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Background: The T cell receptor (TCR) diversity is essential for effective T cell immunity.
Previous studies showed that TCR diversity in Wiskott–Aldrich Syndrome (WAS) patients
was severely impaired, especially in the memory T cell populations. Whether this defect
was caused by intrinsic WASp deficiency or extrinsic reasons is still unclear.

Methods: We sorted different T cell subsets from the bone marrow chimeric mice model
using both magnetic beads and flow cytometry. TCR repertoires of memory T cells,
especially CD4+ effector memory T (TEM) cells and CD8+ central memory T (TCM) cells,
were analyzed using the UMI quantitative high-throughput sequencing (HTS).

Results: An average of 5.51 million sequencing reads of 32 samples was obtained from
the Illumina sequencing platform. Bioinformatic analyses showed that compared with wild
type (WT), WAS knock out (KO)-CD4+ TEM cells exhibited increased Simpson index and
decreased D50 index (P <0.05); The rank abundance curve of KO-CD4+ TEM cells was
shorter and steeper than that of WT, and the angle of qD and q in KO-CD4+ TEM cells was
lower than that of WT, while these indexes showed few changes between WT and KO
chimeric mice in the CD8+TCM population. Therefore, it indicated that the restriction on
the TCRVb repertoires is majorly in KO-CD4+ TEM cells but not KO- CD8+ TCM cells.
Principal Component Analysis (PCA), a comprehensive parameter for TCRVb diversity,
successfully segregated CD4+ TEM cells from WT and KO, but failed in CD8+ TCM cells.
Among the total sequences of TRB, the usage of TRBV12.2, TRBV30, TRBV31, TRBV4,
TRBD1, TRBD2, TRBJ1.1, and TRBJ1.4 showed a significant difference between WT-
CD4+ TEM cells and KO-CD4+ TEM cells (P <0.05), while in CD8+ TCM cells, only the
usage of TRBV12.2 and TRBV20 showed a substantial difference between WT and KO
(P <0.05). No significant differences in the hydrophobicity and sequence length of TCRVb
were found between the WT and KO groups.

Conclusion:WASp deficiency selectively affected the TCR diversity of different memory T
cell subsets, and it had more impact on the TCRVb diversity of CD4+ TEM cells than CD8+
org January 2022 | Volume 12 | Article 7947951
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TCM cells. Moreover, the limitation of TCRVb diversity of CD4+ TEM cells and CD8+ TCM
cells in WAS was not severe but intrinsic.
Keywords: Wiskott–Aldrich Syndrome, memory T cell, T cell receptor repertoire, high-throughput sequencing,
chimeric mouse model
INTRODUCTION

Wiskott–Aldrich syndrome protein (WASp) is expressed exclusively
in thehematopoietic cells, consistingoffivemain functional domains,
a WASp-homology 1/pleckstrin homology (WH1/PH) domain, a
basic domain, a GTPase binding domain (GBD), a proline-rich
region, and a C-terminal VCA region (a verproline (V) homology
domain, a cofilin (C) homology domain; and a central acidic (A)
region) which binds the Arp2/3 complex enhancing actin nucleation
and rapid formation of new actin filaments (1, 2). As an actin
nucleation promoting factor, WASp regulates the structure and
dynamics of actin filament networks of the cells (3). The absence or
altered structures of WASp result in theWiskott–Aldrich syndrome
(WAS), a rare primary immunodeficiency disease, which is clinically
characterized by thrombocytopenia, eczema, immunodeficiency,
and increased risk of autoimmune diseases and lymphoid
malignancies (4). Indeed, numerous cellular activities of the
immune system have been described to be affected in WAS
patients, such as reduced chemotactic responses and phagocytic
abilities of monocytes and macrophages, impaired activation,
differentiation, and proliferation of multiple T and B lymphocyte
subsets (4–7).AbnormalT cell functions causedbyWASp-deficiency
mainly lead to immune deficiency in patients with WAS. The
abnormal T cell functions in WAS patients include T lymphopenia,
which gradually aggravated with age, decreased immune synapse
formation, reducedsynthesis, secretionofTcell cytokines (suchas IL-
2, IFN-g, and TNF-a), impaired function of cytotoxic T cells,
abnormal chemotaxis of T cells in vitro, and dysfunction of Treg
and regulatory helper T cells (5, 8–11).

