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Abstract Wasserstein discriminant analysis (WDA) is a new supervised linear dimension-

ality reduction algorithm. Following the blueprint of classical Fisher Discriminant Analysis,

WDA selects the projection matrix that maximizes the ratio of the dispersion of projected

points pertaining to different classes and the dispersion of projected points belonging to a

same class. To quantify dispersion, WDA uses regularized Wasserstein distances. Thanks

to the underlying principles of optimal transport, WDA is able to capture both global (at

distribution scale) and local (at samples’ scale) interactions between classes. In addition, we

show that WDA leverages a mechanism that induces neighborhood preservation. Regular-

ized Wasserstein distances can be computed using the Sinkhorn matrix scaling algorithm; the

optimization problem of WDA can be tackled using automatic differentiation of Sinkhorn’s

fixed-point iterations. Numerical experiments show promising results both in terms of pre-

diction and visualization on toy examples and real datasets such as MNIST and on deep

features obtained from a subset of the Caltech dataset.
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1 Introduction

Feature learning is a crucial component in many applications of machine learning. New

feature extraction methods or data representations are often responsible for breakthroughs

in performance, as illustrated by the kernel trick in support vector machines (Schölkopf and

Smola 2002) and their feature learning counterpart in multiple kernel learning (Bach et al.

2004), and more recently by deep architectures (Bengio 2009).

Among all the feature extraction approaches, one major family of dimensionality reduction

methods (Van Der Maaten et al. 2009; Burges 2010) consists in estimating a linear subspace

of the data. Although very simple, linear subspaces have many advantages. They are easy to

interpret, and can be inverted, at least in a lest-squares way. This latter property has been used

for instance in PCA denoising (Zhang et al. 2010). Linear projection is also a key component

in random projection methods (Fern and Brodley 2003) or compressed sensing and is often

used as a first pre-processing step, such as the linear part in a neural network layer. Finally,

linear projections only imply matrix products and stream therefore particularly well on any

type of hardware (CPU, GPU, DSP).

Linear dimensionality reduction techniques come in all flavors. Some of them, such as

PCA, are inherently unsupervised; some can consider labeled data and fall in the supervised

category. We consider in this paper linear and supervised techniques. Within that category,

two families of methods stand out: Given a dataset of pairs of vectors and labels {(xi , yi )}i ,

with xi ∈ R
d , the goal of Fisher Discriminant Analysis (FDA) and variants is to learn a

linear map P : R
d → R

p , p ≪ d , such that the embeddings of these points Pxi can be easily

discriminated using linear classifiers. Mahalanobis metric learning (MML) follows the same

approach, except that the quality of the embedding P is judged by the ability of a k-nearest

neighbor algorithm (not a linear classifier) to obtain good classification accuracy.

1.1 FDA and MML, in both global and local flavors

FDA attempts to maximize w.r.t. P the sum of all distances ||Pxi − Px j ′ || between pairs of

samples from different classes c, c′ while minimizing the sum of all distances ||Pxi − Px j ||
between pairs of samples within the same class c (Friedman et al. 2001, §4.3). Because of

this, it is well documented that the performance of FDA degrades when class distributions

are multimodal. Several variants have been proposed to tackle this problem (Friedman et al.

2001, §12.4). For instance, a localized version of FDA was proposed by Sugiyama (2007),

which boils down to discarding the computation for all pairs of points that are not neighbors.

On the other hand, the first techniques that were proposed to learn metrics (Xing et al. 2003)

used a global criterion, namely a sum on all pairs of points. Later on, variations that focused

instead exclusively on local interactions, such as LMNN (Weinberger and Saul 2009), were

shown to be far more efficient in practice. Supervised dimensionality approaches stemming

from FDA or MML consider thus either global or local interactions between points, namely,

either all differences ||Pxi − Px j || have an equal footing in the criterion they optimize, or, on

the contrary, ||Pxi − Px j || is only considered for points such that xi is close to x j .

1.2 WDA: global and local

We introduce in this work a novel approach that incorporates both a global and local per-

spective. WDA can achieve this blend through the mathematics of optimal transport ( see

for instance the recent book of Peyré and Cuturi (2018) for an introduction and exposition

of some of the computational we will use in this paper). Optimal transport provides a pow-
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erful toolbox to compute distances between two empirical probability distributions. Optimal

transport does so by considering all probabilistic couplings between these two measures,

to select one, denoted T , that is optimal for a given criterion. This coupling now describes

interactions at both a global and local scale, as reflected by the transportation weight Ti j that

quantifies how important the distance ||Pxi − Px j || should be to obtain a good projection

matrix P. Indeed, such weights are decided by (i) making sure that all points in one class

are matched to all points in the other class (global constraint, derived through marginal con-

straints over the coupling); (ii) making sure that points in one class are matched only to few

similar points of the other class (local constraint, thanks to the optimality of the coupling,

that is a function of local costs). Our method has the added flexibility that it can interpolate,

through a regularization parameter, between an exclusively global viewpoint (identical, in

that case, to FDA), to a more local viewpoint with a global matching constraint (different, in

that sense, to that of purely local tools such as LMNN or Local-FDA). In mathematical terms,

we adopt the ratio formulation of FDA to maximize the ratio of the regularized Wasserstein

distances between inter class populations and between the intra-class population with itself,

when these points are considered in their projected space:

max
P∈Δ

∑

c,c′>c Wλ(PXc, PXc′
)

