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Abstract

An age-dependent repair model is proposed. The notion of the “age” of the
product and the degree of repair are used to define the virtual age of the product.
The virtual failure rate function and the virtual hazard function related to the
lifetime of the product are discussed. Under a non-homogeneous Poisson process
scenario the expected warranty costs for repairable products associated with linear
pro-rata, non-renewing free replacement and renewing free replacement warranties
are evaluated. Illustration of the results is given by numerical and graphical exam-
ples.
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1 Introduction

In today’s market, product warranty plays an increasingly important role. The use of war-
ranty is widespread and serves many purposes, including protection for manufacturers,
sellers, insurance, buyers and users. It provides indirect information about the quality
of the products and represents an important tool to influence the market. A detailed
discussion of the various aspects of warranty problems can be found in the handbook
of Blischke and Murthy (1996). One of the main problems for the companies offering
warranties is the prediction of the warranty costs. For example, the pricing of the war-
ranty should be balanced against the expenses throughout the warranty coverage. The
evaluation of the warranty cost depends on the failure process, the degree of repairs and
the prescribed maintenance of the item.

Repairable products are affected by the post-failure repairs in one of the following
ways:
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- A repair completely resets the failure rate of the product so that upon restart the
product operates as a new one. This is known as a complete repair, and it is equivalent
to a replacement of the faulty item by a new one.

- A repair has no impact on the failure rate. The failure rate remains the same as
it was prior to the failure. The repair brings the product from a down to an up state
without affecting its performance. This is known as a minimal repair.

- A repair contributes to some noticeable improvement of the product. This contri-
bution is measured by an age-reducing repair factor. The repair sets back the clock of
the repaired item. After the repair, the performance of the item is as it was at an earlier
age. This is known as an imperfect repair.

- A repair may contribute to some noticeable degradation of the product. This con-
tribution is measured by an age-accelerating repair factor. The repair sets forward the
clock of the repaired item. After the repair, the performance of the item is as it will be
at some later age. This type of repair is (called by Scarsini and Shaked 2000) a sloppy
repair.

A repair process could be a mixture between minimal, imperfect, sloppy and complete
repair.

Models of imperfect, sloppy or mixture of repairs specify the class of age-dependent
repair models. The age dependent models of repairable products have been discussed in
reliability literature. The model we consider is Kijima Model I, Kijima (1989). Scarsini
and Shaked (2000) enriched this model with the concept of sloppy repair. Both papers
focus on the application of the model on a finite horizon. Stochastic inequalities for
various characteristics of the performance of the product are derived in terms of the
inter-maintenance or inter-repair times. Guo and Love (1992, 1994), and Love and Guo
(1994a, 1994b) provide an overview on statistical inferences of the age-dependent models.
For warranty purposes such models have been considered in Chukova and Khalil (1990a,
1990b), and in Chukova (2000). To the best of our knowledge, models with imperfect or
sloppy repairs have not been studied from warranty viewpoint.

In this paper we focus on the failure rate function of a product maintained under
Kijima’s Model I scenario. Following Scarsini & Shaked, we call it virtual failure rate. In
Section 2, assuming that the age-reducing, or age-accelerating repair factor is a constant,
we find a relationship between the virtual failure rate and the original failure rate. In
Section 3 we apply the results from Section 2 to study warranty problems. In Section
4, assuming Weibull lifetime distribution, we illustrate the warranty problems studied
in Section 3. We introduce the concept of an “age” of the products at the time the
warranty is assigned. In addition, we refer to age-reducing or age-accelerating repair
factor as an age-correcting repair factor. The degree of repair is measured by the value of
the age-correcting repair factor. The length of the warranty period, the magnitude of the
age-correcting factor and the “age” of the products are the parameters that will affect
the warranty costs. In what follows, we reconsider the age-dependent models in Chukova
and Khalil (1988), use some basic ideas of Nelson (1998) and Block et al. (1985), and
give further development of the discussion in Chukova (2000). In addition, our results
are an useful extension of the properties of Kijima’s Model I and could be useful in other
reliability contexts.
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2 Model description

The most convenient description, from our point of view, of imperfect or sloppy repairs
is given in terms of the failure rate function and corresponding hazard function of the
lifetime of the product. Then, the intensity function approach (Kotz and Shanbhag,
1982) can be used to model the underlying random variables, and vice verse.

Let the initial lifetime, X, of a new product sold under warranty, be a continuous
random variable (r.v.) with probability cumulative distribution function (c.d.f.) F (x) =

P (X ≤ x) and probability density function (p.d.f.) f(x) =
d

dx
F (x). Then its hazard

function is
Λ(x) = − ln[1− F (x)], x ≥ 0, (1)

and its failure rate function is

λ(x) =
d

dx
Λ(x) =

f(x)

1− F (x)
, x ≥ 0.

