
WASP: Protecting Web Applications Using
Positive Tainting and Syntax-Aware Evaluation

William G.J. Halfond, Alessandro Orso, Member, IEEE Computer Society, and

Panagiotis Manolios, Member, IEEE Computer Society

Abstract—Many software systems have evolved to include a Web-based component that makes them available to the public via the

Internet and can expose them to a variety of Web-based attacks. One of these attacks is SQL injection, which can give attackers

unrestricted access to the databases that underlie Web applications and has become increasingly frequent and serious. This paper

presents a new highly automated approach for protecting Web applications against SQL injection that has both conceptual and

practical advantages over most existing techniques. From a conceptual standpoint, the approach is based on the novel idea of positive

tainting and on the concept of syntax-aware evaluation. From a practical standpoint, our technique is precise and efficient, has minimal

deployment requirements, and incurs a negligible performance overhead in most cases. We have implemented our techniques in the

Web Application SQL-injection Preventer (WASP) tool, which we used to perform an empirical evaluation on a wide range of Web

applications that we subjected to a large and varied set of attacks and legitimate accesses. WASP was able to stop all of the otherwise

successful attacks and did not generate any false positives.

Index Terms—Security, SQL injection, dynamic tainting, runtime monitoring.

Ç

1 INTRODUCTION

WEB applications are applications that can be accessed
over the Internet by using any compliantWeb browser

that runs on any operating system and architecture. They
have become ubiquitous due to the convenience, flexibility,
availability, and interoperability that they provide.

Unfortunately, Web applications are also vulnerable to a

variety of new security threats. SQL Injection Attacks

(SQLIAs) are one of the most significant of such threats

[6]. SQLIAs have become increasingly frequent and pose

very serious security risks because they can give attackers

unrestricted access to the databases that underlie Web

applications.
Web applications interface with databases that contain

information such as customer names, preferences, credit

card numbers, purchase orders, and so on. Web applica-

tions build SQL queries to access these databases based, in

part, on user-provided input. The intent is that Web

applications will limit the kinds of queries that can be

generated to a safe subset of all possible queries, regardless

of what input users provide. However, inadequate input

validation can enable attackers to gain complete access to

such databases. One way in which this happens is that

attackers can submit input strings that contain specially

encoded database commands. When the Web application
builds a query by using these strings and submits the query
to its underlying database, the attacker’s embedded
commands are executed by the database and the attack
succeeds. The results of these attacks are often disastrous
and can range from leaking of sensitive data (for example,
customer data) to the destruction of database contents.

Researchers have proposed a wide range of alternative
techniques to address SQLIAs, but many of these solutions
have limitations that affect their effectiveness and practi-
cality. For example, one common class of solutions is based
on defensive coding practices, which have been less than
successful for three main reasons. First, it is difficult to
implement and enforce a rigorous defensive coding dis-
cipline. Second, many solutions based on defensive coding
address only a subset of the possible attacks. Third, legacy
software poses a particularly difficult problem because of
the cost and complexity of retrofitting existing code so that
it is compliant with defensive coding practices.

In this paper, we propose a new highly automated
approach for dynamic detection and prevention of SQLIAs.
Intuitively, our approach works by identifying “trusted”
strings in an application and allowing only these trusted
strings to be used to create the semantically relevant parts
of a SQL query such as keywords or operators. The general
mechanism that we use to implement this approach is based
on dynamic tainting, which marks and tracks certain data in
a program at runtime.

The kind of dynamic tainting that we use gives our
approach several important advantages over techniques
based on other mechanisms. Many techniques rely on
complex static analyses in order to find potential vulner-
abilities in the code (for example, [11], [18], [29]). These
kinds of conservative static analyses can generate high rates
of false positives and can have scalability issues when

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 1, JANUARY/FEBRUARY 2008 65

. W.G.J. Halfond and A. Orso are with the College of Computing, Georgia
Institute of Technology, Klaus Advanced Computing Building, 266 Ferst
Drive, Atlanta, GA 30332-0765. E-mail: {whalfond, orso}@cc.gatech.edu.

. P. Manolios is with the College of Computer and Information Science,
Northeastern University, 360 Huntington Avenue, Boston, MA 02115.
E-mail: pete@ccs.neu.edu.

Manuscript received 24 Feb. 2007; revised 8 Aug. 2007; accepted 29 Aug.
2007; published online 24 Sept. 2007.
Recommended for acceptance by P. McDaniel and B. Nuseibeh.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSESI-0084-0207.
Digital Object Identifier no. 10.1109/TSE.2007.70748.

0098-5589/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

applied to large complex applications. In contrast, our
approach does not rely on complex static analyses and is
both efficient and precise. Other techniques involve ex-
tensive human effort (for example, [5], [21], [27]). They
require developers to manually rewrite parts of the Web
applications, build queries using special libraries, or mark all
points in the code at which malicious input could be
introduced. Our approach is highly automated and, in most
cases, requires minimal or no developer intervention. Last,
several proposed techniques require the deployment of
extensive infrastructure or involve complex configurations
(for example, [2], [26], [28]). Our approach does not require
additional infrastructure and can be automatically deployed.

Compared to other existing techniques based on dynamic
tainting (for example, [9], [23], [24]), our approach makes
several conceptual and practical improvements that take
advantage of the specific characteristics of SQLIAs. The first
conceptual advantage of our approach is the use of positive
tainting. Positive tainting identifies and tracks trusted data,
whereas traditional (“negative”) tainting focuses on un-
trusted data. In the context of SQLIAs, there are several
reasons why positive tainting is more effective than
negative tainting. First, in Web applications, sources of
trusted data can more easily and accurately be identified
than untrusted data sources. Therefore, the use of positive
tainting leads to increased automation. Second, the two
approaches significantly differ in how they are affected by
incompleteness. With negative tainting, failure to identify
the complete set of untrusted data sources can result in false
negatives, that is, successful and undetected attacks. With
positive tainting, missing trusted data sources can result in
false positives (that is, legitimate accesses can be prevented
from completing). False positives that occur in the field
would be problematic. Using our approach, however, false
positives are likely to be detected during prerelease testing.
Our approach provides specific mechanisms for helping
developers detect false positives early, identify their
sources, and easily eliminate them in future runs by tagging
the identified sources as trusted.

The second conceptual advantage of our approach is the use
of flexible syntax-aware evaluation. Syntax-aware evalua-
tion lets us address security problems that are derived from
mixing data and code while still allowing for this mixing to
occur. More precisely, it gives developers a mechanism for
regulating the usage of string data based not only on its
source but also on its syntactical role in a query string. This
way, developers can use a wide range of external input
sources to build queries while protecting the application
from possible attacks introduced via these sources.

The practical advantages of our approach are that it imposes
a low overhead on the application and it has minimal
deployment requirements. Efficiency is achieved by using a
specialized library, called MetaStrings, that accurately and
efficiently assigns and tracks trust markings at runtime. The
only deployment requirements for our approach are that the
Web application must be instrumented and it must be
deployed with our MetaStrings library, which is done
automatically. The approach does not require any custo-
mized runtime system or additional infrastructure.

In this paper, we also present the results of an extensive
empirical evaluation of the effectiveness and efficiency of
our technique. To perform this evaluation, we implemented
our approach in a tool called Web Application SQL-
injection Preventer (WASP) and evaluated WASP on a set
of 10 Web applications of various types and sizes. For each
application, we protected it with WASP, targeted it with a
large set of attacks and legitimate accesses, and assessed the
ability of our technique to detect and prevent attacks
without stopping legitimate accesses. The results of the
evaluation are promising. Our technique was able to stop all
of the attacks without generating false positives for any of
the legitimate accesses. Moreover, our technique proved to
be efficient, imposing only a low overhead on the Web
applications.

The main contributions of this work are listed as follows:

1. a new automated technique for preventing SQLIAs
based on the novel concept of positive tainting and
on flexible syntax-aware evaluation,

2. a mechanism to perform efficient dynamic tainting
of Java strings that precisely propagates trust
markings while strings are manipulated at runtime,

3. a tool that implements our SQLIA prevention
technique for Java-based Web applications and has
minimal deployment requirements, and

4. an empirical evaluation of the technique that shows
its effectiveness and efficiency.

The rest of this paper is organized as follows: In Section 2,
we introduce SQLIAs. Sections 3 and 4 discuss the approach
and its implementation. Section 5 presents the results of our
evaluation. We discuss related work in Section 6 and
conclude in Section 7.

2 MOTIVATION: SQL INJECTION ATTACKS

In this section, we first motivate our work by introducing an
example of an SQLIA that we use throughout the paper to
illustrate our approach and, then, we discuss the main types
of SQLIAs in detail.

In general, SQLIAs are a class of code injection attacks
that take advantage of the lack of validation of user input.
These attacks occur when developers combine hard-coded
strings with user-provided input to create dynamic queries.
Intuitively, if user input is not properly validated, attackers
may be able to change the developer’s intended SQL
command by inserting new SQL keywords or operators
through specially crafted input strings. Interested readers
can refer to the work of Su and Wassermann [27] for a
formal definition of SQLIAs. SQLIAs leverage a wide range
of mechanisms and input channels to inject malicious
commands into a vulnerable application [12]. Before
providing a detailed discussion of these various mechan-
isms, we introduce an example application that contains a
simple SQL injection vulnerability and show how an
attacker can leverage that vulnerability.

Fig. 1 shows an example of a typical Web application
architecture. In the example, the user interacts with a Web
form that takes a login name and pin as inputs and submits
them to a Web server. The Web server passes the user-
supplied credentials to a servlet (show.jsp), which is a

66 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 1, JANUARY/FEBRUARY 2008

special type of Java application that runs on a Web
application server and whose execution is triggered by the
submission of a URL from a client.

