) may be recast in the following form,

∂w

(
ξ(1− λλ̄)−A− +A+λ̄

)
= 0 (4.40)

Equation (4.40) is solved in terms of an arbitrary locally holomorphic function A0 by,

ξ(1− λλ̄) = A− −A+λ̄+ Ā0 (4.41)
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which provides the general solution to (4.37). To determine A0 in terms of A±, we en-

force (4.33) on the result (4.41). Upon eliminating ξ using (4.41), we find,

(1− λλ̄)∂wA0 = (∂wλ)
(
Ā+ + Ā0 +A− − λ̄(A+ +A0 + Ā−)

)
(4.42)

To proceed we change variables from the holomorphic function A0 to a new holomorphic

function ϕ, related as follows, A0 = −A+ + λ(A− +ϕ). The equation for ϕ then becomes,

(1− λλ̄)∂wϕ+ ϕ∂w lnλ = λ̄ϕ̄ ∂w lnλ (4.43)

If λ is constant, then ϕ must be constant as well. Assuming henceforth that ∂wλ 6= 0, we

take the derivative of the entire equation with respect to w̄, and regroup terms according

to their holomorphicity properties,

− λ∂wϕ

∂w lnλ
=

∂w̄(λ̄ϕ̄)

∂w̄λ̄
(4.44)

The left side is holomorphic, while the right side is anti-holomorphic, and hence both sides

must equal a complex constant α, so that we find,

λ∂wϕ = −α∂w lnλ

∂w(λϕ) = ᾱ ∂wλ (4.45)

Eliminating the derivative ∂wϕ between both equations gives,

ϕ =
α

λ
+ ᾱ (4.46)

Assembling all these results gives,

ξ(1− λλ̄) = (A− − Ā+ + ᾱ) + λ̄(Ā− −A+ + α) (4.47)

Recalling that the functions A± were defined only up to additive constant shifts, we may

absorb the constant α into A±, so that our final expression for the solution becomes,

ξ =
L

1− |λ|2 (4.48)

where L is given by,

L = (A− − Ā+) + λ̄(Ā− −A+) (4.49)

Note that ρ̂ and ψ are directly determined by ξ using equation (4.36).

4.5.2 Solving for R

To solve for R, we start from equation (4.30) and eliminate the term proportional to e−iψ

using (4.29). We then divide the resulting equation by R, and find,

0 =

(
1

R2
− 1

)
∂wR+

(
R+

1

R
+ 4

)(
i∂wψ − ∂w ln(1− |λ|2)

)

+

(
R+

1

R
+ 1

)
(2∂w ln ρ̂2 − i∂wψ) (4.50)
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Changing variables from R to W defined by,

W = R+
1

R
(4.51)

renders equation (4.50) linear in W , with an inhomogeneous part,

∂wW − 2(W + 1)∂w ln ρ̂2 + (W + 1)∂w ln(1− λλ̄) = 3i∂wψ − 3∂w ln(1− λλ̄) (4.52)

The homogeneous equation is solved straightforwardly by,

W + 1 = W0
ρ̂4

1− λλ̄
(4.53)

To solve the homogeneous equation, W0 is an arbitrary constant which is required to be

real for real W . To find a particular solution to the inhomogeneous equation, we let W0

be a function, which then must satisfy,

∂wW0 =
1− λλ̄

ρ̂4
3i∂wψ − 3

∂w(1− λλ̄)

ρ̂4
(4.54)

Recasting the equation in terms of the variable ξ = ρ̂−2eiψ/2, and then expressing ξ in

terms of L and λ, using (4.48), we find,

∂wW0 =
3LL̄

1− λλ̄
∂w ln

L̄
L − 3∂w(LL̄)

1− λλ̄
+ ∂w

(
3LL̄

1− λλ̄

)
(4.55)

The first two terms on the right side may be evaluated using the expression for L of (4.49).

Putting all together, we find the following equation for W0,

∂w

(
W0 −

3LL̄
1− λλ̄

)
= −6L̄∂wA− (4.56)

Using the explicit formula for L̄, and the fact that λ∂wA− = ∂wA+, we find,

∂w

(
W0 −

3LL̄
1− λλ̄

− 6A+Ā+ + 6A−Ā−

)
= 6(A+∂wA− −A−∂wA+) (4.57)

Now the right side is a holomorphic 1-form, and so locally there exists a holomorphic

function B, defined up to the addition of an arbitrary complex constant such that,6

A+∂wA− −A−∂wA+ = ∂wB (4.58)

The general solution is then given by,

W0 =
3LL̄

1− λλ̄
+ 6A+Ā+ − 6A−Ā− + 6B + 6B̄ (4.59)

and an arbitrary integration constant, which parametrizes the admixture of the solution to

the homogeneous equation, has been absorbed into B. Note that the entire solution is real,

as is required by the nature of W and R. This completes the solution of the decoupled

reduced BPS equations for the fields ψ, ρ̂ and R.

6Clearly, the holomorphic function B should not be confused with the 10-dimensional charge conjugation

matrix of footnote 3 for which the same symbol is being used here.

– 24 –



J
H
E
P
0
8
(
2
0
1
6
)
0
4
6

5 Local solution to type IIB supergravity

In this section we summarize the complete local solution for the supergravity fields, which

is parametrized by two holomorphic functions A± and various constants. The doublet

(A+,A−) transforms linearly under the group SU(1, 1), which is isomorphic to the group

SL(2,R). The transformation properties of the supergravity fields under SU(1, 1) can be

made transparent by expressing the supergravity fields with the help of natural invariants.

The SU(1, 1) transformation properties of the holomorphic data and its invariants will

be spelled out in section 5.1, before we give the supergravity fields in 5.2 and discuss

the SU(1, 1) transformations induced on them in section 5.3. We discuss positivity and

regularity conditions respectively in sections 5.4 and 5.5. In 5.6 we show how the T-dual

of the D4/D8 solution in massive type IIA supergravity can be recovered as a special case

of our general solution, while in 5.7 we give a local solution which satisfies the positivity

and regularity conditions in a finite but local region near a boundary segment. Finally, in

section 5.8, we discuss the conditions on the holomorphic data A± and on the supergravity

fields under which solutions with monodromy can exist.

5.1 SU(1, 1) transformations of the holomorphic data

The basic data parametrizing the general local solution are two holomorphic functions

A±, which transform linearly under SU(1, 1). Parametrizing the elements of SU(1, 1) by

u, v ∈ C subject to |u|2 − |v|2 = 1, the functions A± transform as,

A+ → A′
+ = uA+ − vA−

A− → A′
− = ūA− − v̄A+ (5.1)

Note that the Ā∓ and κ± transform in the same fashion as A± does. The functions A±

determine the holomorphic function B introduced in (4.58), up to an additive constant, by,

∂wB = A+∂wA− −A−∂wA+ (5.2)

The right hand side is invariant under the SU(1, 1) transformations (5.1) and consequently

B transforms at most by a constant shift. Derived quantities which will copiously appear

in the expressions for the supergravity fields are κ± and λ defined by,

κ± = ∂wA± κ+ = λκ− (5.3)

Since κ± transform as A±, we are led to the following natural invariant,

κ2 = −|κ+|2 + |κ−|2 (5.4)

Finally, a combination which was already encountered earlier in (4.59) and given by,

G = |A+|2 − |A−|2 + B + B̄ (5.5)

also has simple transformation properties, since the first and second terms on the right side

combine into an SU(1, 1) invariant. Since B transforms at most by shifts under SU(1, 1), so

does G. Moreover, G is the only place where B shows up, and we see that of the generally

complex constant of integration hiding B, only the real part is relevant. For later use, we

note the following relation between G and κ2 given by κ2 = −∂w∂w̄G.
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5.2 Supergravity fields in terms of holomorphic data

The general local solution to Type IIB supergravity with SO(2, 5)× SO(3) symmetry can

now be expressed in terms of the holomorphic data introduced above. Translating the local

solution to the reduced BPS equations obtained in section 4 back to the supergravity fields

is straightforward, except in the case of the flux field for which the derivation of the flux

potential is quite involved, and detailed calculations are relegated to appendix E. Here we

will summarize the results and discuss some of the immediate properties of the solutions.

Recall that the symmetries of the problem dictate the Ansatz for the bosonic super-

gravity fields, while the fermionic fields vanish. The five-form field strength vanishes, while

the Ansatz for the metric and three-form flux fields are as follows,

ds2 = f2
6 ds

2
AdS6 + f2

2 ds
2
S2 + ds2Σ ds2Σ = 4ρ2dwdw̄

F(3) = dC(2) C(2) = C ê67 (5.6)

where f6, f2, ρ, C and the dilaton-axion field B are all functions on Σ, and ê67 is the volume

form on an S2 of unit radius defined in (2.15).

