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1 Introduction

One remarkable success of the holographic principle is the link it provides between two

dimensional conformal field theories, CFT2, and the microscopic origin of black hole ther-

modynamics. This first connection was observed in the seminal derivation of the micro-

scopic entropy of five-dimensional extremal BPS black holes in the context of string theory

by Strominger and Vafa [1]. Despite the specificity of the construction, it provided a

framework to explore the robustness of the result beyond its initial scope. Within super-

symmetric theories the agreement has been outstanding, allowing for an exploration of

both perturbative and non-perturbative effects in quantum gravity; see [2] for a review on

the subject.1

Soon after this success, it became clear that the key feature was not supersymmetry, or

the specific string theory ingredients in [1], but rather the conformal symmetry in the near

horizon region. Conformal invariance is implied by the presence of an AdS factor in the near

horizon region, and hence AdS/CFT is responsible for the agreement. For example, many

of the above supersymmetric solutions contain an AdS3 factor, and it was soon evident

that part of the above success relied on AdS3/CFT2. Among other properties, the entropy

of these black holes agrees precisely with the Cardy’s growth of states for a CFT2 [4, 5].

These developments complemented perfectly the derivation of Brown and Henneaux [6],

where the symmetry algebra of the so-called large diffeomorphisms forms two copies of a

1And see [3] for a historical account of these developments in the past two decades.
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Virasoro algebra. This placed AdS3 gravity, and the black holes within [7, 8], as a lamppost

for our understanding of quantum black holes.

The role of 2d conformal symmetry might not be restricted to extremal black holes

with a decoupled near-horizon AdS3 region, with early indications already present in [9–

11]. One important observation in this direction was to highlight a hidden conformal

symmetry of the Klein-Gordon operator on the Kerr background, which is made manifest

when considering a “near” region of phase space rather than spacetime [12]. A second

observation is the explicit identification of two sets of Virasoro diffeomorphisms acting on

the horizon [13]. The central extensions derived there fill an important gap in this program

that address the microscopic origin of the entropy of a generic Kerr black hole with mass

M and angular momentum J . More concretely, the Cardy formula in a CFT2

SCardy =
π2

3
c (TL + TR) . (1.1)

with left and right-moving temperatures in [12], and central charge c = 12J obtained

in [13], reproduces the Bekenstein-Hawking area law of the Kerr black hole.

The question we would like to ask here is whether the arguments used in [12, 13]

that point at a description of generic Kerr black holes in terms of a CFT2 are unique. In

recent years indeed, alternative holographic scenarios have started to emerge in which the

geometries no longer exhibit a local SL(2,R)×SL(2,R) symmetry, and where the dual field

theories differ from a traditional CFT2. One such scenarios involves a new type of field

theories, called Warped Conformal Field Theories (WCFT) [14, 15]. We will argue that a

description of generic Kerr black holes in terms of a WCFT might appear as natural as a

CFT2 one and, in particular, that it allows to reproduce the Bekenstein-Hawking entropy

along the lines of [13].

WCFTs are two-dimensional non-relativistic field theories, with an SL(2,R) × U(1)

global symmetry that gets extended into an infinite-dimensional Virasoro-Kac-Moody al-

gebra [14, 15]. Many of their unique field theoretic properties have been uncovered in recent

years [16–27]. In a holographic context, their natural counterparts are gravitational theories

that admit Warped AdS3 (WAdS3) spacetimes as solutions [28–31]. For several instances

of WAdS3 one can establish that the asymptotic symmetries form a Virasoro-Kac-Moody

algebra, which is an extension of their local SL(2,R) × U(1) Killing symmetries [32–38],

thus precisely matching the defining symmetries of a WCFT. Remarkably, WCFTs ex-

hibit modular properties that allow to derive a Cardy-type formula for the asymptotic

degeneracy of states, which is found to match the entropy of the corresponding WAdS3

black holes [15, 39–45], in the spirit of [4]. This is taken as an indication that WCFTs

could be relevant to give a microstate description of certain classes of black holes in lower

dimensions. In this work, we will investigate whether WCFTs could also play a role to

understand higher dimensional black holes, in particular non-extremal Kerr black holes in

4 dimensions.2

2WAdS3 spaces famously appear in the near-horizon geometry of extremal four-dimensional Kerr black

holes [46] central to the Kerr/CFT correspondence [47], which makes this possible holographic description

worth exploring.

– 2 –
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Our paper is organized as follows. We will start in section 2 by reviewing the analytic

properties of the Klein-Gordon operator on the Kerr background. This operator has two

regular singular points with non-trivial monodromies, located at the inner and outer horizon

of the Kerr black hole. As shown in [48], these monodromies give us a natural basis of

energy eigenstates that are crucial for the identification of vector fields we will use section 3

and the identification of TL,R in (1.1). Although this choice of basis is equivalent to the

one used in [13], the advantage of phrasing this choice in terms of monodromies is that it

does not rely on a low frequency limit of scattering amplitudes: it is an exact feature about

the analyticity of an eternal black hole.

Section 3 contains our main result: we will propose a set of vector fields, whose

algebra fits the symmetries of a WCFT. As in [13], we use Wald-Zoupas formalism to define

covariant charges and evaluate the central extensions of the gravitational charges associated

to these vectors. We find a non-trivial central extension for the Virasoro commutator and

the Kac-Moody current. One interesting feature of our analysis is that the integrals involved

in these terms only receive non-trivial contributions from the future horizon.

In section 4 we discuss how one could use the thermodynamic properties of a WCFT to

account for the Bekenstein-Hawking entropy. Using the basis of monodromies in section 2

and the central extensions in section 3, we are able to account for the entropy of the

Kerr black hole using the asymptotic formula for the growth of states in a WCFT. This

is another piece of evidence that advances a different holographic description of the Kerr

black hole.

We end our work with a discussion that includes future directions and weaknesses in

this program that are worth mentioning. In appendix A we provide some introductory

material on WCFT based on [15, 17], and in appendix B we review the derivation of the

Cardy formula using the analogous approach as done for WCFT. Finally in appendix C

we discuss how warped symmetries could be hidden in the low frequency limit of a scalar

wave equation.