∑

c Wλ(PXc, PXc)
(1)

where Δ = {P = [p1, . . . , pp] | pi ∈ R
d , ‖pi‖2 = 1 and p⊤

i p j = 0 for i �= j}
is the Stiefel manifold (Absil et al. 2009), the set of orthogonal d × p matrices; PXc is

the matrix of projected samples from class c. Wλ is the regularized Wasserstein distance

proposed by Cuturi (2013), which can be expressed as Wλ(X, Z) =
∑

i, j T ⋆
i, j‖xi − z j‖2

2,

T ⋆
i, j being the coordinates of the entropic-regularized Optimal Transport (OT) matrix T⋆ (see

Sect. 2). These entropic-regularized Wasserstein distances measure the dissimilarity between

empirical distributions by considering pairwise distances between samples. The strength of

the regularization λ controls the local information involved in the distance computation.

Further analyses and intuitions on the role on the within-class distances in the optimization

problem are given in the Sect. 4.

When λ is small, we will show that WDA boils down to FDA. When λ is large, WDA

tries to split apart distributions of classes by maximizing their optimal transport distance.

In that process, for a given example xi in one class, only few components Ti, j will be

activated so that xi will be paired with few examples. Figure 1 illustrates how pairing weights

Fig. 1 Weights used for inter/intra class variances for FDA, Local FDA and WDA for different regularizations

λ. Only weights for two samples from class 1 are shown. The color of the link darkens as the weight grows.

FDA computes a global variance with uniform weight on all pairwise distances, whereas LFDA focuses only

on samples that lie close to each other. WDA relies on an optimal transport matrix T that matches all points

in one class to all other points in another class (most links are not visible because they are colored in white

as related weights are too small). WDA has both a global (due to matching constraints) and local (due to

transportation cost minimization) outlook on the problem, with a tradeoff controlled by the regularization

strength λ
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Ti, j are defined when comparing Wasserstein discriminant analysis (WDA, with different

regularization strengths) with FDA (purely global), and Local-FDA (purely local) (Sugiyama

2007). Another strong feature brought by regularized Wasserstein distances is that relations

between samples (as given by the optimal transport matrix T) are estimated in the projected

space. This is an important difference compared to all previous local approaches which

estimate local relations in the original space and make the hypothesis that these relations are

unchanged after projection.

1.3 Paper outline

Section 2 provides background on regularized Wasserstein distances. The WDA criterion and

its practical optimization is presented in Sect. 3. Section 4 by discusses properties of WDA

and related works. Numerical experiments are provided in Sect. 5. Section 6 concludes the

paper and introduces perspectives.

2 Background on Wasserstein distances

Wasserstein distances, also known as earth mover distances, define a geometry over the

space of probability measures using principles from optimal transport theory (Villani 2008).

Recent computational advances (Cuturi 2013; Benamou et al. 2015) have made them scalable

to dimensions relevant to machine learning applications.

2.1 Notations and definitions

Let μ = 1
n

∑

i δxi
, ν = 1

m

∑

i δzi
be two empirical measures with locations in R

d stored in

matrices X = [x1, . . . , xn] and Z = [z1, . . . , zm]. The pairwise squared Euclidean distance

matrix between samples in μ and ν is defined as MX,Z := [||xi − z j ||22]i j ∈ R
n×m . Let Unm

be the polytope of n × m nonnegative matrices such that their row and column marginals are

equal to 1n/n and 1m/m respectively. Writing 1n for the n-dimensional vector of ones, we

have:

Unm := {T ∈ R
n×m
+ : T1m = 1n/n, TT 1n = 1m/m}.

2.2 Regularized Wassersein distance

Let 〈A, B 〉 := tr(AT B) be the Frobenius dot-product of matrices. For λ ≥ 0, the regularized

Wasserstein distance we adopt in this paper between μ and ν is (and with a slight abuse of

notation):

Wλ(μ, ν) := Wλ(X, Z) := 〈Tλ, MX,Z 〉, (2)

where Tλ is the solution of an entropy-smoothed optimal transport problem,

Tλ := argminT∈Unm
λ〈T, MX,Z 〉 − Ω(T), (3)

where Ω(T) is the entropy of T seen as a discrete joint probability distribution, namely

Ω(T) := −
∑

i j ti j log(ti j ). Note that problem (3) can be solved very efficiently using

Sinkhorn’s fixed-point iterations (Cuturi 2013). The solution of the optimization problem

can be expressed as:

T = diag(u)K diag(v) = u1T
m ◦ K ◦ 1nvT , (4)
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where ◦ stands for elementwise multiplication and K is the matrix whose elements are

Ki, j = e−λMi, j . The Sinkhorn iterations consist in updating left/right scaling vectors uk and

vk of the matrix K = e−λM. These updates take the following form for iteration k:

vk =
1m/m

KT uk−1
, uk =

1n/n

Kvk
(5)

with an initialization which will be fixed to u0 = 1n . Because it only involves matrix products,

the Sinkhorn algorithm can be streamed efficiently on parallel architectures such as GPGPUs.

