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ABSTRACT

We propose the Wasserstein Auto-Encoder (WAE)—a new algorithm for building
a generative model of the data distribution. WAE minimizes a penalized form of
the Wasserstein distance between the model distribution and the target distribu-
tion, which leads to a different regularizer than the one used by the Variational
Auto-Encoder (VAE) (Kingma & Welling, 2014). This regularizer encourages
the encoded training distribution to match the prior. We compare our algorithm
with several other techniques and show that it is a generalization of adversarial
auto-encoders (AAE) (Makhzani et al., 2016). Our experiments show that WAE
shares many of the properties of VAEs (stable training, encoder-decoder architec-
ture, nice latent manifold structure) while generating samples of better quality, as
measured by the FID score.

1 INTRODUCTION

The field of representation learning was initially driven by supervised approaches, with impressive
results using large labelled datasets. Unsupervised generative modeling, in contrast, used to be a
domain governed by probabilistic approaches focusing on low-dimensional data. Recent years have
seen a convergence of those two approaches. In the new field that formed at the intersection, vari-
ational auto-encoders (VAEs) (Kingma & Welling, 2014) constitute one well-established approach,
theoretically elegant yet with the drawback that they tend to generate blurry samples when applied
to natural images. In contrast, generative adversarial networks (GANs) (Goodfellow et al., 2014)
turned out to be more impressive in terms of the visual quality of images sampled from the model,
but come without an encoder, have been reported harder to train, and suffer from the “mode col-
lapse” problem where the resulting model is unable to capture all the variability in the true data
distribution. There has been a flurry of activity in assaying numerous configurations of GANs as
well as combinations of VAEs and GANs. A unifying framework combining the best of GANs and
VAEs in a principled way is yet to be discovered.

This work builds up on the theoretical analysis presented in Bousquet et al. (2017). Following
Arjovsky et al. (2017); Bousquet et al. (2017), we approach generative modeling from the opti-
mal transport (OT) point of view. The OT cost (Villani, 2003) is a way to measure a distance
between probability distributions and provides a much weaker topology than many others, including
f -divergences associated with the original GAN algorithms (Nowozin et al., 2016). This is partic-
ularly important in applications, where data is usually supported on low dimensional manifolds in
the input space X . As a result, stronger notions of distances (such as f -divergences, which capture
the density ratio between distributions) often max out, providing no useful gradients for training. In
contrast, OT was claimed to have a nicer behaviour (Arjovsky et al., 2017; Gulrajani et al., 2017)
although it requires, in its GAN-like implementation, the addition of a constraint or a regularization
term into the objective.

1



Published as a conference paper at ICLR 2018

(a) VAE

Z

X

QVAE(Z|X)PG(X|Z)

VAE reconstruction

PZ

(b) WAE

Z

X

QWAE(Z|X)PG(X|Z)

WAE reconstruction

PZ QZ

Figure 1: Both VAE and WAE minimize two terms: the reconstruction cost and the regularizer penal-
izing discrepancy between PZ and distribution induced by the encoder Q. VAE forces Q(Z|X = x)
to match PZ for all the different input examples x drawn from PX . This is illustrated on picture
(a), where every single red ball is forced to match PZ depicted as the white shape. Red balls start
intersecting, which leads to problems with reconstruction. In contrast, WAE forces the continuous
mixture QZ :=

∫

Q(Z|X)dPX to match PZ , as depicted with the green ball in picture (b). As a
result latent codes of different examples get a chance to stay far away from each other, promoting a
better reconstruction.

In this work we aim at minimizing OT Wc(PX , PG) between the true (but unknown) data distribution
PX and a latent variable model PG specified by the prior distribution PZ of latent codes Z ∈ Z
and the generative model PG(X|Z) of the data points X ∈ X given Z. Our main contributions are
listed below (cf. also Figure 1):

• A new family of regularized auto-encoders (Algorithms 1, 2 and Eq. 4), which we call
Wasserstein Auto-Encoders (WAE), that minimize the optimal transport Wc(PX , PG) for
any cost function c. Similarly to VAE, the objective of WAE is composed of two terms: the
c-reconstruction cost and a regularizer DZ(PZ , QZ) penalizing a discrepancy between two
distributions in Z: PZ and a distribution of encoded data points, i.e. QZ := EPX

[Q(Z|X)].
When c is the squared cost and DZ is the GAN objective, WAE coincides with adversarial
auto-encoders of Makhzani et al. (2016).

• Empirical evaluation of WAE on MNIST and CelebA datasets with squared cost c(x, y) =
‖x − y‖22. Our experiments show that WAE keeps the good properties of VAEs (stable
training, encoder-decoder architecture, and a nice latent manifold structure) while generat-
ing samples of better quality, approaching those of GANs.

• We propose and examine two different regularizers DZ(PZ , QZ). One is based on GANs
and adversarial training in the latent space Z . The other uses the maximum mean discrep-
ancy, which is known to perform well when matching high-dimensional standard normal
distributions PZ (Gretton et al., 2012). Importantly, the second option leads to a fully
adversary-free min-min optimization problem.

• Finally, the theoretical considerations presented in Bousquet et al. (2017) and used here to
derive the WAE objective might be interesting in their own right. In particular, Theorem 1
shows that in the case of generative models, the primal form of Wc(PX , PG) is equivalent
to a problem involving the optimization of a probabilistic encoder Q(Z|X) .

