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WARPED PRODUCTS WITH A SEMI-SYMMETRIC METRIC
CONNECTION

Sibel Sular and Cihan Özgür

Abstract. We find relations between the Levi-Civita connection and a semi-
symmetric metric connection of the warped product M = M1 ×f M2. We ob-
tain some results of Einstein warped product manifolds with a semi-symmetric
metric connection.

1. INTRODUCTION

The idea of a semi-symmetric linear connection on a Riemannian manifold was
introduced by A. Friedmann and J. A. Schouten in [1]. Later, H. A. Hayden [3]
gave the definition of a semi-symmetric metric connection. In 1970, K. Yano [8]
considered semi-symmetric metric connection and studied some of its properties. He
proved that a Riemannian manifold admitting the semi-symmetric metric connection
has vanishing curvature tensor if and only if it is conformally flat. Then, the
generalization of this result for vanishing Ricci tensor of the semi-symmetric metric
connection was given by T. Imai ([4, 5]).

Motivated by the above studies, we study warped product manifolds with semi-
symmetric metric connection and find relations between the Levi-Civita connection
and the semi-symmetric metric connection.

Furthermore, in [2], A. Gebarowski studied Einstein warped product manifolds.
As an application, in this study we consider Einstein warped product manifolds
endowed with semi-symmetric metric connection.

2. SEMI-SYMMETRIC METRIC CONNECTION

Let M be an n-dimensional Riemannian manifold with Riemannian metric g.
A linear connection

◦
∇ on a Riemannian manifold M is called a semi-symmetric

connection if the torsion tensor T of the connection
◦
∇
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(1) T (X, Y ) =
◦
∇XY −

◦
∇Y X − [X, Y ]

satisfies

(2) T (X, Y ) = π(Y )X − π(X)Y,

where π is a 1-form associated with the vector field P on M defined by

(3) π(X) = g(X, P ).

◦
∇ is called a semi-symmetric metric connection if it satisfies

◦
∇g = 0.

If ∇ is the Levi-Civita connection of a Riemannian manifold M , the semi-symmetric
metric connection

◦
∇ is given by

(4)
◦
∇XY = ∇XY + π(Y )X − g(X, Y )P,

(see [8]).
Let R and

◦
R be curvature tensors of ∇ and

◦
∇ of a Riemannian manifold M ,

respectively. Then R and
◦
R are related by

◦
R(X, Y )Z = R(X, Y )Z + g(Z,∇XP )Y − g(Z,∇Y P )X

+g(X, Z)∇Y P − g(Y, Z)∇XP

+π(P )[g(X, Z)Y − g(Y, Z)X ](5)

+[g(Y, Z)π(X)− g(X, Z)π(Y )]P

+π(Z)[π(Y )X − π(X)Y ],

for any vector fields X, Y, Z on M [8]. For a general survey of different kinds of
connections see also [7].

3. WARPED PRODUCT MANIFOLDS

Let (M1, gM1
) and (M2, gM2

) be two Riemannian manifolds and f a positive
differentiable function on M1. Consider the product manifold M1 × M2 with its
projections π : M1 × M2 → M1 and σ : M1 × M2 → M2. The warped product
M1 ×f M2 is the manifold M1 × M2 with the Riemannian structure such that

‖X‖2 = ‖π∗(X)‖2 + f2(π(p)) ‖σ∗(X)‖2 ,
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for any tangent vector X on M . Thus we have

(6) g = gM1
+ f2gM2

.

The function f is called the warping function of the warped product [6].
We need the following three lemmas from [6], for later use :

Lemma 3.1. Let us consider M = M1×f M2 and denote by ∇, M1∇ and M2∇
the Riemannian connections on M , M1 and M2, respectively. If X, Y are vector
fields on M1 and V, W on M2, then:

(i) ∇XY is the lift of M1∇XY,

(ii) ∇XV = ∇V X = (Xf/f)V,

(iii) The component of ∇V W normal to the fibers is −(g(V, W )/f)gradf,

(iv) The component of ∇V W tangent to the fibers is the lift of M2∇V W.