The example servlet, whose code is partially shown in
Fig. 2, implements a login functionality that we can find in a
typical Web application. It uses input parameters login

and pin to dynamically build an SQL query or command.
(For simplicity, in the rest of this paper, we use the terms
query and command interchangeably.) The login and pin

are checked against the credentials stored in the database. If
they match, the corresponding user’s account information is
returned. Otherwise, a null set is returned by the database
and the authentication fails. The servlet then uses the
response from the database to generate HTML pages that
are sent back to the user’s browser by the Web server.

For this servlet, if a user submits login and pin as “doe”
and “123,” the application dynamically builds the query:

If login and pin match the corresponding entry in the
database, doe’s account information is returned and then
displayed by function displayAccount(). If there is no
match in the database, function sendAuthFailed() dis-
plays an appropriate error message. An application that
uses this servlet is vulnerable to SQLIAs. For example, if an
attacker enters “admin’ –– ” as the username and any
value as the pin (for example, “0”), the resulting query is

In SQL, “––” is the comment operator and everything after
it is ignored. Therefore, when performing this query, the
database simply searches for an entry where login is equal
to admin and returns that database record. After the

“successful” login, the function displayAccount() re-
veals the admin’s account information to the attacker.

It is important to stress that this example represents an
extremely simple kind of attack and we present it for
illustrative purposes only. Because simple attacks of this
kind are widely used in the literature as examples, they are
often mistakenly viewed as the only types of SQLIAs. In
reality, there is a wide variety of complex and sophisticated
SQL exploits available to attackers. We next discuss the
main types of such attacks.

2.1 Main Variants of SQL Injection Attacks

Over the past several years, attackers have developed a
wide array of sophisticated attack techniques that can be
used to exploit SQL injection vulnerabilities. These techni-
ques go beyond the well-known SQLIA examples and take
advantage of esoteric and advanced SQL constructs.
Ignoring the existence of these kinds of attacks leads to
the development of solutions that only partially address the
SQLIA problem.

For example, developers and researchers often assume
that SQLIAs are introduced only via user input that is
submitted as part of aWeb form. This assumptionmisses the
fact that any external input that is used to build a query string
may represent a possible channel for SQLIAs. In fact, it is
common to see other external sources of input such as fields
from an HTTP cookie or server variables used to build a
query. Since cookie values are under the control of the user’s
browser and server variables are often set using values from
HTTP headers, these values are actually external strings that
can be manipulated by an attacker. In addition, second-order
injectionsuseadvancedknowledgeofvulnerable applications
to introduce attacks by using otherwise properly secured
input sources [1]. A developer may suitably escape, type-
check, and filter input that comes from the user and assume
that it is safe. Later on, when that data is used in a different
context or to build a different type of query, the previously
safe input may enable an injection attack.

Once attackers have identified an input source that can
be used to exploit an SQLIA vulnerability, there are many
different types of attack techniques that they can leverage.
Depending on the type and extent of the vulnerability, the
results of these attacks can include crashing the database,
gathering information about the tables in the database
schema, establishing covert channels, and open-ended
injection of virtually any SQL command. Here, we

HALFOND ET AL.: WASP: PROTECTING WEB APPLICATIONS USING POSITIVE TAINTING AND SYNTAX-AWARE EVALUATION 67

Fig. 1. Example of interaction between a user and a typical Web application.

Fig. 2. Excerpt of a Java servlet implementation.

summarize the main techniques for performing SQLIAs.
We provide additional information and examples of how
these techniques work in [12].

2.1.1 Tautologies

Tautology-based attacks are among the simplest and best
known types of SQLIAs. The general goal of a tautology-
based attack is to inject SQL tokens that cause the query’s
conditional statement to always evaluate to true. Although
the results of this type of attack are application specific, the
most common uses are bypassing authentication pages and
extracting data. In this type of injection, an attacker exploits
a vulnerable input field that is used in the query’s WHERE

conditional. This conditional logic is evaluated as the
database scans each row in the table. If the conditional
represents a tautology, the database matches and returns all
of the rows in the table as opposed to matching only one
row, as it would normally do in the absence of injection. An
example of a tautology-based SQLIA for the servlet in our
example in Section 2 is the following:

Because the WHERE clause is always true, this query will
return account information for all of the users in the database.

2.1.2 Union Queries

Although tautology-based attacks can be successful, for
instance, in bypassing authentication pages, they do not give
attackers much flexibility in retrieving specific information
from a database. Union queries are amore sophisticated type
of SQLIA that can be used by an attacker to achieve this goal,
in that they cause otherwise legitimate queries to return
additional data. In this type of SQLIA, attackers inject a
statement of the form “UNION < injected query > .” By
suitably defining < injected query > , attackers can re-
trieve information from a specified table. The outcome of
this attack is that the database returns a data set that is the
union of the results of the original query with the results of
the injected query. In our example, an attacker could
perform a Union Query injection by injecting the text
“ 0 UNION SELECT cardNo from CreditCards where acctNo ¼
7032�� ” into the login field. The application would then
produce the following query:

The original query should return the null set, and the
injected query returns data from the “CreditCards” table. In
this case, the database returns field “cardNo” for account
“7032.” The database takes the results of these two queries,
unites them, and returns them to the application. In many
applications, the effect of this attack would be that the value
for “cardNo” is displayed with the account information.

2.1.3 Piggybacked Queries

Similar to union queries, this kind of attack appends
additional queries to the original query string. If the
attack is successful, the database receives and executes a
query string that contains multiple distinct queries. The
first query is generally the original legitimate query,

whereas subsequent queries are the injected malicious
queries. This type of attack can be especially harmful
because attackers can use it to inject virtually any type of
SQL command. In our example, an attacker could inject the
text “0; drop table users” into the pin input field and
have the application generate the following query:

The database treats this query string as two queries
separated by the query delimiter (“;”) and executes both.
The second malicious query causes the database to drop the
users table in the database, which would have the
catastrophic consequence of deleting all user information.
Other types of queries can be executed using this technique,
such as the insertion of new users into the database or the
execution of stored procedures. Note that many databases
do not require a special character to separate distinct
queries, so simply scanning for separators is not an effective
way to prevent this attack technique.

2.1.4 Malformed Queries

Union queries and piggybacked queries let attackers per-
form specific queries or execute specific commands on a
database, but require some prior knowledge of the database
schema, which is often unknown. Malformed queries allow
for overcoming this problem by taking advantage of overly
descriptive error messages that are generated by the
database when a malformed query is rejected. When these
messages are directly returned to the user of the Web
application, instead of being logged for debugging by
developers, attackers can make use of the debugging
information to identify vulnerable parameters and infer
the schema of the underlying database. Attackers exploit
this situation by injecting SQL tokens or garbage input that
causes the query to contain syntax errors, type mismatches,
or logical errors. Considering our example, an attacker
could try causing a type mismatch error by injecting the
following text into the pin input field: “convertðint;
ðselect top 1 name from sysobjects where xtype ¼ ‘u’ÞÞ. ”
The resulting query generated by the Web application is the
following:

The injected query extracts the name of the first user
table xtype ¼ ‘u’ from the database’s metadata table
sysobjects. It then converts this table name to an integer.
Because the name of the table is a string, the conversion is
illegal and the database returns an error. For example, a
SQL Server may return the following error: “Microsoft OLE
DB Provider for SQL Server (0x80040E07) Error converting
nvarchar value ’CreditCards’ to a column of data type int.” From
this message, the attacker can 1) see that the database is an
SQL Server and 2) discover that the name of the first user-
defined table in the database is “CreditCards” (the string
that caused the type conversion to occur). A similar strategy
can be used to systematically extract the name and type of
each column in the given table. Using this information
about the schema of the database, an attacker can create

68 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 1, JANUARY/FEBRUARY 2008

more precise attacks that specifically target certain types of
information. Malformed queries are typically used as a
preliminary information-gathering step for other attacks.

2.1.5 Inference

Similar to malformed queries, inference-based attacks let
attackers discover information about a database schema.
This type of SQLIAs creates queries that cause an applica-
tion or database to behave differently based on the results of
the query. This way, even if an application does not directly
provide the results of the query to the attacker, it is possible
to observe side effects caused by the query and deduce its
results. One particular type of attack based on inference is a
timing attack, which lets attackers gather information from a
database by observing timing delays in the database’s
responses. To perform a timing attack, attackers structure
their injected queries in the form of an if-then statement
whose branch condition corresponds to a question about
the contents of the database. The attacker then uses the
WAITFOR keyword along one of the branches, which causes
the database to delay its response by a specified time. By
measuring the increase or decrease in the database response
time, attackers can infer which branch was taken and the
answer to the injected question. For our example servlet, an
attacker could inject the following text into the login
parameter: “legalUser0 AND ASCIIðSUBSTRINGððselect top

1 name from sysobjectsÞ; 1; 1ÞÞ > X WAITFOR 5��.” This
injection produces the following query:

In the attack, the SUBSTRING function is used to extract the
first character of the database’s first table’s name, which is
then converted into an ASCII value and compared with the
value ofX. If the value is greater, the attacker will be able to
observe a 10 s delay in the database response. The attacker
can continue this way and use a binary-search strategy to
identify the value of each character in the table’s name.
Another well-known type of inference attack is blind SQL
injection [12].