T cell receptor (TCR) diversity is an essential guarantee for
effective T cell immunity. The TCR repertoire is composed of all
TCR clones, in which each TCR clone specifically recognizes the
corresponding antigen. The abundance of TCR diversity determines
the potential of T cell response to various antigens in the changeable
environment. Recombination of Variable (V), Diversity (D), and
Joining (J) gene elements allow the establishment of TCR repertoire
(12, 13). With the fast-developing next-generation sequencing
technology, several studies have explored the role of WASp in the
TCR recombination process. In 2005, Wada et al. firstly studied the
diversity of TCR inWAS patients and found that TCRVb repertoire
was specifically skewed in WAS patients older than 15 years old
(14). Then, Braun et al. and our team confirmed that young WAS
patients also had a TCRVb repertoire defect (15, 16). We further
found that the TCR diversity of WAS patients was severely limited
in memory/effector CD4+ T cells and terminal effector CD8+ T cells.
In contrast, naïve CD4+ T cells and naïve CD8+ T cells showed no
limitation on TCR diversity. O’Connell et al. also showed WAS
patients had TCR clonal expansion in memory CD4+ T cells, naïve
and memory CD8+ T cells (17).
org 2
Previous studies have confirmed that the number of TCR
clones is affected by many factors, such as age, pathogen
infection, tumor, autoimmune diseases, immunization, and
immunosuppression (18, 19). Petersen et al. showed that TCR
diversity was limited in old WASp−/− mice, but not in young
WASp−/− mice. They suggested that autoantigens are likely the
cause of reduced TCR diversity in WAS in the absence of
infections (20). However, whether the TCR diversity limitation
in WAS was caused by intrinsic WASp deficiency is still
unclear. Here, we further explored the impact of WASp on
TCR diversity of different memory T cell subsets in WAS
chimeric mice by unique molecular identifiers (UMI)
quantitative high-throughput sequencing (HTS) technology.
Our data indicated that WASp deficiency had more impact
on the TCRVb variety of CD4+ TEM cells than that of CD8+

TCM cells. Moreover, the limitation on the TCRVb diversity of
CD4+ TEM cells and CD8+ TCM cells in WAS is not severe but
intrinsic. It provides valuable information for unraveling the
role of WASp in the TCR recombination process.
MATERIALS AND METHODS

Mouse strains and Chimeric Mice by Bone
Marrow Transplantation
Wenxia Song from the University of Maryland kindly provided
WASp-KO mice expressing CD45.2 on the C57BL/6 background.
WT C57BL/6 mice expressing CD45.1 were purchased from
Shanghai Model Organisms. For a generation of bone marrow
(BM) chimeras, a total of 5 × 106 BM cells containing WT CD45.1
and WT or WASp−/− CD45.2 at a 1:3 ratio were injected into
lethally irradiated (6 Gy)WT CD45.1 recipient animals via tail vein.
All donor mice were 6–8 weeks old. Chimeric mice were analyzed
10 weeks after transplantation (21). All animal work was reviewed
and proved by the Institutional Animal Care and Usage Committee
of Children’s Hospital of Chongqing Medical University.

Cell Sorting
Purified T cells from chimeric mice were isolated by
immunomagnetic negative selection (Stem Cell Technologies,
Canada, Cat. 19751). Then, they were stained with the following
antibodies: anti-CD3-FITC, anti-CD4-PE/CY7, anti-CD8-APC,
anti-CD44-perCP/CY5.5, anti-CD62L-BV421, anti-CD45.1-
BV510, and anti-CD45.2-APC-CY7. CD4+ effector memory T
cells (CD45.2+CD4+CD44hiCD62Llow) and CD8+ central memory
T cells (CD45.2+CD8+ CD44hiCD62Lhi) were then sorted using a
FACSAria II (BD Biosciences) (Figure S1). All antibodies were
purchased from BioLegend, USA. The purity of sorted cell subtypes
exceeded 95%, as assessed by flow cytometry analysis. Table S1 lists
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the proportions and actual collected cell numbers of the two sorted
subsets in each sample.
High-Throughput TCR Repertoire
Sequencing and Bioinformatic Analyses
RNA was isolated using the RNeasy Mini Kit (Qiagen, Germany)
following the manufacturers’ instructions and was sent to
Huayin Health Technology Co., Ltd. (Guangzhou, China) for
HTS analysis employing unique molecular identifiers (UMI)
(Publication Patent Number: CN108893464A). RNA
concentrations were determined using a NanoDrop 2000
spectrophotometer (Thermo Scientific). cDNA libraries
contained UMI for HTS were prepared by 5 ’ rapid
amplification of cDNA ends (RACE) using the single primer
designed according to the constant region. Then, two rounds of
nested PCR were performed for TCRVb library preparation and
the products were purified using QIAquick PCR Purification Kit
(Qiagen, Germany). According to the manufacturer’s protocol,
Illumina adaptors were ligated using the NEBnext Ultra DNA
Library Prep kit (New England BioLabs, USA). Then products
were identified on 2% agarose gels, and bands centered at 600–
800 bp were excised and purified using a QIAquick Gel
Extraction kit (Qiagen, Germany). The purified PCR product
was subjected to HTS using the Illumina HiSeqX Ten (PE150)
and HiSeqX Ten Reagent kit v2.5 (FC-501-2501). Low-quality
sequences were discarded. TCRb V, D, and J gene identification,
CDR3 sequence extraction and error corrections in clean reads
were performed using miTCR.