Lemma 3.2. Let M = M1 ×f M2 be a warped product with Riemannian
curvature MR. Given fields X, Y, Z on M1 and U, V, W on M2, then:

(i) MR(X, Y )Z is the lift of M1R(X, Y )Z,

(ii) MR(V, X)Y = −(Hf(X, Y )/f)V , where Hf is the Hessian of f,

(iii) MR(X, Y )V =M R(V, W )X = 0,

(iv) MR(X, V )W = −(g(V, W )/f)∇X(gradf),
(v)

MR(V, W )U =M2 R(V, W )U

+ ‖gradf‖2 /f2{g(V, U)W − g(W, U)V }.
Lemma 3.3. Let M = M1 ×f M2 be a warped product with Ricci tensor MS.

Given fields X, Y on M1 and V, W on M2, then:

(i) MS(X, Y ) =M1 S(X, Y ) − d
f Hf(X, Y ), where d = dimM2,

(ii) MS(X, V ) = 0,
(iii)

MS(V, W ) =M2 S(V, W )− g(V, W )
[
∆f

f
+

(d− 1)
f2

‖gradf‖2

]
,

where ∆f is the Laplacian of f on M1.

Moreover, the scalar curvature Mr of M satisfies the condition

(7) Mr =M1 r +
1
f2

M2

r − 2d

f
∆f − d(d− 1)

f2
‖gradf‖2 ,

where M1r and M2r are scalar curvatures of M1 and M2, respectively.
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4. WARPED PRODUCT MANIFOLDS ENDOWED WITH A

SEMI-SYMMETRIC METRIC CONNECTION

In this section, we consider warped product manifolds with respect to the semi-
symmetric metric connection and find new expressions concerning with curvature
tensor, Ricci tensor and the scalar curvature admitting this connection where the
associated vector field P ∈ χ(M1) or P ∈ χ(M2).

Now, let begin with the following lemma:

Lemma 4.1. Let us consider M = M1 ×f M2 and denote by
◦
∇ the semi-

symmetric metric connection on M , M1
◦
∇ and M2

◦
∇ be connections on M1 and

M2, respectively. If X, Y ∈ χ(M1), V, W ∈ χ(M2) and P ∈ χ(M1), then:

(i)
◦
∇XY is the lift of M1

◦
∇XY,

(ii)
◦
∇XV = (Xf/f)V and

◦
∇V X = [(Xf/f) + π(X)]V,

(iii) nor
◦
∇V W = −[g(V, W )/f ]gradf − g(V, W )P,

(iv) tan
◦
∇V W is the lift of

◦
∇V W on M2.

Proof. From the Koszul formula we can write

2g(∇XY, Z) = Xg(Y, Z)+ Y g(X, Z)− Zg(X, Y )(8)

−g(X, [Y, Z])− g(Y, [X, Z])+ g(Z, [X,Y ]),

for all vector fields X, Y, Z on M , where ∇ is the Levi-Civita connection of M . By
the use of (4) for the semi-symmetric metric connection, the equation (8) reduces to

2g(
◦
∇XY, V ) = Xg(Y, V ) + Y g(X, V )− V g(X, Y )

−g(X, [Y, V ]) − g(Y, [X, V ]) + g(V, [X,Y ])(9)

+2π(Y )g(X, V )− 2π(V )g(X, Y ),

for any vector fields X, Y ∈ χ(M1) and V ∈ χ(M2).
Since X, Y and [X, Y ] are lifts from M1 and V is vertical, we know from [6]

that

(10) g(Y, V ) = g(X, V ) = 0

and

(11) [X, V ] = [Y, V ] = 0.

Hence, the equation (9) can be written as
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(12) 2g(
◦
∇XY, V ) = −V g(X, Y ) − 2π(V )g(X, Y ).

On the other hand, since X and Y are lifts from M1 and V is vertical, g(X, Y )
is constant on fibers which means that

V g(X, Y ) = 0.

So the equation (12) turns into

(13) g(
◦
∇XY, V ) = −π(V )g(X, Y ).

Since P ∈ χ(M1), from the equation (13) we get

g(
◦
∇XY, V ) = 0,

which gives us (i).
By the use of the definition of the covariant derivative with respect to the semi-

symmetric metric connection, we can write

g(
◦
∇XV, Y ) = Xg(Y, V ) − g(V,

◦
∇XY ),

for all vector fields X, Y on M1 and V on M2. By making use of (10) and (13),
the above equation turns into

(14) g(
◦
∇XV, Y ) = π(V )g(X, Y ).