The paper is structured as follows. In Section 2 we review a novel auto-encoder formulation for
OT between PX and the latent variable model PG derived in Bousquet et al. (2017). Relaxing the
resulting constrained optimization problem we arrive at an objective of Wasserstein auto-encoders.
We propose two different regularizers, leading to WAE-GAN and WAE-MMD algorithms. Section
3 discusses the related work. We present the experimental results in Section 4 and conclude by
pointing out some promising directions for future work.
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2 PROPOSED METHOD

Our new method minimizes the optimal transport cost Wc(PX , PG) based on the novel auto-encoder
formulation (see Theorem 1 below). In the resulting optimization problem the decoder tries to ac-
curately reconstruct the encoded training examples as measured by the cost function c. The encoder
tries to simultaneously achieve two conflicting goals: it tries to match the encoded distribution
of training examples QZ := EPX

[Q(Z|X)] to the prior PZ as measured by any specified diver-
gence DZ(QZ , PZ), while making sure that the latent codes provided to the decoder are informative
enough to reconstruct the encoded training examples. This is schematically depicted on Fig. 1.

2.1 PRELIMINARIES AND NOTATIONS

We use calligraphic letters (i.e. X ) for sets, capital letters (i.e. X) for random variables, and
lower case letters (i.e. x) for their values. We denote probability distributions with capital letters
(i.e. P (X)) and corresponding densities with lower case letters (i.e. p(x)). In this work we will
consider several measures of discrepancy between probability distributions PX and PG. The class

of f -divergences (Liese & Miescke, 2008) is defined by Df (PX‖PG) :=
∫

f
(pX(x)
pG(x)

)

pG(x)dx,

where f : (0,∞) → R is any convex function satisfying f(1) = 0. Classical examples include the
Kullback-Leibler DKL and Jensen-Shannon DJS divergences.

2.2 OPTIMAL TRANSPORT AND ITS DUAL FORMULATIONS

A rich class of divergences between probability distributions is induced by the optimal trans-
port (OT) problem (Villani, 2003). Kantorovich’s formulation of the problem is given by

Wc(PX , PG) := inf
Γ∈P(X∼PX ,Y∼PG)

E(X,Y )∼Γ[c(X,Y )] , (1)

where c(x, y) : X ×X → R+ is any measurable cost function and P(X ∼ PX , Y ∼ PG) is a set of
all joint distributions of (X,Y ) with marginals PX and PG respectively. A particularly interesting
case is when (X , d) is a metric space and c(x, y) = dp(x, y) for p ≥ 1. In this case Wp, the p-th
root of Wc, is called the p-Wasserstein distance.

When c(x, y) = d(x, y) the following Kantorovich-Rubinstein duality holds1:

W1(PX , PG) = sup
f∈FL

EX∼PX
[f(X)]− EY∼PG

[f(Y )], (2)

where FL is the class of all bounded 1-Lipschitz functions on (X , d).

2.3 APPLICATION TO GENERATIVE MODELS: WASSERSTEIN AUTO-ENCODERS

One way to look at modern generative models like VAEs and GANs is to postulate that they are try-
ing to minimize certain discrepancy measures between the data distribution PX and the model PG.
Unfortunately, most of the standard divergences known in the literature, including those listed above,
are hard or even impossible to compute, especially when PX is unknown and PG is parametrized by
deep neural networks. Previous research provides several tricks to address this issue.

In case of minimizing the KL-divergence DKL(PX , PG), or equivalently maximizing the marginal
log-likelihood EPX

[log pG(X)], the famous variational lower bound provides a theoretically
grounded framework successfully employed by VAEs (Kingma & Welling, 2014; Mescheder et al.,
2017). More generally, if the goal is to minimize the f -divergence Df (PX , PG) (with one example
being DKL), one can resort to its dual formulation and make use of f -GANs and the adversarial
training (Nowozin et al., 2016). Finally, OT cost Wc(PX , PG) is yet another option, which can be,
thanks to the celebrated Kantorovich-Rubinstein duality (2), expressed as an adversarial objective
as implemented by the Wasserstein-GAN (Arjovsky et al., 2017). We include an extended review of
all these methods in Supplementary A.

1Note that the same symbol is used for Wp and Wc, but only p is a number and thus the above W1 refers to
the 1-Wasserstein distance.
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In this work we will focus on latent variable models PG defined by a two-step procedure, where first
a code Z is sampled from a fixed distribution PZ on a latent space Z and then Z is mapped to the
image X ∈ X = Rd with a (possibly random) transformation. This results in a density of the form

pG(x) :=

∫

Z

pG(x|z)pz(z)dz, ∀x ∈ X , (3)

assuming all involved densities are properly defined. For simplicity we will focus on non-random
decoders, i.e. generative models PG(X|Z) deterministically mapping Z to X = G(Z) for a given
map G : Z → X . Similar results for random decoders can be found in Supplementary B.1.

It turns out that under this model, the OT cost takes a simpler form as the transportation plan factors
through the map G: instead of finding a coupling Γ in (1) between two random variables living in
the X space, one distributed according to PX and the other one according to PG, it is sufficient to
find a conditional distribution Q(Z|X) such that its Z marginal QZ(Z) := EX∼PX

[Q(Z|X)] is
identical to the prior distribution PZ . This is the content of the theorem below proved in Bousquet
et al. (2017). To make this paper self contained we repeat the proof in Supplementary B.

Theorem 1 For PG as defined above with deterministic PG(X|Z) and any function G : Z → X

inf
Γ∈P(X∼PX ,Y∼PG)

E(X,Y )∼Γ

[

c
(

X,Y
)]

= inf
Q : QZ=PZ

EPX
EQ(Z|X)

[

c
(

X,G(Z)
)]

,

where QZ is the marginal distribution of Z when X ∼ PX and Z ∼ Q(Z|X).

