
 

Was self-admitted technical debt removal a real removal?

Citation for published version (APA):
Zampetti, F., Serebrenik, A., & Di Penta, M. (2018). Was self-admitted technical debt removal a real removal?
An in-depth perspective. In 2018 ACM/IEEE 15th International Conference on Mining Software Repositories,
MSR 2018 (pp. 526-536). Association for Computing Machinery, Inc. https://doi.org/10.1145/3196398.3196423

DOI:
10.1145/3196398.3196423

Document status and date:
Published: 28/05/2018

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 27. Aug. 2022

https://doi.org/10.1145/3196398.3196423
https://doi.org/10.1145/3196398.3196423
https://research.tue.nl/en/publications/ff92b3da-bf9b-44fb-95e0-2299aa454343


Was Self-Admi�ed Technical Debt Removal a real Removal?
An In-Depth Perspective

Fiorella Zampetti
University of Sannio, Italy

�orella.zampetti@unisannio.it

Alexander Serebrenik
Eindhoven University of Technology,

The Netherlands
a.serebrenik@tue.nl

Massimiliano Di Penta
University of Sannio, Italy
dipenta@unisannio.it

ABSTRACT

Technical Debt (TD) has been de�ned as “code being not quite

right yet”, and its presence is often self-admitted by developers

through comments. The purpose of such comments is to keep track

of TD and appropriately address it when possible. Building on

a previous quantitative investigation by Maldonado et al. on the

removal of self-admitted technical debt (SATD), in this paper we

perform an in-depth quantitative and qualitative study of how SATD

is addressed in �ve Java open source projects. On the one hand, we

look at whether SATD is “accidentally” removed, and the extent

to which the SATD removal is being documented. We found that

that (i) between 20% and 50% of SATD comments are accidentally

removed while entire classes or methods are dropped, (ii) 8% of

the SATD removal is acknowledged in commit messages, and (iii)

while most of the changes addressing SATD require complex source

code changes, very often SATD is addressed by speci�c changes to

method calls or conditionals. Our results can be used to better plan

TD management or learn patterns for addressing certain kinds of

TD and provide recommendations to developers.

CCS CONCEPTS

• Software and its engineering→ Software evolution;

ACM Reference format:

Fiorella Zampetti, Alexander Serebrenik, and Massimiliano Di Penta. 2018.

Was Self-Admitted Technical Debt Removal a real Removal?

An In-Depth Perspective. In Proceedings of MSR ’18: 15th International Con-

ference on Mining Software Repositories , Gothenburg, Sweden, May 28–29,

2018 (MSR ’18), 11 pages.

DOI: 10.1145/3196398.3196423

1 INTRODUCTION

During software development activities it frequently happens that

developers push code that is not in right shape yet. This can occur

for several reasons, including pressure to release new features, need

for quickly patching faulty code or lack of suitable components

needed to implement certain features. The presence of “not quite

right code which we postpone making it right” has been referred

as Technical Debt (TD) by Cunningham [10].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.

MSR ’18, Gothenburg, Sweden

© 2018 ACM. 978-1-4503-5716-6/18/05. . . $15.00
DOI: 10.1145/3196398.3196423

The TD awareness is a key point to manage it [13]. Luckily,

Potdar and Shihab [27] have observed that often developers tend

to “self-admit” TD. This is done by inserting a comment near the

source code being a�ected by TD, for example indicating a “TODO”

and/or “FIXME”, that the current code is actually a “hack” or, more

generally, annotating that the code needs some improvement or

refactoring at least. In order to help keep tracking of SATD, vari-

ous authors have proposed approaches to automatically identify

SATD comments, using regular expressions [5] or Natural Language

Processing (NLP) [21]. Also, recently there have been attempts to

identify, based on previous SATD and on source code features,

where there could be “TD that should be admitted” [36]. In sum-

mary, while developers keep track of TD, and there are ways of

detecting where TD has or should have been admitted, one may

wonder whether anybody takes care of improving that sub-optimal

code and therefore addressing the SATD.

Bavota and Russo [5] and Maldonado et al. [11] have studied

the extent to which SATDs are removed. In both studies removal

has been interpreted as removal of the comments re�ecting SATD

rather than removal of the code a�ected by the SATD. Maldonado et

al. [11] have also surveyed developers involved in the introduction

and/or removal of technical debt �nding that SATD is predomi-

nantly removed when bugs are �xed or new features are added.

While previous work has quantitatively studied the extent to

which SATD comments disappear, to the best of our knowledge

the existing literature lacks a deep and systematic analysis of how

“self-admitted” technical debt has been removed. This is relevant

for several reasons. First, it is useful for estimating the e�ort to

allocate for the improvement of the code quality. In other words,

does the improvement require massive code rewriting, refactoring

operations, library replacement/adaptation or is it simply matter

of making the implementation more robust by changing some pre-

conditions?

Second, the identi�cation of recurring SATD-�xing patterns

might be useful, at least in bounded circumstances, to recommend

possible solutions. For example, there are cases when the codemight

have been made more robust by adding a null check, simplifying a

complex condition, or replacing an API with an alternative one.

Last, but not least, SATD removal can be accidental, in other

words, the SATD disappears because the related code is no longer

in the system. It is indeed possible that, as it was also found for

code smells [32], the main reason for SATD removal is not develop-

ers intentionally taking care of it, but because the code is simply

no longer there. Also, it can happen that the “admission” (i.e., the

SATD comment) has been dropped, while the code still remains un-

changed. This either means that what it was foreseen as a problem



MSR ’18, May 28–29, 2018, Gothenburg, Sweden Fiorella Zampe�i, Alexander Serebrenik, and Massimiliano Di Penta

turned out to be a suitable solution, or that developers decided to

“live with that”, and lose track of the TD presence.

This paper aims at performing a quantitative and qualitative

in-depth analysis of whether and how SATD has been addressed

in �ve Java open source projects. We build on top of �ndings of

Maldonado et al. [11] and start from their SATD removal dataset.

First, by analyzing the changes occurred when the SATD com-

ment disappeared (or was changed), we identify whether the it

was removed “by accident” because the code was removed, moved

somewhere else, and whether the SATD comment was modi�ed.

Second, we investigate the extent to which the SATD removal

is documented in commit messages, and how easy would it be to

keep track of such a cross-reference. In doing so, and to triangulate

previous �ndings of Maldonado et al. [11] (achieved through a

survey, without analyzing source code changes) we also analyze

the extent to which SATD is removed in the context of bug �xing.

Third, we analyze what kinds of changes occurred in the source

code when the SATD was addressed. To this aim, we �rst per-

form a �ne-grained analysis of changed source code elements us-

ing GumTree [14]. Then, we focus on particularly relevant code

changes, i.e., API replacement and changes to control-�ow state-

ments. Indeed, changes a�ecting control �ow and APIs are among

common change types identi�ed by Fluri et al. [16]. More speci�-

cally, we isolate these kinds of changes and categorize them—using

a card-sorting approach [30]—in terms of possible reasons.

Results of the study indicate that the accidental removal of SATD

comments occurs quite frequently, in up to 50% of the cases, and

a fairly limited percentage (8%) of SATD removals are actually

documented in commit messages. When looking at how SATD is

removed, we found that in most of the cases this happens through

complex changes, although recurring SATD-addressing patterns

are changes to method calls or conditionals. Our results can be used

to better plan TD management or learn patterns for addressing

certain kinds of TD and provide recommendations to developers.

Study Dataset. The study dataset is available online1.

2 STUDY DEFINITION AND PLANNING

The goal of our study is to perform a deeper analysis on the removal

of SATD comments with the purpose of investigating its circum-

stances and reasons. More speci�cally, the study aims at addressing

three research questions (RQs).