Taking P ∈ χ(M1), we get

(15) g(
◦
∇XV, Y ) = 0.

On the other hand, from the definitions of Koszul formula and the semi-symmetric
metric connection we can write

2g(
◦
∇XV, W ) = Xg(V,W )+ V g(X, W )− Wg(X, V )

−g(X, [V,W ])− g(V, [X,W ])+ g(W, [X,V ])

+2π(V )g(X, W )− 2π(W )g(X, V ),

for any vector fields X on M1 and V, W on M2. In view of (10) and (11), the last
equation reduces to

2g(
◦
∇XV, W ) = Xg(V,W )− g(X, [V,W ]).

Since X is horizontal and [V, W ] is vertical, g(X, [V,W ]) = 0 hence we find

(16) 2g(
◦
∇XV, W ) = Xg(V, W ).
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By the definition of the warped product metric from (6), we have

g(V, W )(p, q) = (f ◦ π)2(p, q)g
M2

(Vq, Wq).

Then by making use of f instead of f ◦ π, we get

g(V, W ) = f2(gM2
(V, W ) ◦ σ).

Hence, we can write

Xg(V,W ) = X [f2(gM2
(V, W ) ◦ σ)]

= 2fXf(gM2
(V, W ) ◦ σ) + f2X(gM2

(V, W ) ◦ σ).

Since the term (gM2(V, W ) ◦ σ) is constant on leaves, by the use of (6), the above
equation turns into

(17) Xg(V, W ) = 2(Xf/f)g(V, W ).

By making use of (17) in (16), we obtain

(18) g(
◦
∇XV, W ) = (Xf/f)g(V,W ).

Taking P ∈ χ(M1), in view of the equations (15) and (18), we have
◦
∇XV = (Xf/f)V.

On the other hand, by the use of (1) we can write

g(
◦
∇XV, W ) = g(

◦
∇V X, W ) + g([X, V ], W ) + g(T (X, V ), W ).

Using (2) and (11), the above equation reduces to

(19) g(
◦
∇XV, W ) = g(

◦
∇V X, W )− π(X)g(V,W ),

which means that

g(
◦
∇V X, W ) = [(Xf/f) + π(X)]g(V,W ).

Then we get

(20)
◦
∇V X = [(Xf/f) + π(X)]V,

so we have (ii). By the definition of the covariant derivative with respect to the
semi-symmetric metric connection, we can write

V g(X, W ) = g(
◦
∇V X, W ) + g(

◦
∇V W, X),
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for any vector fields X on M1 and V, W on M2. From (10), the above equation
reduces to

(21) g(
◦
∇V W, X) = −g(

◦
∇V X, W ).

Taking P ∈ χ(M1), by the use of (20), we get

g(
◦
∇V W, X) = −[(Xf/f) + π(X)]g(V,W ),

which implies that

nor
◦
∇V W = −[g(V, W )/f ]gradf − g(V, W )P,

where Xf = g(gradf, X) for any vector field X on M1. Thus, the proof of the
lemma is completed.

Lemma 4.2. Let us consider M = M1 ×f M2 and denote by
◦
∇ the semi-

symmetric metric connection on M , M1
◦
∇ and M2

◦
∇ be connections on M1 and

M2, respectively. If X, Y ∈ χ(M1), V, W ∈ χ(M2) and P ∈ χ(M2), then:

(i) nor
◦
∇XY is the lift of

◦
∇XY on M1,

(ii) tan
◦
∇XY = −g(X, Y )P,

(iii) tan
◦
∇XV = (Xf/f)V and nor

◦
∇XV = π(V )X ,

(iv)
◦
∇V X = (Xf/f)V,

(v) nor
◦
∇V W = −[g(V, W )/f ]gradf,

(vi) tan
◦
∇V W is the lift of

◦
∇V W on M2.

Proof. Since P ∈ χ(M2), in view of the equation (13), we find

g(
◦
∇XY, V ) = −π(V )g(X, Y ),

which gives us the proof of (i) and (ii).
Similarly from the equation (14) we obtain

(22) g(
◦
∇XV, Y ) = π(V )g(X, Y ).

Then by the use of (18) for P ∈ χ(M2) and in view of (22), we get

(23)
◦
∇XV = (Xf/f)V + π(V )X,
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which implies that

tan
◦
∇XV = (Xf/f)V and nor

◦
∇XV = π(V )X.