2.1.6 Alternate Encodings

Many types of SQLIAs involve the use of special characters
such as single quotes, dashes, or semicolons as part of the
inputs to a Web application. Therefore, basic protection
techniques against these attacks check the input for the
presence of such characters and escape them or simply
block inputs that contain them. Alternate encodings let
attackers modify their injected strings in a way that avoids
these typical signature-based and filter-based checks.
Encodings such as ASCII, hexadecimal, and Unicode can
be used in conjunction with other techniques to allow an
attack to escape straightforward detection approaches that
simply scan for certain known “bad characters.” Even if
developers account for alternate encodings, this technique
can still be successful because alternate encodings can target
different layers in the application. For example, a developer
may scan for a Unicode or hexadecimal encoding of a single
quote and not realize that the attacker can leverage database

functions to encode the same character. An effective code-

based defense against alternate encodings requires devel-

opers to be aware of all of the possible encodings that could

affect a given query string as it passes through the different

application layers. Because developing such a complete

protection is very difficult in practice, attackers have been

successful in using alternate encodings to conceal attack

strings. The following example attack (from [13]) shows the

level of obfuscation that can be achieved using alternate

encodings. In the attack, the pin field is injected with string

“0; exec(char(0x73687574646f776e)),” which re-

sults in the following query:

This attack leverages the char() function provided by

some databases and uses ASCII hexadecimal encoding. The

stream of numbers in the second part of the injection is the

ASCII hexadecimal encoding of the attack string. This

encoded string is inserted into a query by using some other

type of attack profile and, when it is executed by the

database, translates into the shutdown command.

2.1.7 Leveraging Stored Procedures

Another strongly advertised solution for the problem of

SQLIAs is the use of stored procedures, that is, procedures

that are stored in the database and can be run by the

database engine. Stored procedures provide developers

with an extra layer of abstraction because they can enforce

businesswide database rules, independent of the logic of

individual Web applications. Unfortunately, it is a common

misconception that the mere use of stored procedures

protects an application from SQLIAs: Similarly to any other

software, the safety of stored procedures depends on the

way in which they are coded and on the use of adequate

defensive coding practices. Therefore, parametric stored

procedures could also be vulnerable to SQLIAs, just like the

rest of the code in a Web application.
The following example demonstrates how a (parametric)

stored procedure can be exploited via an SQLIA. In this

scenario, assume that the query string constructed by our

example servlet has been replaced by a call to the following

stored procedure:

CREATE PROCEDURE DBO.isAuthenticated

@userName varchar2, @pin int

AS

EXEC("SELECT acct FROM users WHERE login=‘"

+ @userName + "‘ and pin= " +@pin);

GO

To perform an SQLIA that exploits this stored procedure,

the attacker can simply inject the text “’ ; SHUTDOWN; –– ”

into the userName field. This injection causes the stored

procedure to generate the following query, which would

result in the database being shut down:

HALFOND ET AL.: WASP: PROTECTING WEB APPLICATIONS USING POSITIVE TAINTING AND SYNTAX-AWARE EVALUATION 69

3 OUR APPROACH

Our approach against SQLIAs is based on dynamic tainting,
which has previously been used to address security
problems related to input validation. Traditional dynamic
tainting approaches mark certain untrusted data (typically
user input) as tainted, track the flow of tainted data at
runtime, and prevent this data from being used in
potentially harmful ways. Our approach makes several
conceptual and practical improvements over traditional
dynamic tainting approaches by taking advantage of the
characteristics of SQLIAs and Web applications. First,
unlike existing dynamic tainting techniques, our approach
is based on the novel concept of positive tainting, that is, the
identification and marking of trusted, instead of untrusted,
data. Second, our approach performs accurate and efficient
taint propagation by precisely tracking trust markings at the
character level. Third, it performs syntax-aware evaluation of
query strings before they are sent to the database and blocks
all queries whose nonliteral parts (that is, SQL keywords
and operators) contain one or more characters without trust
markings. Finally, our approach has minimal deployment
requirements, which makes it both practical and portable.
The following sections discuss these key features of our
approach in detail.

3.1 Positive Tainting

Positive tainting differs from traditional tainting (hereafter,
negative tainting) because it is based on the identification,
marking, and tracking of trusted, rather than untrusted,
data. This conceptual difference has significant implications
for the effectiveness of our approach, in that it helps
address problems caused by incompleteness in the identi-
fication of relevant data to be marked. Incompleteness,
which is one of the major challenges when implementing a
security technique based on dynamic tainting, has very
different consequences in negative and positive tainting. In
the case of negative tainting, incompleteness leads to
trusting data that should not be trusted and, ultimately, to
false negatives. Incompleteness may thus leave the applica-
tion vulnerable to attacks and can be very difficult to detect,
even after attacks actually occur, because they may go
completely unnoticed. With positive tainting, incomplete-
ness may lead to false positives, but it would never result in
an SQLIA escaping detection. Moreover, as explained in the
following, the false positives generated by our approach, if
any, are likely to be detected and easily eliminated early
during prerelease testing. Positive tainting uses a white-list,
rather than a black-list, policy and follows the general
principle of fail-safe defaults, as outlined by Saltzer and
Schroeder [25]: In case of incompleteness, positive tainting
fails in a way that maintains the security of the system.
Fig. 3 shows a graphical depiction of this fundamental
difference between negative and positive tainting.

In the context of preventing SQLIAs, the conceptual
advantages of positive tainting are especially significant.
The way in which Web applications create SQL commands
makes the identification of all untrusted data especially
problematic and,most importantly, the identification ofmost
trusted data relatively straightforward.Web applications are
deployed inmanydifferent configurations and interfacewith

a wide range of external systems. Therefore, there are often
many potential external untrusted sources of input to be
considered for these applications, and enumerating all of
them is inherently difficult and error prone. For example,
developers initially assumed that only direct user input
needed to be marked as tainted. Subsequent exploits
demonstrated that additional input sources such as browser
cookies and uploaded files also needed to be considered.
However, accounting for these additional input sources did
not completely solve the problem either. Attackers soon
realized the possibility of leveraging local server variables
and the database itself as injection sources [1]. In general, it is
difficult to guarantee that all potentially harmful data sources
have been considered and even a single unidentified source
could leave the application vulnerable to attacks.

The situation is different for positive tainting because
identifying trusted data in a Web application is often
straightforward and always less error prone. In fact, in
most cases, strings hard-coded in the application by
developers represent the complete set of trusted data for a
Web application.1 This is because it is common practice for
developers to build SQL commands by combining hard-
coded strings that contain SQL keywords or operators with
user-provided numeric or string literals. For Web applica-
tions developed this way, our approach accurately and
automatically identifies all SQLIAs and generates no false
positives. Our basic approach, as explained in the following
sections, automatically marks as trusted all hard-coded
strings in the code and then ensures that all SQL keywords
and operators are built using trusted data.

In some cases, this basic approach is not enough because
developers can also use external query fragments—partial
SQL commands that come from external input sources—to
build queries. Because these string fragments are not hard-
coded in the application, they would not be part of the
initial set of trusted data identified by our approach and the
approach would generate false positives when the string
fragments are used in a query. To account for these cases,
our technique provides developers with a mechanism for
specifying sources of external data that should be trusted.
The data sources can be of various types such as files,
network connections, and server variables. Our approach

70 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 1, JANUARY/FEBRUARY 2008

1. Without loss of generality, we assume that developers are trustworthy.
An attack encoded in the application by a developer would not be an
SQLIA but a form of backdoor, which is not the problem addressed in this
work.

Fig. 3. Identification of trusted and untrusted data.

uses this information to mark data that comes from these
additional sources as trusted.

In a typical scenario, we expect developers to specify
most of the trusted sources before testing and deployment.
However, some of these sources might be overlooked until
after a false positive is reported, in which case, developers
would add the omitted items to the list of trusted sources.
In this process, the set of trusted data sources monotonically
grows and eventually converges to a complete set that
produces no false positives. It is important to note that false
positives that occur after deployment would be due to the
use of external data sources that have never been used
during in-house testing. In other words, false positives are
likely to occur only for totally untested parts of applications.
Therefore, even when developers fail to completely identify
additional sources of trusted data beforehand, we expect
these sources to be identified during normal testing and the
set of trusted data to quickly converge to the complete set.

It is also worth noting that none of the subjects that we
collected and examined so far required us to specify
additional trusted data sources. All of these subjects used
only hard-coded strings to build query strings.

3.2 Accurate and Efficient Taint Propagation

Taint propagation consists of tracking taint markings
associated with the data while the data is used and
manipulated at runtime. When tainting is used for
security-related applications, it is especially important for
the propagation to be accurate. Inaccurate propagation can
undermine the effectiveness of a technique by associating
incorrect markings to data, which would cause the data to
be mishandled. In our approach, we provide a mechanism
to accurately mark and propagate taint information by
1) tracking taint markings at the “right” level of granularity
and 2) precisely accounting for the effect of functions that
operate on the tainted data.

Character-level tainting. We track taint information at the
character level rather than at the string level. We do this
because, for building SQL queries, strings are constantly
broken into substrings, manipulated, and combined. By
associating taint information to single characters, our
approach can precisely model the effect of these string
operations. Another alternative would be to trace taint data
at the bit level, which would allow us to account for
situations where string data are manipulated as character
values using bitwise operators. However, operating at the
bit level would make the approach considerably more
expensive and complex to implement and deploy. Most
importantly, our experience with Web applications shows
that working at a finer level of granularity than a character
would not yield any benefit in terms of effectiveness.
Strings are typically manipulated using methods provided
by string library classes and we have not encountered any
case of query strings that are manipulated at the bit level.

Accounting for string manipulations. To accurately main-
tain character-level taint information, we must identify all
relevant string operations and account for their effect on the
taint markings (that is, we must enforce complete mediation
of all string operations). Our approach achieves this goal by
taking advantage of the encapsulation offered by object-
oriented languages, in particular by Java, in which all string

manipulations are performed using a small set of classes
and methods. Our approach extends all such classes and
methods by adding functionality to update taint markings
based on the methods’ semantics.

We discuss the language-specific details of our imple-
mentation of the taint markings and their propagation in
Section 4.