The metric functions f2, f6 and ρ can be expressed solely in terms of G, and for

notational convenience we introduce the composite quantities R and W defined in terms

of G through,

W = R+
1

R
= 2 + 6

κ2 G
|∂wG|2

(5.7)

The right side is real and so are R and W . The metric functions are then given by,

f2
2 =

c26κ
2(1−R)

9 ρ2(1 +R)
f2
6 =

c26κ
2(1 +R)

ρ2 (1−R)
ρ2 =

(R+R2)
1

2

|∂wG|

(
κ2

1−R

) 3

2

(5.8)

The axion-dilaton field B of (2.7) is given by,

B =
κ+∂w̄G − κ−R∂wG
κ̄+R∂wG − κ̄−∂w̄G

(5.9)

Finally, the flux potential function C for the three-form field strength F(3) is derived in

appendix E and given by,

C =
4ic26
9

(
κ̄−W∂wG − 2κ+∂w̄Ḡ

(W + 2)κ2
− Ā− − 2A+ −K0

)
(5.10)

Here, K0 is a complex integration constant which represents the residual gauge trans-

formation degree of freedom in C(2) restricted to our Ansatz, and does not affect the

gauge-invariant field strength F(3).

5.3 SU(1, 1) transformations induced on the supergravity fields

The expressions for the supergravity fields in terms of the holomorphic data, obtained

in section 5.2 allow us to specify more precisely which transformations of the holomorphic

data leave the supergravity fields invariant, or transform them according to SU(1, 1)-duality.
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The radii f6 and f2 must be invariant since they parametrize the metric in Einstein frame.

Therefore, R and the combination κ2/ρ2 must be invariant, and hence |∂wG|2/κ2 and as a

result also G and κ2 themselves must be invariant by (5.7). We will now implement these

invariance requirements on the holomorphic data A± themselves.

Invariance of κ2 requires that the holomorphic one-forms transform under SU(1, 1) as,

κ+ → κ′+ = +uκ+ − vκ−

κ− → κ′− = −v̄κ+ + ūκ− (5.11)

where we have parametrized SU(1, 1) by u, v ∈ C with |u|2 − |v|2 = 1. Integrating the

above transformation laws to obtain the holomorphic functions A± we get,

A+ → A′
+ = +uA+ − vA− + a+

A− → A′
− = −v̄A+ + ūA− + a− (5.12)

where a± are complex constants. The addition of the constants a± leaves κ± unchanged

but transforms ∂wB as follows,

∂wB → ∂wB′ = ∂wB + a+∂wA′
− − a−∂wA′

+ (5.13)

Integrating this relation, we find,

B → B′ = B + a+A′
− − a−A′

+ + b0 (5.14)

where b0 is a complex constant. Therefore, the transformation law for G is as follows,

G → G′ = G + (a+ − ā−)(Ā′
+ +A′

−) + (ā+ − a−)(A′
+ + Ā′

−)

+a+ā+ − a−ā− + b0 + b̄0 (5.15)

Invariance of G requires,

a− = ā+ b0 + b̄0 = 0 (5.16)

Since A− and Ā+ transform under SU(1, 1) by the same formula, the restriction a− = ā+ is

automatically SU(1, 1)-invariant. To analyze the transformation properties of the dilaton-

axion field B, we use the solution (5.9) and again appeal to the fact that G, ∂wG and R

are invariant under SU(1, 1). The transformation property of B under (5.12) is as follows,

B → B′ =
uB + v

v̄B + ū
(5.17)

Finally, the transformation law for the flux potential C(2) = C ê67 under (5.12) is given by,

C → C′ = uC + vC̄ − 4ic26
9

(
K′

0 − uK0 − vK̄0 + 3a+
)

(5.18)

The last term is constant and amounts to a gauge transformation on the field C(2). There-

fore, up to gauge transformations, we recover (2.8), as required. We see that the transfor-

mations of (5.1) indeed induce the appropriate SU(1, 1) transformations on the supergravity

fields. But at the level of the holomorphic data we have an additional shift symmetry, which

leaves the supergravity fields invariant and results from the fact that A± are determined

from κ± only up to additive constants.
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5.4 Positivity conditions

By construction in (5.8), the metric fields f2
2 , f

2
6 and ρ2 are real, but they are not necessarily

positive, as is required by the Minkowski signature of ten-dimensional space-time. In

this subsection, we investigate the requirements on the holomorphic data implied by the

positivity of f2
2 , f

2
6 and ρ2, and the condition |B| ≤ 1. There are no reality or positivity

requirements derived from the flux field C(2) since it is complex. The further conditions

needed to produce regular solutions will be investigated in the next section.

Positivity of the expressions for f2
2 and f2

6 in (5.8) requires,

κ2(1−R) ≥ 0 (5.19)

The expression for ρ2 in (5.8) is then automatically positive. By definition R is an absolute

value, so that we must have R ≥ 0 and therefore W ≥ 2 by (5.7), which implies,

κ2 G ≥ 0 (5.20)

Finally, we verify that |B| ≤ 1 holds, or equivalently f2 ≥ 1, using (4.22),

f2 =
1

1− |B|2 = 1 +
|λ− Z2|2

(1− |λ|2)(1− |Z|4) (5.21)

It is manifest that f2 ≥ 1 since κ2(1− R) = |κ−|2(1− |λ|2)(1− |Z|2), which is positive in

view of (5.19). So the conditions (5.19) and (5.20) exhaust the reality constraints. As a

result, there are two branches to the solutions,

{
κ2 ≥ 0, R ≤ 1, G ≥ 0

}
{
κ2 ≤ 0, R ≥ 1, G ≤ 0

}
(5.22)

Actually, these two branches are mapped into one another under a complex conjugation,

which includes the reversal of the complex structure on Σ. Specifically, this transformation

reverses the sign of κ2 and G, maps R to R−1, and interchanges w and w̄, and may be

realized on the holomorphic functions as follows,

A+(w) → A′
+(w) = Ā−(w) = A−(w̄)

A−(w) → A′
−(w) = Ā+(w) = A+(w̄) (5.23)

and thus on holomorphic forms by,

κ+(w) → κ′+(w) = κ̄−(w) = κ−(w̄)

κ−(w) → κ′−(w) = κ̄+(w) = κ+(w̄) (5.24)

One verifies that these transformations have the desired action on κ2, G, and R, and

therefore leave the metric functions f2
2 , f

2
6 , ρ

2 invariant, while complex conjugating the

fields B and C combined with a reversal of the complex structure on Σ,

B(w, w̄) → B′(w, w̄) = B̄(w, w̄) = B(w̄, w)

C(w, w̄) → C′(w, w̄) = C̄(w, w̄) = C(w̄, w) (5.25)
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Therefore, we may restrict to considering just a single branch of the solutions, specified by,

κ2 ≥ 0 R ≤ 1 G ≥ 0 (5.26)

the other branch being related by complex conjugation.

5.5 Regularity conditions

To describe holographic duals to 4+1 dimensional CFTs, we are mainly interested in solu-

tions where the AdS6 factor governs the entire non-compact part of the geometry. There-

fore, we will assume that Σ is compact, with or without boundary. It will be convenient

to examine the regularity conditions required in each one of these two cases separately.

When the Riemann surface Σ is compact and without boundary, a regular supergravity

solution requires the metric functions f2
2 , f

2
6 and ρ2 to remain strictly positive, and the

axion-dilaton field to satisfy the strict inequality |B| < 1 throughout Σ. As a result, the

corresponding conditions on the holomorphic data are given by the strict inequalities,

κ2 > 0 R < 1 G > 0 (5.27)

throughout Σ. The inequality κ2 > 0 implies the strict inequality |λ| < 1.

When the Riemann surface Σ has a non-empty boundary ∂Σ, a regular supergravity

solution may be obtained when the function f2
2 vanishes on ∂Σ, provided such behavior cor-

responds to the shrinking of a sphere S2 as part of a regular three-dimensional sub-manifold.

It is clear from the explicit solutions in (5.8) that 9f2
2 < f2

6 and therefore the vanishing of f2
6

will force f2
2 to vanish as well producing a space-time geometry with a short-distance singu-

larity. To avoid such physically unacceptable singularities, we will assume henceforth that

the regular part of the boundary of Σ is characterized by f2
2 = 0 and f2

6 > 0. In particular,

a topologically non-trivial three-cycle, or three-sphere, may arise as part of the space-time

manifold of a regular solution from fibering the sphere S2 over a line segment on Σ which is

spanned between two points on ∂Σ, and which cannot be continuously contracted to a point.