Hence we have (iii).
Moreover, in view of (1) and (11) we have

◦
∇V X =

◦
∇XV − T (X, V ).

Then by making use of the equations (2) and (23), the last equation gives us

(24)
◦
∇V X = (Xf/f)V,

which completes the proof of (iv).
Similarly taking P ∈ χ(M2) in the equation (21) and by making use of (24),

we obtain
g(

◦
∇V W, X) = −(Xf/f)g(V,W ),

which gives us

nor
◦
∇V W = −[g(V, W )/f ]gradf.

Hence, we complete the proof of the lemma.

Lemma 4.3. Let M = M1 ×f M2 be a warped product, R and
◦
R denote the

Riemannian curvature tensors of M with respect to the Levi-Civita connection and
the semi-symmetric metric connection, respectively. If X, Y, Z ∈ χ(M1), U, V, W ∈
χ(M2) and P ∈ χ(M1), then:

(i)
◦
R(X, Y )Z ∈ χ(M1) is the lift of M1

◦
R(X, Y )Z on M1,

(ii) ◦
R(V, X)Y = −[Hf (X, Y )/f + (Pf/f)g(X, Y ) + π(P )g(X, Y )

+g(Y,∇XP ) − π(X)π(Y )]V,

(iii)
◦
R(X, Y )V = 0,

(iv)
◦
R(V, W )X = 0,

(v) ◦
R(X, V )W = g(V, W )[−(∇Xgradf)/f − (Pf/f)X

−∇XP − π(P )X + π(X)P ],

(vi) ◦
R(U, V )W =M2 R(U, V )W − {‖gradf‖2 /f2 + 2(Pf/f)

+π(P )}[g(V,W )U − g(U, W )V ].
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Proof. Assume that M = M1 ×f M2 is a warped product, R and
◦
R denote

the curvature tensors of the Levi-Civita connection and the semi-symmetric metric
connection, respectively.

(i) Since
◦
∇XY is the lift of M1

◦
∇XY, for X, Y, P ∈ χ(M1), then by the defini-

tion of
◦
R it is easy to see that

◦
R(X, Y )Z ∈ χ(M1) is the lift of M1

◦
R(X, Y )Z on

M1, for the vector field Z on M1 and P ∈ χ(M1).
(ii) In view of the equation (5), we can write

◦
R(V, X)Y = R(V, X)Y + g(Y,∇V P )X − g(Y,∇XP )V

−g(X, Y )[∇V P + π(P )V − π(V )P ](25)

+π(Y )[π(X)V − π(V )X ],

for all vector fields X, Y on M1 and V on M2, respectively.
Since P ∈ χ(M1), by making use of Lemma 3.2, we get

◦
R(V, X)Y = −[Hf(X, Y )/f + (Pf/f)g(X, Y ) + π(P )g(X, Y )

+g(Y,∇XP ) − π(X)π(Y )]V.

(iii) Putting Z = V in equation (5), where V ∈ χ(M2), we get
◦
R(X, Y )V = g(V,∇XP )Y − g(V,∇Y P )X(26)

+π(V )[π(Y )X − π(X)Y ],

which shows us ◦
R(X, Y )V = 0,

for P ∈ χ(M1).
(iv) By making use of (5) and Lemma 3.2, we can write

◦
R(V, W )X = g(X,∇V P )W − g(X,∇WP )V(27)

+π(X)[π(W )V − π(V )W ],

for any vector fields X on M1 and V, W on M2, respectively. Taking P ∈ χ(M1),
we get

◦
R(V, W )X = 0.

(v) From the equation (5), we find
◦
R(X, V )W = R(X, V )W + g(W,∇XP )V − g(W,∇V P )X

−g(V, W )[∇XP + π(P )X − π(X)P ](28)

+π(W )[π(V )X − π(X)V ],
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for all vector fields X ∈ χ(M1) and V, W ∈ χ(M2).
If P ∈ χ(M1), then by making use of Lemma 3.2 in (28), we have

◦
R(X, V )W = g(V, W )[−(∇Xgradf)/f − (Pf/f)X

−∇XP − π(P )X + π(X)P ].