The �rst research question is motivated by a survey conducted by

Maldonado et al. [11], which has shown that SATD is predominantly

removed when bugs are being �xed or new features are being added,

i.e., not as part of the intentional e�ort on SATD removal. We aim

at verifying this observation by means of data analysis:

RQ1 : To what extent is SATD removed accidentally?

Filtering out SATD comments related to the whole class/�le con-

taining them, we study what happens to the SATD method when

the comment is removed. We consider four scenarios: (i) the whole

class containing the SATD comment has been removed, (ii) the

method attached to the SATD comment has been removed, (iii) the

method attached to the SATD comment is unchanged and, �nally,

(iv) the method attached to the SATD comment has been changed.

1http://home.ing.unisannio.it/�orella.zampetti/datasets/ReplicationSATDRemoval.zip

Table 1: Characteristics of the studied projects [11].

Project
# Java

SLOC
# File

Contributors
�les versions

C���� 15,091 800,488 254,920 289

G����� 3,059 222,476 53,298 270

H����� 8,466 996,877 79,232 160

L��4� 1,112 30,287 12,609 35

T����� 3,187 297,828 46,716 32

Earlier studies of SATD [5, 11] highlight that between 25% and

72% of SATD comments are removed by the same developers that

have introduced them. This suggests that developers are aware of

the presence of SATD and of the need to remove it. By a similar

argument, we expect developers who remove SATD to be aware of

the removal and re�ect this in the corresponding commit message:

RQ2 : Is there any documented evidence of SATD removal?

This research question aims at analyzing commit messages for

the purpose of (i) determining whether SATD is removed in the

context of a bug �x (respondents to the survey of Maldonado et

al. [11] indicated that 64% of SATD is removed when �xing bugs),

and (ii) determining to what extent the commit message acknowl-

edges the SATD removal. To this aim, on the one hand, we analyze

the proportion of SATD removals due to bug �xes and, on the other

hand, we analyze whether the commit message is somewhat related

to what reported in the SATD comment.

Next, we perform a deeper investigation of the type of changes

that have been done in the code when there is a SATD removal:

RQ3 : What changes occur in the source code when developers

remove SATD?

We automatically classify the changes considering changes to

(i) method signature, (ii) return statements and (iii) method body.

After that, using a card-sorting procedure, we manually classify the

changes looking at the addition/removal of method calls related

to the inclusion/exclusion of external libraries and at the changes

done on conditional statements (e.g., if-else and loop).

2.1 Dataset

We rely on a curated dataset used in a recent work [11] to un-

derstand the extent to which SATD comments are removed. The

dataset consists of �ve Java open source projects covering di�er-

ent application domains, sizes and number of contributors. Such

projects have been chosen by Maldonado et al. [11] also because

they were highly active and highly commented. Some characteris-

tics of the studied projects—Files, SLOC (Source Lines of code), File

versions, Contributors—are reported in Table 1. The dataset reports

information about introduction and removal of SATD comments.

The introduction has been identi�ed analyzing the change history

and using an NLP approach [21] while, for the removal we have

traced the change history backwards identifying the commit in

which the SATD comment disappeared.

Tracing SATD comments to methods. While previous work [11]

studied TD removal by analyzing whether the admission (SATD

comment) was removed, our focus is on source code changes occur-

ring in such a circumstance. Indeed, since we are interested (RQ3)



Was Self-Admi�ed Technical Debt Removal a real Removal?

An In-Depth Perspective MSR ’18, May 28–29, 2018, Gothenburg, Sweden

Table 2: SATD removals.

Project # SATD
# SATD # Attached to

% Removals
Removals method

C���� 1,282 877 748 58.35

G����� 150 88 88 58.67

H����� 998 306 277 27.76

L��4� 113 96 93 82.30

T����� 1,184 876 777 65.63

in analyzing source code change patterns occurring in correspon-

dence of SATD comments removal, we focus on method-level SATD

comments ignoring those concerning a whole �le/class. We con-

sider a SATD comment to be attached to a method if the comment

is contained in the method body or it immediately precedes the

method de�nition.

First, we select from Maldonado et al. [11] dataset only those

SATD comments for which the authors have identi�ed a removal.

As done by Maldonado et al., we rely on git to track renamed or

moved �les [6, 17]. Finally, using the srcML tool [9], we locate SATD

comments in the source code and trace them to methods. Table 2

reports results of the analysis described above, i.e., give the total

number of SATD comments in a project (from Maldonado et al. [11]

dataset), those that were removed, and among the latter how many

were attached to methods. Initial �gures on the total number of

SATD comments are smaller than those reported by Maldonado et

al. [11] since we found and removed duplicates and inconsistencies.

After having identi�ed candidate method-level SATD comments

removals, we have �ltered out false alarms. These are cases in which

(i) there is a renaming of a �le containing the comment, (ii) the

comment has been moved to a di�erent location in the code as

a consequence of an Extract/Move method operation, or (iii) the

comment has been syntactically changed but it still represents a

SATD, e.g., the comment “//TODO improve it” that becomes “TODO

need to be improved” without changing the source code.

To remove false alarms, given a SATD comment c attached to a

methodm and removed in commit r , we compare the two versions of

the �le f containingm immediately before and after r . Speci�cally,

false alarms are �ltered out based on the following cases.

Class Renamed and SATD comment still present (f renamed, c not

a�ected).We analyze the change history of f to check whether f

is renamed. If f is renamed to f 0, through srcML we search in f 0

for a comment matching c that is attached to a method having the

same signature asm.

SATD comment moved in a di�erent method and/or class (c moved

tom0 or f 0).We check whether, at commit r , c is no longer related to

m but tom0 or c is removed from f while a comment c 0 equal to c is

added to f 0. Truly, these could still have been done by chance, e.g.,

f 0 exhibits the same problem as f . We also check whether, together

with the comment, some source code is moved from themethodm 2

f tom0
2 f 0 or tom0

2 f . To this aim, we leverage GumTree [14],

a �ne-grained AST-based di�erencing analyzer. Gumtree takes as

input two versions of the same Java �le, obtains their abstract

syntax trees (ASTs) and computes the di�erences between them in

terms of edit actions, i.e., updates, additions, deletions and moves.

Speci�cally, whetherm0 has the same signature ofm and 50% of the

Table 3: Results of �ltering false alarms.

Project
Class Comment Comment Changed SATD

Renamed Moved still SATD comments

C���� 0 12 98 638

G����� 0 12 5 71

H����� 4 10 26 237

L��4� 19 4 7 63

T����� 0 7 88 682

source code lines deleted inm result as added inm0 we conclude

that the SATD comment has been simply moved.

SATD Comment Body Changed but still SATD (c rephrased but

still represents SATD). To check whether the new comment still

represents a SATD, we verify whether c matches any of the 62

SATD comments’ patterns provided by Potdar and Shihab [28].

Table 3 reports, for each project, the number of false alarm re-

movals, and the number of SATD comments that we have used in

order to answer our three research questions.

2.2 Data Extraction and Analysis

This subsection describes the data extraction and analysis process

that we follow in order to answer our research questions.

2.2.1 To what extent is SATD removed accidentally? To address

RQ1 we use the same procedure as adopted to create our dataset

(Section 2.1). Given a commit r related to a SATD comment removal

(c) and based on the di�erences between the two versions of the Java

�le f containing the methodm attached to c immediately before

and after r , we distinguish between the following four scenarios.

SATD comment Removal dues to Class Removal (c is removed

together with f ). We check in the versioning system whether the

class containing the comment c has been removed in r .

SATD comment Removal dues to Method Removal (c removed to-

gether withm). We use GumTree to determine whether the method

attached to c has been removed together with c . Speci�cally, we

check whether GumTree labels the method root node as “deleted”.

SATD comment Removal without changing the Method (c removed,

m unchanged). Relying on GumTree we verify that no syntactic

changes (e.g., cosmetic changes or changes to comments are possi-

ble) occurred to methodm when c has been removed (in r ).