We will now investigate the behavior of a regular supergravity solution, and its associ-

ated holomorphic data, near a boundary point or segment of Σ. To analyze this behavior,

we express f2 and f6 as directly as possible in terms of holomorphic data, and we find,

f2
2

f2
6

=
(1−R)2

9(1 +R)2
f2
6

c26
= |∂wG|

(
1−R

κ2

) 1

2

(
1 +

1

R

) 1

2

(5.28)

The neighborhood of a regular boundary point is realized by letting f2
2 → 0 while keeping

f2
6 finite. On the variables R and κ2, this requires the following limiting behavior,

1−R → 0
1−R

κ2
→ finite (5.29)

The first condition ensures that f2/f6 → 0, the second that f6 stays finite. As a result, we

have κ2 → 0 and R → 1 at a regular boundary point, while their ratio stays finite.
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Furthermore, the limiting behavior R → 1 implies that W → 2 +O((R − 1)2), which

imposes a condition on the behavior of G in view of the equation (5.7) for R. To derive

this condition, we recast (5.7) as follows,

1−R

κ2
=

6RG
(1−R)|∂wG|2

(5.30)

Near a regular boundary point, the left side remains finite. Assuming that ∂wG also remains

finite, we are led to the following limiting behavior for G,
G

1−R
→ finite (5.31)

Finally, we examine the regularity condition on the axion-dilaton field, namely |B| < 1 or

equivalently f2 ≥ 1 and f2 remains finite near a regular boundary point of ∂Σ. From equa-

tion (5.21) these conditions will be realized provided the following ratio has a finite limit,

Z2 − λ

1−R
→ finite (5.32)

which gives us information on the behavior of the relative phase between λ and Z2. To an-

alyze this condition, we make use of the definition Z2 = Reiψ and the relation eiψ = ξ̄/ξ =

L̄/L, with L defined in (4.49). Expressing the result further with the help of A± we obtain,

Z2 − λ

1−R
=

Ā− −A+

L × 1− |λ|2
1−R

→ finite (5.33)

This condition is automatically fulfilled as long as (Ā− −A+)/L remains finite.

In summary, the behavior of the supergravity fields near a boundary point on ∂Σ is

regular if and only if κ2 → 0 and the following two ratios have a finite and non-zero limit,

1−R

κ2
→ finite

G
κ2

→ finite (5.34)

When these conditions are obeyed, all supergravity fields are regular in the neighborhood of

the corresponding regular boundary point. Of course, one may wish to consider supergrav-

ity solutions with sufficiently mild singularities, such as a diverging dilaton field at isolated

points on the boundary. In this case, the condition G/κ2 being finite may have to be relaxed.

5.6 Recovering the T-dual of D4/D8

In this subsection, we will recover the T-dual of the D4/D8 solution given in [36] and show

that this solution, even though singular, solves the BPS equations derived in the present

paper. To find the T-dual of D4/D8, we consider a local coordinate system w, w̄ on a

Riemann surface Σ, and make the following Ansatz for the holomorphic data,

A± =
a

2
w2 ∓ bw (5.35)

with a, b ∈ R. As a result, we find the following auxiliary quantities,

κ± = aw ∓ b κ2 = 2ab(w + w̄) B =
ab

6
(1− 2w3) (5.36)
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The combinations G and R, which are also required to construct the supergravity fields of

the solutions, are given as follows,

G =
ab

3Y 2
R =

Y − 1

Y + 1
Y =

1√
1− (w + w̄)3

(5.37)

The positivity conditions of (5.26) require κ2 ≥ 0, G ≥ 0 and R ≤ 1, and thus,

0 < ab 0 ≤ w + w̄ < 1 (5.38)

Note that neither w + w̄ = 0, nor w + w̄ = 1 satisfy the regularity conditions of (5.34), so

that we must expect the resulting supergravity solution to have singularities there.

The metric functions are found as follows,

ρ2 =
√
2ab(w + w̄)Y 3/2 f2

6 = c26
√
2abY −1/2 f2

2 =
c26
9

√
2abY −5/2 (5.39)

For the axion and dilaton we use the formulas in appendix E, eqs. (E.11) and (E.12), to

get them separately right away. This yields,

e−2φ =
2bY

a(w + w̄)
χ =

ia

2b
(w − w̄) (5.40)

To match to [36], we change from w, w̄ to real coordinates θ, φ3 defined by,

cos θ = (w + w)3/2 φ3 =
ia

2bm
(w − w) (5.41)

and fix the parameters a, b, c6 by the following choice,

a =
27

16
m1/3 b =

9

8m1/3
c6 = 1 (5.42)

With the notation W̃ = (m cos θ)−1/6, the axion and dilaton fields become,

e−2φ =
3 sin θ

4W̃ 4
χ = mφ3 (5.43)

This reproduces the results of (A.1) of [36], noting that the definition of the dilaton in (2.7)

differs from that used in [36] by a factor 2. The metric functions become,

4f2
6 e

−φ = W̃ 2 4f2
2 e

−φ = W̃ 2 sin2 θ 4ρ2e−φ|dw|2 = W̃ 2

(
dθ2 +

4dφ2
3

W̃ 4 sin2 θ

)
(5.44)

Our metric is in Einstein frame, that of [36] in string frame. The metric functions in

string frame are simply given by dropping the dilaton factors in the above expressions, i.e.

(f2
6 )string = eφf2

6 etc. Upon this change to string frame, we have exactly the metric in

(A.1) of [36]. This just leaves the flux field C(2), which we obtain from (5.10) as,

C(2) =
ic26
9

(
6aww̄ − a(w + w̄)2(3 + Y −2) + 6b(w − w̄)−K0

)
ê67 (5.45)
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Switching coordinates as in (5.41), we find,

dC(2) =
5i

8
(m cos θ)1/3 sin3θdθ ∧ ê67 + (1 + imφ3)dφ3 ∧ ê67 (5.46)

To compare to [36], we separate out the real and imaginary parts, which are,

Re(dC(2)) = dB(2) = dφ3 ∧ ê67

Im(dC(2)) =
5

8
(m cos θ)1/3 sin3θdθ ∧ ê67 +mφ3dφ3 ∧ ê67 (5.47)

The combination which appears as F3 in (A.1) of [36] becomes,

Im(dC(2))− χdB(2) =
5

8
(m cos θ)1/3 sin3θdθ (5.48)

So with the choice (5.35), (5.42) for the holomorphic data we reproduce the T-dual of the

D4/D8 solution exactly. As detailed in the introduction, this solution is singular. But the

fact that we recover it from our general local solution provides a useful consistency check.

5.7 Satisfying positivity and regularity conditions locally near ∂Σ

In this subsection, we shall show that, at least locally in a finite neighborhood of part of

the boundary of Σ, it is possible to satisfy both positivity and regularity conditions. By a

conformal transformation, we map a boundary component of Σ to the real axis, and take

the interior of Σ to be part of the upper half plane parametrized by complex coordinates

w, w̄. To realize the positivity condition κ2 = 0, or equivalently |λ| = 1, on ∂Σ we choose

λ = (1 + iw)/(1− iw), so that the functions A± are related by the following equation,

∂wA+(w) =
1 + iw

1− iw
∂wA−(w) (5.49)

We restrict attention to local solutions for which ∂wA± are rational functions of w, and

can be decomposed into a sum of simple poles plus a constant additive term,

∂wA±(w) = (1± iw)
N∑

n=1

an
w − xn

(5.50)

The positions of the poles xn are chosen to be real. We guarantee the absence of zeros for

∂wA− in the upper half plane by requiring an e
−iφ ∈ R for all n and some n-independent

phase φ. The integrals A± are as follows,

A±(w) = α± +
N∑

n=1

an

(
(1± ixn) ln(w − xn)± iw

)
(5.51)

where α± are complex constants. For N ≥ 2, the calculation of B reveals the presence of

dilogarithms. To avoid this complication, we shall examine only the simplest case N = 1

where no dilogarithms appear in B. Setting a1 = a and x1 = x, we then obtain,

κ2 =
−2i(w − w̄)|a|2

|w − x|2 (5.52)
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which indeed vanishes on R and is strictly positive in the upper half plane. Integrating

these equations as well as the one for B, we find,

A±(w) = α± ± ia(w − x) + a(1± ix) ln(w − x)

B(w) = B0 + ia(w − x)(4a− α+ − α−)

+a
(
α+(1− ix)− α−(1 + ix)− 2ia(w − x)

)
ln(w − x) (5.53)

where B0 is an integration constant. We use these ingredients to compute G. The vanishing
of G on the real axis requires B0+B̄0 = 0 as well as a2 = −|a|2 and α− = ᾱ+, and we obtain,

G(w) = −2i|a|2(w − w̄)
(
2− ln |w − x|2

)
(5.54)

In the upper half plane the pre-factor −2i(w− w̄) is positive, so that we have G > 0 inside

a semicircle centered at x with Im (w) > 0 and ln |w−x|2 < 2, while G = 0 on the real axis.