3 Wasserstein discriminant analysis

In this section we discuss optimization problem (1) and propose an efficient approach to

compute the gradient of its objective.

3.1 Optimization problem

To simplify notations, let us define a separate empirical measure for each of the C classes:

samples of class c are stored in matrices Xc; the number of samples from class c is nc.

Using the definition (2) of regularized Wasserstein distance, we can write the Wasserstein

Discriminant Analysis optimization problem as

max
P∈Δ

{

J (P, T(P)) =
∑

c,c′>c〈PT P, Cc,c′ 〉
∑

c〈PT P, Cc,c 〉

}

(6)

s.t. Cc,c′
=

∑

i, j

T
c,c′

i, j (xc
i − xc′

j )(xc
i − xc′

j )T , ∀c, c′

and Tc,c′
= argminT∈Uncn

c′
λ〈T, MPXc,PXc′ 〉 − Ω(T),

which can be reformulated as the following bilevel problem

max
P∈Δ

J (P, T(P)) (7)

s.t. T(P) = argminT∈Uncn
c′

E(T, P) (8)

where T = {Tc,c′}c,c′ contains all the transport matrices between classes and the inner

problem function E is defined as

E(T, P) =
∑

c,c>=c′

λ〈Tc,c′
, MPXc,PXc′ 〉 − Ω(Tc,c′

). (9)

The objective function J can be expressed as

J (P, T(P)) =
〈PT P, Cb 〉
〈PT P, Cw 〉

where Cb =
∑

c,c′>c Cc,c′ and Cw =
∑

c Cc,c are the between and within cross-covariance

matrices that depend on T(P). Optimization problem (7)-(8) is a bilevel optimization problem,

which can be solved using gradient descent (Colson et al. 2007). Indeed, J is differentiable

with respect to P. This comes from the fact that optimization problems in Eq. (8) are all strictly

convex, making solutions of the problems unique, hence T(P) is smooth and differentiable

(Bonnans and Shapiro 1998).
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Thus, one can compute the gradient of J directly w.r.t. P using the chain rule as follows

∇P J (P, T(P)) =
∂ J (P, T)

∂P
+

∑

c,c′≥c

∂ J (P, T)

∂Tc,c′
∂Tc,c′

∂P
(10)

The first term in gradient (10) suppose that T is constant and can be computed [Eq. 94–95

(Petersen et al. 2008)] as

∂ J (P, T)

∂P
= P

(

2

σ 2
w

Cb −
2σ 2

b

σ 4
w

Cw

)

(11)

with σ 2
w = 〈PT P, Cw 〉 and σ 2

b = 〈PT P, Cb 〉. In order to compute the second term in (10),

we will separate the cases when c = c′ and c �= c′ as it corresponds to their position in the

fraction of Eq. (6). Their partial derivative is obtained directly from the scalar product and is

a weighted vectorization of the transport cost matrix

∂ J (P, T)

∂Tc,c′ �=c
= vec

( 1

σ 2
w

MPXc,PXc′

)

and
∂ J (P, T)

∂Tc,c
= −vec

(σ 2
b

σ 4
w

MPXc,PXc

)

. (12)

We will see in the remaining that the main difficulty stands in computing the Jacobian

∂Tc,c′
/∂P since the optimal transport matrix is not available as a closed form. We solve this

problem using instead an automatic differentiation approach wrapped around the Sinkhorn

fixed point iteration algorithm.

3.2 Automatic differentiation

A possible way to compute the Jacobian ∂Tc,c′
/∂P is to use the implicit function theorem

as in hyperparameter estimation in ML (Bengio 2000; Chapelle et al. 2002). We detail that

approach in the appendix but it requires inverting a very large matrix, and does not scale

in practice. It also assumes that the exact optimal transport Tλ is obtained at each iteration,

which is clearly an approximation since we only have the computational budget for a finite,

and usually small, number of Sinkhorn iterations.

Following the gist of Bonneel et al. (2016), which do not differentiate Sinkhorn iterations

but a more complex fixed point iteration designed to compute Wasserstein barycenters, we

propose in this section to differentiate the transportation matrices obtained after running

exactly L Sinkhorn iterations, with a predefined L . Writing Tk(P), for the solution obtained

after k iterations as a function of P for a given c, c′ pair,

Tk(P) = diag(uk)e−λM diag(vk)

where M is the distance matrix induced by P. TL(P) can then be directly differentiated:

∂Tk

∂P
=

∂[uk1T
m]

∂P
◦ e−λM ◦ 1nvk T

+ uk1T
m ◦

∂e−λM

∂P
◦ 1nvk T + uk1T

m ◦ e−λM ◦
∂[1nvk T ]

∂P
(13)

Note that the recursion occurs as uk depends on vk whose is also related to uk−1. The

Jacobians that we need can then be obtained from Eq. (5). For instance, the gradient of one

component of uk1T
m at the j-th line is
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∂uk
j

∂P
= −

1/n

[Kvk]2
j

(

∑

i

∂K j,i

∂P
vk

i +
∑

i

K j,i

∂vk
i

∂P

)

, (14)

while for vk , we have

∂vk
j

∂P
= −

1/m

[KT uk−1]2
j

(

∑

i

∂Ki, j

∂P
uk−1

i +
∑

i

Ki, j

∂uk−1
i

∂P

)

, (15)

and finally

∂Ki, j

∂P
= −2Ki, j P(xi − x′

j )(xi − x′
j )

T .