SATD comment Removal modifying the Method (c removed, m

changed). We check, using GumTree, whether there is a change af-

fectingm in r . We will deeper describe this scenario in Section 2.2.3

where we will explain how we address RQ3 by analyzing the type

of changes made.

2.2.2 Is there any documented evidence of SATD removal? To

address RQ2, we �rst determine whether SATD has been removed

in the context of bug �xes. To this aim, we analyze commit mes-

sages using the approach by Fischer et al. [15]. Speci�cally, we look

at commit messages in order to determine a list of regular expres-

sions to use for classifying changes as bug-�xes. Then, in order to

determine whether the commit message acknowledges the SATD

removal, we (i) analyze the textual similarity between the commit



MSR ’18, May 28–29, 2018, Gothenburg, Sweden Fiorella Zampe�i, Alexander Serebrenik, and Massimiliano Di Penta

message and the comment being removed, and (ii) manually inspect

cases where the commit message is similar enough to the comment.

Computing the cosine similarity between commit message and

SATD comment. To compute the similarity, we �rst pre-process

both the comment body and commit message by removing spe-

cial characters (e.g., punctuation), numbers, single characters and

URLs. Then, we perform Snowball stemming [26] and stop-word re-

moval (using an English stop word list)2. We consider as candidate

true positives (i.e., the commit message acknowledges the SATD

removal) cases where the similarity is at least 0.3 since, looking at

a random set of 300 pairs we found a high percentage of pair with

a similarity lower than 0.3 that do not provide any acknowledge of

the SATD comment removal.

Manual labeling. After that, we manually label all the candidate

pairs, using a �ve-level Likert scale, ranging from “not similar at

all” (1) to “very similar” (5):

(1) The SATD removal is not “documented” in the commit

message, e.g., the SATD comment “// TODO: Reuse spring

mail support to handle the attachment” and the commit

message “Added unit test for mail attachments to be used

for wiki documentation”.

(2) The SATD removal is indirectly linkable to the commit

message (i.e., as a consequence of a di�erent change in

the same commit), e.g., the SATD comment “// Stream error

//TODO reset stream” and the commit message “StreamError

needs the stream ID (so we know which stream to close)”.

(3) The commit message is related to the SATD comment re-

moved but the developer adds other types of information

in it (i.e., details and/or context), e.g., the SATD comment

“// need to check the message header” and the commit mes-

sage “support to send the response message according to the

message’s header return address in CamelTargetAdapter”.

(4) The commit message explicitly reports the SATD comment

removal but the latter is done within a set of other types of

changes, e.g., the SATD comment “// TODO: Clean up” and

the commit message “Code clean-up. Fix Eclipse warnings.

Implement TODOs”.

(5) The commit message clearly reports the SATD comment

removal as the only scope of the change, e.g., the SATD

comment “// Unexpected ACK. Log it? //TODO” and the

commit message “Implement a TODO: Log receipt of an

unexpected ACK”.

Each pair SATD comment and commit message is independently

labeled by two of the authors who also discussed and resolved

inconsistent classi�cations.

2.2.3 What changes occur in the source code when developers

remove SATD?. RQ3 aims at investigating the type of changes done

in the source code when there is a SATD comment removal. We

start by quantitatively analyzing the prevalence of the types of

change made when the SATD comment is removed. To obtain more

profound insights into the reason behind those changes we augment

the quantitative investigation with a qualitative study of two special

cases: changes associated with (i) addition/removal of API imports,

and (ii) addition/removal of conditionals.

2http://search.cpan.org/ creamyg/Lingua-StopWords-0.09/lib/Lingua/StopWords.pm

Quantitative study. Starting from results of RQ1, we consider

only those cases in which the SATD comment removal occurs when

the method source code is actually changed.

We classify the changes made to the method based on the change

actions outputted by GumTree. Speci�cally, we classify changes

as Add/Remove Method Calls, Add/Remove Conditional including if-

related statements, loops and switches,Add/Remove Try-Catch,Mod-

ify Method Signature including changes in the exceptions thrown,

Modify Return Statement and Other. Note that each removal could

belong to more than one category identi�ed above, e.g., the SATD

comment removal can involve both adding a conditional statement

and modifying the method signature including a new parameter

that needs validation. The Other category includes cases in which

the method attached to the SATD comment has been modi�ed too

much to be described by one of the remaining categories. Speci�-

cally, we consider a change belonging to Other if over 50% of the

method source code lines have been changed.

After having quantitatively analyzed the changes, we perform

a qualitative analysis focusing on two types of changes: those to

API changes and those related to conditionals changes. A previous

study on bug-�xing patterns [25] found that method call changes

and changes to conditional statements are the most frequent cases

of changes for bug �xing. For what concerns SATD comments

removal, we believe that API changes are relevant especially when

trying to improve a feature by adopting a better API. Moreover,

changes to conditionals are typically performed to make the code

more robust or to handle a special case of a not yet handled feature.

Qualitative study of changes involving addition or removal of API

imports. We consider as candidate API changes those in which

there is a change in the imported packages and in the method calls.

We limit our attention to third-party APIs, excluding changes to

imports related to the project itself. Two authors independently

analyze all the candidate cases, and classify their relevance to API

changes as “Yes” or “No”. The classi�cation has been performed

according to the following criteria (i) the method call being changed

is related to a class belonging to one of the added/removed packages;

and (ii) the API change is relevant to the SATD comment within

its context. After the labeling, the authors discuss and resolve the

inconsistent classi�cations.

Then, the two evaluators independently label the relevant (“Yes”)

cases using card-sorting [30]. The labeling is performed considering

as starting labels possible software maintenance activities (i.e., Fea-

ture Addition, Feature Change, Performance and Maintainability).

Finally, the disagreements are discussed (involving a third author

as a facilitator) and resolved. The discussion also has the purpose

to merge/rename the identi�ed categories if needed.

Qualitative study of changes involving addition or removal of con-

ditionals. Each instance belonging to the Add/Remove Conditional

category is independently analyzed by two of the authors in order

to determine the relevance between the conditional change and

the SATD comment. Speci�cally, the change is considered relevant

when it is possible to determine a relation between the comment

body and the change done. For example, given a SATD comment //

FIXME: Check for null? we consider as relevant a change that adds

an if statement to ensure a pre-condition is met before an object



Was Self-Admi�ed Technical Debt Removal a real Removal?

An In-Depth Perspective MSR ’18, May 28–29, 2018, Gothenburg, Sweden

Table 4: SATD removal when entities are removed or when

they are changed.

Project
Class Method Method not Method

Total
Removal Removal Changed Changed

C���� 60 ( 9%) 105 (16%) 109 (17%) 364 (57%) 638

G����� 14 (20%) 9 (13%) 3 ( 4%) 45 (63%) 71

H����� 63 (27%) 39 (16%) 13 ( 5%) 122 (52%) 237

L��4� 29 (46%) 9 (14%) 1 ( 2%) 24 (38%) 63

T����� 334 (49%) 74 (11%) 50 ( 7%) 224 (33%) 682

is accessed or an operation is performed. Then, as in the previous

case, the two evaluators together resolve the disagreements.

Finally, a card-sorting approach is used to classify the changes. In

this case, the starting set of labels is inspired by the bug-�x patterns

by Pan et al. [25] (e.g., add pre-condition or add branch).

3 STUDY RESULTS

This section reports the results achieved in our study and aims at

answering the three research questions formulated in Section 2.

3.1 To what extent is SATD removed
accidentally?

Table 4 reports what happens in the source code (i.e., in the method

attached to the comment) when the SATD comment is removed.

Overall, we have 1,691 SATD comment removals performed in a

total of 977 di�erent commits, of which 783 (⇡ 79%) removed one

SATD comment only and the remaining multiple SATD comments.