Therefore, we have established that it is possible, locally in a finite region near a

boundary component, to satisfy both the positivity and regularity conditions on κ2 and G.
On the semi-circle defined by ln |w−x|2 = 2 the behavior fails to be regular, since we have

G = 0 but κ2 > 0 reminiscent of the singularity of the T-dual to D4/D8 at w + w̄ = 1. It

remains to find supergravity solutions which obey the positivity and regularity conditions

globally, an investigation that we shall reserve for future work.

5.8 Supergravity solutions with monodromy

When Σ is a compact Riemann surface without boundary, and the locally holomorphic func-

tions A± are assumed to be single-valued on Σ, then they must be constant, which does

not produce any supergravity solutions. Therefore, on any compact Σ without boundary,

the existence of regular supergravity solutions will require the locally holomorphic func-

tions A± to have non-trivial monodromy, or poles which conspire in such a way that the

supergravity fields remain finite.

Under the weaker assumption that the locally holomorphic function λ is single-valued

on a compact Riemann surface Σ without boundary, but A± are allowed a non-trivial

monodromy, it follows from the condition |λ| < 1 that λ must be constant. The relation

between κ± may then be integrated explicitly, and we have,

A+ = λA− + a0 (5.55)

where a0 is an arbitrary complex constant. The monodromies of (5.12), which we repeat

here for convenience,

A+ → A′
+ = +uA+ − vA− + a+

A− → A′
− = −v̄A+ + ūA− + a− (5.56)

will be compatible with the relation A+ = λA− + a0 provided A′
+ = λA′

− + a0 as well.

This condition in turn imposes two complex-valued conditions on the three complex-valued

monodromy parameters u, v, a+ = ā−, given as follows,

uλ− ūλ+ v + v̄λ2 = 0

(1− u− λv̄)a0 − a+ + λā+ = 0 (5.57)
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Manifestly, the only solution to these equations with trivial SU(1, 1) monodromy,

namely u = 1, v = 0 are solutions with no monodromy at all since a+ − λā+ = 0 im-

plies a+ = 0 in view of |λ| < 1. Thus, solutions with constant λ must necessarily involve a

non-trivial SU(1, 1) monodromy on A±. The existence of such solutions will be investigated

in detail in a subsequent publication.

Allowing all three locally holomorphic functions A± and λ to have non-trivial mon-

odromy under SU(1, 1)×C, the mathematical problem becomes quite interesting, and quite

involved. The pair (A+,A−) may then be viewed as a holomorphic section of a holomor-

phic bundle over Σ with a structure group which is a subgroup of SU(1, 1)×C. The fibers

of this bundle are subject to the regularity conditions κ2 > 0 and G > 0.

The simplest situation is when Σ is compact and without boundary, and we shall

attempt to give a plausible mathematical context for this case. The SU(1, 1)×C invariance

of G then guarantees the continuity of G as a function on Σ and therefore its boundedness.

Using the freedom to shift B by an arbitrary constant, we may always adjust the shift to

make G > 0, and therefore to render this condition trivially satisfied. The only remaining

condition on the holomorphic sections (A+,A−) of the bundle is then a condition on its

associated one-forms,

|∂wA+|2 − |∂wA−|2 < 0 (5.58)

The construction of this bundle should be expected to parallel the construction of vector

bundles over Σ with structure group contained in SU(1, 1), with the important difference

that in our case the space of one-forms ∂wA± is subject to the above inequality which

makes each fiber into a solid cone in C
2 rather than a vector space.

Holomorphic vector bundles over compact Riemann surfaces were considered early on

in [37] and classified when their structure group is a subgroup of SU(n) and the bundle

satisfies certain stability conditions [38, 39].7 The equivalence classes of rank n holomorphic

vector bundles are then in one-to-one correspondence with the irreducible representations

of the fundamental homotopy group π1(Σ) into SU(n). The concrete realization of these

representations on a compact surface of genus g ≥ 2 is constructed as follows. We begin by

introducing a basis of Ai and Bi cycles for the first homology groupH1(Σ,Z), with canonical

normalization of their intersection matrix #(Ai, Aj) = #(Bi, Bj) = 0 and #(Ai, Bj) = δij
for i, j = 1, · · · , g. The representation γ of π1(Σ) into SU(n) may then be concretely

described by assigning elements γ(Ai) and γ(Bi) in SU(n) to the homology cycles Ai and

Bi respectively, subject to the standard closure condition on the commutators,

g∏

i=1

γ(Ai)γ(Bi)γ(Ai)
−1γ(Bi)

−1 = I (5.59)

The product in (5.59) is ordered in the index i, and I stands for the identity matrix in

SU(n). The discrete group Γ is then freely generated by the elements γ(Ai) and γ(Bi) for

i = 1, · · · , g, subject to the closure relation (5.59).

7A useful introduction to this work, accessible to physicists, may be found in [40]. We thank David

Gieseker for pointing us to his paper.
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Holomorphic vector bundles over Σ whose structure group Γ is a subgroup of SL(2,R) =

SU(1, 1) instead should admit an analogous construction. We should assign to each ho-

mology generator Ai, Bi a transformation γ(Ai), γ(Bi) in Γ subject to the closure relations

of (5.59). The corresponding group Γ is then freely generated by these elements, just as

was the case for the unitary groups. In the simplest case where the structure group is Z2,

the corresponding differential forms span the space of Prym differentials [41] on the surface

Σ, familiar from Z2 orbifold constructions in string theory. The case of a more general

structure group Γ may be viewed as a generalization of Prym differentials to the case of

un-ramified covers of Σ with higher structure group Γ. Finally, for our set-up the fibers

are solid cones of one-forms in C
2 rather than vector spaces, but the construction of such

bundles is expected to follow in parallel. A detailed investigation into these possibilities

will be relegated to future work.

6 Discussion

Supersymmetric solutions to Type IIB supergravity with an AdS6 factor and the corre-

sponding isometries are of considerable interest to describe holographically the still mysteri-

ous 4+1 dimensional CFTs discovered in [5, 6] and realized in string theory via (p, q) brane

webs. As quantum field theories these CFTs are defined only indirectly, as the non-trivial

UV fixed points of certain 4+1 dimensional super-Yang-Mills theories. The description

as Yang-Mills theories, however, is non-renormalizable and only captures the IR effective

action of a relevant deformation of the CFT. Having supergravity duals at our disposal

would allow for extensive quantitative studies of the actual UV CFTs, which from the field

theory side are hard to do even in principle without a known Lagrangian description.

In this work we have constructed the general local solution to Type IIB supergravity

with SO(2, 5)×SO(3) isometry and 16 supersymmetries, which are precisely the symmetries

expected for holographic duals to these 4+1 dimensional SCFTs. The local solutions are

constructed from AdS6 and S2 spaces, which realize the desired isometries and are fibered

over a Riemann surface Σ. With the supergravity fields spelled out in section 2, the local

solutions are given in terms of two locally holomorphic functions A±, as summarized in

section 5.1 and 5.2. The solutions transform properly under SL(2,R), and this symmetry

serves as an organizing guide throughout the derivations. Finally, we recover the (singular)

T-dual of the D4/D8 solution in Type IIA as a special case.

A crucial ingredient which has allowed us to go beyond earlier works, where the BPS

equations were reduced to a set of coupled PDEs [16–18], was keeping the freedom to

choose convenient coordinates on the Riemann surface Σ. Separating holomorphic and

anti-holomorphic dependences in conformally flat coordinates on Σ featured prominently in

the derivations and allowed us to actually solve the reduced BPS equations. The complete

local solution provides the basic building blocks for constructing globally regular solutions

with the aforementioned isometries, and is a significant step towards understanding and

eventually classifying supergravity duals for the 4+1 dimensional CFTs realized by (p, q)

brane webs.
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The natural next question is whether or not there are globally regular solutions with

the symmetries discussed above. While the existence of a large-N limit on the CFT side

suggests that there should be dual supergravity solutions, the difficulties in finding such

solutions so far call for a more careful perspective. Indeed, there are known examples where

a superconformal field theory with a large-N limit does not admit a dual description which

reduces to supergravity alone, even at large N and strong coupling [42]. The existence of a

supergravity dual is obstructed in that case by the absence of a gap in the spectrum to iso-

late a small number of states with low scaling dimension. As a result, the dual description

always involves stringy states. In the example of [42], however, realizing a superconformal

theory at large N needs a similarly large number of flavors, of the same order as N . This

Veneziano limit is different from the usual ’t Hooft limit and from the case we are looking

at here, where superconformal theories exist also with small numbers of flavors. There is,

quite on the contrary, an upper limit on the number of flavor multiplets in the CFTs we

are attempting to find a dual description for. The large-N limit should therefore indeed be

a ’t Hooft limit, and these arguments suggest that finding a dual supergravity description

should be possible. We discussed regularity conditions in section 5, but constructing glob-

ally regular solutions is still a non-trivial task, and we plan to come back to it in the future.
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A Clifford algebra basis adapted to the Ansatz