The Jacobian ∂Tk

∂P
can be thus obtained by keeping track of all the Jacobians at each iteration

and then by successively applying those equations. This approach is far cheaper than the

implicit function theorem approach. Indeed, in this case, the computation of ∂T
∂P

is dominated

by the complexity of computing ∂K
∂P

whose costs for one iteration is O(pn2d2) for n = m.

The complexity is then linear in L and quadratic in n.

3.3 Algorithm

In the above subsections, we have reformulated the WDA optimization problem so as to make

it tractable. We have derived closed-form expressions of some elements of the gradient as

well as an automatic differentiation strategy for computing gradients of the transport plans

Tc,c′
with respects to P.

Now that all these partial derivatives are computed, we can compute the gradient

Gk = ∇P J (Pk, T(Pk)) at iteration k and apply classical manifold optimization tools such

as projected gradient of Schmidt (2008) or a trust region algorithm as implemented in

Manopt/Pymanopt (Boumal et al. 2014; Koep and Weichwald 2016). The latter toolbox

includes tools to optimize over the Stiefel manifold, notably automatic conversions from

Euclidean to Riemannian gradients. Algorithm 1 provide the steps of a projected gradient

approach for solving WDA. We noted in there that at each iteration, we need to compute all

the transport plans Tc,c′
, which are needed for computing Cb and Cw . Automatic differenti-

ation in the last steps of Algorithm 2 takes advantage of these transport plan computations

for calculating and storing partial derivatives needed for Eq. 13.

Algorithm 1 Projected gradient algorithm for WDA

Require: ΠΔ : projection on the Stiefel manifold

1: Initialize k = 0, P0

2: repeat

3: compute all the Tc,c′
as given in Eq. (8) by means of Algorithm 2

4: compute Cb and Cw

5: compute Eq. (11) for Pk

6: compute Eq. (12) for Pk

7: compute ∂Tk

∂P
using automatic differentiation based on Eqs. (13), (14) and (15)

8: compute gradient Gk = ∇P J (Pk , T(Pk ) using all above elements

9: compute descent direction Dk = ΠΔ(Pk − G) − Pk

10: linesearch on the step-size αk

11: Pk+1 ← ΠΔ(Pk + αkDk )

12: k ← k + 1

13: until convergence
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Algorithm 2 Sinkhorn–Knopp algorithm with automatic differentiation

Require: K = e
−λM

PXc ,PXc′ , L the number of iterations

1: Initialize k = 0, u0 = 1n ,
∂u0

j

∂P
= 0 for all j

2: compute
∂Ki, j

∂P
{store these gradients for computing ∂Tk

∂P
}

3: for k = 1 to L do

4: compute vk and uk as given in Eq. (5)

5: compute
∂vk

j

∂P
for all j {store these gradients for computing ∂Tk

∂P
}

6: compute
∂uk

j

∂P
for all j {store these gradients for computing ∂Tk

∂P
}

7: end for

output uk , v and all the gradients

From a computational complexity point of view, for each projected gradient iteration,

we have the following complexity, considering that all classes are composed of n samples.

For one iteration of the Sinkhorn–Knopp algorithm given in Algorithm 2, uk and vk are of

complexity O(n2) while {
∂vk

j

∂P
} j and {

∂uk
j

∂P
}n are both O(n2dp). In this algorithm, complexity

is dominated by the one of
∂Ki, j

∂P
which costs is O(n2d2 p), although it is computed only once.

In Algorithm 1, the costs of Cb and Cw are O(n2d2) and Eqs. (11) and (12) yields respectively

a complexity of O(pd2) and O(n2d2 p). Note that the cost of computing ∂Tk

∂P
is dominated

by those of {
∂vk

j

∂P
} j and {

∂uk
j

∂P
}n . Finally, the cost computing the sum in Gk = ∇P J (Pk, T(Pk)

achieves a global complexity of O(C2n2dp). In conclusion, our algorithm is quadratic in

both the number of samples in the classes and in the original dimension of the problem.

4 Discussions

4.1 Wasserstein discriminant analysis: local and global

As we have stated, WDA allows construction of both a local and global interaction of the

empirical distributions to compare. Globality naturally results from the Wasserstein distance,

which is a metric on probability measures, and as such it measures discrepancy between

distributions at whole level. Note however that this property would have been shared by

any other metric on probability measures. Locality comes as a specific feature of regularized

Wasserstein distance. Indeed as made clear by the solution in Eq. (4) of the entropy-smoothed

optimal transport problem, weights Ti j tend to be larger for nearby points with an exponential

decrease with respect to distance between Pxi and Px j ′ .