The second and third column report the number and the percent-

age of removals occurring when the whole class or method attached

to the SATD comment is removed. In principle, if the whole entity

is removed we might assume that the removal occurs “accidentally”,

i.e., not in the context of a change having the purpose of addressing

the SATD. In other words, it is removed since the a�ected entity

does not exist any more. In RQ2 we analyze the commit messages

made upon SATD removals, and determine the extent to which this

occur, at least when the SATD comment removal is documented.

T����� and L��4J exhibit the highest percentages of removals

due to the removal of the whole class (49% and 46% respectively),

while the lowest percentage is for C���� (9%). G����� andH�����,

instead, show intermediate values (20% and 27%). SATD comment

removals occurring along with the removal of the related methods

are relatively low and similar across projects, varying between 11%

for T����� and 16% for C����.

The fourth column of Table 4 reports the number of SATD com-

ments removals occurring without changing the attached methods.

This scenario represents cases in which a developer is removing the

comment without addressing the TD inside the code, either because

she realized it was a false alarm, she decided to live with it, or the

system has evolved in a way that the problem does not apply any

more (e.g., a pre-condition now checked elsewhere). Percentages

of such cases are relatively low (always below 8%), with the only

exception for C����, where it is 17%.

Finally, we report the number of removals occurring together

with changes to the attached methods (�fth, green column). These

are the most interesting ones to be deeper investigated since they

likely refer to changes performed with the aim of addressing the

SATD. While for G�����, C���� andH����� the majority of SATD

comments removals (� 51%) belongs to this category, for T�����

and L��4� it is lower than 40%.

RQ1 summary: in general there is a high (> 30% and in three

cases the majority) percentage of SATD comments removals

occurring along with source code changes. However, a large

percentage of removals occur when either the whole class or

the method is removed. The latter is predominant for L��4�

and T�����. While such a percentage is not as high as for bad

smell removal [32], it still indicates that SATD comments are

just removed by chance when evolving software.

3.2 Is there any documented evidence of SATD
removal?

First of all, we investigate the extent to which the removals occur

as a result of (documented) bug �xes. Among the 997 commits

related to the SATD comments removals we found only 46 cases

(4.6%) that were linkable to bug-�xing. Although the 14 developers

responding the survey of Maldonado et al. [11] identi�ed both bug-

�xing and the addition of new features as the most predominant

reasons when removing SATD comments, the former seems to be

quite uncommon in the analyzed projects.

In order to analyze the extent towhich SATD comments removals

are documented, we compute the cosine similarity between the

SATD comments and the commit messages in which the comment

disappeared. Looking at the cosine similarity distribution among

types of removals identi�ed inRQ1, we found that for both class and

method removals the median value is equal to 0 with few outliers

showing a similarity always lower than 0.5. The above observation

helps us to con�rm that the removals are likely to be “accidental”

(or at least unrelated to the SATD), since the commit messages do

not mention the SATD comment in the scope of the change. For the

other two categories (i.e., method unchanged and method changed)

the median similarity is ⇡ 0.2 with outliers exhibiting similarity

greater than 0.5.

After �ltering out cases where the cosine similarity is lower

than 0.3, we obtain 148 SATD comments removals that have been

manually investigated by two authors (i.e., evaluators) using the

�ve-level Likert scale de�ned in Section 2. Evaluators agreed in

74% of the cases, with a Krippendor�’s α reliability coe�cient [18]

of 0.71, that is greater than 0.667, the acceptability threshold3. All

cases of disagreements have been discussed and resolved.

Figure 1 reports for each type of change the number of SATD

comments removals classi�ed in terms of admission in the commit

message. There is one case only in which the SATD comment

removal along with class removal is not accidental (i.e., perfect

match with the commit message).

Looking at those removals occurring along with a method re-

moval, we found �ve cases in which the commit message is com-

pletely unrelated to the SATD, and others �ve related in various

ways. Therefore, there are still cases (�ve) for which the method

removal does not necessarily indicate an “accidental” removal. For

3It is customary to require α > 0.8. Where tentative solutions are still acceptable
α � 0.667 is the lowest limit conceivable [18]



MSR ’18, May 28–29, 2018, Gothenburg, Sweden Fiorella Zampe�i, Alexander Serebrenik, and Massimiliano Di Penta

example, in C���� there is a SATD comment mentioning “TODO:

The lookup methods could possibly be removed and replaced using

other methods/logic” for which the commit message upon its re-

moval highlights that the lookup method has been removed.

Going to those removals performed while keeping the method

unchanged, we identi�ed 20 cases exhibiting a similarity greater

than 0.3. For these cases, it is interesting to verify whether the

developer removes the comment since the TD does not apply any

more, or she has been decided to not address it. For example, in

T����� there is a SATD comment requiring support for a speci�c

functionality while, at the same time, there is no awareness on

whether or not such a functionality could be implemented. The

commit message addressing it clearly reports that, even if it is

possible to implement the required functionality, its implementation

will make the overall code “messy”. In G����� there is a case with a

comment asking for implementing a better sorting strategy using as

ordering key something more meaningful than the object identi�er.

However, the commit message reports the removal of the comment

“Remove comment about sorting . . . Sorting by the quite stable change

id is reasonable. Its assignment is sequential . . . ”. In T�����, instead,

there is a SATD comment stating: “TODO SERVLET3 async”. The

commit message upon its removal states “Remove completed TODOs”

but the source code did not change. In this case, it is possible that

the Servlet async support was implemented in previous changes.

Indeed, looking at the change history, we found a previous commit

for which the commit message states: “. . . achieve the same aim for

Servlet 3.0 async processing . . . the syncs will ensure that read and

write aren’t processed in parallel . . . ”.

Finally, as regards the removals occurred changing the method,

we identi�ed 116 out of 148 cases to be inspected (similarity > 0.3).

Out of these, in 52 cases the removal is completely admitted in

the commit message. For example, in T����� there is a comment

highlighting the need for setting a parameter only whether it has

not been set yet (“TODO only set this if it’s null” ). The developer in

charge of address it reports as the only scope of the change: “Fix

a TODO: Only set JSpFactory if not already set”. Indeed, the source

code change only introduced a null check. Moreover, in 23 cases the

developer admits the removal in the commit message even if the

latter occurs with other tangled changes. In 18 cases, instead, the

admission occurs paraphrasing the comment body. For example, in

T����� there is a SATD comment removed in order to �x a bug.

The latter is reported as a link to the issue tracker in the commit

message. Only opening the issue, it could be possible to determine

the admission. The remaining 14 SATD comments are removed as

a consequence of other changes. For example, in T����� the SATD

comment stating: “TODO Reset stream: Stream error” is removed

in a change aimed to perform more general changes to the stream

handling source code, while not speci�cally aimed at addressing the

SATD (“StreamError needs the stream ID so we know which stream to

close” ). In such a case, even if the commit message does not report

the reset as the main scope of the change, it is still possible to a�rm

that the removal is due to the changes in the stream handling logic.

Summarizing, out of 148 SATD comments having a cosine simi-

larity value with the commit message addressing them greater than

0.3, we found 131 cases in which the commit message (directly or

Class Removal

Method Removal

Method Changed

Method Unchanged

0 15 30 45 60

11

52

1

1

1

23

2

0

3

18

2

0

3

14

0

0

2

9

5

1

Unrelated Indirectly Related Paraphrased
Match but tangled with other Perfect Match

Figure 1: Categorization of admission level for di�erent

types of removals.

indirectly) admits the removal. However, if we consider these 131

cases out of all SATD comments being removed:

RQ2 summary: only ⇡ 8% of the total set of removals are

documented in commit messages. When present, the message

either just mentions that the SATD is addressed, or explains

why it is not the case to address it any more.

3.3 What changes occur in the source code
when developers remove SATD?

Table 5 reports the types of changes applied to SATD-related meth-

ods when the SATD comment is removed. For each system we

report the number and the percentage of SATD removed by ap-

plying each type of change. As explained in Section 2, the Other

category includes the removals for which the change is too complex

(i.e., more than half of the method source code has been changed).