2 Black hole monodromy

The metric for the Kerr black hole, in Boyer-Lindquist coordinates, is given by

ds2 =
ρ

∆
dr2 − ∆

ρ

(
dt− a sin2 θ dφ

)2
+ ρ dθ2 +

sin2 θ

ρ

(
(r2 + a2) dφ− a dt

)2
, (2.1)

where a is a constant parameter that controls the rotation, and ρ = r2 + a2 cos2 θ. The

mass of the black hole M enters the metric via

∆ = r2 + a2 − 2Mr . (2.2)

The inner and outer horizons are located at

r± = M ±
√
M2 − a2 , (2.3)

which corresponds to the zeroes of ∆. The angular momentum of the black hole is J = Ma.

– 3 –
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As we discuss physical observables in Kerr, one of our agenda points will be to exploit

analytic properties of the black hole background. To motivate our later choices, we will

review how analyticity, represented by monodromy data, enters in the structure of the

Klein-Gordon equation [48, 49]. The starting point is to consider a massless scalar field ψ

in the Kerr background, i.e.

1√
−g

∂µ
(√
−ggµν∂νψ

)
= 0 . (2.4)

Expanding in eigenmodes

ψ(t, r, θ, φ) = e−iωt+imφR(r)S(θ) , (2.5)

the Klein-Gordon operator (2.4) becomes separable. The spheroidal equation is[
1

sin θ
∂θ (sin θ∂θ)−

m2

sin2 θ
+ ω2a2 cos2 θ

]
S(θ) = −K`S(θ) , (2.6)

for eigenvalue K`(aω); to leading order K`(aω) = `(`+1)+O(aω)2. And the radial equation

is given by[
∂r(r − r−)(r − r+)∂r +

(ω − Ω+m)2

4κ2
+

(r+ − r−)

(r − r+)

−(ω − Ω−m)2

4κ2
−

(r+ − r−)

(r − r−)
+ (r2 + 2M(r + 2M))ω2

]
R(r) = K`R(r) , (2.7)

where

κ± =
r+ − r−
4Mr±

, Ω± =
a

2Mr±
, (2.8)

are the surface gravity and angular velocity evaluated at the inner (r = r−) and outer

horizon (r = r+).

The global properties of solutions to (2.7) are as follows. Equation (2.7) has two

regular singular points at r = r+ and r = r−, which means that the solutions to (2.7)

have branch cuts at these points. For instance, around r = r+ we have two linearly

independent solutions

Rout
+ (r) = (r − r+)iα+

(
1 +O(r − r+)

)
, Rin

+(r) = (r − r+)−iα+
(
1 +O(r − r+)

)
, (2.9)

where

α+ =
(ω − Ω+m)

2κ+
. (2.10)

This is a convergent series expansion for R(r) when |r − r+| < |r− − r+|. Near the the

inner horizon, r = r−, we have a similar expansion, where α+ is replaced by

α− =
(ω − Ω−m)

2κ−
. (2.11)

Here α± control the analyticity of the solutions: they are parameters that measure the lack

of meromorphicity in R(r) as one transports a solution in the complex r-plane around one

– 4 –
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of the singular points. Note that the monodromy eigenvalues α± in (2.10)–(2.11) are exact

statements about the differential equation; it is not an artefact of a low frequency regime

or any other limit.

There is also a singular point at r =∞, and the series expansions reads

Rout
∞ (r) ∼ eiωrriλ−1

(
1 +O(r−1)

)
, Rin

∞(r) ∼ e−iωrr−iλ−1
(
1 +O(r−1)

)
, (2.12)

with

λ = 2Mω . (2.13)

Unlike the singular points at r = r±, however, the singular point at r =∞ is irregular. This

means that the series (2.12) is asymptotic rather than convergent. The series expansion for

R(r) appearing in (2.12) is therefore referred to as a formal solution to the wave equation, as

opposed a true solution defined by an analytic continuation of the series expansion (2.9) to

the whole complex r-plane. The true solution around this irregular point has a monodromy,

αirr, which can be computed perturbatively in ω [49–51]. Its leading behaviour is iαirr =

`+O(ω2) with ` the spherical harmonic that controls (2.6).

The monodromy parameters α± connect in an elegant manner the scattering coeffi-

cients to the analytic properties of the geometry, see e.g. [48, 49, 52, 53]. Their use here

will be as energy eigenstates that will motivate our choice of vector fields in section 3,

and impact the holographic interpretation of the thermodynamics of Kerr in section 4.

The canonical choice of eigenstates is to consider functions of the eigenvalues (ω,m) of the

operators (i∂t,−i∂φ), as done in (2.5). Following [48], we will consider instead the linear

combinations of the monodromies:

ωL := α+ − α− ,
ωR := α+ + α− . (2.14)

To the energies ωR,L we will assign conjugate variables t±, with (ωL, ωR) eigenvalues of

(i∂t− , i∂t+). Thus,

e−iωt+imφ = e−iωLt
−−iωRt+ . (2.15)

Using the explicit form of the monodromies for Kerr (2.10)–(2.11), we find that

t+ = 2πTR φ , t− =
1

2M
t− 2πTL φ , (2.16)

where (t, φ) are Boyer-Lindquist coordinates, and

TL =
r+ + r−

4πa
, TR =

r+ − r−
4πa

. (2.17)

In position space, we will rewrite (2.14)

H0 =
i

2πTR
∂φ + 2iM

TL
TR

∂t , H̄0 = −2iM∂t . (2.18)

It is important to note that these vectors are the same as those used to exhibit the hid-

den conformal symmetry of Kerr [12], and used in [13]. In our subsequent derivations, a

difference worth highlighting, is that we are using the monodromy basis to select (2.18).

Moreover we will not interpret (2.18) as a basis for CFT2 energy eigenstates; instead we

explore an alternative interpretation in terms of a WCFT description.