4.2 Regularized Wasserstein distance and Fisher criterion

Fisher criterion for measuring separability stands on the ratio of inter-class and intra-class

variability of samples. However, this intra-class variability can be challenging to evaluate

when information regarding probability distributions come only through empirical exam-

ples. Indeed, the classical (λ = ∞) Wasserstein distance of a discrete distribution with itself

is 0, as with any other metrics for empirical distributions. Recent result by Mueller and

Jaakkola (2015) also suggests that even splitting examples from one given class and com-

puting Wasserstein distance between resulting empirical distributions will result in arbitrary
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small distance with high probability. This is why entropy-regularized Wasserstein distance

plays a key role in our algorithm, as to the best of our knowledge, no other metrics on empirical

distributions would lead to relevant intra-class measures. Indeed, Wλ(PX, PX) = 〈P⊤P, C〉
with C =

∑

i, j Ti, j (xi − x j )(xi − x j )
T . Hence, since λ < ∞ ensures that mass of a given

sample is split among its neighbours by the transport map T, Wλ(PX, PX) is thus non-zero

and interestingly, it depends on a weighted covariance matrix C which, because it depends

on T, will put more emphasis on couples of neighbour examples.

More formally, we can show that minimizing Wλ(PX, PX) with respect to P induces a

neighbourhood preserving map P. This means that if an example i is closer to an example

j than an example k in the original space, this relation should be preserved in the projected

space. This implies that ‖Pxi − Px j‖2 should be smaller than ‖Pxi − Pxk‖2. Then, this

neighbourhood preservation can be enforced if Ki, j > Ki,k , which is equivalent to Mi, j <

Mi,k , implies Ti, j > Ti,k . Hence, since Wλ(PX, PX) =
∑

i, j Ti, j‖Pxi −Px j‖2
2, the inequality

Ti, j > Ti,k means that examples that are close in the input space are encouraged to be close

in the projected space. We show next that there exists situation in which this condition is

guaranteed.

Proposition 1 Given T the solution of the entropy-smoothed optimal transport problem, as

defined in Eq. (3), between the empirical distribution PX on itself, ∀i, j, k:

∃α ≥ 1, Ki, j > αKi,k ⇒ Ti, j > Ti,k

Proof Because, we are interested in transporting PX on PX, the resulting matrix K is sym-

metric non-negative. Then, according to Lemma 1 (see “Appendix”), the solution matrix

T is also symmetric. Owing to this symmetry and the properties of the Sinkhorn–Knopp

algorithm, it can be shown (Knight 2008) that there exists a non-negative vector v such

that Ti, j = Ki, jviv j . In addition, because this vector is the limit of a convergent sequence

obtained by the Sinkhorn–Knopp algorithm, it is bounded. Let us denoted as A, a constant

such that ∀i, vi ≥ A. Furthermore, in Lemma 2 (see “Appendix”), we show that ∀i, 1 ≥ vi .

Now, it is easy to prove that

A >
Ki,k

Ki, j

�⇒ v j

Ki,k

Ki, j

�⇒ Ki, jv j − Ki,k > 0

and because ∀ j, v j ≤ 1 and by definition Ti, j = vi Ki, jv j , we thus have Ki, jv j − Ki,kvk >

0 �⇒ Ti, j > Ti,k . In Proposition 1 we take α = 1
A

since A < 1. ⊓⊔

Note that this proposition provides us with a guarantee on a ratio
Ki,k

Ki, j
between examples

that induces preservation of neighbourhood. However, the constant A we exhibit here is

probably loose and thus, a larger ratio may still preserve locality.

4.3 Connection to Fisher discriminant analysis

We show next that WDA encompasses Fisher Discriminant analysis in the limit case where

λ approaches 0. In this case, we can see from Eq. (3) that the matrix T does not depends on

the data. The solution T for each Wasserstein distance is the matrix that maximizes entropy,

namely the uniform probability distribution T = 1
nm

1n,m . The cross-covariance matrices

become thus

Cc,c′
=

1

ncnc′

∑

i, j

(xc
i − xc′

j )(xc
i − xc′

j )T
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and the matrices Cw and Cb correspond then to intra- and inter-class covariances as used in

FDA. Since these matrices do not depend on P, the optimization problem (1) boils down to

the usual Rayleigh quotient which can be solved using a generalized eigendecomposition of

C−1
w Cb as in FDA. Note that WDA is equivalent to FDA when the classes are balanced (in

the unbalanced case one needs to weight the covarainces with the class ratios). Again, we

stress out that beyond this limit case and when λ > 0, the smoothed optimal transport matrix

T promotes cross-covariance matrices that are estimated from local relations as illustrated in

Fig. 1.

Following this connection, we want to stress again the role played by the within-class

Wasserstein distances in WDA. At first, from a theoretical point of view, optimizing the ratio

instead of just maximizing the between-class distance allows us to encompass well-known

method such as FDA. Secondly, as we have shown in the previous subsection, minimizing

the within-class distance provides interesting features such as neighbourhood preservation

under mild condition.