This result allows us to optimize over random encoders Q(Z|X) instead of optimizing over all
couplings between X and Y . Of course, both problems are still constrained. In order to implement
a numerical solution we relax the constraints on QZ by adding a penalty to the objective. This finally
leads us to the WAE objective:

DWAE(PX , PG) := inf
Q(Z|X)∈Q

EPX
EQ(Z|X)

[

c
(

X,G(Z)
)]

+ λ · DZ(QZ , PZ), (4)

where Q is any nonparametric set of probabilistic encoders, DZ is an arbitrary divergence between
QZ and PZ , and λ > 0 is a hyperparameter. Similarly to VAE, we propose to use deep neural
networks to parametrize both encoders Q and decoders G. Note that as opposed to VAEs, the WAE
formulation allows for non-random encoders deterministically mapping inputs to their latent codes.

We propose two different penalties DZ(QZ , PZ):

GAN-based DZ . The first option is to choose DZ(QZ , PZ) = DJS(QZ , PZ) and use the adversarial
training to estimate it. Specifically, we introduce an adversary (discriminator) in the latent space Z
trying to separate2 “true” points sampled from PZ and “fake” ones sampled from QZ (Goodfellow
et al., 2014). This results in the WAE-GAN described in Algorithm 1. Even though WAE-GAN falls
back to the min-max problem, we move the adversary from the input (pixel) space X to the latent
space Z . On top of that, PZ may have a nice shape with a single mode (for a Gaussian prior), in
which case the task should be easier than matching an unknown, complex, and possibly multi-modal
distributions as usually done in GANs. This is also a reason for our second penalty:

MMD-based DZ . For a positive-definite reproducing kernel k : Z × Z → R the following expres-
sion is called the maximum mean discrepancy (MMD):

MMDk(PZ , QZ) =
∥

∥

∫

Z

k(z, ·)dPZ(z)−

∫

Z

k(z, ·)dQZ(z)
∥

∥

Hk
,

where Hk is the RKHS of real-valued functions mapping Z to R. If k is characteristic then MMDk

defines a metric and can be used as a divergence measure. We propose to use DZ(PZ , QZ) =
MMDk(PZ , QZ). Fortunately, MMD has an unbiased U-statistic estimator, which can be used
in conjunction with stochastic gradient descent (SGD) methods. This results in the WAE-MMD
described in Algorithm 2. It is well known that the maximum mean discrepancy performs well
when matching high-dimensional standard normal distributions (Gretton et al., 2012) so we expect
this penalty to work especially well working with the Gaussian prior PZ .

2We noticed that the famous “log trick” (also called “non saturating loss”) proposed by Goodfellow et al.
(2014) leads to better results.
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ALGORITHM 1 Wasserstein Auto-Encoder
with GAN-based penalty (WAE-GAN).

Require: Regularization coefficient λ > 0.

Initialize the parameters of the encoder Qφ,

decoder Gθ , and latent discriminator Dγ .

while (φ, θ) not converged do

Sample {x1, . . . , xn} from the training set

Sample {z1, . . . , zn} from the prior PZ

Sample z̃i from Qφ(Z|xi) for i = 1, . . . , n

Update Dγ by ascending:

λ

n

n
∑

i=1

logDγ(zi) + log
(

1−Dγ(z̃i)
)

Update Qφ and Gθ by descending:

1

n

n
∑

i=1

c
(

xi, Gθ(z̃i)
)

− λ · logDγ(z̃i)

end while

ALGORITHM 2 Wasserstein Auto-Encoder
with MMD-based penalty (WAE-MMD).

Require: Regularization coefficient λ > 0, char-

acteristic positive-definite kernel k.

Initialize the parameters of the encoder Qφ,

decoder Gθ , and latent discriminator Dγ .

while (φ, θ) not converged do

Sample {x1, . . . , xn} from the training set

Sample {z1, . . . , zn} from the prior PZ

Sample z̃i from Qφ(Z|xi) for i = 1, . . . , n

Update Qφ and Gθ by descending:

1

n

n
∑

i=1

c
(

xi, Gθ(z̃i)
)

+
λ

n(n− 1)

∑

ℓ 6=j

k(zℓ, zj)

+
λ

n(n− 1)

∑

ℓ 6=j

k(z̃ℓ, z̃j)−
2λ

n2

∑

ℓ,j

k(zℓ, z̃j)

end while

We point out once again that the encoders Qφ(Z|x) in Algorithms 1 and 2 can be non-random,
i.e. deterministically mapping input points to the latent codes. In this case Qφ(Z|x) = δµφ(x) for a

function µφ : X → Z and in order to sample z̃i from Qφ(Z|xi) we just need to return µφ(xi).

3 RELATED WORK

Literature on auto-encoders Classical unregularized auto-encoders minimize only the reconstruc-
tion cost. This results in different training points being encoded into non-overlapping zones chaoti-
cally scattered all across the Z space with “holes” in between where the decoder mapping PG(X|Z)
has never been trained. Overall, the encoder Q(Z|X) trained in this way does not provide a useful
representation and sampling from the latent space Z becomes hard (Bengio et al., 2013).

Variational auto-encoders (Kingma & Welling, 2014) minimize a variational bound on the KL-
divergence DKL(PX , PG) which is composed of the reconstruction cost plus the regularizer
EPX

[DKL(Q(Z|X), PZ)]. The regularizer captures how distinct the image by the encoder of each
training example is from the prior PZ , which is not guaranteeing that the overall encoded distri-
bution EPX

[Q(Z|X)] matches PZ like WAE does. Also, VAEs require non-degenerate (i.e. non-
deterministic) Gaussian encoders and random decoders for which the term log pG(x|z) can be com-
puted and differentiated with respect to the parameters. Later Mescheder et al. (2017) proposed a
way to use VAE with non-Gaussian encoders. WAE minimizes the optimal transport Wc(PX , PG)
and allows both probabilistic and deterministic encoder-decoder pairs of any kind.