– 5 –
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3 Warped symmetries in the Kerr geometry

In this section we will introduce a the set of diffeomorphisms in the near horizon geometry

of the Kerr black hole, and study the linearized charges associated to them. This section

follows closely the proposal in [13], where the most significant deviation comes from our

choice of vector fields.

As in [12, 13] it is convenient to adapt “conformal” coordinates (w±, y) defined in

terms of (t, r, φ) by

w+ =

√
r − r+

r − r−
e2πTRφ ,

w− =

√
r − r+

r − r−
e2πTLφ− t

2M ,

y =

√
r+ − r−
r − r−

eπ(TL+TR)φ− t
4M . (3.1)

A motivation to introduce this coordinate system, is that the local vector fields in (2.18)

are now independent of the Kerr black hole parameters; and in particular

H0 = i

(
w+∂+ +

1

2
y∂y

)
, H̄0 = i

(
w−∂− +

1

2
y∂y

)
. (3.2)

An important feature is that under azimuthal identification φ ∼ φ+ 2π one finds

w+ ∼ e4π2TRw+ , w− ∼ e4π2TLw− , y ∼ e2π2(TR+TL)y . (3.3)

With the intention of promoting warped symmetries as a holographic description of

the Kerr black hole, we will introduce a set of suitably chosen vector fields. These are

ζ(ε) = ε(w+) ∂+ +
1

2
∂+ε(w

+) y∂y ,

p(ε̂) = ε̂(w+)

(
w−∂− +

y

2
∂y

)
, (3.4)

where ε and ε̂ are arbitrary functions of w+. We restrict these functions such that the

vector fields (3.4) are periodic under (3.3); a Fourier decomposition achieving this is

εn = 2πTR(w+)
1+ in

2πTR , ε̂n′ = (w+)
in′

2πTR , (3.5)

with n, n′ ∈ Z, and we define ζn ≡ ζ(εn) and pn ≡ p(ε̂n). With this choice, the Lie bracket

of the above vector fields reads

i[ζm, ζn] = (m− n)ζm+n ,

i[ζm, pn] = n pm+n ,

i[pm, pn] = 0 , (3.6)

which is a Virasoro-KacMoody (VKM) algebra without any central extension. In compar-

ison to the vector field in (3.2), we have

ζ(ε0) = −i2πTRH0 , p(ε̂0) = iH̄0 , (3.7)

i.e. our zero modes coincide with the monodromy basis.

– 6 –
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3.1 Central extensions

The subsequent analysis will be done using conformal coordinates, and for that purpose

it is useful to record some of their properties. The past horizon, which in the Boyer

Lindquist systems is at r = r+, t ∈ (−∞, 0), maps to w+ = 0; the future horizon, located

at r = r+, t ∈ (0, ∞), maps to w− = 0. The bifurcation surface Σbif is therefore at

w+ = w− = 0, and around this surface the metric (2.1) becomes

ds2 =
4ρ2

+

y2
dw+dw− +

16J2 sin2 θ

y2ρ2
+

dy2 + ρ2
+dθ

2 − 2w+(8πJ)2TR(TR + TL)

y3ρ2
+

dw−dy

+
8w−

y3ρ2
+

(
− (4πJ)2TL(TR + TL) + (4J2 + 4πJa2(TR + TL) + a2ρ2

+) sin2 θ
)
dw+dy

+ · · · , (3.8)

where corrections are at least second order in (w+, w−).

We can associate to the vector fields (3.4) covariant charges; these charges implement

the symmetries on a phase space via the Dirac bracket. The linearized charges we will be

studying are

δQ = δQIW + δQWZ . (3.9)

The first term is the Iyer-Wald charge, which reads

δQIW(χ, h; g) =
1

16π

∫
∂Σ
?FIW . (3.10)

The surface of integration is the bifurcation surface, ∂Σ = Σbif . The input in this definition

includes a vector field χ, which we will take to be (3.4), a metric perturbation hµν , and

the background metric gµν in (3.8). The integrand is given by

(FIW)µν =
1

2
∇µχν h+∇µhλν χλ +∇λχµ hλν −∇µhχν − (µ↔ ν) . (3.11)

The second term in (3.9) is the Wald-Zoupas counterterm [54], introduced in [13] to comply

to some consistency conditions which we will highlight below. Its definition is

δQWZ(χ, h; g) =
1

16π

∫
∂Σ
ιχ(?X) , X = 2h ν

µ Ωνdxµ , (3.12)

where Ωµ is defined as

Ωµ = qλµn
ν∇λlν . (3.13)

The vectors nµ and lµ are null, normal to Σbif , and n · l = −1; qµν = gµν + nµlν + nν lµ
is the induced metric on Σbif . In addition we demand that nµ and lµ are single valued

under (3.3), which fixes them up to a rescaling.

We are interested in quantifying if the algebra of charges associated to (3.6) admits a

central extension. More explicitly, we will define

δLn ≡ δQ(ζn, h; g) , δPn ≡ δQ(pn, h; g) , (3.14)

– 7 –
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for the vectors in (3.4) and (3.5). Assuming that these charges are integrable and that

the Dirac bracket is well defined, there are 3 possible central extensions. For the Virasoro

sector we have

[Ln, Lm] = (m− n)Lm+n +Km,n , Km,n = δQ(ζn,Lζmg; g) , (3.15)

and the Kac-Moody generators

[Pn, Pm] = km,n , km,n = δQ(pn,Lpmg; g) . (3.16)

And finally there is as well the possibility of a mixed central term

[Ln, Pm] = mPn+m + Km,n , Km,n = δQ(ζn,Lpmg; g) . (3.17)

The evaluation of these central terms involves some subtleties which we now turn to.