Block et al. (1985) and Beichelt (1991), have shown that under instantaneous minimal
repairs the total number of failures within any time interval, say [u, u+ v), u, v ≥ 0, has
the Poisson distribution with mean Λ(u+v)−Λ(u), u, v ≥ 0. Let N[u,u+v) be the number
of failures during the interval [u, u+ v). Then the probability of no failure in [u, u+ v) is

P
(
N[u,u+v) = 0

)
= e−[Λ(u+v)−Λ(u)], u, v ≥ 0.

Moreover, the probability of first failure to occur after the moment u in the interval
[u, u+ v + ∆v), ∆v > 0, is

P
(
N[u,u+v) = 0, N[u+v,u+v+∆v) = 1

)
= λ(u+ v) e−[Λ(u+v)−Λ(u)] ·∆v + o(∆v). (2)

The minimal repairs have no impact on the failure rate function. They switch the
product from a down to an up state. At the same time they accumulate repair cost. The
labor, time or money invested in the repair may have significant impact on the product
improvement. The latter affects the warranty costs. We consider imperfect repairs that
may affect the future performance of a repairable product, and are related to an age-
reducing factor δ. More specifically, following Scarsini and Shaked (2000), let Xi denote
the inter-repair or inter-maintenance times of the product. Let δi denote the lack of
perfection of the ith repair. Then

T0 = 0, Ti = Ti−1 + δiXi, i = 1, 2, . . . (3)

are the values of the virtual age of the product immediately after the ith repair. When
δi = 1 then no improvement or deterioration of the product occurs at the ith epoch of
action. When δi < (>)1 then an improvement (deterioration) of the product occurs at
that epoch. The extreme case of δi = 0 corresponds to the product being as good as new
after the rectification. The model described in (3) is also known as Kijima’s model I. In
the sequel we consider this model with the assumption that δi = δ 6= 0, and call this δ
an age-correcting factor. If δ < 1 we call it age-reducing factor, and if δ > 1 we call it
age-accelerating factor. In warranty, it is natural to assume that δ < 1.
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With no failures in [0, u), u > 0 the product would have the original failure rate
function λ(x) for x ∈ (0, u). Referring to Fig. 1, the first age-reducing repair occurs
at an instant u. After the repair, the product is improved and its performance is as it
was earlier, when the age of the product was δu. At calendar age u, which is the time
of the first repair, the virtual age of the product is δu. From time u onwards, until the
next repair, the performance of the product is modeled by modified original failure rate
function λ(x − (u − δu)). Assume that the next failure is at the calendar age u + v.
The instantaneous repair improves the performance of the product and its virtual age is
δu + δv. Physically, between the two consecutive failures, the product experiences age
accumulation, say v, but due to the age-correcting repair, its virtual age accumulation
is only δv. The failure rate function of the lifetime of the product maintained with age-
correcting repairs is modified original one, as shown in Fig. 1.
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Fig.1.a Original and individual virtual
failure rates under age-reducing
factor δ = .6.

Fig.1.b Original and individual virtual
failure rates under age-accelerating
factor δ = 1.2.

For any particular product in a homogeneous population this function will have its
jumps whenever an age-correcting repair occurs. Therefore, future failures may reduce
(or prolong) the increments in virtual age by factor of δ. Hence, its virtual failure rate
will be compressed (or stretched) compare to the original failure rate. For a population
of products (with i.i.d. life times) maintained under age-correcting repairs with identical
age-correcting factors, the population failure rate is obtained by averaging the possible
individual failure rates of all products. The failure rate for this population is the virtual
failure rate of one randomly selected product maintained under age-correcting repairs.
We denote it by λ?(x), where x is a calendar age. It reflects the overall slow-down
or acceleration of the aging process for an “average” product from the population. This
concept is similar to Nelson (1998), used to evaluate the Mean Cumulative Cost Function
of a population.

Since we assume instantaneous repairs, the virtual hazard function Λ?(x) is a continu-

ous nondecreasing function of the time t, and its right derivative is λ?(x) =
d

dx
Λ?(x) x+0.

The subscript here indicates that the value of Λ?(x) is considered immediately after an
age-correcting repair is completed.

In what follows, we will focus on products in a population where each individual item
is maintained under age-correcting repairs of factor δ. We derive a relationship between
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the original failure rate and the virtual failure rate of the product from a population
maintained under age-correcting instantaneous repairs of factor δ.

Consider the sequence 0 = T0 ≤ T1 ≤ T2 ≤ . . . ≤ Tn ≤ . . . of times representing the
virtual age of the product after the n−th repair. To avoid technical difficulties, assume
that the original life time of the product, X, has a c.d.f. F (x) with F (0) = 0 and F (x) < 1
for all x ≥ 0. Denote the corresponding survival function by F̄ (t) = P{X > t} = 1−F (t).
Taking into account the relationship between the calendar age of the item, and its virtual
age after an age-correcting repair of factor δ, given by (3), it follows that:

• The n−th step transition probability function is

P{Tn+1 > t | T1, . . . , Tn} = P{X >
t

δ
| X >

Tn
δ
}

=
F̄ (max(Tn

δ
, t
δ
))

F̄ (Tn
δ

)

(4)

for n = 1, 2, . . . .