The VAE regularizer can be also equivalently written (Hoffman & Johnson, 2016) as a sum of
DKL(QZ , PZ) and a mutual information IQ(X,Z) between the images X and latent codes Z jointly
distributed according to PX ×Q(Z|X). This observation provides another intuitive way to explain
a difference between our algorithm and VAEs: WAEs simply drop the mutual information term
IQ(X,Z) in the VAE regularizer.

When used with c(x, y) = ‖x − y‖22 WAE-GAN is equivalent to adversarial auto-encoders (AAE)
proposed by Makhzani et al. (2016). Theory of Bousquet et al. (2017) (and in particular Theorem 1)
thus suggests that AAEs minimize the 2-Wasserstein distance between PX and PG. This provides
the first theoretical justification for AAEs known to the authors. WAE generalizes AAE in two ways:
first, it can use any cost function c in the input space X ; second, it can use any discrepancy measure
DZ in the latent space Z (for instance MMD), not necessarily the adversarial one of WAE-GAN.

Finally, Zhao et al. (2017b) independently proposed a regularized auto-encoder objective similar to
Bousquet et al. (2017) and our (4) based on very different motivations and arguments. Following
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VAEs their objective (called InfoVAE) defines the reconstruction cost in the image space implicitly
through the negative log likelihood term − log pG(x|z), which should be properly normalized for all
z ∈ Z . In theory VAE and InfoVAE can both induce arbitrary cost functions, however in practice this
may require an estimation of the normalizing constant (partition function) which can3 be different
for different values of z. WAEs specify the cost c(x, y) explicitly and don’t constrain it in any way.

Literature on OT Genevay et al. (2016) address computing the OT cost in large scale using SGD
and sampling. They approach this task either through the dual formulation, or via a regularized
version of the primal. They do not discuss any implications for generative modeling. Our approach
is based on the primal form of OT, we arrive at regularizers which are very different, and our main
focus is on generative modeling.

The WGAN (Arjovsky et al., 2017) minimizes the 1-Wasserstein distance W1(PX , PG) for gener-
ative modeling. The authors approach this task from the dual form. Their algorithm comes with-
out an encoder and can not be readily applied to any other cost Wc, because the neat form of the
Kantorovich-Rubinstein duality (2) holds only for W1. WAE approaches the same problem from the
primal form, can be applied for any cost function c, and comes naturally with an encoder.

In order to compute the values (1) or (2) of OT we need to handle non-trivial constraints, either
on the coupling distribution Γ or on the function f being considered. Various approaches have
been proposed in the literature to circumvent this difficulty. For W1 Arjovsky et al. (2017) tried to
implement the constraint in the dual formulation (2) by clipping the weights of the neural network f .
Later Gulrajani et al. (2017) proposed to relax the same constraint by penalizing the objective of (2)

with a term λ · E (‖∇f(X)‖ − 1)
2

which should not be greater than 1 if f ∈ FL. In a more
general OT setting of Wc Cuturi (2013) proposed to penalize the objective of (1) with the KL-
divergence λ · DKL(Γ, P ⊗ Q) between the coupling distribution and the product of marginals.
Genevay et al. (2016) showed that this entropic regularization drops the constraints on functions in
the dual formulation as opposed to (2). Finally, in the context of unbalanced optimal transport it
has been proposed to relax the constraint in (1) by regularizing the objective with λ ·

(

Df (ΓX , P )+

Df (ΓY , Q)
)

(Chizat et al., 2015; Liero et al., 2015), where ΓX and ΓY are marginals of Γ. In
this paper we propose to relax OT in a way similar to the unbalanced optimal transport, i.e. by
adding additional divergences to the objective. However, we show that in the particular context of
generative modeling, only one extra divergence is necessary.

Literature on GANs Many of the GAN variations (including f -GAN and WGAN) come without
an encoder. Often it may be desirable to reconstruct the latent codes and use the learned manifold,
in which cases these models are not applicable.

There have been many other approaches trying to blend the adversarial training of GANs with auto-
encoder architectures (Zhao et al., 2017a; Dumoulin et al., 2017; Ulyanov et al., 2017; Berthelot
et al., 2017). The approach proposed by Ulyanov et al. (2017) is perhaps the most relevant to our
work. The authors use the discrepancy between QZ and the distribution EZ′∼PZ

[Q
(

Z|G(Z ′)
)

] of
auto-encoded noise vectors as the objective for the max-min game between the encoder and decoder
respectively. While the authors showed that the saddle points correspond to PX = PG, they admit
that encoders and decoders trained in this way have no incentive to be reciprocal. As a workaround
they propose to include an additional reconstruction term to the objective. WAE does not necessarily
lead to a min-max game, uses a different penalty, and has a clear theoretical foundation.

Several works used reproducing kernels in context of GANs. Li et al. (2015); Dziugaite et al. (2015)
use MMD with a fixed kernel k to match PX and PG directly in the input space X . These methods
have been criticised to require larger mini-batches during training: estimating MMDk(PX , PG)
requires number of samples roughly proportional to the dimensionality of the input space X (Reddi
et al., 2015) which is typically larger than 103. Li et al. (2017) take a similar approach but further
train k adversarially so as to arrive at a meaningful loss function. WAE-MMD uses MMD to match
QZ to the prior PZ in the latent space Z . Typically Z has no more than 100 dimensions and PZ is
Gaussian, which allows us to use regular mini-batch sizes to accurately estimate MMD.