Considering the influence of differences in sample size on
diversity indices, we randomly sampled 4,000, 6,000, 8,000,
10,000, and 12,000 UMI from each sample for this analysis.
Shannon, Simpson (1-D), D50, Chao 1, TOP100, and qD were
assessed based on previously published work (22, 23). Overlap
indices were calculated by the overlap coefficient (overlap
(X, Y) = |X and Y|/min (|X|, |Y|) for nucleotide sequences
(species = nucleotide sequence) (24). TCR CDR3 overlap was
assessed by ‘F2’, ‘R’ and ‘D’metrics in VDJTOOLS software (25).
The similarity of CDR3 amino acid was assessed by
Bhattacharyya distance as previously described (26). The
CDR3 nucleotide length was assessed by Complexity score and
Skewness (22). The hydrophobic index was calculated by the
frequency of hydrophobic amino acid doublets at positions 6 and
7 of the CDR3b (22, 27). Cysteine index was calculated by the
frequency of TCRVb sequences with cysteine within 2 positions
of the CDR3 (27).
Statistical Analysis
The Student’s t-test was used to compare diversity parameters in
different groups. The Chi-squared test was used to compare
groups in analysis involving qualitative variables. The Wilcoxon
rank-sum test was used to compare independent samples.
Dunnett’s multiple comparisons were used for multiple t-tests.
Data analysis was performed by GraphPad Prism 7.0 (GraphPad
Software, San Diego, CA); p-value <0.05 was considered
statistically significant.
Frontiers in Immunology | www.frontiersin.org 3
RESULTS

To investigate whether WASp creates diverse TCR repertoires in
memory T cells independent of the influence from infection and
homeostasis, we established BM chimeras of WT (CD45.1) and
KO (WASp−/− CD45.2). For HTS, WT or KO CD4+ effector
memory T (CD4+ TEM) cells and CD8+ central memory T
(CD8+ TCM) cells were sorted 10 weeks after transplantation
(21). The proportion and the actual number of collected CD4+

TEM and CD8+ TCM are shown in Table S1. Due to a limited
cell number, CD4+ central memory T (CD4+ TCM) cells and
CD8+ effector memory T (CD8+ TEM) cells were not included in
the HTS analysis.

Since comparative analysis requires accurate normalization,
unique molecular identifiers (UMI) were used to process
sequencing data. In total, we obtained an average of 5.51
million sequencing reads from 32 samples using the Illumina
sequencing platform. On average, 79.15% (range from 69.38 to
88.7%) of these sequence reads were utilized after filtering out
low-quality ones. The number of total and unique sequences,
total and unique clones and clone types of rearranged TCRVb
products for each sample is listed in Table S2. In particular, the
number of unique CDR3 sequences, unique CDR3aa and clone
types in KO-CD4+ TEM cells showed a downward trend, but no
statistical difference was observed compared to WT.

Light Restriction on the TCRVb
Repertoires in WASp−/− CD4+ TEM Cells
but not in WASp−/− CD8+ TCM Cells
TCRVb repertoire diversity and clonality were assessed using
several widely used diversity parameters: Shannon–Wiener index,
Simpson index, D50, and Chao 1 index. Consistent with our
findings in WAS patients, TCR repertoire was selectively skewed
in CD45RO+CD4+ T cells. Compared toWT, KO-CD4+ TEM cells
had a higher Simpson index and lower D50 diversity index,
indicating an unequal distribution of clonotypes and more
clonotypic expansions in KO-CD4+TEM cells. There was no
statistical difference in the Shannon index and Chao 1 index,
representing the comparable richness and abundance between
WT and KO in CD4+ TEM cells (Figure 1A). No difference
between WT and KO in CD8+ TCM cells for these four
parameters was found (Figure 1B). In addition, clonal expansion
was further assessed by the cumulative frequencies of unique versus
total CDR3 clonotypes and the Top 100, which corresponds to the
percentage of top 100 CDR3 sequences in the total number of
sequences. At the same time, the results showed no marked
difference between WT and KO in CD4+ TEM cells or CD8+