• The initial distribution is

P{T1 > t} = P{X1 >
t

δ
} = F̄ (

t

δ
). (5)

• From (4) and (5) it is easy to check by induction that for any non-negative mea-
surable function g(t1, . . . , tn) and any n ≥ 2 it is true that:

E[g(T1, . . . , Tn)] =

∫ ∞

0

(F̄ (
t1
δ

))−1

∫ ∞

t1

(F̄ (
t2
δ

))−1 . . .

∫ ∞

tn−2

(F̄ (
tn−1

δ
))−1×

×
∫ ∞

tn−1

g(t1, . . . , tn)dF (
tn
δ

) . . . dF (
t1
δ

).

(6)

Let {N v
t , t ≥ 0} be the counting process corresponding to {Tn}∞n=0 defined by

Nv
t =

∑

n

I[0,t)(Tn),

where IB(.) is the indicator function of the set B.

Theorem 1 (Age Transfer Theorem) {N v
t , t ≥ 0} is a non-homogeneous Poisson

process (NHPP) with a leading function

Λv(t) = E(N v
t ) = − log(1− F (

t

δ
)) = Λ(

t

δ
), (7)

where Λ(t) = − log(1 − F (t)) is the leading function of the NHPP associated to the
process of instantaneous minimal repairs.
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The proof of the theorem is in Appendix A.
Equation (7) shows that the transformation between the calendar and the virtual

time scales is tv → tv/δ, i.e., if the virtual age is tv corresponding calendar age is tv/δ.
Therefore, when the product is at calendar age x, its virtual age measured at the calendar
age scale is δx. Therefore, at calendar age x, an item maintained under age-correcting
repairs of factor δ, functions as an item at age δx. Thus

λ?(x) dx = λ(δx) dx,

i.e., the probability to have a failure of the product from the original population within
the interval [x, x + dx) is the same as the probability to have a failure of a product
from the population of products, governed by age-reducing repairs, within the interval
[δx, δx+ dx).

The relations

Λ?(x) =

∫ x

0

λ?(u) du, and Λ(x) =

∫ x

0

λ(u) du,

will lead to

Λ?(x) =
1

δ
Λ(δx), x ≥ 0, δ > 0.

Hence, the following rezult holds:

Theorem 2 The virtual failure rate λ?(x) at calendar age x, and the original failure
rate are related by the equality

λ?(x) = λ(δx), x ≥ 0. (8)

The virtual hazard rate Λ?(t) and the original hazard rate Λ(t) are related by

Λ?(x) =
1

δ
Λ(δx), x ≥ 0, δ > 0. (9)

�
Thus, we see that an age-reducing repair of factor δ slows down the aging process

of the product by 100(1− δ)%. The minimal repairs are particular case of age-reducing
repairs with the age-reducing factor δ = 1. However, the model with replacements of
the faulty product by a new one is not analytically a particular case of the age-reducing
repairs model, say with δ = 0. For δ = 0, Theorem 1 is not valid because it reflects
the failure rate immediately after an age-reducing repair only. The values of 0 < δ < 1
correspond to reliability improvement of the product.

Naturally there are certain costs associated with this improvement. Let us denote the
cost of an age-reducing repair of factor δ at calendar age u of the product by Cr(u, δ). A
natural assumption is that Cr(u, δ) satisfies the following inequalities

Cm(u) ≤ Cr(u, δ) ≤ Cc(u), (10)
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where Cm(u) is the cost of a minimal repair of the product at calendar age u, and Cc(u)
is the cost of replacement (complete repair) of the product at age u. The expected
warranty costs associated with the product sold under warranty would depend on the
warranty contract and the maintenance schedule associated to the product (Chukova,
2000). Different forms of warranty coverage with age dependent repairs will model large
variety of practically feasible and important warranty policies. In this paper we confine
ourselves to some of the typical warranty policies.

3 Warranty costs associated with a product during

the assigned warranty time

Here and onwards the time scale is the calendar age time scale. In this section we discuss
some of the typical warranty policies emphasizing on the age-dependent warranty, and
show how the age of the product at the time of the sale, say t0, can affect the warranty
costs. We will refer to t0 as the initial age of the product. The warranty cost depends on
the warranty policy and the degree of the warranty repairs (e.g. Blischke and Murthy,
1996, Chapter 10). The degree of the warranty repairs is measured by the age-correcting
factor δ. We assume that a sold item is covered by warranty for a calendar time of
duration T , according to certain warranty agreement. The warranty coverage starts at
the time the sale is completed. We consider warranty modelling from warranter’s point of
view. The warranter covers all, or a portion of the expenses associated with the failures
and repairs of the product within the warranty coverage.