The signature of the space-time metric is chosen to be (− + · · ·+). The Dirac-Clifford

algebra is defined by {ΓM ,ΓN} = 2ηMNI32. We choose a basis for the Clifford algebra

which is well-adapted to the AdS6 × S2 × Σ Ansatz, with the frame labeled as in (2.14),

Γm = γm ⊗ I2 ⊗ I2 m = 0, 1, 2, 3, 4, 5

Γi = γ(1) ⊗ γi ⊗ I2 i = 6, 7

Γa = γ(1) ⊗ σ3 ⊗ γa a = 8, 9 (A.1)
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where a convenient basis for the lower dimensional Dirac-Clifford algebras is as follows,

γ0 = −iσ2 ⊗ I2 ⊗ I2

γ1 = σ1 ⊗ I2 ⊗ I2

γ2 = σ3 ⊗ σ2 ⊗ I2 γ6 = σ1

γ3 = σ3 ⊗ σ1 ⊗ I2 γ7 = σ2

γ4 = σ3 ⊗ σ3 ⊗ σ1 γ8 = σ1

γ5 = σ3 ⊗ σ3 ⊗ σ2 γ9 = σ2 (A.2)

We will also need the chirality matrices on the various components of AdS6 × S2 ×Σ, and

they are chosen as follows,

γ(1) = σ3 ⊗ σ3 ⊗ σ3

γ(2) = σ3

γ(3) = σ3 (A.3)

so that,

Γ012345 = −γ(1) ⊗ I2 ⊗ I2

Γ67 = i I6 ⊗ γ(2) ⊗ I2

Γ89 = i I6 ⊗ I2 ⊗ γ(3) (A.4)

The 10-dimensional chirality matrix in this basis is given by,

Γ11 = Γ0123456789 = γ(1) ⊗ γ(2) ⊗ γ(3) = σ3 ⊗ σ3 ⊗ σ3 ⊗ σ3 ⊗ σ3 (A.5)

The complex conjugation matrices in each component are defined by,

(γm)∗ = +B(1)γ
mB−1

(1) (B(1))
∗B(1) = −I6 B(1) = −iγ2γ5 = I2 ⊗ σ1 ⊗ σ2

(
γi
)∗

= −B(2)γ
iB−1

(2) (B(2))
∗B(2) = −I2 B(2) = γ7 = σ2

(γa)∗ = −B(3)γ
aB−1

(3) (B(3))
∗B(3) = −I2 B(3) = γ9 = σ2 (A.6)

where in the last column we have also listed the form of these matrices in our particular

basis. The 10-dimensional complex conjugation matrix B satisfies,

(ΓM )∗ = BΓMB−1 B∗B = I32 [B,Γ11 ] = 0 (A.7)

and in this basis is given by,

B = −iB(1) ⊗
(
B(2)γ(2)

)
⊗B(3)

= I2 ⊗ σ1 ⊗ σ2 ⊗ σ1 ⊗ σ2 (A.8)

B The geometry of Killing spinors

In this appendix, we review the relation between the Killing spinor equation and the parallel

transport equation in the presence of a flat connection with torsion on S2 and AdS4.
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B.1 The sphere S2

On the sphere S2 with unit radius, the Killing spinor equation is given by,

(
∇i + η

1

2
σiσ3

)
ε = 0 i = 1, 2 (B.1)

where σ1, σ2, σ3 are the standard Pauli matrices, and ∇i is the spin connection on the

sphere S2 with unit radius, and the derivative is expressed with respect to frame indices i.

An equivalent equation is obtained by letting σiσ3 → iσi and ε′ = e−iπσ3/4ε. Integrability

of this system of equations requires η = ±1. The system may be solved by restricting the

canonical flat connection on SU(2), as was reviewed in an appendix of [19]. Here, we will

take a more direct approach to obtaining an explicit solution.

We parametrize the sphere S2 with unit radius by angles θ1, θ2 and take the following

conventions for the round metric,

ds2 = dθ22 + sin2 θ2dθ
2
1 (B.2)

The frame and the spin connection are given by,

e1 = sin θ2 dθ1 e2 = dθ2 ω12 = cos θ2 dθ1 (B.3)

and satisfy the vanishing torsion condition,

dea + ωa
b ∧ eb = 0 (B.4)

The Killing spinor equation on the sphere S2 of unit radius is of the form,

(
∂µ +

1

4
ωab
µ γab

)
ε = η

i

2
eaµγaε (B.5)

with η = ±1 required by integrability. With the Dirac matrices defined in appendix A we

have γ1 = σ1 and γ2 = σ2, and this equation becomes,

∂θ1ε+
i

2
cos θ2σ3 ε =

i

2
η sin θ2 σ1 ε ∂θ2ε =

i

2
η σ2 ε (B.6)

and is solved by,

ε(η) = exp

(
i

2
ηθ2σ2

)
exp

(
− i

2
θ1σ3

)
ε0 (B.7)

Here, ε0 is an arbitrary constant spinor. Hence the space of Killing spinors is two-

dimensional. We can verify the following statements for a Killing spinor ε(η) which satisfies

the Killing equation with a given η = ±1,

1. γ(2)ε(η) = σ3ε(η) satisfies the Killing equation with η → −η;

2. σ1ε(η)
∗ satisfies the Killing equation with η → −η;

3. σ2ε(η)
∗ satisfies the Killing equation with η → +η.
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B.2 Minkowski AdS6

The construction based on canonical connections given in [19] for S2 may be generalized to

all spheres and their hyperbolic AdS counterparts. Here, we present the case of Minkowski

signature AdS6 = SO(2, 5)/SO(1, 5). The Dirac-Clifford algebra of SO(2, 5) is built from

the Clifford generators γµ, of the Lorentz group SO(1, 5),

{γµ, γν} = 2ηµν η = diag[−+++++] (B.8)

for µ, ν = 0, 1, 2, 3, supplemented with the chirality matrix, γ♯ = iγ(1) (the factor of i being

required since the ♮ dimension has negative entry in the metric),

{γµ̄, γν̄} = 2η̄µ̄ν̄ η̄ = diag[−−+++++] (B.9)

for µ̄, ν̄ = ♯, 0, 1, 2, 3, 4, 5. The corresponding Maurer-Cartan form, expressed in the spinor

representation, on SO(2, 5) is given by,

ω(t) = V −1dV =
1

4
ω
(t)
µ̄ν̄γ

µ̄ν̄ V ∈ Spin(2, 5) (B.10)

It obviously satisfies the Maurer-Cartan equations, dω(t) + ω(t) ∧ ω(t) = 0. We decompose

ω(t) onto the SO(1, 5) and AdS6 directions of cotangent space,

ω(t) =
1

4
ωµνγ

µν +
i

2
eµγ

µγ(1)

{
ωµν ≡ ω

(t)
µν µ, ν = 0, 1, 2, 3, 4, 5

eµ ≡ ω
(t)
µ♯ µ = 0, 1, 2, 3, 4, 5

(B.11)

The Maurer-Cartan equations dω(t) + ω(t) ∧ ω(t) = 0 for ω(t) imply the absence of torsion

and the constancy of curvature. The Killing spinor equation coincides with the equation

for parallel transport,

(
d+ V −1dV

)
ε =

(
d+

1

4
ωµνγ

µν +
i

2
ηeµγ

µγ(1)

)
ε = 0 (B.12)

For η = +1, the general solution is given by ε+ = V −1ε0 and ε0 is constant, while for

η = −1, the solution is ε− = γ(1)ε+. An equivalent form of the Killing spinor equation,

in a basis in which the chirality matrix γ(1) is eliminated, is achieved by making the

transformation,

ε = exp

(
iπ

4
γ(1)

)
ε′ (B.13)

In terms of ε′, we recover the first equation in (3.1).

B.2.1 Explicit form of the Killing spinors

We parametrize AdS6 with unit radius by a radial coordinate r and xi ∈ R for i = 1, 2, 3, 4,

and use the SO(2, 5)-invariant metric,

ds2 = dr2 + e2r

(
−dt2 +

4∑

i=1

dx2i

)
(B.14)
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The Killing spinor equation is given by,

Dµε =
η

2
γµε (B.15)

with η = ±1. The frame and spin connection are given by,

er = dr ei = erdxi ωir = erdxi (B.16)

Hence the Killing spinor equation becomes,

∂rε =
η

2
γrε ∂iε+

1

2
erγirε =

η

2
erγiε (B.17)

The general solution for the Killing spinor equation is,

ε = e
η

2
rγr

(
1 +

1

2
xiγi(η − γr)

)
ε0 (B.18)

where ε0 is a constant spinor, hence the space of Killing spinors of AdS6 is eight dimensional.