3.3 Syntax-Aware Evaluation

Aside from ensuring that taint markings are correctly
created and maintained during execution, our approach
must be able to use the taint markings to distinguish
legitimate from malicious queries. Simply forbidding the
use of untrusted data in SQL commands is not a viable
solution because it would flag any query that contains user
input as an SQLIA, leading to many false positives. To
address this shortcoming, researchers have introduced the
concept of declassification, which permits the use of tainted
input as long as it has been processed by a sanitizing
function. (A sanitizing function is typically a filter that
performs operations such as regular expression matching or
substring replacement.) The idea of declassification is based
on the assumption that sanitizing functions are able to
eliminate or neutralize harmful parts of the input and make
the data safe. However, in practice, there is no guarantee
that the checks performed by a sanitizing function are
adequate. Tainting approaches based on declassification
could therefore generate false negatives if they mark as
trusted supposedly sanitized data that is actually still
harmful. Moreover, these approaches may also generate
false positives in cases where unsanitized but perfectly legal
input is used within a query.

Syntax-aware evaluation does not rely on any (potentially
unsafe) assumptions about the effectiveness of sanitizing
functions used by developers. It also allows for the use of
untrusted input data in a SQLquery as long as the use of such
data does not cause an SQLIA. The key feature of syntax-
aware evaluation is that it considers the context in which
trusted and untrusted data is used to make sure that all parts
of a query other than string or numeric literals (for example,
SQL keywords and operators) consist only of trusted
characters. As long as untrusted data is confined to literals,
we are guaranteed that no SQLIA can be performed.
Conversely, if this property is not satisfied (for example, if a
SQL operator contains characters that are not marked as
trusted),we canassume that the operator has been injected by
an attacker and identify the query as an attack.

Our technique performs syntax-aware evaluation of a
query string immediately before the string is sent to the
database to be executed. To evaluate the query string, the
technique first uses a SQL parser to break the string into a
sequence of tokens that correspond to SQL keywords,
operators, and literals. The technique then iterates through
the tokens and checks whether tokens (that is, substrings)
other than literals contain only trusted data. If all such
tokens pass this check, the query is considered safe and is
allowed to execute. If an attack is detected, a developer-
specified action can be invoked. As discussed in Section 3.1,
this approach can also handle cases where developers use
external query fragments to build SQL commands. In these
cases, developers would specify which external data

HALFOND ET AL.: WASP: PROTECTING WEB APPLICATIONS USING POSITIVE TAINTING AND SYNTAX-AWARE EVALUATION 71

sources must be trusted, and our technique would mark
and treat data that comes from these sources accordingly.

This default approach, which 1) considers only two kinds
of data (trusted and untrusted) and 2) allows only trusted
data to form SQL keywords and operators, is adequate for
most Web applications. For example, it can handle applica-
tions where parts of a query are stored in external files or
database records that were created by the developers.
Nevertheless, to provide greater flexibility and support a
wide range of development practices, our technique also
allows developers to associate custom trust markings to
different data sources and provide custom trust policies that
specify the legal ways in which data with certain trust
markings can be used. Trust policies are functions that take as
input a sequence of SQL tokens and perform some type of
check based on the trustmarkings associatedwith the tokens.

BUGZILLA (http://www.bugzilla.org) is an example of a
Web application for which developers might wish to specify
a custom trust marking and policy. In BUGZILLA, parts of
queries used within the application are retrieved from a
database when needed. Of particular concern to developers
in this scenario is the potential for second-order injection
attacks [1] (that is, attacks that inject into a database
malicious strings that result in an SQLIA only when they
are later retrieved and used to build SQL queries). In the
case of BUGZILLA, the only subqueries that should originate
in the database are specific predicates that form a query’s
WHERE clause. Using our technique, developers could first
create a custom trust marking and associate it with the
database’s data source. Then, they could define a custom
trust policy that specifies that data with such a custom trust
marking is legal only if it matches a specific pattern, such as
ðidjseverityÞ ¼0 nwþ0 ððANDjORÞ ðidjseverityÞ ¼0 nwþ0Þ ? .

When applied to subqueries that originate in the
database, this policy would allow them to be used only to
build conditional clauses that involve the id or severity
fields and whose parts are connected using the AND or OR

keywords.

3.4 Minimal Deployment Requirements

Most existing approaches based on dynamic tainting
require the use of customized runtime systems and/or
impose a considerable overhead on the protected applica-
tions (see Section 6). In contrast, our approach has minimal
deployment requirements and is efficient, which makes it
practical for use in real settings. Our technique does not
necessitate a customized runtime system. It requires only
minor localized instrumentation of the application to
1) enable the use of our string library and 2) insert the calls
that perform syntax-aware evaluation of a query before it is
sent to the database. The protected application is then
deployed as a normal Web application except that the
deployment must include our string library. Both instru-
mentation and deployment are fully automated. We discuss
the deployment requirements and the overhead of the
approach in greater detail in Sections 4.5 and 5.3.

4 OUR IMPLEMENTATION: WASP

To evaluate our approach, we developed a prototype tool
called WASP (Web Application SQL-injection Preventer),

which is written in Java and implements our technique for
Java-based Web applications. We target Java because it is
one of the most commonly used languages for Web
applications. (We discuss the applicability of the approach
in other contexts in Section 4.1.)

Fig. 4 shows the high-level architecture of WASP. As this
figure shows, WASP consists of a library (MetaStrings) and
two core modules (STRING INITIALIZER AND INSTRUMEN-

TER and STRING CHECKER). The MetaStrings library pro-
vides functionality for assigning trustmarkings to strings and
precisely propagating the markings at runtime. Module
STRING INITIALIZER AND INSTRUMENTER instrumentsWeb
applications to enable the use of the MetaStrings library and
adds calls to the STRING CHECKER module. Module STRING

CHECKERperforms syntax-aware evaluation of query strings
right before the strings are sent to the database.

In the next sections, we discuss WASP’s modules in more
detail. We use the sample code introduced in Section 2 to
provide examples of various implementation aspects.

4.1 The MetaStrings Library

MetaStrings is our library of classes that mimic and extend
the behavior of Java’s standard string classes (that is,
Character, String, StringBuilder, and String

Buffer).2 For each string class C, MetaStrings provides a
“meta” version of the class MetaC, which has the same
functionality as C, but allows for associating metadata with
each character in a string and tracking the metadata as the
string is manipulated at runtime.

The MetaStrings library takes advantage of the object-
oriented features of the Java language to provide complete
mediation of string operations that could affect string
values and their associated trust markings. Encapsulation
and information hiding guarantee that the internal repre-
sentation of a string class is accessed only through the
class’s interface. Polymorphism and dynamic binding let us
add functionality to a string class by 1) creating a subclass
that overrides relevant methods of the original class and
2) replacing instantiations of the original class with
instantiations of the subclass. In our implementation, we
leverage the object-oriented features of Java, and the

72 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 1, JANUARY/FEBRUARY 2008

2. For simplicity, hereafter we use the term string to refer to all string-
related classes and objects in Java.

Fig. 4. High-level overview of the approach and tool.

approach should be easily applicable to applications built
using other object-oriented languages such as .NET.
Although the use of object-oriented features allows our
current implementation to be elegant and minimally intru-
sive, we expect the approach to be portable, with suitable
engineering, to non-object-oriented languages. For example,
in C, the approach could be implemented by identifying and
instrumenting calls to functions and operations that manip-
ulate strings or characters. In general, our approach shouldbe
portable to all contexts where 1) string-creation and string-
manipulation operations can be identified and 2) a character-
level taint initialization and propagation mechanism can be
implemented (either through instrumentation or by modify-
ing the runtime system).

To illustrate our MetaStrings library with an example,
Fig. 5 shows an intuitive view of the MetaStrings class
that corresponds to Java’s String class. As this figure
shows, MetaString extends class String, has the same
internal representation, and provides the same methods.
MetaString also contains additional data structures for
storing metadata and associating the metadata with char-
acters in the string. Each method of class MetaString

overrides the corresponding method in String, providing
the same functionality as the original method but also
updating the metadata based on the method’s semantics.
For example, a call to method substring(2, 4) on an
object str of class MetaString would return a new
MetaString that contains the second and third characters
of str and the corresponding metadata. In addition to the
overridden methods, MetaStrings classes also provide
methods for setting and querying the metadata associated
with a string’s characters.

The use of MetaStrings has the following benefits:

1. It allows for associating trust markings at the
granularity level of single characters.

2. It accurately maintains and propagates trust
markings.

3. It is completely defined at the application level and
thus does not require a customized runtime system.

4. Its usage requires only minimal and automatically
performed changes in the application’s bytecode.

5. It imposes a low execution overhead on Web
applications, as shown in Section 5.3.

The main limitations of the current implementation of
the MetaStrings library are related to the handling of
primitive types, native methods, and reflection. MetaStrings
cannot currently assign trust markings to primitive types,
so it cannot mark char values. Because we do not
instrument native methods, if a string class is passed as
an argument to a native method, the trust markings
associated with the string might not be correct after the
call. In the case of hard-coded strings created through
reflection (by invoking a string constructor by name), our
instrumenter for MetaStrings would not recognize the
constructors and would not change these instantiations to
instantiations of the corresponding metaclasses. However,
the MetaStrings library can handle most other uses of
reflection, such as invocation of string methods by name.

In practice, these limitations are of limited relevance
because they represent programming practices that are not
normally used to build SQL commands (for example,
representing strings by using primitive char values).
Moreover, during the instrumentation of a Web application,
we identify and report these potentially problematic
situations to the developers.

4.2 Initialization of Trusted Strings

To implement positive tainting, WASP must be able to
identify and mark trusted strings. There are three categories
of strings that WASP must consider: hard-coded strings,
strings implicitly created by Java, and strings originating in
external sources. In the following sections, we explain how
strings from each category are identified and marked.