Also, note that percentages do not sum up to 100 and the values for

each type of change do not sum up to the total number of removals

since several types of changes can occur (to the method) in the same

change-set addressing the same SATD. As an example, a SATD can

be addressed by adding a conditional expression and a method call.

Not surprisingly, the case having the highest percentage of oc-

currence is the one related to complex source code changes (Other

category) [40%–55%]. In other words, there is a large percentage of

SATD addressed by applying complex changes that involve over

half of amethod. Looking at the distribution of lines of code changed

in the method when the removal belongs to the Other category,

we found that on average ⇡ 70% (⇡ 15LOC) of the method body

changes for addressing the SATD. The median value is 77% with an

interquartile range of [66%-93%] i.e., between 7 and 20 LOC.

Going to cases where speci�c changes occurred, most of them

are related to changes in method calls [26%-45%]. For C���� the

percentage is even higher than removals performed with complex

changes. This result is consistent with the results of Pan et al. [25]

for bug-�xing patterns. However, it would be interesting to investi-

gate the reasons behind such method changes, as we will do in our

qualitative analysis, especially for what concerns API changes.

The third-most frequent type of change relates to addition/removal

of conditionals [11%–29%]. We have also analyzed the change his-

tory of the projects for determining the frequency of change on



Was Self-Admi�ed Technical Debt Removal a real Removal?

An In-Depth Perspective MSR ’18, May 28–29, 2018, Gothenburg, Sweden

Table 5: Type of changes for removing SATD-related comments.

Project
Add/Remove Add/Remove Add/Remove Modify Method Modify

Other Total
Method Calls Conditionals Try-Catch Signature Return

C���� 165 (45%) 61 (17%) 9 ( 3%) 36 (10%) 15 (4%) 145 (40%) 364

G����� 16 (36%) 8 (18%) 3 ( 7%) 3 ( 7%) 3 ( 7%) 23 (51%) 45

H����� 42 (34%) 13 (11%) 2 ( 2%) 6 ( 5%) 4 ( 3%) 67 (55%) 122

L��4� 8 (33%) 7 (29%) 0 0 0 10(42%) 24

T����� 59 (26%) 59 (26%) 5 ( 2%) 17 ( 8%) 7 ( 3%) 94 (42%) 224

T���� 290 148 19 62 29 339 779

Table 6: Sub-classi�cations of Changes to Conditionals.

Project If Loop Switch Total

C���� 55 7 2 61

G����� 7 2 0 8

H����� 11 2 1 13

L��4� 7 0 1 7

T����� 56 5 1 59

conditionals. We found that on average 30% of the changes modify

at least one conditional statement. Comparing this percentage with

the one we have in the context of SATD comments removals we

can conclude that developers change conditionals with a similar

frequency (around 30%) in both contexts.

To provide a deeper view of changes related to conditional state-

ments, Table 6 reports for each project the number of removals that

belong to (i) if conditionals, (ii) loops and (iii) switch statements.

As it can be seen from the table, themost frequent type of changes in

removing SATD comments is the one aimed to modify if structures,

while changes to loops and switch occurred sporadically.

Changes to Try-Catch instructions never occur in L��4�, while

only 7% of times inG�����. The same happens for return statements.

Finally, changes to the method signatures are more frequent in

C���� (' 10%) and have never been done in L��4�.

RQ3 quantitative summary: as also reported in previous

studied aimed to identify source code patterns to �x bugs [25,

35], in removing SATD comments developers tend to apply

complex changes to source code but also to modify method

calls and control logic (i.e., conditionals).

3.4 Qualitative analysis of SATD comments
removed involving API changes

To investigate whether there is a relation between the changes

done to method calls and to API imports when removing SATD

comments, we focused on the 290 SATD comments removals for

which there is a change in the method calls. From the above set

we �ltered out those removals for which there were (i) no changes

in the API imports and (ii) solely changes in the API imports not

related to external APIs, obtaining 174 SATD comments removals

that have been manually classi�ed by two independent evaluators.

Firstly, the evaluators have determined the relevance of the API im-

port changed with respect to the SATD comment removal. Whether

the API change has been deemed relevant, they have identi�ed

a rationale behind the API import change having in mind possi-

ble software maintenance activities. We found that the evaluators

agreed in 93% of the cases on whether the API imports changes

Feature Change

Feature Addition

Maintainability

Test

Compatibility

Performance

0 10 20 30 40 50

11

11

15

15

23

41

Figure 2: Categorization of SATD removals involving API

changes.

were related to the SATD removal. Moreover, the Krippendor�’s

reliability coe�cient is α = 0.92 implying the absence of tentative

solutions. In addition, we computed the reliability value in terms of

kind of rationale behind the change showing that the classi�cation

is safe enough (α = 0.88). All cases of disagreements were discussed

and resolved with the third author as a facilitator when needed.

116 out of 174 changes in API imports are related to the removal

of the SATD comment and the corresponding code changes. We

organized the changes into six categories: Feature Addition, Fea-

ture Change (also including refactoring), Compatibility,Main-

tainability, Performance and Test (the SATD comment was at-

tached to a test case).

Figure 2 summarizes the prevalence of the di�erent categories.

The largest category is Feature Change counting 41 SATD re-

movals. This category includes (1) cases in which the comment

suggested the addition of a piece of missed functionality whose

implementation required the usage of external APIs and (2) refac-

toring of the existing functionality required by the SATD comment

removed. As an example of the former consider the SATD com-

ment from T����� requiring the validation of data received by the

Servlet. In addressing it the MessageHeader from javax.websocket

has been introduced in order to receive incoming messages. An

example of refactoring-related SATD comment is one from T�����:

“TODO this needs to move to RealmBase...this is just a quick hack”

that has been addressed by removing the external APIs aimed to

implement the “hack” solution. Note that we classi�ed this refac-

toring as Feature Change rather than Compatibility,Maintainability

or Performance, because the SATD comment does not indicate the

reason why the code have to be moved to RealmBase.

Feature Addition is represented by 23 cases of SATD comments

removals. For example, a SATD comment in T����� requires the



MSR ’18, May 28–29, 2018, Gothenburg, Sweden Fiorella Zampe�i, Alexander Serebrenik, and Massimiliano Di Penta

messages compression feature before sending them. In address-

ing such a SATD the developer relied on the class De�ater from

java.util.zip that provides support for data compression.

In 15 cases the removal is part of a change aiming at improv-

ing the overallMaintainability. For example, when addressing a

SATD comment asking for removing the dependency onMBeanServer,

the developer also removed the no longer necessary reference to

javax.management, i.e., the package containing MBeanServer.

Similarly, we have observed 11 cases where the SATD comment

is removed for improving the overall Performance. To illustrate

this category consider a SATD comment in G����� highlighting the

presence of a lazy behaviour in the code. Looking into the changewe

found that the comment was attached to a line of code instantiating

an ArrayList object. When removing the SATD comment the devel-

oper replaced ArrayList with Lists from com.google.common.collect.

Finally, the remaining 11 SATD comments have been removed to

ensure Compatibility with other technologies and/or platforms.

As an example, a comment in C���� highlights the need to guar-

antee a proper handling of slashes in �le path for the compatibility

with both Unix and Windows environments. Implementing this

change required the inclusion of the java.io.File library.

55% of SATD comments removed together with changes in

external APIs belongs to Feature Change and Feature Addi-

tion categories. Therefore, SATD comments have been removed

while improving/adding features.