Another intuitive benefit of minimizing the within-class distance is the following. Suppose

we have several projection maps that lead to the same optimal transport matrix T. Since

Wλ(PX, PX) =
∑

i, j Ti, j‖Pxi − Px j‖2
2 for any P, minimizing Wλ(PX, PX) with respect

to P means preferring the projection map that yields to the smaller weighted (according

to T) pairwise distance of samples in the projected space. Since for an example i , {Ti, j } j

are mainly non-zero among neighbours of i , minimizing the within-class distance favours

projection maps that tend to tighly cluster points in the same class.

4.4 Relation to other information-theoretic discriminant analysis

Several information-theoretic criteria have been considered for discriminant analysis and

dimensionality reduction. Compared to Fisher’s criteria, these ones have the advantage of

going beyond a simple sketching of the data pdf based on second-order statistics. Two recent

approaches are based on the idea of maximizing distance of probability distributions of data

in the projection subspaces. They just differ in the choice of the metrics of pdf (one being a

L2 distance (Emigh et al. 2015) and the second one being a Wasserstein distance (Mueller

and Jaakkola 2015)). While our approach also seeks at finding projection that maximizes pdf

distance, it has also the unique feature of finding projections that preserves neighbourhood.

Other recent approaches have addressed the problem of supervised dimensionality reduction

algorithms still from an information theoretic learning perspective but without directly max-

imizing distance of pdf in the projected subpaces. We discuss two methods to which we have

compared with in the experimental analysis. The approach of Suzuki and Sugiyama (2013),

denoted as LSDR, seeks at finding a low-rank subspace of inputs that contains sufficient

information for predicting output values. In their works, the authors define the notion of

sufficiency through conditional independence of the outputs and the inputs given the pro-

jected inputs and evaluate this measure through squared-loss mutual information. One major

drawback of their approach is that they need to estimate a density ratio introducing thus

an extra layer of complexity and an error-prone task. Similar idea has been investigated by

Tangkaratt et al. (2015) as they used quadratic mutual information for evaluating statistical

dependence between projected inputs and outputs (the method has been named LSQMI).

While they avoid the estimation of density ratio, they still need to estimate derivatives of

quadratic mutual information. Like our approach, the method of Giraldo and Principe (2013)

avoids density estimation for performing supervised metric learning. Indeed, the key aspect

of their work is to show that the Gram matrix of some data samples can be related to some

information theoretic quantities such as conditional entropy without the need of estimating
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pdfs. Based on this finding, they introduced a metric learning approach, coined CEML, by

minimizing conditional entropy between labels and projected samples. While their approach

is appealing, we believe that a direct criterion such as Fisher’s is more relevant and robust

for classification purposes, as proved in our experiments.

4.5 Wasserstein distances and machine learning

Wasserstein distances are mainly derived from the theory of optimal transport (Villani 2008),

and provide a useful way to compare probability measures. Its practical deployment in

machine learning problems has been alleviated thanks to regularized versions of the origi-

nal problem (Cuturi 2013; Benamou et al. 2015). The geometry of the space of probability

measures endowed with the Wasserstein metric allows to consider various objects of interest

such as means or barycenters (Cuturi and Doucet 2014; Benamou et al. 2015), and has led to

generalization of PCA in the space of probability measures (Seguy and Cuturi 2015). It has

been considered in the problem of semi-supervised learning (Solomon et al. 2014), domain

adaptation (Courty et al. 2016), or definition of loss functions (Frogner et al. 2015). More

recently, it has also been considered in a subspace identification problem for analyzing the

differences between distributions (Mueller and Jaakkola 2015), but contrary to our approach,

they only consider projections to univariate distributions, and as such do not permit to find

subspaces with dimension > 1. More recent works have proposed to use Wasserstein for mea-

suring similarity between documents in Huang et al. (2016) and propose to learn a metric

that encodes class information between samples. Note that in our work we use Wasserstein

between the empirical distributions and not the training samples yielding a very different

approach.

5 Numerical experiments

In this section we illustrate how WDA works on several learning problems. First, we evaluate

our approach on a simple simulated dataset with a 2-dimensional discriminative subspace.

Then, we benchmark WDA on MNIST and Caltech datasets with some pre-defined hyper-

parameter settings for methods having some. Unless specified and justified, for LFDA and

LMNN, we have set the number of neighours to 5. For CEML, Gaussian kernel width σ has

been fixed to
√

p, which is the value used by Giraldo and Principe (2013) across all their

experiments. For WDA, we have chosen λ = 0.01 except for the toy problem. The final

experiment compares performance of WDA and competitors on some UCI dataset problems,

in which relevant parameters have been validated.

Note that in the spirit of reproducible research the code will be made available to the

community and the Python implementation of WDA is available as part of the POT for

Python Optimal Transport Toolbox (Flamary and Courty 2017) on Github.1

5.1 Practical implementation

In order to make the method less sensitive to the dimension and scaling of the data, we propose

to use a pre-computed adaptive regularization parameter for each Wasserstein distances in (1).

Denote as λc,c′ such parameter yielding thus to a distance Wλc,c′ . In practice, we initialize P

with the PCA projection, and define λc,c′ as λc,c′ = λ( 1
ncnc′

∑

i, j ‖Pxc
i −Pxc′

j ‖2)−1 between

1 Code : https://github.com/rflamary/POT/blob/master/ot/dr.py.
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Fig. 2 Illustration of subspace learning methods on a nonlinearly separable 3-class toy example of dimension

d = 10 with 2 discriminant features (shown on the upper left) and 8 Gaussian noise features. Projections onto

p = 2 of the test data are reported for several subspace estimation methods

class c and c′. These values are computed a priori and fixed in the remaining iterations. They

have the advantage to promote a similar regularization strength between inter and intra-class

distances.