3Two popular choices are Gaussian and Bernoulli decoders PG(X|Z) leading to pixel-wise squared and
cross-entropy losses respectively. In both cases the normalizing constants can be computed in closed form and
don’t depend on Z.
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Figure 2: VAE (left column), WAE-MMD (middle column), and WAE-GAN (right column) trained
on MNIST dataset. In “test reconstructions” odd rows correspond to the real test points.

4 EXPERIMENTS

In this section we empirically evaluate4 the proposed WAE model. We would like to test if WAE can
simultaneously achieve (i) accurate reconstructions of data points, (ii) reasonable geometry of the
latent manifold, and (iii) random samples of good (visual) quality. Importantly, the model should
generalize well: requirements (i) and (ii) should be met on both training and test data. We trained
WAE-GAN and WAE-MMD (Algorithms 1 and 2) on two real-world datasets: MNIST (LeCun et al.,
1998) consisting of 70k images and CelebA (Liu et al., 2015) containing roughly 203k images.

Experimental setup In all reported experiments we used Euclidian latent spaces Z = Rdz

for various dz depending on the complexity of the dataset, isotropic Gaussian prior distributions
PZ(Z) = N (Z;0, σ2

z · Id) over Z , and a squared cost function c(x, y) = ‖x− y‖22 for data points
x, y ∈ X = Rdx . We used deterministic encoder-decoder pairs, Adam (Kingma & Lei, 2014) with
β1 = 0.5, β2 = 0.999, and convolutional deep neural network architectures for encoder mapping
µφ : X → Z and decoder mapping Gθ : Z → X similar to the DCGAN ones reported by Radford
et al. (2016) with batch normalization (Ioffe & Szegedy, 2015). We tried various values of λ and
noticed that λ = 10 seems to work good across all datasets we considered.

Since we are using deterministic encoders, choosing dz larger than intrinsic dimensionality of the
dataset would force the encoded distribution QZ to live on a manifold in Z . This would make
matching QZ to PZ impossible if PZ is Gaussian and may lead to numerical instabilities. We use
dz = 8 for MNIST and dz = 64 for CelebA which seems to work reasonably well.

4The code is available at github.com/tolstikhin/wae.
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Figure 3: VAE (left column), WAE-MMD (middle column), and WAE-GAN (right column) trained
on CelebA dataset. In “test reconstructions” odd rows correspond to the real test points.

We also report results of VAEs. VAEs used the same latent spaces as discussed above and standard
Gaussian priors PZ = N (0, Id). We used Gaussian encoders Q(Z|X) = N

(

Z;µφ(X),Σ(X)
)

with mean µφ and diagonal covariance Σ. For both MNIST and CelebA we used Bernoulli de-
coders parametrized by Gθ. Functions µφ, Σ, and Gθ were parametrized by deep nets of the same
architectures as used in WAE.

WAE-GAN and WAE-MMD specifics In WAE-GAN we used discriminator D composed of sev-
eral fully connected layers with ReLu. We tried WAE-MMD with the RBF kernel but observed that
it fails to penalize the outliers of QZ because of the quick tail decay. If the codes z̃ = µφ(x) for
some of the training points x ∈ X end up far away from the support of PZ (which may happen in

the early stages of training) the corresponding terms in the U-statistic k(z, z̃) = e−‖z̃−z‖2

2
/σ2

k will
quickly approach zero and provide no gradient for those outliers. This could be avoided by choosing
the kernel bandwidth σ2

k in a data-dependent manner, however in this case per-minibatch U-statistic
would not provide an unbiased estimate for the gradient. Instead, we used the inverse multiquadrat-
ics kernel k(x, y) = C/(C + ‖x − y‖22) which is also characteristic and has much heavier tails. In
all experiments we used C = 2dzσ

2
z , which is the expected squared distance between two multi-

variate Gaussian vectors drawn from PZ . This significantly improved the performance compared to
the RBF kernel (even the one with σ2

k = 2dzσ
2
z ). Trained models are presented in Figures 2 and 3.

Further details are presented in Supplementary C.

Random samples are generated by sampling PZ and decoding the resulting noise vectors z
into Gθ(z). As expected, in our experiments we observed that for both WAE-GAN and
WAE-MMD the quality of samples strongly depends on how accurately QZ matches PZ . To
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see this, notice that during training the decoder function Gθ is presented only with encoded
versions µφ(X) of the data points X ∼ PX . Indeed, the decoder is trained on sam-
ples from QZ and thus there is no reason to expect good results when feeding it with sam-
ples from PZ . In our experiments we noticed that even slight differences between QZ and
PZ may affect the quality of samples. In some cases WAE-GAN seems to lead to a better
matching and generates better samples than WAE-MMD. However, due to adversarial training
WAE-GAN is highly unstable, while WAE-MMD has a very stable training much like VAE.

Algorithm FID

VAE 82
WAE-MMD 55
WAE-GAN 42

Table 1: FID scores for samples on
CelebA (smaller is better).

In order to quantitatively assess the quality of the gener-
ated images, we use the Fréchet Inception Distance in-
troduced by Heusel et al. (2017) and report the results on
CelebA in Table 1. These results confirm that the sampled
images from WAE are of better quality than from VAE,
and WAE-GAN gets a slightly better score than WAE-
MMD, which correlates with visual inspection of the im-
ages.

Test reconstructions and interpolations. We take random points x from the held out test set and
report their auto-encoded versions Gθ(µφ(x)). Next, pairs (x, y) of different data points are sampled
randomly from the held out test set and encoded: zx = µφ(x), zy = µφ(y). We linearly interpolate
between zx and zy with equally-sized steps in the latent space and show decoded images.