(vi) In view of the equation (5), we have

◦
R(U, V )W = R(U, V )W + g(W,∇UP )V − g(W,∇V P )U

+g(U, W )∇V P − g(V, W )∇UP

+π(P )[g(U, W )V − g(V, W )U ](29)

+[g(U, W )π(U)− g(V, W )π(V )]P

+π(W )[π(V )U − π(U)V ],

for any vector fields U, V, W on M2.
Taking P ∈ χ(M1) and by making use of Lemma 3.2 in the above equation,

we obtain
◦
R(U, V )W = M2R(U, V )W

−{‖gradf‖2 /f2 + 2(Pf/f)

+π(P )}[g(V,W )U − g(U, W )V ].

Hence, the proof of the lemma is completed.

Lemma 4.4. Let M = M1 ×f M2 be a warped product, R and
◦
R denote the

Riemannian curvature tensors of M with respect to the Levi-Civita connection and
the semi-symmetric metric connection, respectively. If X, Y, Z ∈ χ(M1), U, V, W ∈
χ(M2) and P ∈ χ(M2), then:

(i) M1
◦
R(X, Y )Z =M1 R(X, Y )Z + π(P )[g(X, Z)Y − g(Y, Z)X ],

(ii) M2
◦
R(X, Y )Z = [g(X, Z)(Y f/f) − g(Y, Z)(Xf/f)]P,

(iii) M1
◦
R(V, X)Y = −g((π(V )/f)gradf, Y )X + g(X, Y )[π(V )/f ]gradf,

(iv) M2
◦
R(V, X)Y = −[Hf(X, Y )/f ]V − g(X, Y )(tan∇V P )

−π(P )g(X, Y )V + π(V )g(X, Y )P,

(v)
◦
R(X, Y )V = π(V )[(Xf/f)Y − (Y f/f)X ],
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(vi)
◦
R(V, W )X = (Xf/f)[π(W )V − π(V )W ],

(vii) M1
◦
R(X, V )W = −g(V, W )[(∇Xgradf)/f + π(P )X ]

−g(W,∇V P )X + π(V )π(W )X,

(viii) M2
◦
R(X, V )W = (Xf/f)[π(W )V − g(V, W )P ],

(ix) ◦
R(U, V )W =M2 R(U, V )W

−[‖gradf‖2 /f2]{g(V, W )U − g(U, W )V }
+g(W,∇UP )V − g(W,∇V P )U

+g(U, W )∇V P − g(V, W )∇UP

+π(P )[g(U, W )V − g(V, W )U ]

+[g(V, W )π(U)− g(U, W )π(V )]P

+π(W )[π(V )U − π(U)V ].

Proof. Assume that the associated vector field P ∈ χ(M2). Then the equation
(5) can be written as

◦
R(X, Y )Z = R(X, Y )Z + [g(X, Z)(Yf/f) − g(Y, Z)(Xf/f)]P

+π(P )[g(X, Z)Y − g(Y, Z)X ],

for any vector fields X, Y, Z ∈ χ(M1). By the use of Lemma 3.2, the above
equation gives us

M1
◦
R(X, Y )Z =M1 R(X, Y )Z + π(P )[g(X,Z)Y − g(Y, Z)X ]

and
M2

◦
R(X, Y )Z = [g(X, Z)(Y f/f) − g(Y, Z)(Xf/f)]P,

which finishes the proof of (i) and (ii).
Similarly taking P ∈ χ(M2) in (25) and using Lemma 3.2, we obtain

◦
R(V, X)Y = −[Hf (X, Y )/f ]V − g([π(V )/f ]gradf, Y )X

−g(X, Y )[∇V P + π(P )V − π(V )P ],

which implies that

M1
◦
R(V, X)Y = −g([π(V )/f ]gradf, Y )X + g(X, Y )[π(V )/f ]gradf
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and

M2
◦
R(V, X)Y = −[Hf (X, Y )/f ]V − g(X, Y )(tan∇V P )

−g(X, Y )[π(P )V − π(V )P ],

which completes the proof of (iii) and (iv).
Taking P ∈ χ(M2) in the equation (26), we get

◦
R(X, Y )V = π(V )[(Xf/f)Y − (Y f/f)X ],

which gives us (v).
From the equation (27) and by the use of Lemma 3.1 for P ∈ χ(M2) it can be

easily seen that
◦
R(V, W )X = (Xf/f)[π(W )V − π(V )W ],

which proves (vi).
Similarly, from the equation (28) if P ∈ χ(M2), then we obtain

M1
◦
R(X, V )W = −g(V, W )[(∇Xgradf)/f + π(P )X ]

−g(W,∇V P )X + π(V )π(W )X

and
M2

◦
R(X, V )W = (Xf/f)[π(W )V − g(V, W )P ].