4.2.1 Hard-Coded Strings

The identification of hard-coded strings in an application’s
bytecode is fairly straightforward. In Java, hard-coded
strings are represented using String objects that are
automatically created by the Java Virtual Machine (JVM)
when string literals are loaded onto the stack. (The JVM is a
stack-based interpreter.) Therefore, to identify hard-coded
strings, WASP simply scans the bytecode and identifies all
load instructions whose operand is a string constant. WASP

then instruments the code by adding, after each of these
load instructions, code that creates an instance of a
MetaString class by using the hard-coded string as an
initialization parameter. Finally, because hard-coded strings
are completely trusted, WASP adds to the code a call to the
method of the newly created MetaString object that
marks all characters as trusted. At runtime, polymorphism
and dynamic binding allow this instance of the MetaString
object to be used in any place where the original String
object would have been used.

Fig. 6 shows an example of this bytecode transformation.
The Java code at the top of the figure corresponds to line 4
of our servlet example (see Fig. 2), which creates one of the
hard-coded strings in the servlet. Underneath, we show the
original bytecode (left column) and the modified bytecode
(right column). The modified bytecode contains additional
instructions that 1) load a new MetaString object on the

HALFOND ET AL.: WASP: PROTECTING WEB APPLICATIONS USING POSITIVE TAINTING AND SYNTAX-AWARE EVALUATION 73

Fig. 5. An intuitive view of a MetaStrings library class.

stack, 2) call the MetaString constructor by using the
previous string as a parameter, and 3) call the method
markAll, which assigns the given trust marking to all
characters in the string.

4.2.2 Implicitly Created Strings

In Java programs, the creation of some string objects is
implicitly added to the bytecode by the compiler. For
example, Java compilers typically translate the string
concatenation operator (“+”) into a sequence of calls to
the append method of a newly created StringBuilder

object. WASP must replace these string objects with their
corresponding MetaStrings objects so that they can main-
tain and propagate the trust markings of the strings on
which they operate. To do this, WASP scans the bytecode for
instructions that create new instances of the string classes
used to perform string manipulation and modifies each
such instruction so that it creates an instance of the
corresponding MetaStrings class instead. In this situation,
WASP does not associate any trust markings with the newly
created MetaStrings objects. These objects are not trusted
per se and they become marked only if the actual values
assigned to them during execution are marked.

Fig. 7 shows the instrumentation added by WASP for
implicitly created strings. The Java source code corresponds
to line 5 in our example servlet. The StringBuilder

object at offset 28 in the original bytecode is added by the
Java compiler when translating the string concatenation
operator (“+”). WASP replaces the instantiation at offset 28
with the instantiation of a MetaStringBuilder class and
then changes the subsequent invocation of the constructor

at offset 37 so that it matches the newly instantiated class.
Because MetaStringBuilder extends StringBuilder,
the subsequent calls to the append method invoke the
correct method in the MetaStringBuilder class.

4.2.3 Strings from External Sources

To use query fragments that come from external (trusted)
sources, developers must list these sources in a configura-
tion file that WASP processes before instrumenting the
application. The specified sources can be of different types
such as files (specified by name), network connections
(specified by host and port), and databases (specified by
database name, table, field, or combination thereof). For
each source, developers can either specify a custom trust
marking or use the default trust marking (the same used for
hard-coded strings). WASP uses the information in the
configuration file to instrument the external trusted sources
according to their type.

To illustrate this process, we describe the instrumenta-
tion that WASP performs for trusted strings that come from
a file. In the configuration file, the developer specifies the
name of the file (for example, foo.txt) as a trusted source
of strings. Based on this information, WASP scans the
bytecode for all instantiations of new file objects (that is,
File, FileInputStream, and FileReader) and adds
instrumentation that checks the name of the file being
accessed. At runtime, if the name of the file matches the
name(s) specified by the developer (foo.txt in this case),
the file object is added to an internal list of currently trusted
file objects. WASP also instruments all calls to methods of
file-stream objects that return strings such as the Buffered

74 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 1, JANUARY/FEBRUARY 2008

Fig. 6. Instrumentation for hard-coded strings.

Fig. 7. Instrumentation for implicitly created strings.

Reader’s readLine method. At runtime, the added code
checks to see whether the object on which the method is
called is in the list of currently trusted file objects. If so, it
marks the generated strings with the trust marking
specified by the developer for the corresponding source.

We use a similar strategy to mark network connections.
In this case, instead of matching filenames at runtime, we
match hostnames and ports. The interaction with databases
is more complicated and requires WASP to not only match
the initiating connection but also trace tables and fields
through instantiations of the Statement and ResultSet

objects created when querying the database.
Instrumentation optimization. Our current instrumentation

approach is conservative and may generate unnecessary
instrumentation. We could reduce the amount of instru-
mentation inserted in the code by leveraging static informa-
tion about the program. For example, data-flow analysis
could identify strings that are not involved with the
construction of query strings and therefore do not need to
be instrumented. A static analysis could also identify cases
where the filename associated with a file object is never one
of the developer-specified trusted filenames and avoid
instrumenting that object and subsequent operations on it.
Analogous optimizations could be implemented for other
external sources. We did not incorporate any of these
optimizations in the current tool because the overhead
imposed by our current (conservative) implementation was
insignificant in most of the cases.

4.3 Handling False Positives

As discussed in Section 3, sources of trusted data that are
not specified by the developers beforehand would cause
WASP to generate false positives. To assist the developers in
identifying data sources that they initially overlooked,
WASP provides a special mode of operation, called the
“learning mode,” that would typically be used during in-
house testing. When in the learning mode, WASP adds an
additional unique taint marking to each string in the
application. Each marking consists of an ID that maps to
the fully qualified class name, method signature, and
bytecode offset of the instruction that instantiated the
corresponding string.

If WASP detects an SQLIA while in the learning mode, it
uses the markings associated with the untrusted SQL
keywords and operators in the query to report the
instantiation point of the corresponding string(s). If the
SQLIA is a false positive, knowing the position in the code
of the offending string(s) helps developers in correcting
omissions in the set of trusted inputs.

4.4 Syntax-Aware Evaluation

The STRING CHECKER module performs syntax-aware
evaluation of query strings and is invoked right before the
strings are sent to the database. To add calls to the STRING

CHECKER module, WASP first identifies all of the database
interaction points, that is, points in the application where
query strings are issued to an underlying database. In Java,
all calls to the database are performed via specific methods
and classes in the JDBC library (http://java.sun.com/
products/jdbc/). Therefore, these points can be conserva-
tively identified through a simple matching of method
signatures. After identifying the database interaction points,
WASP inserts a call to the syntax-aware evaluation function

MetaChecker immediately before each interaction point.
MetaChecker takes as a parameter the MetaStrings object
that contains the query about to be executed.

When invoked, MetaChecker processes the SQL string
about to be sent to the database, as discussed in Section 3.3.
First, it tokenizes the string by using a SQL parser. Ideally,
WASP would use a database parser that recognizes the exact
same dialect of SQL that is used by the database. This
would guarantee that WASP interprets the query in the
same way as the database and would prevent attacks based
on alternate encodings [1] (see Section 2.1.6). Our current
implementation includes parsers for SQL-92 (ANSI) and
PostgreSQL and allows for adding other parsers in a
modular fashion. After tokenizing the query string, Meta
Checker enforces the default trust policy by iterating
through the tokens that correspond to keywords and
operators and examining their trust markings. If any of
these tokens contains characters that are not marked as
trusted, an attack is identified. When MetaChecker

identifies an attack, it can execute any developer-specified
action. In our evaluation, we configured WASP so that it
blocked the malicious query from executing and logged the
attempted attack.

If developers specify additional trust policies, Meta

Checker invokes the corresponding checking function(s) to
ensure that the query complies with them. In our current
implementation, trust policies are developer-defined func-
tions that take the list of SQL tokens as input, check them
based on their trust markings, and return a true or false
value, depending on the outcome of the check. Trust
policies can implement functionality that ranges from
simple pattern matching to sophisticated checks that use
externally supplied contextual information. If all custom
trust policies return a positive outcome, WASP allows the
query to be executed on the database. Otherwise, it
identifies the query as an SQLIA.

We illustrate how the default policy for syntax-aware
evaluation works by using our example servlet and the
legitimate and malicious query examples from Section 2. For
the servlet, there are no external sources of strings or
additional trust policies, soWASP onlymarks the hard-coded
strings as trusted and only the default trust policy is applied.
Fig. 8 shows the sequence of tokens in the legitimate query as
theywould be parsed by MetaChecker. In this figure, SQL
keywords and operators are surrounded by boxes. The
figure also shows the trust markings associated with the
strings, where an underlined character is a character with
full trust markings. Because the default trust policy is that
all keyword and operator tokens must have originated in
trusted strings, MetaChecker simply checks whether all of
these tokens are comprised of trusted characters. The query
in Fig. 8 conforms to the trust policy and is thus allowed to
execute on the database.

Consider the malicious query, where the attacker
submits “admin’ – –” as the login and “0” as the pin.
Fig. 9 shows the sequence of tokens for the resulting query,
together with the trust markings. Recall that “– –” is the
SQL comment operator, so everything after this is identified
by the parser as a literal. In this case, the MetaChecker

would find that the last two tokens, ’ and �� ,
contain untrusted characters. It would therefore identify the
query as an SQLIA.