As it was observed in [13], the leading singularities in the integrand of δQ near Σbif

are at most simple poles. For example, in evaluating Km,n there is a non-zero contribution

from the F−yIW component, i.e., from the constant y cross-section of the future horizon close

to the bifurcation surface. This term contains a simple pole in w+, and the relevant integral

to evaluate is ∫ w+
0 e

4π2TR

w+
0

dw+

w+
= 4π2TR . (3.18)

The limits of w+ are governed by the identification w+ ∼ w+e4π2TR , and w+
0 is a reference

point near w+ → 0. The Wald-Zoupas term in (3.12) has the same type of singular

behaviour. The evaluation of Km,n therefore receives contributions from

δQIW(ζn,Lζmg; g) = 2J
TR

TL + TR

((
− 1 +

M2

a2

)
m+m3

)
δn,−m ,

δQWZ(ζn,Lζmg; g) = J
TL − TR
TL + TR

((
− 1 +

M2

a2

)
m+m3

)
δn,−m , (3.19)

where we used (3.18) to evaluate the integral over w+. The linear term in m can be

reabsorbed in the zero mode of the generators, and will be ignored in the following. Adding

up the m3 contributions gives

Km,n = J m3 δn,−m , (3.20)

which reproduces the right-movers in [13]. As noted there, individually the terms in (3.19)

are problematic since they depend on the mass of the black hole; removing this dependence

is the main motivation to introduce the Wald-Zoupas counterterm.

For the two remaining central extensions, the steps are exactly the same: the only non-

zero contribution in the Iyer-Wald term (3.10) and Wald-Zoupas counterterm in (3.12)

comes from the constant y cross-section of the future horizon close to the bifurcation

surface. Thus, we are left to evaluate an integral over θ and w+, where the integral over

w+ is of the form (3.18). This is an important difference relative to [13]: all of our central

extension have their pole in the future horizon. We will comment more on this feature in

the discussion.

– 8 –
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Carrying out the appropriate integrals, the central extension km,n in (3.16) receives

the two non-trivial contributions which are

δQIW(pn,Lpmg; g) = −2J
TL

TL + TR
mδn,−m ,

δQWZ(pn,Lpmg; g) = J
TL − TR
TL + TR

mδn,−m , (3.21)

where these contribution are due to the integrals over the future horizon and we used (3.18).

And as in (3.20), the addition of these terms gives a mass independent result; we find

km,n = −J mδn,−m , (3.22)

Finally, our proposed set of vector fields could also allow for a mixed central extension

Km,n. In this case have

δQIW(ζn,Lpmg; g) = iJ
TR − TL
TL + TR

(
m
i
√
M2 − a2

a
+m2

)
δn,−m ,

δQWZ(ζn,Lpmg; g) = −iJ TR − TL
TL + TR

(
m
i
√
M2 − a2

a
+m2

)
δn,−m , (3.23)

which adds to zero, and hence Km,n = 0. It is interesting to note that Wald-Zoupas

counterterm here served the additional purpose of eliminating the mixed central extension

for our algebra.

Gathering all the results from evaluating the central extensions, the algebra of covariant

charges (3.14) associated to the diffeomeorphisms (3.4)–(3.5) seems to obey3

[Ln, Lm] = (m− n)Lm+n +
c

12
m3δn,−m ,

[Ln, Pm] = mPn+m ,

[Pn, Pm] = k
m

2
δn,−m , (3.24)

with

c = 12J , k = −2J . (3.25)

This derivation supports the proposal that the Kerr black hole could be described holo-

graphically in terms of a WCFT. The non-trivial central extensions for the Virasoro-

KacMoody algebra depend on the angular momentum of the black hole.

4 Black hole thermodynamics from warped symmetries

In this section we will show how the above information can be used to interpret the entropy

of the Kerr black hole

SBH =
AH
4

= 2π(M2 +
√
M4 − J2) , (4.1)

as the entropy of a thermal state in a WCFT.

3We emphasise that at this stage we have not evaluated the charges explicitly; we are assuming that

they obey suitable Dirac brackets.
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The change of coordinates (3.1) can be rewritten, at fixed r 6= r+, and up to an

r-dependent rescaling as

w± = e±t
±
, (4.2)

with t± precisely the coordinates in the monodromy basis (2.16). Since φ is 2π-periodic, the

corresponding identifications on t± make (4.2) the well-known relation between Minkowski

(w±) and Rindler (t±) coordinates. In the Minkowski vacuum, observers at a fixed position

in Rindler coordinates will detect a thermal radiation.

Now, the orginal Kerr coordinates are subject to both spatial and thermal identifica-

tions, respectively

(t, φ) ∼ (t, φ+ 2π) ∼ (t+ iβ, φ+ θ) , (4.3)

with β = 2π
κ+

the inverse Hawking temperature, and θ = iβΩ+ the angular potential as

defined in (2.8). In terms of (2.16), these identifications read as

(t+, t−) ∼ (t+ + 4π2TR, t
− − 4π2TL) ∼ (t+ + 2πi, t− + 2πi) . (4.4)

The monodromy analysis therefore suggests that in the natural field theory coordinates

(t±), thermal and spatial cycles are swapped compared to the original Kerr periodicities.

This is the case for both the CFT description (which is reviewed in appendix B) and the

WCFT one, which we now turn to.

Consider a WCFT defined on a generic torus with spatial and thermal identifications

(t+, t−) ∼ (t+ − 2π`, t− + 2π ¯̀) ∼ (t+ − 2πτ, t− + 2πτ̄) . (4.5)

The entropy in the canonical ensemble, which we review in appendix A, is given by (A.18)

and it reads

S¯̀|`(τ̄ |τ) = 2πi
z

t̂
P̂ vac

0 +
4πi

t̂
L̂vac

0 , (4.6)

with P̂ vac
0 , L̂vac

0 are the vacuum values of the zero modes, and

z = τ̄ −
¯̀τ

`
, t̂ =

τ

`
. (4.7)

Comparing (4.4) and (4.5), one obtains

` = −2πTR , ¯̀= −2πTL , τ = −i , τ̄ = i , (4.8)

and hence the entropy is given by

S = 4π2i(TL + TR) P̂ vac
0 + 8π2TR L̂

vac
0 . (4.9)

We point out that here TL and TR are defined via the identifications in (4.4); in a WCFT

they do not have an interpretation in terms of left and right moving temperatures.