TCM cells (Figures 1C, D). To further analyze the abundance
and sample diversity, we estimated Rank abundance and true
diversity (qD) by observing their corresponding curves. The
abundance curve of KO-CD4+ TEM cells was steeper and shorter,
and qD curves of KO-CD4+ TEM cells were clearly lower than that
of WT, therefore suggesting WASp deficiency decreased the
uniformity and diversity of TCRVb repertoire in CD4+ TEM
cells. In comparison, the rank abundance and sample diversity
curves of CD8+ TCM cells inWT and KO were almost overlapped
(Figures 1E, F).
January 2022 | Volume 12 | Article 794795
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FIGURE 1 | Diversity and clonality analysis of TCRVb repertoires of CD4+ TEM cells and CD8+ TCM cells in WT and KO chimeras. Quantification of the diversity,
unevenness, clonotypic expansion, and richness of TCRVb repertoires using the Shannon–Wiener index, Simpson index, D50, and Chao 1 index in CD4+ TEM cells
(A) or CD8+ TCM cells (B). Representation of the frequency of the top 100 most abundant clones for TRB sequences (C). The cumulative frequencies of unique
versus total CDR3 clonotypes are shown for TCRb repertoires (D). Mean values ± SE are shown; t-test was used for statistical analysis, *p <0.05. Showing is the
Rank-abundance curve and sample diversity curve by using the abundance of total TRB sequences versus TRB sequences Rank (E) and true diversity (qD) versus q
(F). Sample plots illustrating the segregation of the various KO from WT chimeras based on primary component (PC) 1 and 2 determined by four variables
(Shannon–Wiener index, Simpson, number of total and unique sequences) for TCRVb repertoires (G).
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To assess whether analysis of the TCRVb repertoire of CD4+

TEM cells and CD8+ TCM cells may distinguish KO chimeras
from WT, we used Principal Component Analysis (PCA) based
on four variables: Shannon–Wiener index, Simpson, the number
of total and unique sequences. As expected, PCA successfully
segregated CD4+ TEM cells from WT and KO but failed to
discriminate between CD8+ TCM cells from WT and KO
(Figure 1G). Collectively, WASp-deficiency slightly affects the
TCRVb diversity of CD4+ TEM cells in the chimeric mice model,
but not the CD8+ TCM cells.

Skewed Usage of V, D and J Segment
Genes in WASp−/− Memory T Cells
The V(D)J recombination is the first determinant of TCR
diversity. Analysis of TRB sequences composition helps
understand the usage of individual V, D, and J elements. As
shown in the heat map, we analyzed the proportion of V, D and J
segment genes among the total sequences of TRB. We found no
apparent non-stochastic restriction on the usage of V, D and J
segments in KO chimeras compared with WT (Figures 2A, B).
Then, we further compared each V, D and J subfamily genes and
found significant differences in the usage of V, D and J segments
between CD4+ TEM cells and CD8+ TCM cells in both WT and
KO chimeras as expected (Figures 2C, D). However, compared
to CD4+ TEM cells, the upregulation of TRBV4 and the
downregulation of TRBJ1.4 usage in CD8+ TCM cells were
found expl ic i t ly in KO chimeras . In contrast , the
downregulation of TRBV23, TRBJ1.3, and TRBJ1.5 were
specifically found in WT chimeras (Figures 2C, D). The usage
of TRBV12.2 and TRBD1 was upregulated, and that of TRBV30,
TRBV31, TRBV4, TRBD2, TRBJ1.1, and TRBJ1.4 was
downregulated when comparing CD4+ TEM cells in WT and
KO (Figure 2E). As for the comparison of CD8+ TCM cells in
WT and KO, the usage of TRBV12.2 was increased, TRBV20 was
decreased, and D and J segments showed no difference
(Figure 2F). We also analyzed the composition of the unique
sequences of TRB, and the results were almost consistent with
those in the total sequence (Figure S2). Thus, WASp deficiency
disturbed the usage of V, D and J genes of CD4+ TEM cells, and
V gene segments of CD8+ TCM cells.