3.5 Qualitative analysis of SATD comments
removed involving “Conditional” changes

To investigate whether there is a relation between changes to con-

ditional statements and SATD comments removals, two of the au-

thors have manually classi�ed each removal containing at least one

change to conditional expressions. Among those 148 removals, the

evaluators assigned the relevance verifying that the conditional has

been modi�ed in order to address the SATD and then, if the change

in the conditional has been deemed relevant, they have classi�ed

the change starting from the bug-�xing patterns provided by Pan

et al. [25]. The evaluators agreed in ⇡ 92% of the cases (α = 0.794)

on whether the conditional has been changed in order to remove

the TD. In terms of categories, the agreement ratio is 70% with

α = 0.696, greater than the lowest limit conceivable (0.667) [18].

After that, relying on the third author as a facilitator, we discussed

and resolved all cases of disagreements.

As a result, out of 148 changes on conditionals, we have 106

relevant cases classi�ed into 12 categories. Figure 3 reports the

amount of SATD comments that have been removed for each cat-

egory (e.g., only in one case there is a removal of a null check in

order to address the SATD).

The largest category is Remove Code: to address a SATD com-

ment the developer has completely removed a code fragment con-

taining conditional statements. This mainly happens when the

SATD comment highlights the presence of a workaround, e.g.,

“TODO: Remove this before release” immediately prior to an if state-

ment in T�����. Moreover, similarly to changes to external APIs,

Remove Code

Change Conditional Expression

Add Control Logic

Remove Pre-Condition

Add Pre-Condition

Modify Control Logic

Add Null Check

Remove Branch

Add Branch

Remove Control Logic

Uncomment Code

Remove Null Check

0 5 10 15 20 25 30

1

2

2

2

3

8

9

9

10

14

17

29

Figure 3: Categorization of SATD removals involving

changes to conditional statements.

addressing a SATD might require moving a code fragment (includ-

ing a conditional expression) to a di�erent method or class, e.g.,

“TODO Should be in init so we can cache” in G�����.

The Change Conditional Expression occurs 17 times and in-

cludes cases where the conditional predicate has been changed

(e.g., adding a conjunct or modifying the checked parameter). For

instance, in L��4� a SATD comment requires the removal of a

parameter qwIsOurs and was located immediately before an if -

statement checking for (qw!=null && qwIsOurs). Furthermore, we

also found cases in which the conditional expression is modi�ed

to improve the code maintainability: e.g., in H����� a comment

states: “TBD not very clear” and is inside two nested conditionals. To

make the code more readable, the developer replaced the two nested

conditionals with only one without modifying the functionality.

Add and Remove Pre-condition occur in 9 and 10 SATD com-

ments removals, respectively. These mainly happen when there is

(no longer) the need to ensure that a pre-condition is met before

an operation is performed. As an example, consider the comment

stating: “. . . TODO: Consider storing object and only create new if

changed . . . ” in C����. To address the SATD, the developer added

a pre-condition checking whether the object has been changed.

The Add/Remove Null-Check categories can be seen as spe-

cialized cases of Add/Remove Pre-condition. Unsurprisingly, ad-

dition is more frequent than deletion: we have eight SATD com-

ments addressed adding a null-check, and therefore making the

code more robust, while only one SATD comment addressed remov-

ing a null-check. As an example, in T����� there is a comment that

reports the need for setting a JSP page only if this was not previ-

ously done. We also found cases in which the null-check is required

to determine whether there is the need for throwing an exception

(e.g., NullPointerException). Moreover, the removal/addition can also

occur as a consequence of refactoring. Indeed, in L��4� there is

a SATD comment stating: “TODO change when �ltering refactor

done” in which the developer removes the null-check previously

introduced in order to apply a patch in the code.

AddBranch andRemoveBranch are uncommon in our dataset,

counting 2 and 3 removals, respectively. Those are mainly related

to the addition of a branch to cover a condition not previously

considered and to the removal of a branch for freeing the code from

the constraint of the conditionals. For example, there is a comment



Was Self-Admi�ed Technical Debt Removal a real Removal?

An In-Depth Perspective MSR ’18, May 28–29, 2018, Gothenburg, Sweden

in C���� requiring to handle non-single threaded access across

connected clients, and its implementation required to add an else

branch in a conditional statement. In general, and similarly to what

also found for bug �xes by Pan et al. [25], cases of SATD addressed

by adding/removing branches are uncommon, because they are

related to small feature improvements that requires to handle (or

to not handle any more) a special case.

Moreover, as shown in Figure 3, there are three categories re-

lated to cases in which the conditional is added/removed together

with a complex block of control logic, i.e., Add/Modify/Remove

Control Logic). The latter occurs when in addressing the SATD,

whole pieces of functionality are added, removed or modi�ed. The

Remove Control Logic occurs quite rarely in our dataset (only

two instances) if compared to the addition or modi�cation (14 and

9 respectively).

Finally, in T�����we have an infrequent albeit peculiar scenario

we refer as Uncomment Code. In other words, this relates to

enabling back some source code previously disabled (commented

out) using an if (false) block.

27% of SATD comments removed together with changes in

conditionals belongs to Remove Code category, highlighting

that SATD comments are mainly used for notifying the presence

of “hack” solutions or workarounds. Con�rming the results of

Pan et al. [25], the removals related to the addition/removal of

branches are very uncommon.

4 THREATS TO VALIDITY

Threats to construct validity concern the choice of the measure-

ments adopted in the various RQs, and the extent to which this

could have a�ected our results. The fundamental notion SATD, de-

�ned by Potdar and Shihab as “intentional (i.e., self-admitted) quick

or temporary �xes (i.e., technical debt)” [27] has been operational-

ized using source code comments. Since we reused the existing

dataset of Maldonado et al. [11], our work inherits threats to valid-

ity of the SATD as construct by means of an NLP approach [21]. In

RQ1 we focus on distinguishing cases where the SATD is removed

by dropping the code or the entire class. While on the one hand,

we discussed these cases as “accidental” removals (or in any case

removals performed in the context of another change), it might be

still the case that the removal was part of addressing the SATD.

However, at least among the documented SATD removals (RQ2)

we found very few of such cases (6 over 707). In RQ2 we used a

manual analysis to evaluate whether and how a SATD comment

removed is documented. Similarly, a manual analysis has been used

in RQ3 to evaluate the purpose of the change addressing a SATD.

Clearly, our assessment could be imprecise and subjective since it is

based solely on what available in the commit messages and in the

source code changes. We mitigated the threat by involving multiple

evaluators and assessing their inter-rater agreement.

Threats to internal validity concern factors internal to our study

that could in�uence our results. In particular, we have set two

thresholds. In RQ2, we consider a threshold of 0.3 on the cosine

similarity to identify candidate cases of documented removals. As

explained, we calibrated this threshold by also inspecting a random

sample with a lower similarity. In RQ3, we consider that a method

was radically changed if more than half of its source code lines

were changed. While this threshold may seem arbitrary, it is quite

conservative because this means that we tried to classify along the

other categories any change involving less than 50% of the lines,

that in many cases can be anyhow substantial for a method.

Other imprecisions could be on tracing class renaming/moving

(RQ1), where we relied on the approach used by GitHub. For the

�ne-grained analysis of changes, we relied on GumTree. While it

might be imprecise, according to the original paper [14], it is at the

moment the most accurate di�erencing tool and the one able to

perform analyses at a �ner level of granularity.

Threats to external validity concern the generalization of our

�ndings. We are aware that our study is limited to a relatively

small dataset of �ve Java projects only. However we preferred to

keep the study small and (i) start from a curated dataset from a

previous paper [11], and (ii) above all, deal with a number of data

points allowing us to perform a thorough qualitative analysis of the

observed changes. In other words, our study has the aim of being

deeper than wider.

5 RELATEDWORK

This section reports the literature related to (i) detection and man-

agement of TD focusing more on “self-admitted” TD; (ii) addressing

quality smells over time; and (iii) identi�cation of change patterns

in software evolution and maintenance.