HALFOND ET AL.: WASP: PROTECTING WEB APPLICATIONS USING POSITIVE TAINTING AND SYNTAX-AWARE EVALUATION 75

4.5 Deployment Requirements

Using WASP to protect a Web application requires the
developer to run an instrumented version of the applica-
tion. There are two general implementation strategies that
we can follow for the instrumentation: offline and online.
Offline instrumentation statically instruments the applica-
tion and deploys the instrumented version of the applica-
tion. Online instrumentation deploys an unmodified
application and instruments the code at load time (that is,
when classes are loaded by the JVM). This latter option
allows for a great deal of flexibility and can be implemented
by leveraging the new instrumentation package introduced
in Java 5 (http://java.sun.com/j2se/1.5.0/). Unfortunately,
the current implementation of the Java 5 instrumentation
package is still incomplete and does not yet provide some
key features needed by WASP. In particular, it does not
allow for clearing the final flag in the string library
classes, which prevents the MetaStrings library from
extending them. Because of this limitation, for now, we
have chosen to rely on offline instrumentation and insert
into the Java library a version of the string classes in which
the final flag has been cleared.

Overall, the deployment requirements for our approach
are fairly lightweight. The modification of the Java library is
performed only once, in a fully automated way, and takes
just a few seconds. (Moreover, this modification is a
temporary workaround for the current limitations of Java’s
instrumentation package.) No modification of the JVM is
required. The instrumentation of a Web application is also
automatically performed. Given the original application,
WASP creates a deployment archive that contains the
instrumented application, the MetaStrings library, and the
string checker module. At this point, the archive can be
deployed like any other Web application. WASP can
therefore be easily and transparently incorporated into an
existing build process.

5 EMPIRICAL EVALUATION

In our evaluation, we assessed the effectiveness and
efficiency of our approach. To do this, we used WASP to
protect several real vulnerable Web applications while
subjecting them to a large number of attacks and legitimate
accesses and investigated three research questions:

. RQ1. What percentage of attacks can WASP detect
and prevent that would otherwise go undetected
and reach the database?

. RQ2. What percentage of legitimate accesses are
incorrectly identified by WASP as attacks?

. RQ3. What is the runtime overhead imposed by
WASP on the Web applications that it protects?

The first two questions deal with the effectiveness of the
technique: RQ1 investigates the false-negative rate of the

technique and RQ2 investigates the false-positive rate. RQ3
deals with the efficiency of the proposed technique. The next
sections discuss our experiment setup, protocol, and results.

5.1 Experiment Setup

The framework that we use for our experiments consists of
a set of vulnerable Web applications, a large set of test
inputs that contain both legitimate accesses and SQLIAs,
and monitoring and logging tools. We developed the initial
framework in our previous work [11] and it has since been
used both by us and by other researchers [10], [27]. In this
study, we have expanded the framework by 1) including
additional open source Web applications with known
vulnerabilities, 2) generating legitimate and malicious
inputs for these new applications, and 3) expanding the
set of inputs for the existing applications. In the next two
sections, we discuss the Web applications and the set of
inputs used in our experiments in more detail.

5.1.1 Software Subjects

Our set of software subjects consists of 10 Web applica-
tions that are known to be vulnerable to SQLIAs. Five of
the applications are commercial applications that we
obtained from GotoCode (http://www.gotocode.com/):
Employee Directory, Bookstore, Events, Classifieds, and
Portal. Two applications, OfficeTalk and Checkers, are
student-developed applications that have been used in
related work [8]. Two other applications, Daffodil and
Filelister, are open source applications that have been
identified in the Open Source Vulnerability Database
(http://osvdb.org/, entries 22879 and 21416) as containing
one or more SQL injection vulnerabilities. The last subject,
WebGoat, is a purposely insecure Web application that was
developed by the Open Web Application Security Project
(http://www.owasp.org/) to demonstrate common Web
application vulnerabilities. Among these 10 subjects, the
first seven applications contain a wide range of vulner-
abilities, whereas the last three contain specific and known
SQLIA vulnerabilities.

Table 1 provides summary information about each of the
subjects in our evaluation. It shows, for each subject, its size
(LOC), number of database interaction points (DBIs),
number of vulnerable servlets (Vuln Servlets), and total
number of servlets (Total Servlets). We considered all of the
servlets in the first seven subjects that accepted user input
to be potentially vulnerable because we had no initial
information about their vulnerabilities. For the remaining
three applications, we considered as vulnerable only those
servlets with specific and known vulnerabilities.

5.1.2 Malicious and Legitimate Inputs

For each of theWeb applications considered, we created two
sets of inputs: LEGIT, which consists of legitimate inputs for
the application, and ATTACK, which consists of SQLIAs.

76 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 1, JANUARY/FEBRUARY 2008

Fig. 8. Example query 1 after parsing by the runtime monitor.

Fig. 9. Example query 2 after parsing by the runtime monitor.

To create the ATTACK sets, we employed a Master’s level
student with experience in developing commercial penetra-
tion testing tools. The student first assembled a list of actual
SQLIAs by surveying different sources: exploits developed
by professional penetration-testing teams to take advantage
of SQL-injection vulnerabilities, online vulnerability reports
such as US-CERT (http://www.us-cert.gov/) and CERT/
CC Advisories (http://www.cert.org/advisories/), and
information extracted from several security-related mailing
lists. The resulting set of attack strings contained 24 unique
attacks. All types of attacks reported in the literature [12]
were represented in this set, except for multiphase attacks
such as second-order injections. Since multiphase attacks
require human intervention and interpretation, we omitted
them to keep our testbed fully automated. These attack
strings were then used to build inputs for all of the
vulnerable servlets in each application. The resulting
ATTACK sets contained a broad range of potential SQLIAs.

The LEGIT sets were created in a similar fashion.
However, instead of using attack strings to generate sets
of inputs, the student used legitimate values. To create
“interesting” legitimate values, we asked the student to
generate input strings that, although legal, would stress and
possibly break naive SQLIA detection techniques (for
example, techniques based on simple identification of
keywords or special characters in the input). For instance,
the legitimate values contained SQL keywords (for exam-
ple, “SELECT” and “DROP”), query fragments (for example,
“or 1 ¼ 1”), and properly escaped SQL operators (for
example, the single quote ’’ and the percent sign n%).
These values were used to build inputs for the vulnerable
servlets that looked “suspicious” without actually resulting
in an SQLIA.

5.2 Experimental Protocol

RQ1 addresses the issue of false negatives. To investigate
this question, we 1) ran the inputs in the ATTACK sets
against our subject applications and 2) tracked the result of
each attack to check whether it was detected and prevented
by WASP. The results of this evaluation are shown in
Table 2. The second column reports the total number of
attacks in the application’s ATTACK set. The next two
columns show the number of attacks that were successful
against the original unprotected Web application and the
number of attacks that were successful on the application

protected using WASP. The reason that some attacks were
not successful on the unprotected applications is twofold.
First, not all of the 24 attack strings represented viable
attacks against all vulnerable servlets. Second, many of the
applications performed some type of input validation that
could catch and prevent a subset of the attempted attacks.

RQ2 deals with false positives. To address this question,
we ran all of the test inputs in each application’s LEGIT set
against the application. As before, we tracked the result of
each of these legitimate accesses to see if WASP reported it
as an attack, which would be a false positive. The results for
this evaluation are summarized in Table 3. The table shows
the number of legitimate accesses that WASP allows to
execute (# Legitimate Accesses) and the number of accesses
blocked by WASP (False Positives).

To address RQ3, we measured the overhead incurred by
applications that were protected using WASP. To do this, we
measured and compared the times needed to run the LEGIT
set against a protected version and an unprotected version
of each application. We used only the LEGIT set for this part
of the study because our current implementation of WASP

terminates the execution when it detects an attack, which
would have made the total execution time for the WASP-
protected version faster than the time for the normal
version. To reduce problems with the precision of the
timing measurements, we measured the total time that it

HALFOND ET AL.: WASP: PROTECTING WEB APPLICATIONS USING POSITIVE TAINTING AND SYNTAX-AWARE EVALUATION 77

TABLE 1
Subject Programs for the Empirical Study

TABLE 2
Results of Testing for False Negatives (RQ1)

TABLE 3
Results of Testing for False Positives (RQ2)

took to run the entire LEGIT set against an application,
instead of the single times for each input in the set, and
divided this time by the number of accesses to get an
average value. In addition, to account for possible external
factors beyond our control, such as network traffic or other
OS activities, we repeated these measurements 100 times for
each application and averaged the results. All measure-
ments were performed on two machines that act as client
and server. The client was a 2.4 GHz Pentium 4 with
1 Gbyte memory, running GNU/Linux 2.4. The server was
a 3.0 GHz dual-processor Pentium D with 2 Gbyte memory,
running GNU/Linux 2.6.

In addition to measuring the overhead for these macro
benchmarks, we also measured the overhead imposed by
individual MetaStrings methods on a set of micro bench-
marks. To do this, we first identified the methods most
commonly used in the subject Web applications, seven
methods overall. We then measured, for each method m,
the runtime of 1) a driver that performed 10,000 calls to the
original m and 2) a driver that performed the same number

of calls to the MetaStrings version of m. As before, we
performed the measurements 100 times and averaged the
results. This second set of measurements was also per-
formed on a 3.0 GHz dual-processor Pentium D with
2 Gbyte memory, running GNU/Linux 2.6.

Table 4 shows the results of the timing measurements for
themacro benchmarks. For each subject, the table reports the
number of inputs in the LEGIT set (# Inputs), the average time
per access for the uninstrumentedWeb application (AvgTime
Uninst), the average time overhead per access for the
instrumented version (Avg Overhead), and the average time
overhead as a percentage (% Overhead). In the table, all
absolute times are expressed inmilliseconds. Fig. 10 provides
another view of the timing measurements by using a bar
chart. In this figure, the total servlet access times for the
instrumented and uninstrumented versions are shown side
by side. As the figure shows, the difference between the two
bars for a subject, which represents the WASP overhead, is
small in both relative and absolute terms.