To compare expression (4.9) to the Bekenstein-Hawking entropy of Kerr in (4.1), one

needs to identify P̂ vac
0 and L̂vac

0 . First note that these two quantities are not indepen-

dent [15], and related through:

L̂vac
0 = − c

24
+

(P̂ vac
0 )2

k
, (4.10)
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where c and k are the WCFT central extensions. Furthermore, in a WCFT P̂ vac
0 is not

fixed by the symmetries alone [15], unlike what happens in unitary 2d CFTs. To fix this

ambiguity we will borrow from other instances of WCFT in holography. A consistent

pattern in holographic setups, such as [15, 32–34, 39, 55–57], is

L̂vac
0 = 0 , (4.11)

where the common thread is the absence of a gravitational anomaly in the bulk theory,

such as a gravitational Chern-Simons term.4 Note that this pattern renders an imaginary

value for P̂ vac
0 in holography. It is natural to assume that (4.11) holds for our circumstances

too! Using the values of the central extensions in (3.25) and (4.11) in (4.10) gives

(P̂ vac
0 )2 = −J2 , (4.12)

and the entropy (4.9) is simply

S = 4π2|J |(TL + TR) . (4.13)

Plugging (2.17), and (2.3), one obtains that (4.9) exactly agrees with (4.1).

5 Discussion

We found evidence that a WCFT could be a suitable holographic description of the Kerr

black hole. Many conceptual pieces are missing in this description and several aspects of

this proposal are mysterious to us. In the following we will discuss future directions that

could address these issues.

1. One notable aspect of our computation is that the contribution to the central exten-

sions comes only from a component of the future horizon that is near the bifurcation

surface at constant y.5 This hints at the possibility that these symmetries could be

used to understand more dynamical situations, like black holes formed by collapse.

However, it still remains to be seen whether the charges also follow a similar pattern.

As a first step in this direction, we have tried to compute the charges for the Kerr

background. Here, we found that the charges receive a finite contribution from the

future horizon. However, the other two surfaces cause problems. The contributions

from these surfaces are ill-defined unless δr+ = 0, i.e., the horizon radius is kept fixed

in the phase space. This is not what we have been using in the central extension

computations, where we fixed the angular momentum J . It is important to clarify

this issue and better understand the phase space.

To get some insight in this matter, we did similar computations in three dimensions

for the BTZ black hole in Einstein gravity (and TMG) where the phase space is better

understood. We used the natural analogs of the conformal metric (3.1) and vector

4Gravitational anomalies in local WCFTs have also been investigated in [23].
5In contrast, the central extensions in [13] have contributions from the future horizon for their right

moving vector fields, and past horizon for the left movers.
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fields (3.4) adapted to the 3D black hole. After a computation almost identical to the

one for Kerr,6 we get the CSS central extensions [58], and their TMG counterpart. For

the charges of the BTZ background, we again find that the future horizon gives finite

contributions. The other surfaces contribute pathologically unless δr+ = 0, as for the

Kerr background. A similar study done for Warped BTZ in TMG also reproduces

the correct central extensions. All these studies in 3d reinforce our confidence for the

Kerr computation presented in this work. However, the important issues regarding

the charges and phase space for generic Kerr still remain, and are left for future

investigations.

In this regard, it would be interesting to discuss potential ambiguities in the definition

of the charges. As proposed in [13] and as we discussed in this paper, a Wald-Zoupas

boundary counterterm had to be added to make the central charge state-independent.

It is not known whether the term used here is unique, or if there exists an alternative

term that would make both the central charges state-independent and the near-

horizon charges well-defined for example. It would be clearly desirable to find a first

principle derivation fixing this boundary term, for instance by requiring to have a

well-defined variational problem.

2. Our work illustrates that there is ambiguity on defining horizon symmetries for non-

extremal black holes. Earlier related works by Carlip studying horizon symmetries for

generic black holes exhibit the same ambiguity: depending on the choice of bound-

ary conditions at the horizon, the symmetries can be either conformal [59–62] or

BMS3 [63], and both seem able to account for the black hole entropy. It is also worth

mentioning that various proposals for boundary conditions at non-extremal horizons

in three and four dimensions have appeared in recent years [41, 64–72]. The ambi-

guity in the choice of boundary conditions is reminiscent of the archetypical AdS3

gravity setting: besides the Brown-Henneaux boundary conditions, a handful of alter-

native boundary conditions have appeared in recent years with symmetries differing

from those of a pure CFT2 [41, 58, 64, 65, 73–76]. In the case at hand, it would

be interesting to investigate the existence of boundary conditions with asymptotic

symmetries given by (3.4).

3. Our derivation of the Bekenstein-Hawking entropy via (4.9) has two important weak-

nesses. First we have not derived the vacuum value (4.11), nor identified the corre-

sponding geometry. This is tied to our lack of knowledge of the classical phase space,

which is a persistent shortcoming of works related to the Kerr/CFT correspondence.

Second, the derivation of (4.6), as outlined in appendix A.1, is strictly valid in

the high temperature regime. In particular it assumes that c and k are fixed, and

TL,R � 1. In the gravitational side, the temperatures are constrained via T 2
L − T 2

R =

6For BTZ we only need to evaluate the Iyer-Wald charge in (3.10) to reproduce, for example, the

Brown-Henneaux central charge [6]. The Wald-Zoupas counterterm (3.12) gives a finite contribution to the

central extension that depends on the charges of BTZ. The comments in this paragraph are based on using

only (3.10) in the definition of covariant charges.
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1/4π2, which in particular allows them to have small values as the black hole reaches

extremality. This is somewhat similar to the non-trivial conditions one needs to

impose on a CFT2 such that entropy of the BTZ black hole is fully captured [77].

Understanding the conditions on WCFTs that accommodate for the thermodynamic

regime of the black hole remains an open problem worth exploring.
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A Aspects of warped conformal symmetries

In this appendix we record some basic features of warped conformal symmetries, based

on [15, 17]. We will focus on the symmetries, conserved charges and modular properties

associated to a warped conformal field theory.