5.1 Detection and Management of Technical
Debt and “Self-Admitted” Technical Debt

As reported by Alves et al. [1], technical debt (TD) can be related to

di�erent software artifacts and life-cycle activities. Previous studies

made di�erent considerations about the term “technical debt” [7, 19,

29] underlining that TD ismainly used asmedia between developers

and managers for development issues.

Zazworka et al. [37] studied the impact of design TD on the

quality of a software product highlighting the need for identifying

and managing them closely in the development process in order to

reduce their negative impact on software quality. Previous studies

have investigated developers perception of TD highlighting that

often their introduction is intentional [20], and, most important,

the awareness is a signi�cant problem in TD management [13].

Potdar and Shihab [28] observed that developers tend to “self-

admit” technical debt (SATD) using comments highlighting the

existence of somewhat temporary. Moreover, they identi�ed 62 pat-

terns that indicate SATD and emphasized that the presence of SATD

is not uncommon in software projects. Maldonado and Shihab [22],

instead, used source code comments in order to determine di�erent

types of technical debt showing that the most common type of

SATD is design debt. Bavota and Russo [5] performed a qualitative

analysis of SATD and created a taxonomy featuring 6 higher-level

TD categories specialized in 11 sub-categories. Also, they showed

that there is no correlation between SATD and code quality metrics

computed at class level. They also found that (i) around 57% of SATD

get removed during the change history of software projects and (ii)

approximatively 63% of SATD were self-removed (i.e., removed by

the same developer who introduced them).



MSR ’18, May 28–29, 2018, Gothenburg, Sweden Fiorella Zampe�i, Alexander Serebrenik, and Massimiliano Di Penta

Wehaibi et al. [34] measured the impact of SATD on software

development practices �nding that the presence of self-admitted

technical debt leads to a complex change in the future. From a di�er-

ent perspective, Zampetti et al. [36] developed a machine learning

approach that, by leveraging on structural information (metrics

or warnings raised by static analysis tools) is able to recommend

developers with design TD to be admitted.

The work that is most related to ours is the one by Maldonado

et al. [11]. They applied NLP to identify self-admitted technical

debt from source code comments [21] and focused on their removal

analyzing the change history of �ve Java open source projects. They

found that (i) the majority of SATD is removed, (ii) SATD comments

are mainly self-removed (54.4% on average) and (iii) the survival

time varies from one project to another. Moreover, Maldonado et

al. [11] investigated what are the activities/reasons that lead to the

removal of SATD conducting a survey with 14 developers. Their

results highlighted that SATD is usually removed as part of bug

�xing activities (9 out of 14 respondents indicated that) and addition

of new features (5 respondents).

We share with all the aforementioned papers the goal of ob-

serving how TD (and SATD in particular) is being managed and

addressed. Also, we build on top of results of Maldonado et al. [11]

as we aim at observing in detail SATD removal. Di�erently from

their work, we �rst identify the amount of self-admitted technical

debt that has been removed accidentally (i.e., removed as a conse-

quence of the class/method removal) and, most importantly, we

aim at identifying the presence of admission of the removal in the

commit message and also the presence of change-patterns in the

code mainly related to their removal. Unlike what was reported in

the survey of Maldonado et al. [11], we found a limited percentage

of SATD removals occurred during bug �xing tasks (⇡ 5%).

Mensah et al. [23] clustered SATD comments for the purpose

of classifying them into complex (buggy-prone) and trivial tasks,

and also to estimate the amount of change required to address the

SATD, which is between 10 and 25 commented LOC for complex

task. While our work is not about e�ort estimation, our �ne-grained

analysis of SATD-removal changes could also be used for that

purpose and therefore build better e�ort estimation models.

5.2 Smell removal

One kind of TD that has been studied particularly in detail by

the research community is represented by code smells, perhaps

also thanks to the availability of approaches and tools to identify

them [2, 12, 24]. Tufano et al. [32] studied the evolution of code

smells in over 200 open source projects. Their �ndings indicate

that only 20% of code smells are removed, while the remaining

survive in the system. Also, only 9% of the removals is due to a

speci�c refactoring action, while the other ones are accidentals,

i.e., occurring just because the code is being removed. Their results

are also in line with a previous study by Bavota et al. [4], who

analyzed how refactoring activities improved source code metrics

and removed smells. They found that refactoring activities does not

introduce signi�cant metric improvements and that they remove

only 7% of the smells present in the source code. In a di�erent

work, Tufano et al. [31] conducted a similar analysis with the aim

of studying the removal of test smells [33]. In this case, they found

that the removal varies between 2% and 7% of the total number of

smells inside the test suites.

Beyond traditional code smells, Businge et al. [8] have studied

dependencies on internal Eclipse APIs in Eclipse third-party plug-

ins. Use of those APIs is discouraged as they are solely intended for

the Eclipse core and can be modi�ed without prior notice. However,

44% of the plug-ins depend on at least one such API, and those

dependencies are rarely removed. In several cases removal was

accidental, i.e., caused by deletion of classes depending on the API.

While our results are related to di�erent kinds of TD, SATD

in particular, which is not necessarily related to code smells, one

observation still remains valid: there is a noticeable percentage

(at least 40% and for two cases even the majority) of SATD that

disappears just because the code is removed, and not because of

intentional activities aimed at removing them.

5.3 Identi�cation of Change Patterns

Various authors have tried to identify what are the typical change

patterns occurring in the source code when developers perform cer-

tain tasks. More speci�cally, Pan et al. [25] studied change patterns

occurring when �xing bugs in seven Java open source projects.

They found that the most frequent changes are related to method

parameter values (especially changes in method parameters) and

to conditional expressions (related to adding precondition check,

or adding an else branch). Our results indicate that, in terms of

changes to conditionals, SATD removals follow similar proportions

for some change patterns. Consistently to such a result, Yue et

al. [35] studied repeated bug �xes, �nding that (i) the phenomenon

a�ects 15-20% of the bugs, (ii) they mostly concern cloned code, and

(iii) 39% of the analyzed change patterns in those �xes are related

to addition/removal of the whole if structures.

6 CONCLUSIONS AND FUTURE WORK

In this paper we report on the in-depth study of the removal of

self-admitted technical debt. While previous studies focused on re-

moval of comments re�ecting SATD, i.e., removing “admission”, we

deeper investigate the relation between removal of such comments

and related changes on the source code. Our �ndings indicate that

a large percentage of SATD comments removals occurs “acciden-

tally” when either the whole class or the whole method is removed.

Moreover, SATD removal is “documented” in commit messages in

merely 8% of the cases. Furthermore, in addressing SATD develop-

ers tend to perform complex changes but also to modify method

calls and conditionals. Finally, we designed a detailed classi�cation

of changes in external APIs and conditionals induced by the SATD

comment removal.

Building on more profound insights in SATD removals and asso-

ciated changes in the source code we plan to learn change-patterns

for addressing certain kinds of SATD and provide recommenda-

tions to developers based on these patterns. Finally, these patterns

together with the recommendations by Zampetti et al. [36] when

TD should be self-admitted, can be built in the automatic code re-

view bot such as Review Bot [3], not only detecting the need for

TD self-admission in the code changes being reviewed but also

providing suggestions for resolving the TD.



Was Self-Admi�ed Technical Debt Removal a real Removal?

An In-Depth Perspective MSR ’18, May 28–29, 2018, Gothenburg, Sweden

REFERENCES
[1] Nicolli SR Alves, Leilane F Ribeiro, Vivyane Caires, Thiago S Mendes, and Ro-

drigo O Spínola. 2014. Towards an ontology of terms on technical debt. In
Managing Technical Debt (MTD), 2014 Sixth International Workshop on. IEEE.

[2] Francesca Arcelli Fontana, Mika V. Mäntylä, Marco Zanoni, and Alessandro
Marino. 2016. Comparing and experimenting machine learning techniques for
code smell detection. Empirical Software Engineering 21, 3 (2016), 1143–1191.