Altered Combinations of V(D)J Genes in
WASp−/− CD4+ TEM Cells and WASp−/−

CD8+ TCM Cells
To further explore whether WASp participates in the
combination of V(D)J genes, we analyzed the combination of
individual V, D and J genes in total TRB sequences. In the
combination of V and J genes, the lower right part of KO-CD4+

TEM group was more cluttered compared to the WT group,
suggesting that some combination of V–J genes in CD4+ TEM
cells was altered in KO chimeras (Figure 3A). In contrast, the
difference between WT and KO in CD8+ TCM cells was not
apparent (Figure 3B). To assess overall differences among each
individual, we used PCA analysis based on V gene segments, V–J
genes combination or V(D)J genes combination to display four
compare groups. The pictures showed that V genes and the
Frontiers in Immunology | www.frontiersin.org 5
combination of V–J genes as well as V(D)J genes of CD4+ TEM
cells and CD8+ TCM cells could be clearly distinguished into two
groups in WT and KO chimeras. In contrast, the group of WT-
CD4+ TEM cells was more consistent than KO-CD4+ TEM. WT
and KO chimeras are distinguishable from the PCA analysis
based on V genes in both CD4+ TEM cells and CD8+ TCM cells.
And the PCA analysis based on the combination of V–J genes
and V(D)J genes still can be divided into two groups of WT and
KO chimeras in both CD4+ TEM cells and CD8+ TCM cells, but
less difference was found than that based on V genes
(Figure 3C). We also showed the analysis of PCA based on the
V gene segments and J gene segments. The difference in
CD4+TEM cells between WT and KO is attributed more to the
selection of TRBV12.2, TRBV30, TRBV31, TRBV4, TRBJ1-1,
and TRBJ1-4 genes, while the distinguishable clustering of
CD8+TCM cells between KO and WT was more influenced by
the selection of TRBV12.2, TRBV15, TRBV20, and TRBV3
genes (Figure 3D).

The Higher Similarity of TCRVb
Repertoires of WASp−/− CD4+TEM Cells
and CD8+ TCM Cells
The highly shared TCR repertoires are enriched in clonotypes
bearing fewer insertions and were reported in autoimmune
diseases like type 1 diabetes (24). To detect the degree of
sequence sharing, we calculated overlap indices for TCRVb
repertoires of CD4+ TEM cells and CD8+ TCM cells. As
presented in the distance heat map, CD4+ TEM cells and
CD8+ TCM cells were more similar among KO chimeras than
WT. WT and KO were more similar among CD4+ TEM cells
than CD8+ TCM cells (Figure 4A). The value of overlap indices
for CD4+ TEM/CD4+ TEM was lower (Figure 4B), while the one
for CD8+ TCM/CD8+ TCM was higher in KO than WT
(Figure 4C). The one for CD4+ TEM/CD8+ TCM in KO was
increased compared to WT (Figure 4D). In addition, we found a
high degree of sharing for TCRVb sequences between CD4+

TEM and CD8+ TCM in KO chimeras. To assess the relative
similarity of TCRVb repertoires in different ways, we further
used the VDJTOOLS software to visualize repertoire overlaps of
‘F2’, ‘R’, and ‘D’ metrics. Metric F2 reflects the relative share
occupied by the common clonotypes in two groups; Metric R is
the overall similarity of repertoire organization; Metric D ignores
clonotype frequencies and reflects the number of shared
clonotypes between the two groups (25). We found that R and
D metrics of CD4+ TEM cells and CD8+ TCM cells in KO were
more diffuse, suggesting higher similarity of shared sequences.
F2, R, and D metrics of KO-CD8+ TCM samples were more
aggregated than WT, indicating different shared clonotypes
between the two groups (Figure 4E).