We have compared our WDA algorithms to some classical dimensionality reduction algo-

rithms like PCA and FDA, to some locality preserving methods such as LFDA and LMNN

and to some recent mutual information-based supervised dimensionality and metric learning

algorithms such as LSDR and CEML mentioned above. For the last three methods, we have

used the author’s implementations. We have also considered LSQMI as a competitor but did

not report its performances as they were always worse than those of LSDR.

5.2 Simulated dataset

This dataset has been designed for evaluating the ability of a subspace method to uncover

a discrimative linear subspace when the classes are non-linearly separable. It is a 3-class

problem in dimension d = 10 with two discriminative dimensions, the remaining 8 containing

Gaussian noise. In the 2 discriminant features, each class is composed of two modes as

illustrated in the upper left part of Fig. 2.

Figure 2 also illustrates the projection of test samples in two-dimensional subspaces

obtained from the different approaches. We can see that for this dataset WDA, LDSR and

CEML lead to a good discriminant subspace. This illustrate the importance of estimating

relations between samples in the projected space as opposed to the original space as done

in LMNN and LFDA. Quantitative results are illustrated in Fig. 3 (left) where we reported

prediction error for a K-Nearest-Neighbors classifier (KNN) for n = 100 training examples

and nt = 5000 test examples. In this simulation, all prediction errors are averaged over

20 data generations and the neighbors parameters of LMNN and LFDA have been selected

empirically to maximize performances (respectively 5 for LMNN and 1 for LFDA). We can
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Fig. 3 Prediction error on the simulated dataset (left) with projection dimension fixed to p = 2 and error for

varying K in the KNN classifier. (right) evolution of performance with different projection dimension p and

best K in the KNN classifier
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Fig. 4 Comparison of WDA performances on the simulated dataset (left) as a function of λ. (right) as a

function of λ and with different number of fixed point iterations

see in the left part of the figure that WDA, LDSR and CEML and to a lesser extent LMNN

can estimate the relevant subspace, when the optimal dimension value is given to them,that

is robust to the choice of K . Note that slightly better performances are achieved by LSDR

and CEML. In the right plot of Fig. 3, we show the performances of all algorithms when

varying the dimension of the projected space. We note that WDA, LMNN, LSDR and LFDA

achieve their best performances for p = 2 and that prediction errors rapidly increase as p is

misspecified. Instead, CEML performs very well for p ≥ 2. Being sensitive to the correct

projected space dimensionality can be considered as an asset, as typically this dimension is to

be optimized (e.g by cross-validation), making it easier to spot the best dimension reduction.

At the contrary, CEML is robust to projected space dimensionality mis-specification at the

expense of under-estimating the best reduction of dimension.

In the left plot for Fig. 4, we illustrate the sensitivity of WDA w.r.t. the regularization

parameter λ. WDA returns equivalently good performance on almost a full order of magnitude

of λ. This suggests that a coarse validation can be performed in practice. The right panel of

Fig. 4 shows the performance of the WDA for different number of inner Sinkhorn iterations

L . We can see that even if this parameter leads to different performances for large values of

λ, it is still possible find some λ that yield near best performance even for small value of L .
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Fig. 5 Averaged prediction error on MNIST with projection dimension (left) p = 10. (right) p = 20. In

these plots, LSQMID has been omitted due to poor performances

5.3 MNIST dataset

Our objective with this experiment is to measure how robust our approach is with only few

training samples despite high-dimensionality of the problem. To this end, we draw n = 1000

samples for training and report the KNN prediction error as a function of k for the dif-

ferent subspace methods when projecting onto p = 10 and p = 20 dimensions (resp.

left and right plots of Fig. 5). The reported scores are averages of 20 realizations of the

same experiment. We also limit the analysis to L = 10 as the number of Sinkhorn fixed

point iterations and λ = 0.01. For both p, WDA finds a better subspace than the original

space which suggests that most of the discriminant information available in the training

dataset has been correctly extracted. Conversely, the other approaches struggle to find a

relevant subspace in this configuration. In addition to better prediction performance, we

want to emphasize that in this configuration, WDA leads to a dramatic compression of the

data from 784 to 10 or 20 features while preserving most of the discriminative informa-

tion.

To gain a better understanding of the corresponding embedding, we have further projected

the data from the 10-dimensional space to a 2-dimensional one using t-SNE (Van der Maaten

and Hinton 2008). In order to make the embeddings comparable, we have used the same

initializations of t-SNE for all methods. The resulting 2D projections on the test samples

are shown in Fig. 6. We can clearly see the overfitting behaviour of FDA, LFDA, LMNN

and LDSR that separate accurately the training samples but fail to separate the test samples.

Instead, WDA is able to disentangle classes in the training set while preserving generalization

abilities.