3.1 Partial rebate warranty, non-repairable product

First we consider a warranty cost model for a non-repairable product with an initial age
t0. Assume that the initial life time X of the product is known and has failure rate
function λ(t). During the warranty period no repairs are possible. The initial age t0 of
the product at the time of the sale, which is also the time when the warranty starts, is
the parameter of interest.

If the failure is beyond the assigned warranty period, the warranter incurs no expenses.
If the failure occurs at the moment t ∈ [t0, t0 + T ), the warranter refunds the user by

C(t) = C0(t0) · T − t
T

,

where C0(t0) is the purchase price of the product at age t0.

Lemma 1 The expected warranty cost associated with an age-dependent product sold
at age t0 with warranty of duration T is given by

CW (t0, T ) = C0(t0)

∫ T

0

λ(t0 + t)e−[Λ(t0+t)−Λ(t0)] · T − t
T

dt, (11)

where λ(t) and Λ(t) are the original failure rate and original hazard rate functions.

7



Proof: Based on NHPP concept for the failure rate of the product and using equation
(2) for the probability of the first failure after t0, we find that the probability to have a
failure in [t0 + t, t0 + t+ dt) is λ(t0 + t)e−[Λ(t0+t)−Λ(t0)]dt. Then the remaining time until
the end of warranty is max(T − t, 0), and therefore the warranter refunds the user by

C0(t0)
T − t
T

. The total expectation rule completes (11). �
Note: For a new product t0 = 0. However, some used products are sold under this

type of warranty. Thus, (11) represents the expected warranty cost under linear pro-rata
warranty for non-repairable product which performance depends on the age it has been
sold. Some illustrations of the dependence of the expected warranty cost on the initial
age t0 are given in Section 4.

3.2 Age-reducing repairs under fixed warranty

In this section we consider repairable products sold under warranty of fixed duration
T . We assume that during their usage, the products are maintained under age-reducing
repairs, as in Theorem 1. We analyze a cost model for the Free Replacement Warranty
(briefly FRW, Blischke and Murthy 1996, Chapter 10). The warranter agrees to repair or
replace, at no cost to the consumer, any failed item up to the expiration of the warranty
period of length T . This FRW is also known as fixed free-replacement warranty.

Lemma 2 The expected warranty cost CW (t0, T, δ) associated with a product sold at
age t0 under FRW of duration T and maintained by age reducing repairs of factor δ,
satisfies the integral equation

CW (t0, T, δ) =

∫ t0+T

t0

λ(δu)Cr(u, δ) du, (12)

where Cr(u, δ) is the cost per an age-reducing repair of factor δ for a product at calendar
age u, and λ(t) is the original failure rate function of this product.

Proof: If there is no failure within the interval [t0, t0 +T ], the warranty cost equals
to 0. It equals to the cost of one repair, namely Cr(u, δ), if a failure occurs at some
calendar instant u ∈ [t0, t0 +T ). A failure occurs at an instant u after t0 with probability
λ∗(u) du = λ(δu) du. Using the total expectation rule, we get (12). �

Note: For a new product t0 = 0. Equation (12) represents the expected warranty
cost for an item with an initial age t0 covered by non-renewing FRW of length T . In
practice warranty coverage is assigned for some future calendar time, and consumers
attention is focused mainly on the calendar age of the products. Consumers do not
consider the virtual age of the product, even though it could be an important parameter
of the performance of the product. From the warranter point of view, the virtual age of
the product carries an important information and it is useful in evaluating the warranty
expenses.

3.3 A mixture of minimal and age-reducing repairs

Most technical items have some prescribed maintenance schedule such that at certain
(usually equi-distanced) moments of time preventive check ups are undertaken. For
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example: the recommended oil change for motor vehicles after every 3000 miles; the
seasonal (every 6 months) preventive check-ups for house heating/cooling systems, and so
on. At any of these preventive check ups of the product some adjustments or rectifications
are made. This usually contributes to some essential age-reduction like effects. We will
assume that these check ups correspond to an age-reducing repair of factor δ. Meanwhile,
between the scheduled check-ups failures of the item may occur. We assume that the
latter are fixed by minimal repairs. Repairs and check-ups are instantaneous.

Thus, we consider the following warranty-maintenance model. The moment of pur-
chase t0 is a free of charge maintenance check-up. At the expiration of any b units of
calendar time (we call b > 0 the inter-maintenance time), a preventive maintenance must
be performed (these are the planned check-ups). The age-dependent repair/maintenance
check-up of factor δ made at calendar age u will cost Cr(u, δ). All other failures are fixed
by minimal repairs (each costs Cm), and will not change the virtual failure rate of the
product. A FRW is assumed over the time [t0, t0 + T ]. We call this model mixture of
minimal and age reducing repairs.