[3] Vipin Balachandran. 2013. Reducing human e�ort and improving quality in peer
code reviews using automatic static analysis and reviewer recommendation. In
International Conference on Software Engineering. IEEE.

[4] Gabriele Bavota, Andrea De Lucia, Massimiliano Di Penta, Rocco Oliveto, and
Fabio Palomba. 2015. An experimental investigation on the innate relationship
between quality and refactoring. Journal of Systems and Software (2015).

[5] Gabriele Bavota and Barbara Russo. 2016. A large-scale empirical study on
self-admitted technical debt. In International Conference on Mining Software
Repositories. ACM.

[6] Christian Bird, Peter C Rigby, Earl T Barr, David J Hamilton, Daniel M German,
and Prem Devanbu. 2009. The promises and perils of mining git. In Mining
Software Repositories, 2009. MSR’09. 6th IEEE International Working Conference
on. IEEE.

[7] Nanette Brown, Yuanfang Cai, Yuepu Guo, Rick Kazman, Miryung Kim, Philippe
Kruchten, Erin Lim, Alan MacCormack, Robert Nord, Ipek Ozkaya, and others.
2010. Managing technical debt in software-reliant systems. In Proceedings of the
FSE/SDP workshop on Future of software engineering research. ACM.

[8] John Businge, Alexander Serebrenik, and Mark G. J. van den Brand. 2015. Eclipse
API usage: the good and the bad. Software Quality Journal (2015).

[9] Michael L Collard, Huzefa H Kagdi, and Jonathan I Maletic. 2003. An XML-
based lightweight C++ fact extractor. In Program Comprehension, 2003. 11th IEEE
International Workshop on. IEEE.

[10] Ward Cunningham. 1992. The WyCash Portfolio Management System. In Ad-
dendum to the Proceedings on Object-oriented Programming Systems, Languages,
and Applications. ACM.

[11] Everton da S. Maldonado, Rabe Abdalkareem, Emad Shihab, and Alexander
Serebrenik. 2017. An Empirical Study on the Removal of Self-Admitted Technical
Debt. In 2017 IEEE International Conference on SoftwareMaintenance and Evolution.
IEEE.

[12] Dario Di Nucci, Fabio Palomba, Damian A. Tamburri, Alexander Serebrenik,
and Andrea De Lucia. 2018. Detecting Code Smells using Machine Learning
Techniques: Are We There Yet?. In International Conference on Software Analysis,
Evolution, and Reengineering. IEEE.

[13] Neil A Ernst, Stephany Bellomo, Ipek Ozkaya, Robert L Nord, and Ian Gorton.
2015. Measure it? manage it? ignore it? software practitioners and technical
debt. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering. ACM.

[14] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin
Monperrus. 2014. Fine-grained and accurate source code di�erencing. In Pro-
ceedings of the 29th ACM/IEEE international conference on Automated software
engineering. ACM.

[15] Michael Fischer, Martin Pinzger, and Harald Gall. 2003. Populating a release
history database from version control and bug tracking systems. In Software
Maintenance, 2003. ICSM 2003. Proceedings. International Conference on. IEEE.

[16] Beat Fluri, Emanuel Giger, and Harald C. Gall. 2008. Discovering Patterns of
Change Types. In 2008 23rd IEEE/ACM International Conference on Automated
Software Engineering.

[17] Hideaki Hata, Osamu Mizuno, and Tohru Kikuno. 2011. Historage: �ne-grained
version control system for java. In Proceedings of the 12th International Workshop
on Principles of Software Evolution and the 7th annual ERCIMWorkshop on Software

Evolution. ACM.
[18] Klaus Krippendor�. 2012. Content analysis: An introduction to its methodology.

Sage.
[19] Philippe Kruchten, Robert L Nord, Ipek Ozkaya, and Davide Falessi. 2013. Tech-

nical debt: towards a crisper de�nition report on the 4th international workshop
on managing technical debt. ACM SIGSOFT Software Engineering Notes (2013).

[20] Erin Lim, Nitin Taksande, and Carolyn Seaman. 2012. A balancing act: what
software practitioners have to say about technical debt. IEEE software (2012).

[21] Everton Maldonado, Emad Shihab, and Nikolaos Tsantalis. 2017. Using natural
language processing to automatically detect self-admitted technical debt. IEEE
Transactions on Software Engineering (2017).

[22] Everton da S Maldonado and Emad Shihab. 2015. Detecting and quantifying
di�erent types of self-admitted technical debt. InManaging Technical Debt (MTD),
2015 IEEE 7th International Workshop on. IEEE.

[23] Solomon Mensah, Jacky Keung, Je�rey Svajlenko, Kwabena Ebo Bennin, and
QingMi. 2018. On the value of a prioritization scheme for resolving Self-admitted
technical debt. Journal of Systems and Software (2018).

[24] Naouel Moha, Yann-Gaël Guéhéneuc, Laurence Duchien, and Anne-Françoise Le
Meur. 2010. DECOR: A Method for the Speci�cation and Detection of Code and
Design Smells. IEEE Trans. Software Eng. (2010).

[25] Kai Pan, Sunghun Kim, and E. James Whitehead Jr. 2009. Toward an understand-
ing of bug �x patterns. Empirical Software Engineering (2009).

[26] Martin F. Porter. 2001. Snowball: A language for stemming algorithms. Published
online. (October 2001).

[27] Aniket Potdar and Emad Shihab. 2014. An Exploratory Study on Self-Admitted
Technical Debt. In International Conference on Software Maintenance and Evolu-
tion. IEEE Computer Society.

[28] Aniket Potdar and Emad Shihab. 2014. An exploratory study on self-admitted
technical debt. In Software Maintenance and Evolution (ICSME), 2014 IEEE Inter-
national Conference on. IEEE.

[29] Carolyn Seaman and Yuepu Guo. 2011. Measuring and monitoring technical
debt. Advances in Computers (2011).

[30] Donna Spencer. 2009. Card sorting: Designing usable categories. Rosenfeld Media.
[31] Michele Tufano, Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco

Oliveto, Andrea De Lucia, and Denys Poshyvanyk. 2016. An empirical investiga-
tion into the nature of test smells. In Proceedings of the 31st IEEE/ACM Interna-
tional Conference on Automated Software Engineering.

[32] Michele Tufano, Fabio Palomba, Gabriele Bavota, Rocco Oliveto, Massimiliano
Di Penta, Andrea De Lucia, and Denys Poshyvanyk. 2017. When and Why
Your Code Starts to Smell Bad (and Whether the Smells Go Away). IEEE Trans.
Software Eng. (2017).

[33] Arie van Deursen, Leon Moonen, Alex Bergh, and Gerard Kok. 2001. Refac-
toring Test Code. In Proceedings of the 2nd International Conference on Extreme
Programming and Flexible Processes in Software Engineering (XP).

[34] SultanWehaibi, Emad Shihab, and Latifa Guerrouj. 2016. Examining the impact of
self-admitted technical debt on software quality. In Software Analysis, Evolution,
and Reengineering (SANER), 2016 IEEE 23rd International Conference on. IEEE.

[35] Ruru Yue, Na Meng, and Qianxiang Wang. 2017. A Characterization Study of Re-
peated Bug Fixes. In 2017 IEEE International Conference on Software Maintenance
and Evolution.

[36] Fiorella Zampetti, Cedric Noiseux, Giuliano Antoniol, Foutse Khomh, and Massi-
miliano Di Penta. 2017. Recommending when Design Technical Debt Should be
Self-Admitted. In 2017 IEEE International Conference on Software Maintenance
and Evolution.

[37] Nico Zazworka, Michele A Shaw, Forrest Shull, and Carolyn Seaman. 2011.
Investigating the impact of design debt on software quality. In Proceedings of the
2nd Workshop on Managing Technical Debt. ACM.