We can label the basis vectors by η = ±1 which each have a four dimensional degeneracy

which will play no role in the following other than leading to the correct number of preserved

supersymmetries in the end. We can verify the following statements for an AdS6 Killing

spinor ǫ(η) which satisfies the Killing equation with a given η = ±1,

1. γ(1)ǫ(η) = σ3 ⊗ σ3 ⊗ σ3 ǫ(η) satisfies the Killing equation with η → −η;

2. B(1)ǫ(η)
∗ = 12 ⊗ σ2 ⊗ σ1 ǫ(η)

∗ satisfies the Killing equation with η → η;

3. B̃(1)ǫ(η)
∗ = σ3 ⊗ σ1 ⊗ σ2 ǫ(η)

∗ satisfies the Killing equation with η → −η.

Note that we choose the complex conjugation matrix to be B(1) in appendix A

C Derivation of the BPS equations

We begin by collecting some identities that will be useful during the reduction of the BPS

equations. We will also need the following decompositions of ε and B−1ε∗,

ε =
∑

η1,η2,η3

χη1,η2 ⊗ ζη1,η2 B−1ε∗ =
∑

η1,η2

χη1,η2 ⊗ ⋆ζη1,η2 (C.1)

where we use the abbreviations,

⋆ ζη1,η2 = −iσ2η2ζ
∗
η1,−η2 ⋆ ζ = τ02 ⊗ σ2ζ∗ (C.2)

in τ -matrix notation. In addition, we have the chirality relations,

σ3ζη1,η2 = −ζ−η1,−η2 τ11 ⊗ σ3ζ = −ζ (C.3)
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C.1 The dilatino equation

The dilatino equation is,

0 = iPAΓ
AB−1ε∗ − i

24
Γ ·Gε (C.4)

Reduced to the Ansatz of subsection 2.3, we have the following simplifications,

PAΓ
A = paΓ

a

Γ ·G = 3! gaΓ
67a = 6gaΓ

a i I8 ⊗ γ(2) ⊗ I2 (C.5)

The dilatino equation now becomes,

0 = ipaΓ
a
∑

η1,η2

χη1,η2 ⊗ ⋆ζη1,η2 +
1

4
gaΓ

a
∑

η1,η2

χη1,−η2 ⊗ ζη1,η2 (C.6)

from which we extract the equation satisfied by the ζ-spinors,

0 = ipaγ
a ⋆ ζη1,η2 +

1

4
gaγ

aζη1,−η2 (C.7)

Using the explicit expression for ⋆ζ and reversing the sign of η2, we find,

0 = −paγ
aη2σ

2ζ∗η1,η2 +
1

4
gaγ

aζη1,η2 (C.8)

Recasting this equation in terms of the τ -notations, we have,

0 = −4paτ
(03)γaσ2ζ∗ + gaγ

aζ (C.9)

C.2 The gravitino equation

The gravitino equation is,

0 = dε+ ωε− i

2
Qε+ gB−1ε∗

ω =
1

4
ωABΓ

AB

g = − 1

96
eA

(
ΓA(Γ ·G) + 2(Γ ·G)ΓA

)
(C.10)

where A,B are the 10-dimensional frame indices.

C.2.1 The calculation of (d+ ω)ε

The spin connection components are ωa
b, whose explicit form we will not need and,

ωm
n = ω̂m

n ωm
a = em

∂af6
f6

ωi
j = ω̂i

j ωi
a = ei

∂af2
f2

(C.11)
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The hats refer to the canonical connections on AdS4 and S2 respectively. Projecting the

spin-connection along the various directions we have,

(m) ∇′
mε+

Daf6
2f6

Γm Γa ε

(i) ∇′
i ε+

Daf2
2f2

Γi Γ
a ε

(a) ∇aε (C.12)

where the prime on the covariant derivative indicates that only the connection along AdS4

and S2 respectively is included. Using the Killing spinor equations (3.1) we can eliminate

the primed covariant derivatives, which yields,

(m)
1

2f6
Γm

∑

η1,η2

η1χ
η1,η2 ⊗ ζη1,η2 +

Daf6
2f6

ΓmΓa ε

(i)
i

2f2
Γi

∑

η1,η2

η2χ
−η1,η2 ⊗ ζη1,η2 +

Daf2
2f2

ΓiΓ
aε (C.13)

Using the equation Γa = γ(1) ⊗ γ(2) ⊗ γ(3) ⊗ γa, we have,

(m) Γm

∑

η1,η2

χη1,η2 ⊗
(

1

2f6
η1ζη1,η2 +

Daf6
2f6

γaζ−η1,−η2

)

(i) Γi

∑

η1,η2

χη1,η2 ⊗
(

i

2f2
η2ζ−η1,η2 +

Daf2
2f2

γaζ−η1,−η2

)
(C.14)

where we have pulled a factor of ΓM out front. It will turn out that all terms in the gravitino

equation contain ΓMχη1,η2,η3 , and we will require the coefficients to vanish independently,

just as we did for the dilatino equation. The coefficient of ΓMχη1,η2,η3 can be expressed in

the τ -matrix notation as,

(m)
1

2f6
τ (30)ζ +

Daf6
2f6

τ (11)γaζ

(i)
i

2f2
τ (13)ζ +

Daf2
2f2

τ (11)γaζ (C.15)

C.2.2 The calculation of gB−1ε∗

The relevant expression is as follows,

gB−1ε∗ = − 3!

96
eBga

(
ΓBΓ67a + 2Γ67aΓB

)
B−1ε∗ (C.16)

A few useful equations are as follows,

ΓmΓ67b + 2Γ67bΓm = −ΓmΓ67b

Γi Γ67b + 2Γ67b Γi = 3Γi Γ67b

ΓaΓ67b + 2Γ67bΓa = Γ67(3δab − Γab) = i(I8 ⊗ γ(2) ⊗ I2)(3δ
abI2 − γab) (C.17)
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where γab = εabσ3 and ε89 = 1. Projecting along the various directions we obtain,

(m) Γm

∑

η1,η2

χη1,η2 ⊗
(

i

16
gaγ

a ⋆ ζ−η1,η2

)

(i) Γi

∑

η1,η2

χη1,η2 ⊗
(
− 3i

16
gaγ

a ⋆ ζ−η1,η2

)

(a)
∑

η1,η2

χη1,η2 ⊗
(
− 3i

16
ga ⋆ ζη1,−η2 +

i

16
gbγ

ab ⋆ ζη1,−η2

)
(C.18)

Using the τ -matrix notation, we can write the coefficient of ΓMχη1,η2 in the form,

(m) +
i

16
gaτ

(10)γa ⋆ ζ

(i) − 3i

16
gaτ

(10)γa ⋆ ζ

(a) − 3i

16
gaτ

(01) ⋆ ζ +
i

16
gbτ

(01)γab ⋆ ζ (C.19)

C.2.3 Assembling the complete gravitino BPS equation

Now we combine the reduced gravitino equations. We again argue that the ΓMχη1η2 are

linearly independent which leads to the equations,

(m) 0 =
1

2f6
τ (30)ζ +

Daf6
2f6

τ (11)γaζ +
i

16
gaτ

(10)γa ⋆ ζ (C.20)

(i) 0 =
i

2f2
τ (13)ζ +

Daf2
2f2

τ (11)γaζ − 3i

16
gaτ

(10)γa ⋆ ζ

(a) 0 =

(
Da +

i

2
ω̂aσ

3 − i

2
qa

)
ζ − 3i

16
gaτ

(01) ⋆ ζ +
i

16
gbτ

(01)γab ⋆ ζ

where ω̂a = (ω̂89)a is the spin connection along Σ. Eliminating the star using the definition

(C.2), namely ⋆ζ = τ (02) ⊗ σ2ζ∗, the system of gravitino BPS equations is then,

(m) 0 =
1

2f6
τ (30)ζ +

Daf6
2f6

τ (11)γaζ +
i

16
gaτ

(12)γaσ2ζ∗ (C.21)

(i) 0 =
i

2f2
τ (13)ζ +

Daf2
2f2

τ (11)γaζ − 3i

16
gaτ

(12)γaσ2ζ∗

(a) 0 =

(
Da +

i

2
ω̂aσ

3 − i

2
qa

)
ζ +

3

16
gaτ

(03)σ2ζ∗ − 1

16
gbτ

(03)γabσ2ζ∗

Upon multiplying the (m) and (i) equations by τ (11), we find,

(m) 0 = − i

2f6
τ (21)ζ +

Daf6
2f6

γaζ − 1

16
gaτ

(03)γaσ2ζ∗ (C.22)

(i) 0 =
1

2f2
τ (02)ζ +

Daf2
2f2

γaζ +
3

16
gaτ

(03)γaσ2ζ∗

(a) 0 =

(
Da +

i

2
ω̂aσ

3 − i

2
qa

)
ζ +

3

16
gaτ

(03)σ2ζ∗ − 1

16
gbτ

(03)γabσ2ζ∗
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D Verifying the Bianchi identities