So we prove (vii) and (viii). Taking P ∈ χ(M2) in (29) and by the use of Lemma
3.2, we obtain

◦
R(U, V )W = M2R(U, V )W

−[‖gradf‖2 /f2]{g(V, W )U − g(U, W )V }
+g(W,∇UP )V − g(W,∇V P )U

+g(U, W )∇V P − g(V, W )∇UP

+π(P )[g(U, W )V − g(V, W )U ]

+[g(U, W )π(U)− g(V, W )π(V )]P

+π(W )[π(V )U − π(U)V ],

for any vector fields U, V, W on M2, hence the last equation gives us (ix). Thus,
we complete the proof of the lemma.
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As a consequence of Lemma 4.3 and Lemma 4.4, by a contraction of the cur-
vature tensors we obtain the Ricci tensors of the warped product with respect to the
semi-symmetric metric connection as follows:

Corollary 4.5. Let M = M1 ×f M2 be a warped product, S and
◦
S denote

the Ricci tensors of M with respect to the Levi-Civita connection and the semi-
symmetric metric connection, respectively, where dimM1 = n1 and dim M2 = n2.
If X, Y ∈ χ(M1), V, W ∈ χ(M2) and P ∈ χ(M1), then:

(i) ◦
S(X, Y ) =M1

◦
S(X, Y ) − n2[Hf(X, Y )/f + (Pf/f)g(X, Y )

+π(P )g(X, Y ) + g(Y,∇XP ) − π(X)π(Y )],

(ii)
◦
S(X, V ) =

◦
S(V, X) = 0,

(iii) ◦
S(V, W ) =M2 S(V, W )−

n1∑
i=1

g(∇eiP, ei)g(V, W )

−[(n2 − 1) ‖gradf‖2 /f2 + (n1 + 2n2 − 2)(Pf/f)

+(n − 2)π(P ) +
∆f

f
]g(V, W ).

Corollary 4.6. Let M = M1 ×f M2 be a warped product, S and
◦
S denote

the Ricci tensors of M with respect to the Levi-Civita connection and the semi-
symmetric metric connection, respectively, where dimM1 = n1 and dim M2 = n2.
If X, Y ∈ χ(M1), V, W ∈ χ(M2) and P ∈ χ(M2) , then:

(i) ◦
S(X, Y ) =M1 S(X, Y ) − (n − 2)π(P )g(X, Y )

−n2[Hf(X, Y )/f ]−
n∑

i=n1+1

g(∇eiP, ei)g(X, Y ),

(ii)
◦
S(X, V ) = (2− n)π(V )(Xf/f) and

◦
S(V, X) = (n − 2)π(V )(Xf/f),

(iii)
◦
S(V, W ) =M2 S(V, W )+

n∑
i=n1+1

{g(W,∇eiP )g(V, ei)−g(∇eiP, ei)g(V, W )}

−[(n2 − 1) ‖gradf‖2 /f2 +
∆f

f
+ (n − 2)π(P )]g(V,W )

−(n − 1)g(W,∇V P ) + (n − 2)π(V )π(W ).

As a consequence of Corollary 4.5 and Corollary 4.6, by a contraction of the
Ricci tensors we get scalar curvatures of the warped product with respect to the
semi-symmetric metric connection as follows:
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Corollary 4.7. Let M = M1 ×f M2 be a warped product, r and ◦
r denote the

scalar curvatures of M with respect to the Levi-Civita connection and the semi-
symmetric metric connection, respectively and P ∈ χ(M1). Then we have

◦
r = M1

◦
r +

M2r

f2
− n2(n2 − 1) ‖gradf‖2 /f2 − 2n2(n − 1)(Pf/f)

−2n2
∆f

f
− n2[2n1 + n2 − 3]π(P )− 2n2

n1∑
i=1

g(∇eiP, ei).