Consider a (1+1) dimensional theory defined on a plane which we describe in terms

of two coordinates (u, v). On this plane, we denote as T (u) the operator that generates

infinitesimal coordinate transformations in u and P (u) the operator that generates u de-

pendent infinitesimal translations in v. The corresponding coordinate transformations are

u → u = f(u′) , v → v = v′ + g(u′) . (A.1)

In the quantum theory, T (u) is a right moving energy momentum tensor and P (u) as

a right moving U(1) Kac-Moody current. The associated charges are

Ln = − i

2π

∫
du ζn(u)T (u) , Pn = − 1

2π

∫
duχn(u)P (u) , (A.2)

where we choose the test functions as ζn = un+1 and χn = un. In terms of the plane

charges (Ln, Pn) the commutation relations are

[Ln, Ln′ ] = (n− n′)Ln+n′ +
c

12
n(n2 − 1)δn,−n′ ,

[Ln, Pn′ ] = −n′Pn′+n ,

[Pn, Pn′ ] = k
n

2
δn,−n′ , (A.3)
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which is a Virasoro-Kac-Moody algebra with central charge c and level k. The finite

transformation properties of the operators are

P ′(u′) =
∂u

∂u′

(
P (u) +

k

2

∂v′

∂u

)
,

T ′(u′) =

(
∂u

∂u′

)2(
T (u)− c

12
{u′, u}

)
+
∂u

∂u′
∂v

∂u′
P (u)− k

4

(
∂v

∂u′

)2

, (A.4)

where

{u′, u} =
∂3u′

∂u3

∂u′

∂u

− 3

2

(
∂2u′

∂u2

∂u′

∂u

)2

. (A.5)

A.1 Modular transformations and canonical entropy

Consider an arbitrary torus defined by identifications

(u, v) ∼ (u− 2π`, v + 2π ¯̀) ∼ (u− 2πτ, v + 2πτ̄) . (A.6)

The WCFT partition function on this torus is given by

Z¯̀|`(τ̄ |τ) = Tr¯̀|`

(
e2πiτ̄P0e−2πiτL0

)
. (A.7)

where the label (¯̀|`) denotes the choice of torus. P0 and L0 denote the zero modes of the

WCFT generators:

P0 = − 1

2π

∫ 2π`

0
P (u) du , L0 = − 1

2π

∫ 2π`

0
T (u) du . (A.8)

One can do the following warped conformal transformation

û =
u

`
, v̂ = v +

¯̀

`
u , (A.9)

which brings the generic torus in (A.6) to a canonical torus, i.e. it sets ¯̀ = 0 and ` = 1.

This transformation affects also the zero modes, as dictated by (A.4), which allows us to

relate the partition function on (A.6) and (A.9) as

Z¯̀|`(τ̄ |τ) = eπik
¯̀
(
τ̄− ¯̀τ

2`

)
Ẑ

(
τ̄ −

¯̀τ

`

∣∣∣∣τ`
)
, (A.10)

where

Ẑ
(
ˆ̄τ |τ̂
)

:= Z0|1
(
ˆ̄τ |τ̂
)

= Tr0|1

(
e2πiˆ̄τP̂0e−2πiτ̂ L̂0

)
. (A.11)

The statement that a WCFT is invariant under an S-transformation implies

Z0|1(τ̄ |τ) = Zτ̄ |τ (0| − 1) . (A.12)

This allows us to rewrite (A.10) as

Ẑ(z|t) = eπik
z2

2t Ẑ

(
z

t

∣∣∣∣−1

t

)
. (A.13)
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Thus, a generic partition function can be written as

Z¯̀|`(τ̄ |τ) = eπik
¯̀
(
τ̄− τ ¯̀

2`

)
+πik z

2

2t Ẑ

(
z

t

∣∣∣∣−1

t

)
= eπik

`τ̄2

2τ Ẑ

(
z

t

∣∣∣∣−1

t

)
, (A.14)

where

z = τ̄ −
¯̀τ

`
, t =

τ

`
. (A.15)

The entropy is defined by

S = (1− τ∂τ − τ̄ ∂τ̄ ) logZ . (A.16)

We are interested in extracting the entropy in the high temperature regime, i.e. in the

limit t→ −i0. If z is purely imaginary and the spectrum of L0 is bounded below one can

use (A.14) to obtain the projected partition function

Z → eπik
`τ̄2

2τ e2πi z
t
P̂ vac

0 e
2πi
t
L̂vac

0 . (A.17)

In other words, we can approximate the partition function by the vacuum state on the

canonical torus. Using (A.17) in (A.16), the entropy in this regime is

S¯̀|`(τ̄ |τ) = 2πi
z

t
P̂ vac

0 +
4πi

t
L̂vac

0 (A.18)

with

z = τ̄ −
¯̀τ

`
, t =

τ

`
. (A.19)

Here P̂ vac
0 , L̂vac

0 are the vacuum values of the zero modes on the canonical torus.

B Cardy growth revisited

In this appendix we revisit the derivation of the entropy in the canonical ensemble for a

CFT2. The goal is to set the derivation in the same language as done in appendix A.1 for

a WCFT.

Consider a 2d CFT on a torus with symmetries u → f(u) and v → f(v) defined by

the following identifications:

(u, v) ∼ (u− 2π`, v + 2π ¯̀) ∼ (u− 2πτ, v + 2πτ̄) . (B.1)

The partition function is written

Z¯̀|`(τ̄ |τ) = Tr¯̀|`

(
e2πiτ̄ L̄0e−2πiτL0

)
. (B.2)

Using the transformation u′ = λ+u and v′ = λ+v, one can map the theory on a canonical

circle (¯̀, `) = (1, 1), which implies

Z¯̀|`(τ̄ |τ) = Z1|1

(
τ̄
¯̀

∣∣∣∣τ`
)
. (B.3)
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The modular S-transformation in 2d CFTs is

Z1|1(τ̄ |τ) = Z1|1

(
− 1

τ̄

∣∣∣∣− 1

τ

)
. (B.4)

From this, one gets

Z¯̀|`(τ̄ |τ) = Z1|1

(
−

¯̀

τ̄

∣∣∣∣− `

τ

)
. (B.5)

At small temperatures, the right hand side can be projected on the vacuum state on the

canonical torus, whose charges are denoted by Lvac
0 and L̄vac

0 , to obtain

logZ¯̀|`(τ̄ |τ) ≈ −2πi
¯̀

τ̄
L̄vac

0 + 2πi
`

τ
Lvac

0 , (B.6)

from which one gets the entropy

S¯̀|`(τ̄ |τ) ≈ −4πi
¯̀

τ̄
L̄vac

0 + 4πi
`

τ
Lvac

0 . (B.7)

This is the well known Cardy formula in the canonical ensemble, which we are recasting

for a general torus.