In this appendix we show that the reduced BPS equations summarized in section 4.3

imply that the Bianchi identities (2.1) are satisfied. In the complex coordinates introduced

in (4.5), the Bianchi identities for P and Q take the following form,

∂wPw̄ − ∂w̄Pw − 2iQwPw̄ + 2iQw̄Pw = 0

∂wQw̄ − ∂w̄Qw + iPwP̄w̄ − iPw̄P̄w = 0 (D.1)

They are satisfied automatically if P and Q are expressed in terms of B as in (2.5). The

Bianchi identity that needs to be checked is the one for G. We will find that (4.12) alone

implies that it is satisfied. In terms of the lower-case expansion coefficients p, q, g defined

in (2.16), the Bianchi identity (2.1) becomes,

∂w
(
ρf2

2 gz̄
)
− ∂w

(
ρf2

2 gz
)
+ ρ2f2

2

(
− iqzgz̄ + iqz̄gz + pz(gz)

⋆ − pz̄(gz̄)
⋆
)

(D.2)

Using (4.1) and (2.5), this can be rewritten in terms of B, ρ and the κ± alone as,
(
a2

b2
+ e−iϑ

)[
△B +

5

2
f2B̄(∂wB)(∂wB)

]
+

a2

b2
(∂wB)∂w log

[
a

b

(aā− bb̄)2

ρ2

]
(D.3)

+e−iϑ(∂wB)∂w log

[
b̄

ā

(aā− bb̄)2

ρ2

]
+

(
3

2
B + eiϑ

)
f2

(
a2

b2
|∂wB|2 + e−iϑ|∂wB|2

)
= 0

where △ = ∂w∂w and,

ā2 = ρᾱ2/f = κ+ +Bκ−

b̄2 = ρβ̄2/f = B̄κ+ + κ− (D.4)

are used as shorthands for the corresponding combinations of κ±. The only place where

ρ2 shows up is in the log derivatives, where it can be eliminated using (4.12), leaving an

expression solely in terms of B and B̄.

To show that (4.12) implies that the Bianchi identity is satisfied, we first eliminate the

two-derivative term. To this end, we act on (4.14) with ∂w and on the complex conjugate

of (4.14) with ∂w. The result are two equations linear in △B and △B̄, namely,

X̄ △B − Ȳ △ B̄ + (∂wB)∂wX̄ − (∂wB̄)∂wȲ = (∂wf
−4)κ2+∂w

κ−
κ+

X △ B̄ − Y △B + (∂wB̄)∂wX − (∂wB)∂wY = (∂wf
−4)κ̄2+∂w

κ̄−
κ̄+

(D.5)

where X = b4 + 2a2b2eiθ and Y = a4 + 2a2b2e−iθ. Eliminating △B̄ yields an equation for

△B in terms of first derivatives, namely,

△B
(
|X|2 − |Y |2

)
= X(∂wB̄)∂wȲ + Ȳ (∂wB)∂wY −X(∂wB)∂wX̄ − Ȳ (∂wB̄)∂wX

+X(∂wf
−4)κ2+∂w

κ−
κ+

+ Ȳ (∂wf
−4)κ̄2+∂w

κ̄−
κ̄+

(D.6)

Substituting this expression in (D.3) leaves only first derivatives. We can now use (4.14)

and its complex conjugate to eliminate the derivatives of B̄. After this step the left hand

side of (D.3) collapses to zero, showing that the Bianchi identity is satisfied.
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E Supergravity fields in terms of holomorphic data

In this appendix we derive the expression for the supergravity fields from the local solution

to the BPS equations derived in section 4. The results are summarized in section 5. As a

prerequisite, we note that (5.7) arises from (4.59) with,

κ−L̄ = −∂wG κ2 = −∂w∂w̄G (E.1)

We then start with the metric functions and the axion-dilaton combination, before turning

to the flux field.

E.1 Metric functions

We start with the expressions for the metric functions f2, f6 in terms of α, β given in (3.46).

Using the expressions for α, β in terms of κ± and f given in (4.9) yields

(
f6 +

3

ν
f2

)2

=
4c26f

2

ρ2
|κ−|2|Bλ̄+ 1|2

(
f6 −

3

ν
f2

)2

=
4c26f

2

ρ2
|κ−|2|λ+B|2 (E.2)

Translating to Z and using (4.22) for f2 yields

f6 +
3

ν
f2 =

2c6
ρ

√
κ2

1− |Z|4 f6 −
3

ν
f2 =

2c6
ρ

|Z|2
√

κ2

1− |Z|4 (E.3)

Solving for f2 and f6 yields

f2 =
νc6
3ρ

√
κ2

1− |Z|2
1 + |Z|2 f6 =

c6
ρ

√
κ2

1 + |Z|2
1− |Z|2 (E.4)

With |Z|2 = R and ν2 = 1, this immediately leads to the expressions in (5.8). Next comes

ρ2, the metric on Σ. From (4.27), (4.36) and (4.48),

ρ̂2 =
ρ2

|κ−|2
(1− |Z|2)3/2

|Z|
√
1− |λ|2

√
1 + |Z|2

ρ̂4 =
1

ξξ̄
=

(1− λλ̄)2

LL̄ (E.5)

From those one finds

ρ2 =
κ2

|κ−L̄|
|Z|

1− |Z|2

√
κ2

1 + |Z|2
1− |Z|2 (E.6)

With |Z|2 = R and κ−L̄ = −∂wG, this directly leads to the expression quoted in (5.8).

To get to the axion and dilaton we work out the expression for B. Using the definition

in (4.21) and (4.27)

B =
Reiψ − λ

1− λ̄Reiψ
=

RL̄ − λL
L − λ̄RL̄ (E.7)

The second equality uses eiψ = ξ̄/ξ and (4.48). Multiplying numerator and denominator

by |κ−|2 yields

B =
κ̄−(Rκ−L̄)− κ+(κ̄−L)
κ−(κ̄−L)− κ̄+(Rκ−L̄)

. (E.8)
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The explicit expression for f2 can be obtained from (4.22) as,

f2 =
|κ−|2
κ2|L|2

|L̄ − λRL|2
1−R2

. (E.9)

For τ we find

iτ =
λ+ − λ̄+Z

2

λ− + λ̄−Z2
=

λ+L − λ̄+L̄R
λ−L+ λ̄−L̄R

λ± = λ± 1 (E.10)

To get to the axion and dilaton we separate the real and imaginary parts and use τ =

χ+ ie−2φ, which yields

e−2φ =
κ2|L|2
D|κ−|2

1−R2

R
D = |λ−L|2W + λ2

−L2 + λ̄2
−L̄2 (E.11)

The axion becomes

χ = i
(λ− λ̄)|L|2W − λ+λ−L2 + λ̄+λ̄−L̄2

D
(E.12)

E.2 Flux field

The complex 3-from field G(3) is better expressed in terms of the complex 3-form field F(3)

by the first relation of (2.6). Since F(3) is a closed 3-form it may locally be written in terms

of a complex flux potential 2-form field C(2) by F(3) = dC(2). Inverting this relation, we

have,

dC(2) = f(G(3) +BḠ(3)) (E.13)

The symmetries of the problem force C(2) and G(3) to be of the following form,

C(2) = C ê67

G(3) = gae
a ∧ e67 = f2

2 gae
a ∧ ê67 (E.14)

so that,

∂wC = ρf2
2 f(gz +Bḡz)

∂w̄C = ρf2
2 f(gz̄ +Bḡz̄) (E.15)

Using the conversion of G into P and then into derivatives of B using (2.5) and (4.1),

ρ gz = 4i
α

β
f2∂wB ρgz̄ = −4i

β̄

ᾱ
f2∂w̄B

ρ ḡz = 4i
β

α
f2∂wB̄ ρ ḡz̄ = −4i

ᾱ

β̄
f2∂w̄B̄ (E.16)

we obtain the following expressions,

∂wC = 4if2
2 f

3

(
α

β
∂wB +B

β

α
∂wB̄

)

∂wC̄ = 4if2
2 f

3

(
β

α
∂wB̄ + B̄

α

β
∂wB

)
(E.17)

We will now work towards expressing the right side in terms of the solutions to the BPS

equations, and then integrating the equations to obtain C and its complex conjugate.
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E.2.1 Expressing variables in terms of holomorphic functions

Recall that we have,

α

β
=

(
λ̄+ B̄

λ̄B + 1

) 1

2

= Z̄

(
1− λ̄Z2

1− λZ̄2

) 1

2

∣∣∣∣
α

β

∣∣∣∣ = |Z| (E.18)