Table 5 reports the results of the timing measurements
for the micro benchmarks. For each of the seven methods
considered, the table shows the average runtime, in
milliseconds, for 10,000 executions of the original method
and of its MetaStrings version. Note that the measured
overhead is due to either the creation and initialization of a
new Set object for each character (for the default con-
structors) or the copying of the trust markings from one
object to another (for the parameterized constructors and
for the methods append and concat). Although the
measured overhead is considerable in relative terms, it is
mostly negligible in absolute terms. In the worst case, for
method StringBuilder.Append(StringBuilder),
the MetaStrings version of the method takes 71 ms more
than its original version for 10,000 executions.

5.3 Discussion of the Experimental Results

The results of our evaluation show that, overall, WASP is
an effective technique for preventing SQLIAs. In our

78 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 1, JANUARY/FEBRUARY 2008

TABLE 4
Overhead Measurements for the Macro Benchmarks (RQ3)

Fig. 10. Runtime overhead imposed by WASP’s instrumentation on the subject Web applications.

evaluation, WASP was able to correctly identify all

SQLIAs while generating no false positives. In total,

WASP stopped 12,826 viable SQLIAs without preventing

any of the 13,166 legitimate accesses from executing.
The overhead imposed by WASP was also relatively low.

For the 10 applications, the average overhead was about

8 ms (5.5 percent). For most Web applications, this cost is

low enough that it would be dominated by the cost of the

network and database accesses. Furthermore, we believe

that, by using some of the optimizations discussed in

Section 4.2.3, it would be possible to lower this number

even further, if deemed necessary, after performing more

experimentation. Portal, the application that incurred the

highest overhead, is an example of an application that

would benefit enormously from these optimizations. Portal

generates a large number of string-based lookup tables.

Although these strings are not used to build queries, WASP

associates trust markings with them and propagates these

markings at runtime. In this specific case, a simple

dependency analysis would be able to determine that these

markings are unnecessary and avoid the overhead asso-

ciated with these operations.
Like all empirical studies, our evaluation has limitations

thatmay affect the external and internal validity of its results.

Theprimary threat to the external validity of the results is that

the attacks and applications used in our studies may not be

representative of real-world applications and attacks. To

mitigate this issue, we have included in our set of subjects

Web applications that come from a number of different

sources and were developed using different approaches (for

example, the fiveGotoCodeapplications aredevelopedusing

an approach that is based on automated code generation). In

addition, our set of attackswas independentlydevelopedbya

Master’s level studentwho had considerable experiencewith

SQLIAs andpenetration testing butwas not familiarwith our

technique. Finally, the attack strings used by the student as a

basis for the generation of the attacks were based on real-

world SQLIAs.
For this study, threats to internal validity mainly concern

errors in our implementation or in our measurement tools

that could affect outcomes. To control these threats, we

validated the implementations and tools on small-scale

examples and performed a considerable amount of spot

checking for some of the individual results.

6 RELATED WORK

The use of dynamic tainting to prevent SQLIAs has been
investigated by several researchers. The two approaches
most similar to ours are those by Nguyen-Tuong et al. [23]
and Pietraszek and Berghe [24]. Similarly, we track taint
information at the character level and use a syntax-aware
evaluation to examine tainted input. However, our ap-
proach differs from theirs in several important aspects.
First, our approach is based on the novel concept of positive
tainting, which is an inherently safer way of identifying
trusted data (see Section 3.1). Second, we improve on the
idea of syntax-aware evaluation by 1) using a database
parser to interpret the query string before it is executed,
thereby ensuring that our approach can handle attacks
based on alternate encodings, and 2) providing a flexible
mechanism that allows different trust policies to be
associated with different input sources. Finally, a practical
advantage of our approach is that it has more lightweight
deployment requirements. Their approaches require the use
of a customized PHP runtime interpreter, which adversely
affects the portability of the approaches.

Other dynamic tainting approaches more loosely related
to our approach are those byHaldar et al. [9] andMartin et al.
[20]. Although they also propose dynamic tainting ap-
proaches for Java-based applications, their techniques sig-
nificantly differ from ours. First, they track taint information
at the level of granularity of strings, which introduces
imprecision in modeling string operations. Second, they use
declassification rules, instead of syntax-aware evaluation, to
assesswhether a query string contains an attack.Declassifica-
tion rules assume that sanitizing functions are always
effective, which is an unsafe assumption and may leave the
application vulnerable to attacks. In many cases, attack
strings can pass through sanitizing functions and may still
be harmful. Another dynamic tainting approach, proposed
byNewsome and Song [22], focuses on tainting at a level that
is too low to be used for detecting SQLIAs andhas a very high
execution overhead. Xu et al. [31] propose a generalized
tainting mechanism that can address a wide range of input-
validation-related attacks, targets C programs, andworks by
instrumenting the code at the source level. Their approach
can be considered a framework for performing dynamic taint
analysis on C programs. As such, it could be leveraged to
implement a version of our approach for C-based Web
applications.

Researchers also proposed dynamic techniques against
SQLIAs that do not rely on tainting. These techniques
include Intrusion Detection Systems (IDSs) and automated
penetration testing tools. Scott and Sharp propose Security
Gateway [26], which uses developer-provided rules to filter
Web traffic, identify attacks, and apply preventive trans-
formations to potentially malicious inputs. The success of
this approach depends on the ability of developers to write
accurate and meaningful filtering rules. Similarly, Valeur
et al. [28] developed an IDS that uses machine learning to
distinguish legitimate and malicious queries. Their ap-
proach, like most learning-based techniques, is limited by
the quality of the IDS training set. Machine learning was
also used in WAVES [14], an automated penetration testing
tool that probes Web sites for vulnerability to SQLIAs. Like
all testing tools, WAVES cannot provide any guarantees of
completeness. SQLrand [2] appends a random token to SQL
keywords and operators in the application code. A proxy

HALFOND ET AL.: WASP: PROTECTING WEB APPLICATIONS USING POSITIVE TAINTING AND SYNTAX-AWARE EVALUATION 79

TABLE 5
Overhead Measurements for the Micro Benchmarks (RQ3)

server then checks to make sure that all keywords and
operators contain this token before sending the query to the
database. Because the SQL keywords and operators injected
by an attacker would not contain this token, they would be
easily recognized as attacks. The drawbacks of this
approach are that the secret token could be guessed, thus
making the approach ineffective, and that the approach
requires the deployment of a special proxy server.

Model-based approaches against SQLIAs include
AMNESIA [11], SQL-Check [27], and SQLGuard [3].
AMNESIA, previously developed by two of the authors,
combines static analysis and runtime monitoring to detect
SQLIAs. The approach uses static analysis to build models
of the different types of queries that an application can
generate and dynamic analysis to intercept and check the
query strings generated at runtime against the model.
Queries that do not match the model are identified as
SQLIAs. A problem with this approach is that it is
dependent on the precision and efficiency of its underlying
static analysis, which may not scale to large applications.
Our new technique takes a purely dynamic approach to
preventing SQLIAs, thereby eliminating scalability and
precision problems. SQLCheck [27] identifies SQLIAs by
using an augmented grammar and distinguishing un-
trusted inputs from the rest of the strings by means of a
marking mechanism. The main weakness of this approach
is that it requires the manual intervention of the developer
to identify and annotate untrusted sources of input, which
introduces incompleteness problems and may lead to false
negatives. Our use of positive tainting eliminates this
problem while providing similar guarantees in terms of
effectiveness. SQLGuard [3] is an approach similar to
SQLCheck. The main difference is that SQLGuard builds
its models on the fly by requiring developers to call a
special function and to pass to the function the query string
before user input is added.

Other approaches against SQLIAs rely purely on static
analysis [15], [16], [17], [18], [30]. These approaches scan the
application and leverage information flow analysis or
heuristics to detect code that could be vulnerable to SQLIAs.
Because of the inherently imprecise nature of the static
analysis that they use, these techniques can generate false
positives. Moreover, since they rely on declassification rules
to transform untrusted input into safe input, they can also
generate false negatives. Wassermann and Su propose a
technique [29] that combines static analysis and automated
reasoning to detect whether an application can generate
queries that contain tautologies. This technique is limited, by
definition, in the types of SQLIAs that it can detect.

Finally, researchers have investigated ways to statically
eliminate vulnerabilities from the code of a Web applica-
tion. Defensive coding best practices [13] have been
proposed as a possible approach, but they have limited
effectiveness because they rely almost exclusively on the
ability and training of developers. Moreover, there are
many well-known ways to evade some defensive-coding
practices, including “pseudoremedies” such as stored
procedures and prepared statements (for example, [1],
[13], [19]). Researchers have also developed special libraries
that can be used to safely create SQL queries [5], [21]. These
approaches, although highly effective, require developers to
learn new APIs, can be very expensive to apply on legacy
code, and sometimes limit the expressiveness of SQL.

Finally, JDBC-Checker [7], [8] is a static analysis tool that
detects potential type mismatches in dynamically generated
queries. Although it was not intended to prevent SQLIAs,
JDBC-Checker can be effective against SQLIAs that leverage
vulnerabilities due to type mismatches, but will not be able
to prevent other kinds of SQLIAs.

7 CONCLUSION

This paper presented a novel highly automated approach
for protecting Web applications from SQLIAs. Our ap-
proach consists of 1) identifying trusted data sources and
marking data coming from these sources as trusted, 2) using
dynamic tainting to track trusted data at runtime, and
3) allowing only trusted data to form the semantically
relevant parts of queries such as SQL keywords and
operators. Unlike previous approaches based on dynamic
tainting, our technique is based on positive tainting, which
explicitly identifies trusted (rather than untrusted) data in a
program. This way, we eliminate the problem of false
negatives that may result from the incomplete identification
of all untrusted data sources. False positives, although
possible in some cases, can typically be easily eliminated
during testing. Our approach also provides practical
advantages over the many existing techniques whose
application requires customized and complex runtime
environments: It is defined at the application level, requires
no modification of the runtime system, and imposes a low
execution overhead.