For the Kerr black hole, the identifications that define the Euclidean geometry are

(t, φ) ∼ (t, φ− 2π) ∼ (t+ iβK , φ+ θK) . (B.8)

From (4.4), we identify u↔ t+ and v ↔ t−, and so

` = 2πTR , ¯̀= 2πTL , τ = −i , τ̄ = i . (B.9)

Using these values (B.7) together with Lvac
0 = L̄vac

0 = − c
24 , leads to

S =
π2

3
c(TL + TR) , (B.10)

which is the Cardy formula reported in (1.1).

C Hidden warped symmetries of the Klein-Gordon operator

In this appendix we will revisit the hidden conformal symmetries of [12]: we will show

how a mild modification to the “near region” allows for an additional term in the wave

equation. This addition is naturally interpreted in terms of a hidden warped symmetry.

We will define the “near region” as region in phase space where we will impose

rω � 1 , Mω � 1 . (C.1)

In the regime (C.1), the wave equation (2.7) leads to[
∂r(r − r−)(r − r+)∂r +

(ω − Ω+m)2

4κ2
+

(r+ − r−)

(r − r+)

−(ω − Ω−m)2

4κ2
−

(r+ − r−)

(r − r−)
+ 4M2ω2

]
R(r) = K`R(r) , (C.2)
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Relative to the limit in [12], where the term last in the bracket is absent, we are arguing

here that the terms
(ω − Ω±m)2

4κ2
±

(r+ − r−)

(r − r±)
, M2ω2 , (C.3)

are the leading and subleading contributions in frequency space, while rω contributions

in (2.7) are negligible relative to these terms. Note that K` also receives ω2 corrections

which should be accounted for too. In terms of analyticity of the wave equation, we are

keeping the data of the two regular singular points at r± and the constant term in the

effective potential; this transforms the irregular singular point at r → ∞ into a regular

singularity.

Although we have one additional term in this regime, we can write the wave equa-

tion (C.2) as (
H2 − H̄0

2
)
R(r) = K`R(r) , (C.4)

where H2 is the quadratic Casimir of an sl(2,R) algebra

H2 = −H2
0 +

1

2
(H1H−1 +H−1H1) , (C.5)

and the generators are

H1 = ie−2πTRφ

(
∆1/2∂r +

1

2πTR

r −M
∆1/2

∂φ +
2TL
TR

Mr − a2

∆1/2
∂t

)
,

H0 =
i

2πTR
∂φ + 2iM

TL
TR

∂t ,

H−1 = ie2πTRφ

(
−∆1/2∂r +

1

2πTR

r −M
∆1/2

∂φ +
2TL
TR

Mr − a2

∆1/2
∂t

)
, (C.6)

The additional generator in (C.4) is just a u(1) generator defined as

H̄0 = −2iM∂t , (C.7)

which encodes the additional 4M2ω2 term in (C.2).

The interpretation of (C.4) is interesting. For fixed K`, the solutions can be organized

as representations of sl(2) × u(1), which is compatible with the global isometries of a

WCFT. Moreover the wave equations of the form (C.4) can be identified as those that

arise from thermal Warped AdS3 geometries; see for example section 5 of [22], where the

WAdS/WCFT Green’s function are discussed.
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spacetimes, JHEP 03 (2007) 098 [hep-th/0701039] [INSPIRE].

[33] G. Compere and S. Detournay, Semi-classical central charge in topologically massive gravity,

Class. Quant. Grav. 26 (2009) 012001 [Erratum ibid. 26 (2009) 139801] [arXiv:0808.1911]

[INSPIRE].

[34] G. Compere and S. Detournay, Boundary conditions for spacelike and timelike warped AdS3

spaces in topologically massive gravity, JHEP 08 (2009) 092 [arXiv:0906.1243] [INSPIRE].

[35] D. Anninos et al., The curious case of null warped space, JHEP 11 (2010) 119

[arXiv:1005.4072] [INSPIRE].

[36] M. Henneaux, C. Martinez and R. Troncoso, Asymptotically warped Anti-de Sitter spacetimes

in topologically massive gravity, Phys. Rev. D 84 (2011) 124016 [arXiv:1108.2841]

[INSPIRE].

[37] M. Blagojevic and B. Cvetkovic, Asymptotic structure of topologically massive gravity in

spacelike stretched AdS sector, JHEP 09 (2009) 006 [arXiv:0907.0950] [INSPIRE].

[38] D. Anninos, S. de Buyl and S. Detournay, Holography for a de Sitter-esque geometry, JHEP

05 (2011) 003 [arXiv:1102.3178] [INSPIRE].

[39] L. Donnay and G. Giribet, Holographic entropy of warped-AdS3 black holes, JHEP 06 (2015)

099 [arXiv:1504.05640] [INSPIRE].