Corollary 4.8. Let M = M1 ×f M2 be a warped product, r and ◦
r denote the

scalar curvatures of M with respect to the Levi-Civita connection and the semi-
symmetric metric connection, respectively and P ∈ χ(M2). Then we have

◦
r = M1r +

M2r

f2
−

n∑
i=n1+1

2(n − 1)g(∇eiP, ei)

−(n − 1)(n− 2)π(P )− n2[(n2 − 1) ‖gradf‖2 /f2 + 2
∆f

f
].

5. EINSTEIN WARPED PRODUCT MANIFOLDS ENDOWED WITH THE SEMI-SYMMETRIC

METRIC CONNECTION

In this section, we consider Einstein warped products endowed with the semi-
symmetric metric connection.

Now, let begin with the following theorem:

Theorem 5.1. Let (M, g) be a warped product I ×f M2, where dim I = 1 and
dimM2 = n − 1 (n ≥ 3). Then (M, g) is an Einstein manifold with respect to
the semi-symmetric metric connection if and only if M 2 is Einstein for P ∈ χ(M1)
with respect to the Levi-Civita connection or the warping function f is a constant
on I for P ∈ χ(M2).

Proof. Assume that P ∈ χ(M1) and denote by g
I

the metric on I . Taking
f = exp{ q

2} and by making use of Corollary 4.5, we can write

(30)

◦
S( ∂

∂t ,
∂
∂t) =

(
−(n − 1)

4
[2q′′ + (q′)2] +

q′

2

)
g

I
(

∂

∂t
,

∂

∂t
),

◦
S( ∂

∂t , V ) = 0

and

(31)
◦
S(V, W )=M2S(V, W )−eq

[
(n− 1)

4
(q′)2+

(2n−3)
2

q′+(n−2)
]
gM2

(V, W ),

for any vector fields V, W on M2.
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Since M is an Einstein manifold with respect to the semi-symmetric metric
connection, we have

◦
S(

∂

∂t
,

∂

∂t
) = αg(

∂

∂t
,

∂

∂t
)

and ◦
S(V, W ) = αg(V, W ).

Then by making use of (6), the last two equations reduce to

(32)
◦
S(

∂

∂t
,

∂

∂t
) = αg

I
(
∂

∂t
,

∂

∂t
)

and

(33)
◦
S(V, W ) = αeqg

M2
(V, W ).

Comparing the right hand sides of the equations (30) and (32) we get

(34) α =
(
−(n − 1)

4
[2q′′ + (q′)2] +

q′

2

)
.

Similarly, comparing the right hand sides of (31) and (33) and by the use of (34),
we obtain

M2S(V, W ) = −eq

(
(n − 2)

2
q′′ + (n − 1)q′ + (n − 2)

)
gM2

(V, W ),

which implies that M2 is an Einstein manifold with respect to the Levi-Civita
connection for P ∈ χ(M1).

Taking P ∈ χ(M2) and by the use of Corollary 4.6, we have

(35)
◦
S(

∂

∂t
, V ) = (2 − n)

q′

2
π(V )g

I
(

∂

∂t
,

∂

∂t
)

and

(36)
◦
S(V,

∂

∂t
) = (n − 2)

q′

2
π(V )gI (

∂

∂t
,

∂

∂t
),

for any vector field V ∈ χ(M2).
Since M is an Einstein manifold, we can write

◦
S(

∂

∂t
, V ) =

◦
S(V,

∂

∂t
) = αg(V,

∂

∂t
),

where g(V, ∂
∂t) = 0 for ∂

∂t ∈ χ(M1) and V ∈ χ(M2). Hence, the last equation
turns into

(37)
◦
S(

∂

∂t
, V ) =

◦
S(V,

∂

∂t
) = 0.
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Comparing the right hand sides of the equations (35), (36) and (37), we obtain

q′ = 0,

which means that q is a constant on I . Since the warping function f = exp{ q
2},

then f is a constant on I . Thus, the proof of the theorem is completed.

Theorem 5.2. Let (M, g) be a warped product M1 ×f I , where dim I = 1 and
dimM1 = n − 1 (n ≥ 3).

(i) If (M, g) is an Einstein manifold with respect to the semi-symmetric metric
connection, P ∈ χ(M1) is parallel on M1 with respect to the Levi-Civita
connection on M1 and f is a constant on M1, then:

M1
◦
r = −(n − 2)2π(P ).

(ii) If (M, g) is an Einstein manifold with respect to the semi-symmetric metric
connection for P ∈ χ(M2), then f is a constant on M1.