We have evaluated our approach by developing a
prototype tool, WASP, and using the tool to protect
10 applications when subjected to a large and varied set
of attacks and legitimate accesses. WASP successfully and
efficiently stopped over 12,000 attacks without generating
any false positives. Both our tool and the experimental
infrastructure are available to other researchers.

We have two immediate goals for future work. First, we
will extendour experimental results byusingWASP toprotect
actually deployedWeb applications. Our first target will be a
set of Web applications that run at Georgia Tech. This will
allow us to assess the effectiveness of WASP in real settings
and also to collect a valuable set of real legal accesses and,
possibly, attacks. Second,wewill implement the approach for
binary applications. We have already started developing the
infrastructure to perform tainting at the binary level and
developed a proof-of-concept prototype [4].

ACKNOWLEDGMENTS

This work was supported by US National Science Founda-
tion Awards CCF-0438871 and CCF-0541080 to Georgia
Tech and by the US Department of Homeland Security and
US Air Force under Contract FA8750-05-2-0214. Any
opinions expressed in this paper are those of the authors
and do not necessarily reflect the views of the US Air Force.
The anonymous reviewers provided useful feedback that
helped improve the quality of this paper.

REFERENCES

[1] C. Anley, “Advanced SQL Injection In SQL Server Applications,”
white paper, Next Generation Security Software, 2002.

80 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 1, JANUARY/FEBRUARY 2008

[2] S.W. Boyd and A.D. Keromytis, “SQLrand: Preventing SQL
Injection Attacks,” Proc. Second Int’l Conf. Applied Cryptography
and Network Security, pp. 292-302, June 2004.

[3] G.T. Buehrer, B.W. Weide, and P.A.G. Sivilotti, “Using Parse Tree
Validation to Prevent SQL Injection Attacks,” Proc. Fifth Int’l
Workshop Software Eng. and Middleware, pp. 106-113, Sept. 2005.

[4] J. Clause, W. Li, and A. Orso, “Dytan: A Generic Dynamic Taint
Analysis Framework,” Proc. Int’l Symp. Software Testing and
Analysis, pp. 196-206, July 2007.

[5] W.R. Cook and S. Rai, “Safe Query Objects: Statically Typed
Objects as Remotely Executable Queries,” Proc. 27th Int’l Conf.
Software Eng., pp. 97-106, May 2005.

[6] “Top Ten Most Critical Web Application Vulnerabilities,” OWASP
Foundation, http://www.owasp.org/documentat ion/
topten.html, 2005.

[7] C. Gould, Z. Su, and P. Devanbu, “JDBC Checker: A Static
Analysis Tool for SQL/JDBC Applications,” Proc. 26th Int’l Conf.
Software Eng., formal demos, pp. 697-698, May 2004.

[8] C. Gould, Z. Su, and P. Devanbu, “Static Checking of Dynamically
Generated Queries in Database Applications,” Proc. 26th Int’l Conf.
Software Eng., pp. 645-654, May 2004.

[9] V. Haldar, D. Chandra, and M. Franz, “Dynamic Taint Propaga-
tion for Java,” Proc. 21st Ann. Computer Security Applications Conf.,
pp. 303-311, Dec. 2005.

[10] W. Halfond, A. Orso, and P. Manolios, “Using Positive Tainting
and Syntax-Aware Evaluation to Counter SQL Injection Attacks,”
Proc. ACM SIGSOFT Symp. Foundations of Software Eng., pp. 175-
185, Nov. 2006.

[11] W.G. Halfond and A. Orso, “AMNESIA: Analysis and Monitoring
for NEutralizing SQL-Injection Attacks,” Proc. 20th IEEE and ACM
Int’l Conf. Automated Software Eng., pp. 174-183, Nov. 2005.

[12] W.G. Halfond, J. Viegas, and A. Orso, “A Classification of SQL-
Injection Attacks and Countermeasures,” Proc. IEEE Int’l Symp.
Secure Software Eng., Mar. 2006.

[13] M. Howard and D. LeBlanc, Writing Secure Code, second ed.
Microsoft Press, 2003.

[14] Y. Huang, S. Huang, T. Lin, and C. Tsai, “Web Application
Security Assessment by Fault Injection and Behavior Monitoring,”
Proc. 12th Int’l Conf. World Wide Web, pp. 148-159, May 2003.

[15] Y. Huang, F. Yu, C. Hang, C.H. Tsai, D.T. Lee, and S.Y. Kuo,
“Securing Web Application Code by Static Analysis and Runtime
Protection,” Proc. 13th Int’l Conf. World Wide Web, pp. 40-52, May
2004.

[16] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: A Static Analysis
Tool for Detecting Web Application Vulnerabilities,” Proc. IEEE
Symp. Security and Privacy, May 2006.

[17] N. Jovanovic, C. Kruegel, and E. Kirda, “Precise Alias Analysis for
Static Detection of Web Application Vulnerabilities,” Proc. Work-
shop Programming Languages and Analysis for Security, pp. 27-36,
June 2006.

[18] V.B. Livshits and M.S. Lam, “Finding Security Vulnerabilities in
Java Applications with Static Analysis,” Proc. 14th Usenix Security
Symp., Aug. 2005.

[19] O. Maor and A. Shulman, “SQL Injection Signatures Evasion,”
white paper, Imperva, http://www.imperva.com/application_
defense_center/white_papers/sql_injection_signatures_
evasion.html, Apr. 2004.

[20] M. Martin, B. Livshits, and M.S. Lam, “Finding Application Errors
and Security Flaws Using PQL: A Program Query Language,”
Proc. 20th Ann. ACM SIGPLAN Conf. Object Oriented Programming
Systems Languages and Applications, pp. 365-383, Oct. 2005.

[21] R. McClure and I. Krüger, “SQL DOM: Compile Time Checking of
Dynamic SQL Statements,” Proc. 27th Int’l Conf. Software Eng.,
pp. 88-96, May 2005.

[22] J. Newsome and D. Song, “Dynamic Taint Analysis for Automatic
Detection, Analysis, and Signature Generation of Exploits on
Commodity Software,” Proc. 12th Ann. Network and Distributed
System Security Symp., Feb. 2005.

[23] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D.
Evans, “Automatically Hardening Web Applications Using Pre-
cise Tainting Information,” Proc. 20th IFIP Int’l Information Security
Conf., May 2005.

[24] T. Pietraszek and C.V. Berghe, “Defending against Injection
Attacks through Context-Sensitive String Evaluation,” Proc. Eighth
Int’l Symp. Recent Advances in Intrusion Detection, Sept. 2005.

[25] J. Saltzer and M. Schroeder, “The Protection of Information in
Computer Systems,” Proc. Fourth ACM Symp. Operating System
Principles, Oct. 1973.

[26] D. Scott and R. Sharp, “Abstracting Application-Level Web
Security,” Proc. 11th Int’l Conf. World Wide Web, pp. 396-407,
May 2002.

[27] Z. Su and G. Wassermann, “The Essence of Command Injection
Attacks in Web Applications.,” Proc. 33rd Ann. Symp. Principles of
Programming Languages, pp. 372-382, Jan. 2006.

[28] F. Valeur, D. Mutz, and G. Vigna, “A Learning-Based Approach to
the Detection of SQL Attacks,” Proc. Conf. Detection of Intrusions
and Malware and Vulnerability Assessment, July 2005.

[29] G. Wassermann and Z. Su, “An Analysis Framework for Security
in Web Applications,” Proc. FSE Workshop Specification and
Verification of Component-Based Systems, pp. 70-78, Oct. 2004.

[30] Y. Xie and A. Aiken, “Static Detection of Security Vulnerabilities
in Scripting Languages,” Proc. 15th Usenix Security Symp., Aug.
2006.

[31] W. Xu, S. Bhatkar, and R. Sekar, “Taint-Enhanced Policy
Enforcement: A Practical Approach to Defeat a Wide Range of
Attacks,” Proc. 15th Usenix Security Symp., Aug. 2006.

William G.J. Halfond received the BS degree in
computer science from the University of Virginia,
Charlottesville, and the MS degree in computer
science from the Georgia Institute of Technol-
ogy, Atlanta, in May 2004. He is currently
working toward the PhD degree in computer
science in the College of Computing at the
Georgia Institute of Technology. His research
work is in software engineering and security,
with emphasis on techniques that can be applied

to improve the security and survivability of large-scale computer
systems.

Alessandro Orso received the MS degree in
electrical engineering and the PhD degree in
computer science from Politecnico di Milano,
Italy, in 1995 and 1999, respectively. He was a
visiting researcher in the Department of Elec-
trical Engineering and Computer Science at the
University of Illinois at Chicago in 1999. Since
March 2000, he has been with the College of
Computing at the Georgia Institute of Technol-
ogy, first as a research faculty member and then

as an assistant professor. His area of research is software engineering,
with emphasis on software testing and program analysis. His research
interests include the development of techniques and tools for improving
software reliability, security, and trustworthiness and the validation of
such techniques on real systems. He is a member of the IEEE Computer
Society.

Panagiotis Manolios received the BS and MA
degrees in computer science from Brooklyn
College, New York, in 1991 and 1992, respec-
tively, and the PhD degree in computer science
from the University of Texas at Austin in 2001.
He joined the College of Computing at the
Georgia Institute of Technology in 2001. He
became an adjunct assistant professor in the
School of Electrical and Computer Engineering
at the Georgia Institute of Technology in 2003.

He is currently an associate professor at Northeastern University. His
main research interest is mechanized formal verification and validation.
His other areas of interest include programming languages, distributed
computing, logic, software engineering, algorithms, computer architec-
ture, aerospace, and pedagogy. He is a member of the IEEE Computer
Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

HALFOND ET AL.: WASP: PROTECTING WEB APPLICATIONS USING POSITIVE TAINTING AND SYNTAX-AWARE EVALUATION 81