Differences in the Amino Acid
Composition of TCRVb Repertoires
Caused by WASp Deficiency
To assess the global amino acid composition of TCRVb
repertoires, we used a biological parameter, Bhattacharyya
distance, to analyze the similarity between samples at the
January 2022 | Volume 12 | Article 794795
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FIGURE 2 | Differential usage of V, D and J genes in the total sequences of TRB repertoires of CD4+ TEM cells and CD8+ TCM cells in WT and KO chimeras.
Heatmap represents V, D and J gene usage frequency for total TRB sequences of CD4+ TEM cells (A) and CD8+ TCM cells (B) in WT and KO chimeras. Relative
frequency for the usage of TRBV, TRBD, and TRBJ gene segments for CD4+ TEM cells vs CD8+ TCM cells in WT chimeras (C), CD4+ TEM cells vs CD8+ TCM cells
in KO chimeras (D), WT vs KO chimeras in CD4+ TEM cells (E) and WT vs KO chimeras in CD8+ TCM cells (F). *p < 0.05.
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FIGURE 3 | Differential V–J and V–D–J combination of CD4+ TEM cells and CD8+ TCM cells in WT and KO chimeras. Heatmap representing the frequency of V–J
combination for CD4+ TEM cells (A) and CD8+ TCM cells (B) in WT and KO chimeras. Sample plots illustrating the segregation of CD4+ TEM cells from CD8+ TCM
cells in WT chimeras, CD4+ TEM cells from CD8+ TCM cells in KO chimeras, KO from WT chimeras in CD4+ TEM cells, and that of KO from WT chimeras in CD8+

TCM cells (from left to right) based on PCA of V genes, the combination of V–J and also V–D–J, distribution of V gene families and J gene families (from up to down)
(C). V and J gene families with significant differences were shown in red (D) (p < 0.05).
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FIGURE 4 | The relative similarity of TCRVb repertoires in WT and KO chimeric mice. Heatmap represents the distance matrix of TCRVb repertoires of CD4+ TEM
and CD8+ TCM cells in WT and KO chimeric mice (A). Overlap indices for CD4+ TEM/CD4+ TEM (B), CD8+ TCM/CD8+ TCM (C) and CD4+ TEM/CD8+ TCM (D).
Metrics F2, R and D for CD4+ TEM and CD8 TCM TRB sequences in WT and KO chimeric mice (E). ***p < 0.001.
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amino acid level. We found that there was no difference in all of
the four compare groups: WT-CD4+TEM vs WT-CD8+TCM,
KO-CD4+TEM vs KO-CD8+TCM, KO-CD4+TEM vs WT-
CD4+TEM, and KO-CD8+TCM vs WT-CD8+TCM
(Figure 5A). Then, we analyzed the usage of each amino acid
and found parts of amino acid usage were significantly different
among those four groups (Figure 5B). When CD8+TCM cells
were compared with CD4+TEM cells, downregulation of
Glutamine (Q), Methionine (M) usage and upregulation of
Valine (V), Proline (P) usage was specifically found in WT,
while downregulation of Aspartic acid (D) and upregulation of
Tryptophan (W) usage was specifically found in KO chimeras. In
CD4+ TEM cells, the usage of Tyrosine (Y) was decreased, and
the usage of Phenylalanine (F), Asparagine (N) and V was
increased in KO compared to WT. D usage was lower and W
was higher when KO-CD8+TCM cells were compared with
WT (Figure 5C).

WASp Deficiency Did Not Affect the
Hydrophobicity and the Length of
TCRVb Sequences
Differences in the compositions of amino acids may change the
hydrophilicity and hydrophobicity of TCR. The hydrophobicity
of TCR and the length of TCRVb sequences are related to
autoimmune diseases, as previously reported (22, 27). About
24 to 72% of WAS patients have autoimmune diseases (28).
Therefore, we analyzed the hydrophobicity of amino acids at
positions 6 and 7 as reported. And no significant difference was
found between KO and WT groups in CD4+ TEM cells and
CD8+ TCM cells (Figures 6A, B). A previous study (27) has
shown that cysteine and hydrophobic residues in CDR3 serve as
distinct T-cell self-reactivity indices. We further calculated the
hydrophobic index and cysteine index, and found no significant
difference in KO-CD4+TEM vs WT-CD4+TEM, and KO-
CD8+TCM vs WT-CD8+TCM (Figures 6C, D). The results
suggest that WASp deficiency did not obviously alter stochastic
process of TCR assembly to produce more cysteine and
hydrophobic residues in CD4+ TEM cells and CD8+ TCM cells
in relatively young mice. Furthermore, the length of CDR3b
nucleotide among the total sequences and unique sequences
showed a negative difference again (Figure 7A). We then
calculated the complexity score and skewness index of total
and unique sequences, and they still showed no changes in
CD4+ TEM cells and CD8+ TCM cells between KO and WT
(Figures 7B, C).
DISCUSSION