5 CONCLUSION

Using the optimal transport cost, we have derived Wasserstein auto-encoders—a new family of
algorithms for building generative models. We discussed their relations to other probabilistic mod-
eling techniques. We conducted experiments using two particular implementations of the proposed
method, showing that in comparison to VAEs, the images sampled from the trained WAE models are
of better quality, without compromising the stability of training and the quality of reconstruction.
Future work will include further exploration of the criteria for matching the encoded distribution QZ

to the prior distribution PZ , assaying the possibility of adversarially training the cost function c in the
input space X , and a theoretical analysis of the dual formulations for WAE-GAN and WAE-MMD.
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A IMPLICIT GENERATIVE MODELS: A SHORT TOUR OF GANS AND VAES

Even though GANs and VAEs are quite different—both in terms of the conceptual frameworks and
empirical performance—they share important features: (a) both can be trained by sampling from
the model PG without knowing an analytical form of its density and (b) both can be scaled up with
SGD. As a result, it becomes possible to use highly flexible implicit models PG defined by a two-
step procedure, where first a code Z is sampled from a fixed distribution PZ on a latent space Z
and then Z is mapped to the image G(Z) ∈ X = Rd with a (possibly random) transformation
G : Z → X . This results in latent variable models PG of the form (3).

These models are indeed easy to sample and, provided G can be differentiated analytically with re-
spect to its parameters, PG can be trained with SGD. The field is growing rapidly and numerous
variations of VAEs and GANs are available in the literature. Next we introduce and compare several
of them.

The original generative adversarial network (GAN) Goodfellow et al. (2014) approach minimizes

DGAN(PX , PG) = sup
T∈T

EX∼PX
[log T (X)] + EZ∼PZ

[

log
(

1− T (G(Z))
)]

(5)

with respect to a deterministic decoder G : Z → X , where T is any non-parametric class of choice.
It is known that DGAN(PX , PG) ≤ 2 ·DJS(PX , PG)− log(4) and the inequality turns into identity
in the nonparametric limit, that is when the class T becomes rich enough to represent all functions
mapping X to (0, 1). Hence, GANs are minimizing a lower bound on the JS-divergence. How-
ever, GANs are not only linked to the JS-divergence: the f -GAN approach Nowozin et al. (2016)
showed that a slight modification Df,GAN of the objective (5) allows to lower bound any desired
f -divergence in a similar way. In practice, both decoder G and discriminator T are trained in al-
ternating SGD steps. Stopping criteria as well as adequate evaluation of the trained GAN models
remain open questions.

Recently, the authors of Arjovsky et al. (2017) argued that the 1-Wasserstein distance W1, which is
known to induce a much weaker topology than DJS, may be better suited for generative modeling.
When PX and PG are supported on largely disjoint low-dimensional manifolds (which may be the
case in applications), DKL, DJS, and other strong distances between PX and PG max out and no
longer provide useful gradients for PG. This “vanishing gradient” problem necessitates complicated
scheduling between the G/T updates. In contrast, W1 is still sensible in these cases and provides
stable gradients. The Wasserstein GAN (WGAN) minimizes

DWGAN(PX , PG) = sup
T∈W

EX∼PX
[T (X)]− EZ∼PZ

[

T (G(Z))
]

,

where W is any subset of 1-Lipschitz functions on X . It follows from (2) that DWGAN(PX , PG) ≤
W1(PX , PG) and thus WGAN is minimizing a lower bound on the 1-Wasserstein distance.

Variational auto-encoders (VAE) Kingma & Welling (2014) utilize models PG of the form (3) and
minimize

DVAE(PX , PG) = inf
Q(Z|X)∈Q

EPX

[

DKL

(

Q(Z|X), PZ

)

− EQ(Z|X)[log pG(X|Z)]
]

(6)

with respect to a random decoder mapping PG(X|Z). The conditional distribution PG(X|Z)
is often parametrized by a deep net G and can have any form as long as its density pG(x|z)
can be computed and differentiated with respect to the parameters of G. A typical choice is to
use Gaussians PG(X|Z) = N (X;G(Z), σ2 · I). If Q is the set of all conditional probability
distributions Q(Z|X), the objective of VAE coincides with the negative marginal log-likelihood
DVAE(PX , PG) = −EPX

[logPG(X)]. However, in order to make the DKL term of (6) tractable
in closed form, the original implementation of VAE uses a standard normal PZ and restricts Q to a
class of Gaussian distributions Q(Z|X) = N

(

Z;µ(X),Σ(X)
)

with mean µ and diagonal covari-
ance Σ parametrized by deep nets. As a consequence, VAE is minimizing an upper bound on the
negative log-likelihood or, equivalently, on the KL-divergence DKL(PX , PG).

One possible way to reduce the gap between the true negative log-likelihood and the upper bound
provided by DVAE is to enlarge the class Q. Adversarial variational Bayes (AVB) Mescheder
et al. (2017) follows this argument by employing the idea of GANs. Given any point x ∈ X ,
a noise ǫ ∼ N (0, 1), and any fixed transformation e : X × R → Z , a random variable e(x, ǫ)
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implicitly defines one particular conditional distribution Qe(Z|X = x). AVB allows Q to contain

all such distributions for different choices of e, replaces the intractable term DKL

(

Qe(Z|X), PZ

)

in (6) by the adversarial approximation Df,GAN corresponding to the KL-divergence, and proposes

to minimize5

DAVB(PX , PG) = inf
Qe(Z|X)∈Q

EPX

[

Df,GAN

(

Qe(Z|X), PZ

)

− EQe(Z|X)[log pG(X|Z)]
]

. (7)

The DKL term in (6) may be viewed as a regularizer. Indeed, VAE reduces to the classical unregular-
ized auto-encoder if this term is dropped, minimizing the reconstruction cost of the encoder-decoder
pair Q(Z|X), PG(X|Z). This often results in different training points being encoded into non-
overlapping zones chaotically scattered all across the Z space with “holes” in between where the
decoder mapping PG(X|Z) has never been trained. Overall, the encoder Q(Z|X) trained in this
way does not provide a useful representation and sampling from the latent space Z becomes hard
Bengio et al. (2013).