Lemma 3 The expected warranty cost associated with a product sold at age t0 under
FRW of duration T and maintained under a mixture of minimal and age-reducing repairs
of factor δ is given by the expression

CW (t0, T, δ) =

[T
b

]∑

k=1

Cr(t0 + kb, δ)

+Cm





[T
b

]∑

k=1

[Λ ((t0 + (k − 1)b)δ + b)− Λ ((t0 + kb)δ)]

+ Λ

(
(t0 + [

T

b
]b)δ + T − [

T

b
]b

)
− Λ

(
(t0 + [

T

b
]b)δ

)}
,

(13)

where

[
T

b

]
is the smallest integer less than or equal to the number

T

b
.

Proof: For a fixed value of the inter-maintenance time (b > 0), there will be exactly

[
T

b
] check-ups during the warranty period of duration T . The kth repair/maintenance

will contribute the amount Cr(t0 + kb, δ) to the expected warranty cost. This is the first
sum of (13). Further, between the kth and (k + 1)st preventive check-ups the virtual
failure rate of the product is λ(t), t ∈ [(t0 + kb)δ, (t0 + kb)δ + b). Thus, the expected
number of failures within the corresponding interval is

Λ ((t0 + kb)δ + b)− Λ ((t0 + kb)δ) =

∫ (t0+kb)δ+b

(t0+kb)δ

λ(t) dt,

and each will cost Cm. This gives the second sum in (13). Similarly, the last (incomplete)

period of time,

[
t0 +

[
T

b

]
b, t0 + T

)
will contribute

Λ

(
(t0 +

[
T

b

]
b)δ + T −

[
T

b

]
b

)
− Λ

(
(t0 +

[
T

b

]
b)δ

)

9



number of failures. �
This model is appropriate in many practical situations for calculating costs associated

with service and maintenance policies of repairable products. Information about services
prior to t0 may be helpful in refining the model.

3.4 Warranty costs under renewing warranty

Let us consider a cost model with renewing FRW. The warranter agrees to repair or
replace any faulty item up to time T from the time of purchase, at no cost to the
consumer. At the time of each warranty repair the item is warranted anew, i.e. the
warranty period T is renewed. This renewing FRW is also known as unlimited free-
replacement warranty (see Blischke and Murthy 1996, Chapter 10). We will assume, the
items have been maintained under age-reducing repairs of factor δ before the time of the
sale, as in Section 3.2.

Lemma 4 The expected warranty cost CW (t0, T ) associated with a product sold at age
t0 under unlimited FRW of duration T and maintained under age-reducing repairs of
factor δ, satisfies the integral equation

CW (t0, T ) =

∫ t0+T

t0

λ?(u)e−[Λ?(u)−Λ?(t0)] · [C(u, δ) + CW (u, T )] du, (14)

with the boundary conditions CW (t0, 0) = 0. Here C(u, δ) is the cost per an age-reducing
repair of factor δ at age u, and λ?(t), and Λ?(t) are defined in Theorem 2.

Proof: If there is no failure within the interval [t0, t0 + T ], the warranty cost equals
to 0. It equals to the cost of one repair, namely Cr(u, δ), if the first failure occurs at
an instant u ∈ [t0, t0 + T ), plus the remaining expected warranty cost, CW (u, T, δ), due
to the renewed warranty at age u. This first failure occurs at an instant u after t0 with
probability λ∗(u)e−[Λ∗(u)−Λ∗(t0)] du. Using the total expectation rule, we obtain (14). �

Note: For a new item t0 = 0. Equation (14) represents the expected warranty cost
for an item with an initial age t0, covered by renewing warranty.

4 Weibull life-time distribution with an age-

reducing repair factor

As an illustration of the models in Section 3, we consider products with the Weibull
life-time distribution, i.e.,

F (t) = P{T1 ≤ t} = 1− e−( t
µ

)α , t ≥ 0.

Then

f(t) =
α

µ

(
t

µ

)α−1

e−( t
µ

)α, t ≥ 0,
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and

λ(t) =
α

µ

(
t

µ

)α−1

, t ≥ 0.

The hazard rate, for this life time is

Λ(t) =

(
t

µ

)α
, t ≥ 0.

Here α is the shape parameter and µ is the scale parameter of the Weibull distribution.
For α > 1 the product will experience an increasing in time failure rate. For α < 1 the
product has decreasing in time failure rate. If α = 1, the product has a constant failure
rate, i.e. the life-time has an exponential distribution.

Corollary 1 If a product has Weibull life-time distribution with parameters α and µ
and it is maintained under age-reducing repairs of factor δ > 0, then its virtual failure
rate and virtual hazard rate are given by the equations

λ∗(t) =
α

µ

(
δt

µ

)α−1

, t ≥ 0, 0 < δ ≤ 1, (15)

and

Λ∗(t) =
1

δ

(
δt

µ

)α
, t ≥ 0, 0 < δ ≤ 1. (16)

Proof: Follows for Theorem 2. �
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Fig. 2.a. Original and virtual failure
rates under different age-reducing
repair of factors.