TCR diversity is an essential guarantee for effective T cell
immunity. Previous studies have confirmed that TCR diversity
can be affected by many factors such as age, pathogen infection,
tumor, autoimmune diseases, immunization, and immuno-
suppression (18, 19). Limitations to diversity may be a feature
of V(D)J rearrangement that is as significant to immune function
as the bewildering number of lymphocyte specificities that can
Frontiers in Immunology | www.frontiersin.org 9
theoretically be generated. As proved by other researchers and
our team, TCR diversity was severely impaired, mainly in the
memory T cell populations in WAS patients (16, 17). However,
whether the TCR diversity limitation in WAS was caused by
intrinsic WASp deficiency is still unclear. In 2014, Petersen et al.
showed that TCR diversity was limited in old WAS−/− mice, but
not in young ones. They only detected the total T cells, ignoring
that WASp deficiency could selectively affect the diversity of T
cell subsets (20). In this study, for the first time, we used WAS
chimeric mice model to study the TCR diversity in WAS, which
could exclude the potential influence of other WASp deficient
immunocytes and other affecting factors. Our work revealed that
the limited TCRVb diversity of CD4+ TEM cells and CD8+ TCM
cells in WAS are intrinsic but not severe. Moreover, WASp-
deficiency affected the TCR diversity of CD4+ TEM cells more
than CD8+ TCM cells, indicating WASp may play a more critical
role in forming TCR diversity of CD4+ TEM cells than that of
CD8+ TCM cells.

The mechanisms for the limitations to TCR diversity of CD4+

TEM cells and CD8+ TCM cells in WAS are still unknown.
WASp is involved in the process of T cell maturation,
differentiation, and proliferation (29, 30). WASp-deficiency
affects the maturation and differentiation of T cells inside and
outside the thymus. Studies have shown that T cell lymphopenia
was common in young WAS patients (31). As there is no limited
TCR diversity of naïve T cells in young WAS patients (16), and
Petersen et al. had shown that TCR diversity in thymus and
spleen was not limited in young WASp−/− mice (20), we also
found no limited TCR diversity of naïve CD4 and CD8 T cells in
nonchimeric WASp−/− mice (data unpublished), so the impaired
TCR diversity of memory T cells may not be related to the
deficiency of thymus output. Since WASp-deficiency results in
impaired T cell survival and abnormal memory formation
efficiency, TCR repertoire analysis of different memory T cells
in WAS could provide additional clues regarding the biophysical
properties of the TCRs of CD4+ TEM cells that may potentially
affect the process of memory T cell formation. Due to the limited
number of cells, the TCR diversity of CD4+ TCM cells and CD8+

TEM cells was not studied in this study. Whether the limited
TCR diversity of CD4+ TEM cells was a continuation of CD4+

TCM cells is unknown. CD4+ TEM are more susceptible to the
effects of WASp deficiency, since its constitutive generation
across mouse life likely through TCR driven events. In
contrast, CD8+ TCM in mice are largely generated in earlier
life with a less antigen driven pathway. Even if the mechanisms of
their development are not fully understood, it appears to be
cytokine-dependent (32). This may explain why few
perturbations to TCR repertoire diversity are found in CD8+

TCM. Additionally, whether the slightly skewed TCR diversity of
CD8+ TCM cells could lead to impaired TCR diversity of CD8+

TEM cells also remain to be further studied. All in all, the specific
mechanism of TCR diversity restriction of memory T cells
caused by WASp-deficiency has yet to be further defined.

Comparing V- and J-segment usage frequencies may reflect the
functional differences in TCR repertoires and the biases in thymic
recombination machinery. This study showed that WASp-
January 2022 | Volume 12 | Article 794795
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A B C

FIGURE 5 | Differential composition of CDR3 amino acids (aa) in TCRVb repertoires from four compare groups. Bhattacharyya distance analysis for the similarity of
CDR3aa from four compare groups: CD4+ TEM vs. CD8+ TCM in WT chimeras, CD4+ TEM vs. CD8+ TCM in KO chimeras, WT vs. KO chimeras in CD4+ TEM, and
WT vs. KO chimeras in CD8+ TCM (from up to down) (A). The frequencies of 20 aa in CDR3 from four compare groups (B). Downregulation and upregulation of
CDR3 AA in the different groups were shown (C). p < 0.05. NS, No Significant.
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deficiency affected the usage of V, D, and J segment genes, which
was consistent with previous studies in WAS patients (17).
However, we did not find specific V, D, and J segment genes,
fixed upregulation, nor downregulation of V(D)J usage in both
WAS patients and mice models. So, the difference in the usage of
V, D, and J genes caused by WASp-deficiency may randomly
happen. Furthermore, the difference in the usage of V, D, and J
segments caused by WASp-deficiency was gradually decreased
with the combination of V(D)J. Whether the different usage of V,
D, and J genes in WAS was related to specific pathogens’
susceptibility or autoimmune diseases still needs more research.