Adversarial auto-encoders (AAE) Makhzani et al. (2016) replace the DKL term in (6) with another
regularizer:

DAAE(PX , PG) = inf
Q(Z|X)∈Q

DGAN(QZ , PZ)− EPX
EQ(Z|X)[log pG(X|Z)], (8)

where QZ is the marginal distribution of Z when first X is sampled from PX and then Z is sampled
from Q(Z|X), also known as the aggregated posterior Makhzani et al. (2016). Similarly to AVB,
there is no clear link to log-likelihood, as DAAE ≤ DAVB. The authors of Makhzani et al. (2016)
argue that matching QZ to PZ in this way ensures that there are no “holes” left in the latent space Z
and PG(X|Z) generates reasonable samples whenever Z ∼ PZ . They also report an equally good
performance of different types of conditional distributions Q(Z|X), including Gaussians as used
in VAEs, implicit models Qe as used in AVB, and deterministic encoder mappings, i.e. Q(Z|X) =
δµ(X) with µ : X → Z .

B PROOF OF THEOREM 1 AND FURTHER DETAILS

We will consider certain sets of joint probability distributions of three random variables (X,Y, Z) ∈
X × X × Z . The reader may wish to think of X as true images, Y as images sampled from the
model, and Z as latent codes. We denote by PG,Z(Y, Z) a joint distribution of a variable pair (Y, Z),
where Z is first sampled from PZ and next Y from PG(Y |Z). Note that PG defined in (3) and used
throughout this work is the marginal distribution of Y when (Y, Z) ∼ PG,Z .

In the optimal transport problem (1), we consider joint distributions Γ(X,Y ) which are called cou-
plings between values of X and Y . Because of the marginal constraint, we can write Γ(X,Y ) =
Γ(Y |X)PX(X) and we can consider Γ(Y |X) as a non-deterministic mapping from X to Y . Theo-
rem 1. shows how to factor this mapping through Z , i.e., decompose it into an encoding distribution
Q(Z|X) and the generating distribution PG(Y |Z).

As in Section 2.2, P(X ∼ PX , Y ∼ PG) denotes the set of all joint distributions of (X,Y ) with
marginals PX , PG, and likewise for P(X ∼ PX , Z ∼ PZ). The set of all joint distributions of
(X,Y, Z) such that X ∼ PX , (Y, Z) ∼ PG,Z , and (Y ⊥⊥ X)|Z will be denoted by PX,Y,Z . Finally,
we denote by PX,Y and PX,Z the sets of marginals on (X,Y ) and (X,Z) (respectively) induced
by distributions in PX,Y,Z . Note that P(PX , PG), PX,Y,Z , and PX,Y depend on the choice of
conditional distributions PG(Y |Z), while PX,Z does not. In fact, it is easy to check that PX,Z =
P(X ∼ PX , Z ∼ PZ). From the definitions it is clear that PX,Y ⊆ P(PX , PG) and we immediately
get the following upper bound:

Wc(PX , PG) ≤ W †
c (PX , PG) := inf

P∈PX,Y

E(X,Y )∼P [c(X,Y )] . (9)

If PG(Y |Z) are Dirac measures (i.e., Y = G(Z)), it turns out that PX,Y = P(PX , PG):

5The authors of AVB Mescheder et al. (2017) note that using f -GAN as described above actually results in
“unstable training”. Instead, following the approach of Poole et al. (2016), they use a trained discriminator T ∗

resulting from the DGAN objective (5) to approximate the ratio of densities and then directly estimate the KL
divergence

∫

f
(

p(x)/q(x)
)

q(x)dx.
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Lemma 1 PX,Y ⊆ P(PX , PG) with identity if 6 PG(Y |Z = z) are Dirac for all z ∈ Z .

Proof The first assertion is obvious. To prove the identity, note that when Y is a deterministic func-
tion of Z, for any A in the sigma-algebra induced by Y we have E

[

1[Y ∈A]|X,Z
]

= E
[

1[Y ∈A]|Z
]

.

This implies (Y ⊥⊥ X)|Z and concludes the proof.

We are now in place to prove Theorem 1. Lemma 1 obviously leads to

Wc(PX , PG) = W †
c (PX , PG).

The tower rule of expectation, and the conditional independence property of PX,Y,Z implies

W †
c (PX , PG) = inf

P∈PX,Y,Z

E(X,Y,Z)∼P [c(X,Y )]

= inf
P∈PX,Y,Z

EPZ
EX∼P (X|Z)EY∼P (Y |Z)[c(X,Y )]

= inf
P∈PX,Y,Z

EPZ
EX∼P (X|Z)

[

c
(

X,G(Z)
)]

= inf
P∈PX,Z

E(X,Z)∼P

[

c
(

X,G(Z)
)]

.

It remains to notice that PX,Z = P(X ∼ PX , Z ∼ PZ) as stated earlier.

