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Problem Overview

| Execution unit accounts for
majority of energy
consumption in GPGPU,
even more than Mem and Reg!

| Leakage energy is becoming a
greater concern with

teCh no I Ogy SCa I | ng Component Energy Breakdown
for GTX480!"]

Traditional microprocessor power gating
techniques are ineffective in GPGPUs

[11J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M. Aamodt, and V. J. Reddi, “GPUWattch: enabling energy optimizations in GPGPUs," presented at the ISCA '13: Proceedings of the 40th Annual
International Symposium on Computer Architecture, 2013.
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GPGPU Overview (GTX480)
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| SP accounts for 98% of Execution Unit Leakage Energy
| Execution units account for 68% of total on chip area
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Power Gating Overview

Cuts off leakage current that flows through a circuit block
Power gate at SP granularity
Important Parameters:

Wakeup Delay - Time to return to Vdd (3 cycles)

Breakeven Time - # of consecutive power gated cycles required to
compensate PG energy overhead (9-24 cycles)

A . .
Idle Detect - # of idle cycles before power gating!?
Cycles>idle_detect
Cumulative energy
> savings Uncompensated Cycles>wakeup_delay
o
g Cycle 1
vl Eoverhead . . / .. .. ... .. :
R /N H
- Overhead to Sleep L7 '\
5 ’
_____ o — —_—— = -
/ Overhead to sleep 017 Ho et o
.Hu, et. al.
II and Wakeup Microarchitectural
10 t1 tZ'\ t3 t4 > Cycles>BET time Compensated ;Zi?nn;qoufe&?cru;:ic;v;er
Time Breakeven Time units. In ISLPED 04

Overview | 4

University of Southern California



Power Gating Challenges in GPGPUs
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Power Gating Challenges in GPGPUs

| Traditional microprocessors experience idle periods
many 10s of cycles long"!

| Int. Unit Idle period length distribution for hotspot
Assume 5 idle detect, 14 BET
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Power Gating Challenges in GPGPUs

| Traditional microprocessors experience idle periods
many 10s of cycles long"!

| Int. Unit Idle period length distribution for hotspot
Assume 5 idle detect, 14 BET

Energy Loss or Neutral
Lost Opportunity L Energy Savings

o 1) <

T T
83.4% 110.1% | 6.5% |
>40% tro oo |

Need to increase idle period length

0% — 1

O 5 10 15 20 25 [3]1S. Dropsho, et. al. Managing static

leakage energy in microprocessor

Idle perlod Iength functional units. In Proceedings of the

MICRO 35,2012
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Warp Scheduler Effect on Power Gating

Need to coalesce warp issues
by resource type

INT

| Idle periods Y /

interrupted NT 77/ \dle Periods
by instructions T

that are greedily
scheduled 7 /
INT

INT FP

Challenges | 8

University of Southern California



GATES:
Gating Aware Two-level Scheduler

| Issue warps based on execution unit resource type
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Gating Aware Two-level Scheduler (GATES)

INT INT INT INT FP FP
Ready Warps
FP
| Idle periods % FP
are coalesced N 7 7/, \dle Period
INT
INT
INT
INT FP
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Gating Aware Two-level Scheduler (GATES)

Per instruction type active warps subset
Instruction Issue Priority

Dynamic priority switching

Switch highest priority when it out of ready warps
Two-level GATES
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Effect of GATES on Idle Period Length

Need to further stretch idle periods
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| ~3xincrease in positive power gating events
| ~2x increase in negative power gating events
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Blackout Power Gating
| Forced idleness of execution units to meet BET
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Blackout Power Gating

| Force idleness until break even time has passed
Even when there are pending instructions
| Would this not cause performance loss?

No, because of GPGPU-specific large heterogeneity
of execution units and good mix of instruction types

Busy
Cycles>idle_detect ‘

Idle_detect

Cycles>wakeup_delay

Uncompensated

Cycles>BET time
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Blackout Power Gating
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| ~2.4xincrease in positive PG events over GATES
(GATES ~3x w.r.t. baseline)
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Blackout Policies

| Naive Blackout
GATES and Blackout is independent

(GATES)
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| Can lead to overaggressive
power gating _spo Jl_sp1 )
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Blackout Policies

| Naive Blackout
GATES and Blackout is independent
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Blackout Policies

| Naive Blackout
GATES and Blackout is independent

r_% Idle Detect
——)

Warp Scheduler
(GATES)

aNIlaliiaNiIakiiaRiiaRiianiie
N0 ]I0]IN
OO OO0 ]IN
OOl liollolin]ln

| Can lead to overaggressive
power gating S W

Blackout | 18

University of Southern California



Blackout Policies

| Naive Blackout
GATES and Blackout is independent
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Blackout Policies

| Coordinated Blackout
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Blackout Policies

| Coordinated Blackout
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Blackout Policies

| Coordinated Blackout
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Impact of Blackout

o 1.1 O Naive Blackout O Coordinated Blackout
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Benchmarks

| Some benchmarks still show poor performance
Not enough active warps to hide forced idleness

| Goal is as close to 0% overhead as possible
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Adaptive Idle Detect

| Reducing Worst Case Blackout Impact
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Adaptive Idle Detect

| Dynamically change idle detect to avoid aggressive PG

| Infer performance loss due to Blackout
“Critical Wakeup” - Wakeup that occur the moment
blackout period ends
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Adaptive Idle Detect

Independent idle detect values for INT and FP pipelines
Break execution time into epoch (1000 cycles)

If critical wakeup > threshold, idleDetect++
Conservatively decrement idleDetect every 4 epochs

Bound idle detect between 5 - 10 cycles

GATES

Warped Gates

Blackout
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Architectural Support
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Evaluation

USC Evaluation | 28
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Evaluation Methodology

| GPGPU-Sim v3.0.2
Nvidia GTX480
GPUWattch and McPAT for Energy and Area estimation
18 Benchmarks from ISPASS, Rodinia, Parboil
Power Gating parameters

Wakeup delay - 3 cycles
Breakeven time - 14 cycles
Idle detect - 5 cycles
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Power Gating Wakeups / Overhead
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Benchmarks

Coalescing idle periods - fewer, but longer, idle periods
Blackout reduces PG overhead by 26%
Warped Gates reduces PG overhead by 46%
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Integer Unit Static Energy Savings
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| Blackout/Warped Gates is able to save energy when
ConvPG cannot

| Warped Gates saves ~1.5x static energy w.r.t. ConvPG
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FP Unit Static Energy Savings
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Benchmarks

| Warped Gates save ~1.5x static energy w.r.t. ConvPG
(Ignores Integer only benchmarks)
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Performance Impact
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Benchmarks

| Naive Blackout has high overhead due to aggressive PG
| Both ConvPG and Warped Gates has ~1% overhead
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Conclusion

Execution units - largest energy usage in GPGPUs
Static energy becoming increasingly important

Traditional microprocessor power gating techniques
ineffective in GPGPUs due to short idle periods

| GATES - Scheduler level technique to increase idle
periods by coalescing instruction type issues

| Blackout — Forced idleness of execution unit to avoid
negative power gating events

| Adaptive Idle Detect - Limit performance impact

| Warped Gates able to save 1.5x more static power than
traditional microprocessor techniques, with negligible
performance loss
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Thank you!

Questions?
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