Epidemiological studies showed that 24–72% of patients with
WAS had autoimmune diseases, namely, autoimmune hemolytic
anemia (AIHA), vasculitis, arthritis, nephropathy, inflammatory
bowel disease, and immune granulocytic (28). As reported in type 1
Frontiers in Immunology | www.frontiersin.org 11
diabetes (24), the highly shared TCR repertoires were enriched in
clonotypes with fewer insertions. Our results showed higher sharing
of TCRVb sequences between CD4+ TEM and CD8+ TCM cells in
WAS chimeric mice than in WT, suggesting that WAS chimeric
mice are more prone to autoimmunity than WT. However, the
segments associated with autoimmune diseases, like TRBV2,
TRBV6, and TRBV8.2, were not upregulated in WAS chimeric
mice. Since we found no direct association of autoimmunity and V
(D)J gene levels, we further detected the hydrophobicity of amino
acids at positions 6 and 7, and the length of TCRVb sequences in
amino acid levels. The differences in the compositions of amino
acids may change the hydrophilicity and hydrophobicity of TCR,
and a previous study showed that the interfacial hydrophobicity of
amino acids at positions 6 and 7 of the CDR3b segment robustly
promotes the development of self-reactive TCRs (33). Also, the
A

B

C

D

FIGURE 6 | Hydrophobicity of amino acids (aa) in CDR3b repertoires of CD4+ TEM cells or CD8+ TCM cells from WT and KO chimeras. Composition of aa residues
at positions 6 (A) and 7 (B) of the 13 aa-long CDR3b. Hydrophobic index (C) and cysteine index (D) in CDR3b repertoires. *p < 0.05; **p < 0.01.
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length of TCRVb sequences is related to autoimmune diseases (22,
27). As a result, although we found differences in the composition of
amino acid of TCRVb repertoires betweenWAS chimeric mice and
the WT, no significant difference in amino acid hydrophobicity at
positions 6 and 7 was found. A previous study showed that (27), an
increased cysteine index was a specific biomarker of defective
cortical tolerance mechanisms, the hydrophobic index appeared
more sensitive for detection of a self-tolerance defect but was not
specific for either cortical or medullary tolerance mechanisms. Thus
the cysteine and hydrophobic indices provide complementary
information in the diagnosis and classification of T-cell self-
tolerance defects. Therefore, we detected both indices in each cell
subpopulation, but there were no significant difference between KO
and WT in both CD4+ TEM and CD8+ TCM cells. This suggested
that the WASp defect did not affect the self-tolerance of CD4+ TEM
and CD8+ TCM in thymus. O’Connell et al. reported a change in
the length of the TCR sequence inWAS patients (17). However, our
data showed no significant change in the length of TCRVb
sequences between WAS chimeric mice and the WT. All these
data in our study were insufficient to prove a direct association
between the alteration of WAS TCR diversity and autoimmunity.
This may be due to an early investigation before the onset of
autoimmune disease, which is more often seen in old WASp−/
− mice.

The quality of comparative repertoire analysis relies on the
TCR library preparation, sequencing (TCR-seq) methods and
the following software analysis algorithms (25). This study used
5’ RACE-PCR, deep sequencing, and UMI quantification
Frontiers in Immunology | www.frontiersin.org 12
to the maximum extent to remove technical bias. However,
these techniques and methods are still expected to be further
optimized. In addition, compared to human samples, the mouse
model has similar genetic homogeneity and strengthened
repertoire convergence. Therefore, even limited available T cell
counts often create the possibility of clear and statistically
significant results concerning the characteristics and similarity
of syngeneic mouse TCR repertoires for the different T cell
subsets, different age groups, and in various transgenic mouse
models (25). Although we used chimeric mice to exclude those
possible interference factors, there may still be differences
between mice and humans, and our findings in mice need
further validation in younger WAS patients without infections.

Overall, we confirmed that the effect of WASp-deficiency on
the TCRVb diversity of CD4+ TEM cells and CD8+ TCM cells
was not severe but intrinsic. The intrinsically disturbed TCRVb
diversity in WAS chimeric mice provided clues for researchers to
explore the mechanism of autoimmunity and infection in WAS
patients. These results also help further study the function of
WASp and the specific mechanism of WASp affecting
TCR diversity.
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