(iii) If f is a constant on M1 and M1 is an Einstein manifold with respect to the
Levi-Civita connection for P ∈ χ(M2), then M is an Einstein manifold with
respect to the semi-symmetric metric connection.

Proof. (i) Assume that (M, g) is an Einstein manifold with respect to the
semi-symmetric metric connection. Then we can write

(38)
◦
S(X, Y ) =

◦
r

n
g(X, Y ),

for any vector fields X, Y ∈ χ(M1). Taking P ∈ χ(M1) and by the use of the
equation (6) and Corollary 4.7, the equation (38) reduces to

◦
S(X, Y ) =

1
n

[
M1

◦
r − 2

n−1∑
i=1

g(∇eiP, ei) − 2
∆f

f

−2(n − 1)(Pf/f) − 2(n − 2)π(P )

]
g

M1
(X, Y ).

By a contraction from the above equation over X and Y , we get

(39)

◦
r =

(n − 1)
n

[
M1

◦
r − 2

n−1∑
i=1

g(∇eiP, ei) − 2
∆f

f

−2(n − 1)(Pf/f)− 2(n− 2)π(P )

]
.
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On the other hand, since the vector field P ∈ χ(M1), then by the use of Corollary
4.5 we can write

◦
S(X, Y ) = M1

◦
S(X, Y ) − [Hf(X, Y )/f + (Pf/f)g(X, Y )

+π(P )g(X, Y ) + g(Y,∇XP ) − π(X)π(Y )].

Similarly, by a contraction from the last equation over X and Y , it can be easily
seen that

(40) ◦
r =M1

◦
r − ∆f

f
− (n − 1)(Pf/f)− (n − 2)π(P )−

n−1∑
i=1

g(∇eiP, ei).

Comparing the right hand sides of the equations (39) and (40), we can write

(n−1)
n

[
M1

◦
r−2

n−1∑
i=1

g(∇eiP, ei)−2
∆f

f
−2(n− 1)(Pf/f)−2(n−2)π(P )

]

= M1
◦
r − ∆f

f
− (n − 1)(Pf/f)− (n − 2)π(P )−

n−1∑
i=1

g(∇eiP, ei).

Since P ∈ χ(M1) is parallel and f is a constant on M1, then we get M1
◦
r =

−(n − 2)2π(P ).
(ii) Let P ∈ χ(M2). By the use of Corollary 4.6, we have

◦
S(X, V ) = (2− n)g([π(V )/f ]gradf, X)

and ◦
S(V, X) = (n − 2)g([π(V )/f ]gradf, X),

for any vector fields X ∈ χ(M1) and V ∈ χ(M2). Since M2 = I , then taking
V = P and using the equality g(gradf, X) = Xf from the last equation we obtain

(41)
◦
S(X, P ) = (2− n)(Xf/f)π(P )

and

(42)
◦
S(P, X) = (n − 2)(Xf/f)π(P ).

Since M is an Einstein manifold, we can write

◦
S(X, P ) =

◦
S(P, X) = αg(P, X),
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where g(P, X) = 0 for X ∈ χ(M1) and P ∈ χ(M2). Hence, the last equation
turns into

(43)
◦
S(X, P ) =

◦
S(P, X) = 0.

Comparing the right hand sides of the equations (41), (42) and (43) we get

Xf = 0,

which gives us the warping function f is a constant on M1.
(iii) Assume that M1 is an Einstein manifold with respect to the Levi-Civita

connection. Then we have

(44) M1S(X, Y ) = αg(X, Y ),

for any vector fields X, Y tangent to M1.
On the other hand, in view of Corollary 4.6, we can write

◦
S(X, Y ) =M1 S(X, Y )− (n − 2)π(P )g(X, Y )− [Hf(X, Y )/f ],

for P ∈ χ(M2). Since f is a constant on M1, then Hf(X, Y ) = 0 for all X, Y ∈
χ(M1). Thus, the above equation reduces to

(45)
◦
S(X, Y ) =M1 S(X, Y ) − (n − 2)π(P )g(X, Y ).

By the use of (44) in (45), we obtain

◦
S(X, Y ) = [α − (n − 2)π(P )]g(X,Y ),

which shows us M1×f I is an Einstein manifold with respect to the semi-symmetric
metric connection. Therefore, we complete the proof of the theorem.
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