– 19 –

https://doi.org/10.1103/PhysRevLett.117.011602
https://arxiv.org/abs/1601.02634
https://inspirehep.net/search?p=find+EPRINT+arXiv:1601.02634
https://doi.org/10.1007/JHEP04(2018)067
https://arxiv.org/abs/1706.07621
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.07621
https://doi.org/10.1007/JHEP12(2017)111
https://arxiv.org/abs/1710.11626
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.11626
https://doi.org/10.1007/JHEP07(2018)112
https://arxiv.org/abs/1804.10525
https://inspirehep.net/search?p=find+EPRINT+arXiv:1804.10525
https://doi.org/10.1007/JHEP04(2019)009
https://arxiv.org/abs/1812.10456
https://inspirehep.net/search?p=find+EPRINT+arXiv:1812.10456
https://doi.org/10.1007/JHEP10(2019)211
https://doi.org/10.1007/JHEP10(2019)211
https://arxiv.org/abs/1903.01346
https://inspirehep.net/search?p=find+EPRINT+arXiv:1903.01346
https://doi.org/10.1007/JHEP10(2019)037
https://arxiv.org/abs/1904.01876
https://inspirehep.net/search?p=find+EPRINT+arXiv:1904.01876
https://doi.org/10.1002/prop.200410190
https://arxiv.org/abs/hep-th/0405213
https://inspirehep.net/search?p=find+EPRINT+hep-th/0405213
https://doi.org/10.1088/0264-9381/15/10/024
https://doi.org/10.1088/0264-9381/15/10/024
https://arxiv.org/abs/gr-qc/9804027
https://inspirehep.net/search?p=find+EPRINT+gr-qc/9804027
https://doi.org/10.1088/0264-9381/20/24/L01
https://arxiv.org/abs/gr-qc/0303042
https://inspirehep.net/search?p=find+EPRINT+gr-qc/0303042
https://doi.org/10.1088/1126-6708/2009/03/130
https://doi.org/10.1088/1126-6708/2009/03/130
https://arxiv.org/abs/0807.3040
https://inspirehep.net/search?p=find+EPRINT+arXiv:0807.3040
https://doi.org/10.1088/1126-6708/2007/03/098
https://arxiv.org/abs/hep-th/0701039
https://inspirehep.net/search?p=find+EPRINT+hep-th/0701039
https://doi.org/10.1088/0264-9381/26/1/012001
https://arxiv.org/abs/0808.1911
https://inspirehep.net/search?p=find+EPRINT+arXiv:0808.1911
https://doi.org/10.1088/1126-6708/2009/08/092
https://arxiv.org/abs/0906.1243
https://inspirehep.net/search?p=find+EPRINT+arXiv:0906.1243
https://doi.org/10.1007/JHEP11(2010)119
https://arxiv.org/abs/1005.4072
https://inspirehep.net/search?p=find+EPRINT+arXiv:1005.4072
https://doi.org/10.1103/PhysRevD.84.124016
https://arxiv.org/abs/1108.2841
https://inspirehep.net/search?p=find+EPRINT+arXiv:1108.2841
https://doi.org/10.1088/1126-6708/2009/09/006
https://arxiv.org/abs/0907.0950
https://inspirehep.net/search?p=find+EPRINT+arXiv:0907.0950
https://doi.org/10.1007/JHEP05(2011)003
https://doi.org/10.1007/JHEP05(2011)003
https://arxiv.org/abs/1102.3178
https://inspirehep.net/search?p=find+EPRINT+arXiv:1102.3178
https://doi.org/10.1007/JHEP06(2015)099
https://doi.org/10.1007/JHEP06(2015)099
https://arxiv.org/abs/1504.05640
https://inspirehep.net/search?p=find+EPRINT+arXiv:1504.05640


J
H
E
P
0
1
(
2
0
2
0
)
0
1
6

[40] G. Giribet and M. Tsoukalas, Warped-AdS3 black holes with scalar halo, Phys. Rev. D 92

(2015) 064027 [arXiv:1506.05336] [INSPIRE].

[41] H. Afshar, S. Detournay, D. Grumiller and B. Oblak, Near-horizon geometry and warped

conformal symmetry, JHEP 03 (2016) 187 [arXiv:1512.08233] [INSPIRE].

[42] S. Detournay, L.-A. Douxchamps, G.S. Ng and C. Zwikel, Warped AdS3 black holes in higher

derivative gravity theories, JHEP 06 (2016) 014 [arXiv:1602.09089] [INSPIRE].

[43] C. Zwikel, BTZ black holes and flat space cosmologies in higher derivative theories, Class.

Quant. Grav. 34 (2017) 085003 [arXiv:1604.02120] [INSPIRE].

[44] M.R. Setare and H. Adami, Asymptotically spacelike warped Anti-de Sitter spacetimes in

generalized minimal massive gravity, Class. Quant. Grav. 34 (2017) 125008

[arXiv:1701.00209] [INSPIRE].

[45] T. Azeyanagi, S. Detournay and M. Riegler, Warped black holes in lower-spin gravity, Phys.

Rev. D 99 (2019) 026013 [arXiv:1801.07263] [INSPIRE].

[46] J.M. Bardeen and G.T. Horowitz, The extreme Kerr throat geometry: a vacuum analog of

AdS2 × S2, Phys. Rev. D 60 (1999) 104030 [hep-th/9905099] [INSPIRE].

[47] M. Guica, T. Hartman, W. Song and A. Strominger, The Kerr/CFT correspondence, Phys.

Rev. D 80 (2009) 124008 [arXiv:0809.4266] [INSPIRE].

[48] A. Castro, J.M. Lapan, A. Maloney and M.J. Rodriguez, Black hole monodromy and

conformal field theory, Phys. Rev. D 88 (2013) 044003 [arXiv:1303.0759] [INSPIRE].

[49] A. Castro, J.M. Lapan, A. Maloney and M.J. Rodriguez, Black hole scattering from

monodromy, Class. Quant. Grav. 30 (2013) 165005 [arXiv:1304.3781] [INSPIRE].

[50] S. Mano, H. Suzuki and E. Takasugi, Analytic solutions of the Teukolsky equation and their

low frequency expansions, Prog. Theor. Phys. 95 (1996) 1079 [gr-qc/9603020] [INSPIRE].

[51] S. Mano and E. Takasugi, Analytic solutions of the Teukolsky equation and their properties,

Prog. Theor. Phys. 97 (1997) 213 [gr-qc/9611014] [INSPIRE].

[52] F. Novaes and B. Carneiro da Cunha, Isomonodromy, Painlevé transcendents and scattering
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