Fig. 2.b. Original and virtual
failure rates under different
age-reducing repair of factors.

Fig. 2a illustrates the original failure rate and the virtual failure rates for the param-
eters α = 1.5, and µ = 2, and under age-reducing factors δ = .2, δ = .5, and δ = .85. Fig.
2b illustrates the original hazard rate and the virtual hazard rates for the parameters
α = 1.5, and µ = 2, and under age-reducing factors δ = .2, δ = .5, and δ = .85. We see
that higher depth of repair (which is equivalent to smaller values of δ), leads to a lower
virtual failure rate, and lower virtual hazard rate.

11



Next, assuming Weibull distribution for the life time of the product, we derive the
warranty costs for the models in Section 3 . Assume, the purchase price C0(t0) for a
product, sold at age t0, is given by the expression

C0(t0) = C0
M − t0
M

. (17)

This price can be justified in the following way: there is a limiting age, M , after which
the product can not be sold, i.e. if t0 ≥ M no sales are possible. If the price of a new
item is C0, then a “fair sale price” at age t0 should be proportional to the residual time
of the sale limit.

4.1 Rebate warranty of non-repairable product

Corollary 2 Under the conditions of Corollary 1 and Lemma 1, the expected warranty
cost is given by the expression

CW (t0, T ) = C0
M − t0
M

∫ T

0

α

µ

(
t0 + t

µ

)α−1

e−[( t0+t
µ )

α−( t0µ )
α
] T − t

T
dt. (18)

Proof: Substitute (17), (15), and (16) in (11), and obtain (18). �
Fig. 3.a illustrates the dependence of CW (t0, T ) on the age at the time of purchase

t0 ∈ [0, 3], for the Weibull distribution with parameters α = 1.5, µ = 2 and three different
values of the warranty period T = .5, T = .75, and T = 1. The limiting selling age of
the product is M = 4. The price of a new product is assumed to be C0 = 100. The
warranty cost increases and after reaching certain threshold value of t0 decreases. This
dependence is justified by the form of the sale price C0(t0) and its interaction with the
increasing failure rate. There is an initial age where the warranty costs have a maximum
value, and warranter should be aware of it.
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T = .75

T = 1
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60

80

100

Cw

0= t0

1.2= t0

2.5= t0

Fig. 3.a. Dependence of CW (t0, T ) on
the age t0 at the time of purchase

Fig. 3.b. Dependence of CW (t0, T ) on the
length T of the warranty period.

For the same values of the sales/repairs related parameters, Fig. 3.b illustrates the de-
pendence of CW (t0, T ) on the length of the warranty period T ∈ [0, 3] for the same
Weibull distribution and three initial ages t0 = 0, t0 = 1.2, and t0 = 2.5. We see that the
warranty costs increase in both, the selling age t0, and the duration T of the warranty

12



period. A comparison with the numerical results of Patankar and Mitra (Table 11.4 in
Blischke and Murthy 1996), for the pro-rata warranty models with a Weibull distribution
of same parameters, may be found useful and curious.

4.2 Fixed warranty

Now, let us consider repairable products. Assume that an age-reducing repair at age u
by a factor δ costs

Cr(u, δ) = C0(1− δ)M − u
M

+ Cm, (19)

where C0 is the purchase cost of a new item, M is the age of the sale limit, and Cm is
the average cost of a minimal repair.

Corollary 3 Under the conditions of Corollary 1, and conditions of Lemma 2 the ex-
pected warranty costs are given by the expression

CW (t0, T, δ) =
C0(1− δ)α

µ

∫ t0+T

t0

M − u
M

(
δu

µ

)α−1

e−( δuµ )
α 1
δ du

+
Cm
δ

((
δ(t0 + T )

µ

)α
−
(
δt0
µ

)α)
.

(20)

Proof: Substitute (19), (15), and (16) in (12), solve an integral, and obtain (20). �
Fig. 4.a illustrates the dependence of CW (t0, T, δ) on the age at the time of purchase

t0, (t0 ∈ [0, 3]), for the Weibull distribution with parameters α = 1.5 and µ = 2. Three
different lengths of the warranty period T = .5, .75, and 1.0 are considered. The limit
of the selling age is equal to M = 4. The initial price of a new product is assumed to be
C0 = 100 and a minimal repair costs Cm = 15. The age-reducing factor is δ = .95, i.e. 5%
age-reduction after an age-reducing repair. We see that double the warranty period T of
a new product will lead to quite significant increase of the associated warranty costs. The
difference between the warranty costs for the given warranty durations is an increasing
function of the initial age of the product.
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Fig. 4.a. Dependence of CW (t0, T, δ) on
the selling age t0.