B.1 RANDOM DECODERS PG(Y |Z)

If the decoders are non-deterministic, Lemma 1 provides only the inclusion of sets
PX,Y ⊆ P(PX , PG) and we get the following upper bound on the OT:

Corollary 1 Let X = Rd and assume the conditional distributions PG(Y |Z = z) have mean
values G(z) ∈ Rd and marginal variances σ2

1 , . . . , σ
2
d ≥ 0 for all z ∈ Z , where G : Z → X . Take

c(x, y) = ‖x− y‖22. Then

Wc(PX , PG) ≤ W †
c (PX , PG) =

d
∑

i=1

σ2
i + inf

P∈P(X∼PX ,Z∼PZ)
E(X,Z)∼P

[

‖X −G(Z)‖2
]

. (10)

Proof First inequality follows from (9). For the identity we proceed similarly to the proof of
Theorem 1 and write

W †
c (PX , PG) = inf

P∈PX,Y,Z

EPZ
EX∼P (X|Z)EY∼P (Y |Z)

[

‖X − Y ‖2
]

. (11)

Note that

EY∼P (Y |Z)

[

‖X − Y ‖2
]

= EY∼P (Y |Z)

[

‖X −G(Z) +G(Z)− Y ‖2
]

= ‖X −G(Z)‖2 + EY∼P (Y |Z)

[

〈X −G(Z), G(Z)− Y 〉
]

+ EY∼P (Y |Z)‖G(Z)− Y ‖2

= ‖X −G(Z)‖2 +
d

∑

i=1

σ2
i .

Together with (11) and the fact that PX,Z = P(X ∼ PX , Z ∼ PZ) this concludes the proof.

C FURTHER DETAILS ON EXPERIMENTS

C.1 MNIST

We use mini-batches of size 100 and trained the models for 100 epochs. We used λ = 10 and
σ2
z = 1. For the encoder-decoder pair we set α = 10−3 for Adam in the beginning and for the

6We conjecture that this is also a necessary condition. The necessity is not used in the paper.
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adversary in WAE-GAN to α = 5 × 10−4. After 30 epochs we decreased both by factor of 2, and
after first 50 epochs further by factor of 5.

Both encoder and decoder used fully convolutional architectures with 4x4 convolutional filters.

Encoder architecture:

x ∈ R28×28 → Conv128 → BN → ReLU

→ Conv256 → BN → ReLU

→ Conv512 → BN → ReLU

→ Conv1024 → BN → ReLU → FC8

Decoder architecture:

z ∈ R8 → FC7×7×1024

→ FSConv512 → BN → ReLU

→ FSConv256 → BN → ReLU → FSConv1

Adversary architecture for WAE-GAN:

z ∈ R8 → FC512 → ReLU

→ FC512 → ReLU

→ FC512 → ReLU

→ FC512 → ReLU → FC1

Here Convk stands for a convolution with k filters, FSConvk for the fractional strided convolution
with k filters (first two of them were doubling the resolution, the third one kept it constant), BN for
the batch normalization, ReLU for the rectified linear units, and FCk for the fully connected layer
mapping to Rk. All the convolutions in the encoder used vertical and horizontal strides 2 and SAME
padding.

Finally, we used two heuristics. First, we always pretrained separately the encoder for several mini-
batch steps before the main training stage so that the sample mean and covariance of QZ would
try to match those of PZ . Second, while training we were adding a pixel-wise Gaussian noise
truncated at 0.01 to all the images before feeding them to the encoder, which was meant to make the
encoders random. We played with all possible ways of combining these two heuristics and noticed
that together they result in slightly (almost negligibly) better results compared to using only one or
none of them.

Our VAE model used cross-entropy loss (Bernoulli decoder) and otherwise same architectures and
hyperparameters as listed above.

C.2 CELEBA

We pre-processed CelebA images by first taking a 140x140 center crops and then resizing to the
64x64 resolution. We used mini-batches of size 100 and trained the models for various number of
epochs (up to 250). All reported WAE models were trained for 55 epochs and VAE for 68 epochs.
For WAE-MMD we used λ = 100 and for WAE-GAN λ = 1. Both used σ2

z = 2.

For WAE-MMD the learning rate of Adam was initially set to α = 10−3. For WAE-GAN the
learning rate of Adam for the encoder-decoder pair was initially set to α = 3 × 10−4 and for the
adversary to 10−3. All learning rates were decreased by factor of 2 after 30 epochs, further by factor
of 5 after 50 first epochs, and finally additional factor of 10 after 100 first epochs.

Both encoder and decoder used fully convolutional architectures with 5x5 convolutional filters.

Encoder architecture:

x ∈ R64×64×3 → Conv128 → BN → ReLU

→ Conv256 → BN → ReLU

→ Conv512 → BN → ReLU

→ Conv1024 → BN → ReLU → FC64
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Decoder architecture:

z ∈ R64 → FC8×8×1024

→ FSConv512 → BN → ReLU

→ FSConv256 → BN → ReLU

→ FSConv128 → BN → ReLU → FSConv1

Adversary architecture for WAE-GAN:

z ∈ R64 → FC512 → ReLU

→ FC512 → ReLU

→ FC512 → ReLU

→ FC512 → ReLU → FC1

For WAE-GAN we used a heuristic proposed in Supplementary IV of Mescheder et al. (2017).
Notice that the theoretically optimal discriminator would result in D∗(z) = log pZ(z)− log qZ(z),
where pZ and qZ are densities of PZ and QZ respectively. In our experiments we added the log
prior log pZ(z) explicitly to the adversary output as we know it analytically. This should hopefully
make it easier for the adversary to learn the remaining QZ density term.

Our VAE model used a cross-entropy reconstruction loss (Bernoulli decoder) and α = 10−4 as
the initial Adam learning rate and the same decay schedule as explained above. Otherwise all the
architectures and hyperparameters were as explained above.
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