This allows us to compute the combinations,

α2

β2
∂wB +B∂w̄B̄ =

Z̄2(1− |λ|2)
|1− λZ̄2|2 ∂wZ

2 +
(Z2 − λ)(1− |λ|2)
(1− λZ̄2)|1− λZ̄2|2∂wZ̄

2

− Z̄2(1− |λ|2)(1− |Z|4)
(1− λZ̄2)|1− λZ̄2|2 ∂wλ

β2

α2
∂wB̄ + B̄∂wB =

1− |λ|2
|1− λZ̄2|2

(
∂wZ̄

2

Z̄2
+

Z̄2 − λ̄

1− λ̄Z2
∂wZ

2

)
(E.19)

In the second equation, the terms proportional to ∂wλ cancel. Putting all together, we

have,

∂wC =
4ic26
9ρ̂2

(1− |Z|2)
(1 + |Z|2)3

1

Z̄|Z|
(
∂w|Z|4 − λ(∂wZ̄

2 + Z̄4∂wZ
2)− Z̄2(1− |Z|4)∂wλ

)

∂wC̄ =
4ic26
9ρ̂2

(1− |Z|2)
(1 + |Z|2)3

1

Z̄|Z|
(
− λ̄∂w|Z|4 + ∂wZ̄

2 + Z̄4∂wZ
2
)

(E.20)

Next, we eliminate ρ̂2 in favor of ξ, by using the following rearrangement formula,

1

ρ̂2 Z̄|Z| =
ξ̄

|Z|2 (E.21)

so that we find,

∂wC =
4ic26
9

(1− |Z|2)
(1 + |Z|2)3

ξ̄

|Z|2
(
∂w|Z|4 − λ(∂wZ̄

2 + Z̄4∂wZ
2)− Z̄2(1− |Z|4)∂wλ

)

∂wC̄ =
4ic26
9

(1− |Z|2)
(1 + |Z|2)3

ξ̄

|Z|2
(
− λ̄∂w|Z|4 + ∂wZ̄

2 + Z̄4∂wZ
2
)

(E.22)

Instead of working with C and C̄, we form the combination C̄ + λ̄C,

∂w(C̄ + λ̄C) = 4ic26
9

P (E.23)

where P is given by,

P = ξ
1− |Z|2

(1 + |Z|2)3
(
(1− |λ|2)(∂w ln Z̄2 + Z̄2∂wZ

2) + (1− |Z|4)∂w(1− |λ|2)
)

(E.24)

Having C̄ + λ̄C is essentially as good as having C itself, since from C̄ + λ̄C and its complex

conjugate we may obtain C and C̄. Next, we use the formula ξ(1 − |λ|2) = L to eliminate

ξ in favor of λ and L,

P = L 1− |Z|2
(1 + |Z|2)3

(
∂w ln Z̄2 + Z̄2∂wZ

2 + (1− |Z|4)∂w ln(1− |λ|2)
)

(E.25)
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Changing variables from Z to Z2 = Reiψ, we find,

P = L(1−R)(R2 + 1)

(1 +R)3
∂wR

R
− L(R− 1)2

(R+ 1)2

(
i∂wψ − ∂w ln(1− |λ|2)

)
(E.26)

Expressing this combination in terms of W = R+R−1, we find,

P = −L W

(W + 2)2
∂wW − LW − 2

W + 2

(
i∂wψ − ∂w ln(1− |λ|2)

)
(E.27)

Using equation (4.52), we eliminate ρ̂ in favor of ξ, and eliminate ξ in favor of L and λ,

∂wW = −(W + 1)∂w lnLL̄+ (W − 2)∂w ln(1− |λ|2) + 3i∂wψ (E.28)

Putting all together, we have,

P =
L

(W + 2)2

(
W (W + 1)∂w lnLL̄+ 2(W − 2)∂w ln(1− |λ|2)

−(W 2 + 3W − 4)∂w ln
L̄
L

)
(E.29)

where we have used the relation eiψ = L̄/L to express the derivative i∂wψ in terms of L.
Finally, W is given in terms of holomorphic data by,

W = 2 + 6
1− |λ|2
LL̄

(
A+Ā+ −A−Ā− + B + B̄

)
(E.30)

Separating the dependence of L and L̄, we find,

P =
2L

(W + 2)2

(
(W 2 + 2W − 2)∂w lnL+ (W − 2)

{
∂w ln(1− |λ|2)− ∂w ln L̄

})
(E.31)

Next, we return to the differential equation satisfied by W in (E.28) and notice that the

precise same combination (W − 2)∂w ln(1− |λ|2) occurs there. Expressing ψ in terms of L
in this equation, it takes the form,

(W − 2)
{
∂w ln(1− |λ|2)− ∂w ln L̄

}
= ∂wW + (W + 4)∂w lnL (E.32)

Thus, we will proceed to eliminate this term between (E.28) and (E.31), and we find,

P =
2(W + 1)

W + 2
∂wL+

2L
(W + 2)2

∂wW (E.33)

It is straightforward to integrate this equation, and we have,

P = ∂w

(
2L (W + 1)

W + 2

)
(E.34)

Therefore, we have,

C̄ + λ̄C = K̄1 +
8ic26
9

L (W + 1)

W + 2
(E.35)

for an as yet undetermined holomorphic function K1.
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Proceeding analogously for C̄, and using the equations for ∂wξ and ∂wξ̄, we find,

∂wC̄ =
4ic26
9

∂w

(
−2

ξ + λ̄ξ̄

W + 2
+

L
1− |λ|2 +A−

)
(E.36)

so that

C̄ =
4ic26
9

(
−2

ξ + λ̄ξ̄

W + 2
+

L
1− |λ|2 +A− + K̄2

)
(E.37)

for some holomorphic function K2. Equating now the two different expressions for C̄ + λ̄C,
we get after some simplifications which eliminate the dependence on W completely,

K̄1 − Ā+ − K̄2 + λ̄(3Ā− − 2A+ +K2) = 0 (E.38)

Separating holomorphic and anti-holomorphic dependences, we find,

K1 = 3A+ − 3λA− +K0 + K̄0λ (E.39)

where K0 is an arbitrary complex constant. Thus, we have,

C =
4ic26
9

(
+2

ξ̄ + λξ

W + 2
− L̄

1− |λ|2 − Ā− − 2A+ −K0

)
(E.40)

Evaluating that further gives

C =
4ic26
9

(
2λL −W L̄

(W + 2)(1− |λ|2) − Ā− − 2A+ −K0

)
(E.41)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity,

Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

[2] W. Nahm, Supersymmetries and their representations, Nucl. Phys. B 135 (1978) 149

[INSPIRE].

[3] N. Seiberg, Notes on theories with 16 supercharges, Nucl. Phys. Proc. Suppl. 67 (1998) 158

[hep-th/9705117] [INSPIRE].

[4] S. Minwalla, Restrictions imposed by superconformal invariance on quantum field theories,

Adv. Theor. Math. Phys. 2 (1998) 781 [hep-th/9712074] [INSPIRE].

[5] N. Seiberg, Five-dimensional SUSY field theories, nontrivial fixed points and string

dynamics, Phys. Lett. B 388 (1996) 753 [hep-th/9608111] [INSPIRE].

[6] K.A. Intriligator, D.R. Morrison and N. Seiberg, Five-dimensional supersymmetric gauge

theories and degenerations of Calabi-Yau spaces, Nucl. Phys. B 497 (1997) 56

[hep-th/9702198] [INSPIRE].

[7] A. Brandhuber and Y. Oz, The D4-D8 brane system and five-dimensional fixed points,

Phys. Lett. B 460 (1999) 307 [hep-th/9905148] [INSPIRE].

– 49 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1023/A:1026654312961
http://arxiv.org/abs/hep-th/9711200
http://inspirehep.net/search?p=find+EPRINT+hep-th/9711200
http://dx.doi.org/10.1016/0550-3213(78)90218-3
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B135,149%22
http://dx.doi.org/10.1016/S0920-5632(98)00128-5
http://arxiv.org/abs/hep-th/9705117
http://inspirehep.net/search?p=find+EPRINT+hep-th/9705117
http://arxiv.org/abs/hep-th/9712074
http://inspirehep.net/search?p=find+EPRINT+hep-th/9712074
http://dx.doi.org/10.1016/S0370-2693(96)01215-4
http://arxiv.org/abs/hep-th/9608111
http://inspirehep.net/search?p=find+EPRINT+hep-th/9608111
http://dx.doi.org/10.1016/S0550-3213(97)00279-4
http://arxiv.org/abs/hep-th/9702198
http://inspirehep.net/search?p=find+EPRINT+hep-th/9702198
http://dx.doi.org/10.1016/S0370-2693(99)00763-7
http://arxiv.org/abs/hep-th/9905148
http://inspirehep.net/search?p=find+EPRINT+hep-th/9905148


J
H
E
P
0
8
(
2
0
1
6
)
0
4
6
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