Fig. 4.b. Dependence of CW (t0, T, δ) on the
length T of the warranty period.
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Fig. 4.b shows the dependence of CW (t0, T, δ) on the length of the warranty period
T ∈ [0, 3] for t0 = 0, 1.2, and 2.5. We observe that even for relatively short warranty
periods, the initial age of the product has significant impact on the expected warranty
costs. Similarly, based on the expression (20), the dependence of CW (t0, T, δ) on some
other parameters of the model (e.g. the selling age limit, the shape parameter α, or on
the ratio between warranty length T and the expected life time E(X) = µΓ (1 + 1/α),
where Γ(.) is the Gamma function, etc.) can be studied.

4.3 The mixture of minimal and age-reducing repairs

Let us assume that the cost of age-reducing repair at age u by a factor δ is as in (19)
and M is the age of the sale limit. Then:

Corollary 4 Under the conditions of Corollary 1 and Lemma 3, the expected warranty
costs are given by the expression

CW (t0, T, δ) = C0(1− δ)
[T
b

]∑

k=1

M − kb− t0
M

+

[
T

b

]
Cm

+




[T
b

]∑

k=1

(
(t0 + (k − 1)b)δ + b

µ

)α
−
(

(t0 + kb)δ

µ

)α

 Cm

+

[(
t0 + [T

b
]b)δ + T − [T

b
]b

µ

)α

−
(

(t0 + [T
b
]b)δ

µ

)α]
Cm.

(21)

Proof: Substitute (19), (15), and (16) in (13), and obtain (21). �
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Fig. 5.a Dependence of CW (t0, T, δ)
on the warranty time T .

Fig. 5.b Dependence of CW (t0, T, δ)
on the selling age t0.

Graphical illustration of the dependence of the expected warranty costs in (21) under
mixture of minimal and age-reducing repairs for the Weibull distribution with parameters
α = 1.5, µ = 2 is shown in Fig. 5. The age reduction factor is δ = .95, the cost for a
minimal repair is Cm = 15, the selling age limit is M = 4. The initial price of a new
product is assumed to be C0 = 100. The scheduled check ups are made in any b = .2 time
units. Dependence on the warranty period T and the initial selling age t0 are shown. Fig.
5.a shows how the expected warranty cost vary with the length of T . The stepwise-like
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shape is due to the additional component to the cost at the time of the check-ups. Fig.
5b. illustrates the dependence of the cost on the initial age t0, for three different warranty
durations: T = .5, .75, and 1.0. The decrease in the expected warranty costs is due to
the impact of the selling price as a function of t0. As expected, the expected warranty
costs increase as T increases.

4.4 Renewing warranty

Corollary 5 Under the conditions of Corollary 1 and Lemma 4, the expected warranty
costs for a product sold under unlimited FRW are given as a solution to the integral
equation

CW (t0, T, δ) =

∫ t0+T

t0

α

µ

(
δu

µ

)α−1

e−
1
δ [(

δu
µ )

α−( δt0µ )
α
]
[
C0(1− δ)M − u

M
+ Cm + CW (u, T, δ)

]
du. (22)

Proof: Substitute (19), (15), and (16) in (14), and obtain (22). �
Fig. 6 illustrates the dependence of the expected warranty cost for a new item

CW (0, T, δ) on the warranty period T , under age reducing repairs of factor δ. Six values of
δ (.05, .15, .327, .5, .75 and 1.0) were selected to illustrate the dependence of CW (0, T, δ)
on δ. Product’s life time is assumed to be Weibull with parameters α = 1.5 and µ = 2.
The age sale limit is M = 4. The initial price of a new product is assumed to be C0 = 100
and the cost of a minimal repair is Cm = 15. For fixed value of δ, the expected warranty
cost is an increasing function of T. On the other hand it depends on the value of δ.

2 4 6 8 10
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25
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100

125

150

Cw

1.= ∆

.75= ∆

.5= ∆

.327= ∆

.15= ∆ .05= ∆

Fig. 6. Dependence of CW (0, T, δ) on the warranty duration T.
and on the value of age-reducing factor δ.

Using numerical optimization, for T = 3 (and zooming in Fig.6.), the expected war-
ranty costs as a function of δ have a maximum at δmax = .327. The existence of δmax can
be explained by the interruption of a renewing warranty coverage due to the improve-
ment of the product after each age-reducing repair. The improvement of the product
is a function of the degree of the repair δ. Smaller values of δ lead to shorter warranty
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coverage and lower expected warranty costs. On the other hand the cost per age-reducing
repair at an instant u, C(u, δ), is a decreasing function of δ.
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Fig. 7. Dependence of CW (0, T, δ) on the warranty duration T.
and on the value of age-reducing factor δ.

The illustration is for a new product, i.e. for t0 = 0. However, equation (22) allows
study of the dependence of the warranty cost on any initial age t0.

5 Conclusions

An age-reducing repair model is proposed, and the warranty cost for some typical war-
ranty policies is analyzed. It is shown that the failure rate function and hazard function
provide more convenient approach to age-dependent cost modeling than the approach
based on the direct usage of the probability distributions of the product life time. Nu-
merical examples illustrate the ideas of the proposed models for the Weibull distributed
life time with an age-reducing factor.
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7 Appendix A

The proof of the theorem follows the ideas in Block et al. (1985).

Theorem 3 (Age Transfer Theorem) {N v
t , t ≥ 0} is a non-homogeneous Poisson

process with a leading function

Λv(t) = E(N v
t ) = − log(1− F (

t

δ
)) = Λ(

t

δ
), (23)
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where Λ(t) = − log(1 − F (t)) is the leading function of the NPP associated to the
maintenance with minimal repairs.

Proof: It suffices to show that, (Cinlar (1975), p. 96)

Λv(T1),Λv(T2)− Λv(T1), . . . ,Λv(Tn+1)− Λv(Tn)

is a sequence of i.i.d’s, exponentially distributed r.v. with parameter 1.
For any choice of t1 > 0, . . . , tn+1 > 0 define

g(x1, . . . , xn) = P{Λv(T1) > t1,Λ
v(T2)− Λv(T1) > t2, . . . ,

Λv(Tn+1)− Λv(Tn) > tn+1 | T1 = x1, . . . , Tn = xn}.

Denoting the inverse function of F̄ (t) by G(t) and with reference to (5) we obtain

P{Λv(T1) > t1} = P{− log F̄ (
T1

δ
) > t1} = P{F̄ (

T1

δ
) < e−t1}

= P{T1

δ
> G(e−t1)} = P{T1 > δG(e−t1)}

= P{X1

δ
> G−1(e−t1) = F̄ (

δG(e−t1)

δ
) = e−t1 .

Similarly, equivalent transformations give

g(x1, . . . , xn) = P{T1 > δGδ(e
−t1), T2 > δGδ(e

−t2 F̄ (
x1

δ
)), . . . , Tn+1 > δGδ(e

−tn+1F̄ (
xn
δ

))},

where Gδ(t) denotes the left-continuous inverse of F̄ ( t
δ
). From (4) we get

g(x1, . . . , xn) =





0, if xi ≤ Gδ(e
−tiF̄ (

xi−1

δ
))

for some i = 2, . . . , n

or if x1 ≤ Gδ(e
−t1)

F̄ (max(xn
δ
, Gδ(e

−tn+1F̄ (xn
δ

)))

F̄ (xn
δ

)
= e−tn+1 if xi > Gδ(e

−tiF̄ (
xi−1

δ
))

for all i = 2, . . . , n

and x1 > Gδ(e
−t1)

In the last equation we have used the following sequence of equivalent representations

P{Λv(Ti+1)− Λv(Ti) > ti+1 | T1 = x1, . . . , Tn = xn}

=

{
0, if Λv(xi+1)− Λv(xi) ≤ ti+1;

1, if Λv(xi+1)− Λv(xi) > ti+1.
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And also
P{Λv(Tn+1)− Λv(Tn) > tn+1 | T1 = x1, . . . , Tn = xn}

= P{− log
F̄ (Tn+1

δ
)

F̄ (xn
δ

)
> tn+1 | Tn = xn}

= P{F̄ (
Tn+1

δ
) < e−tn+1 F̄ (

xn
δ

) | Tn = xn}

= P{Tn+1 > δGδ(e
−tn+1F̄ (

xn
δ

)) | Tn = xn}

=
F̄ (max(xn

δ
, Gδ(e

−tn+1F̄ (xn
δ

)))

F̄ (xn
δ

)
= e−tn+1 .

For the last equality we note that

max(
xn
δ
, Gδ(e

−tn+1 F̄ (
xn
δ

))) = Gδ(e
−tn+1 F̄ (

xn
δ

)),

since it is true that
Gδ(e

−tn+1F̄ (
xn
δ

)) ≥ Gδ(F̄ (
xn
δ

)) =
xn
δ
.

Finally, from (6) it follows that

P{Λv(T1) > t1,Λ
v(T2)− Λv(T1) > t2, . . . ,Λ

v(Tn+1)− Λv(Tn) > tn+1}

= E[g(T1, . . . , Tn)]

= e−tn+1

∫ ∞

0

(F̄ (
x1

δ
))−1I{Gδ(e−t1)} ×

×
∫ ∞

x1

(F̄ (
x2

δ
))−1I{Gδ(e−t2 F̄ (

x1
δ

))} × . . .×

×
∫ ∞

xn−2

(F̄ (
xn−1

δ
))−1I{Gδ(e−tn−1 F̄ (

xn−2
δ

))} ×

×
∫ ∞

xn−1

I{Gδ(e−tn F̄ (
xn−1
δ

))}dF (
xn
δ

) . . . dF (
x1

δ
)

= e−(t1+...+tn+1).

This completes the proof of the theorem. �
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