5.4 Caltech dataset

In this experiment, we use a subset described by Donahue et al. (2014) of the Caltech-256

image collection (Griffin et al. 2007). The dataset uses features that are the output of the

DeCAF deep learning architecture (Donahue et al. 2014). More precisely, they are extracted

as the sparse activation of the neurons from the 6th fully connected layer of a convolutional

network trained on ImageNet and then fine-tuned for the considered visual recognition task.

As such, they form vectors of 4096 dimensions and we are looking for subspace as small as

15. In this setting, 500 images are considered for training, and the remaining portion of the

dataset for testing (623 images). There are 9 different classes in this dataset. We examine
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Fig. 6 2D tSNE of the MNIST samples projected on p = 10 for different approaches. (first and third lines)

training set (second and fourth lines) test set

in this experiment how the proposed dimensionality reduction performs when changing the

subspace dimensionality. For this problem, the regularization parameter λ of WDA was

empirically set to 10−2. The K in KNN was set to 3 which is a common standard setting

for this classifier. The reported results reported in Fig. 7 are averaged over 10 realizations of

the same experiment. When p ≥ 5, WDA already finds a subspace which gathers relevant

discriminative information from the original space. In this experiment, LMNN yields to a

better subspace for small p values while WDA is the best performing method for p ≥ 6.

Those results highlight the potential interest for using WDA as linear dimensionality reduction

layers in neural-nets architecture.
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Fig. 7 Averaged prediction error on the Caltech dataset along the projection dimension. In these plots,

LSQMID has been omitted due to poor performances

Table 1 Averaged running time in seconds of the different algorithms for computing the learned subspaces

Datasets PCA FDA LFDA LMNN LSDR CEML WDA

Mnist (10) 0.39(0.1) 0.69(0.2) 0.55(0.4) 20.55(14.2) 29813(5048) 87.02(8.7) 6.28(0.3)

Mnist (20) 0.38(0.0) 0.58(0.0) 0.54(0.2) 18.27(17.0) 60147(11176) 90.22(8.8) 6.15(0.1)

Caltech (14) 0.53(0.3) 21.38(6.1) 11.43(2.0) 39.56(6.3) 140776(53036) 14.59(7.6) 5.29(0.1)

5.5 Running-time

For the above experiments on MNIST and Caltech, we have also evaluated the running times

of the compared algorithms. The LFDA, LMNN, LDSR and CEML codes are the Matlab

code that have been released by the authors. Our WDA code is Python-based and relies on

the POT toolbox. All these codes have been runned on a 16-core Intel Xeon E5-2630 CPU,

operating at 2.4 GHz with GNU/Linux and 144 Gb of RAM.

Running times needed for computing learned subspaces are reported in Table 1. We first

remark that LSDR is not scalable. For instance, ot needs several tenths of hour for computing

the projection from 4096 to 14 dimensions on Caltech. More generally, we can note that our

WDA algorithm scales well and is cheaper to compute than LMNN and is far less expensive

than CEML on our machine. We believe our WDA algorithm better leverages multi-core

machines owing the large amount of matrix-vector multiplications needed for computing

Sinkorhn iterations.

5.6 UCI datasets

We have also compared the performances of the dimensionality reduction algorithms on

some UCI benchmark datasets (Lichman 2013). The experimental setting is similar to the

one proposed by the authors of LSQMI (Tangkaratt et al. 2015). For these UCI datasets, we

have appended the original input features with some noise features of dimensionality 100.

We have split the examples 50–50% in a training and test set. Hyper-parameters such as the
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Table 2 Average test errors over 20 trials on UCI datasets

Datasets Orig. PCA FDA LFDA LMNN LSDR LSQMI CEML WDA

Wines 24.33 26.57 37.87 29.21 32.81 32.81 46.29 15.34 16.91

Iris 42.07 40.60 19.27 25.13 21.67 37.93 56.27 20.87 20.87

Glass 54.01 58.16 57.45 59.53 54.25 50.85 65.42 34.86 45.99

Vehicles 58.68 57.26 48.57 48.25 40.84 51.86 65.09 48.46 51.13

Credit 28.90 25.57 18.67 17.69 23.73 24.71 39.01 17.65 17.39

Ionosphere 26.14 26.90 29.63 27.64 30.80 31.08 36.42 22.87 20.40

Isolet 17.50 17.60 15.12 13.96 11.13 13.33 21.76 30.19 14.41

Usps 7.59 7.66 11.63 12.76 6.05 8.77 14.83 10.15 6.50

Mnist 17.26 14.16 33.85 29.92 13.95 26.53 60.05 24.68 13.07

Caltechpca 23.39 13.93 12.03 18.19 11.55 36.08 100.00 13.65 11.45

Aver. Rank 5.4 5.5 5.2 5.2 3.4 5.7 8.9 3.5 2.2

In bold, the lower test error accross algorithms. Underlined averaged test errors that are statistically non-

significantly different according to a signrank test with p = 0.05. Result of LSQMI on caltech has not been

reported due to lack of convergence after few days of computation

number of neighbours for the KNN and and the dimensionality of the projection has been

cross-validated on the training set and choosed respectively among the values [1 : 2 : 19]
(in Matlab notation) and [5, 10, 15, 20, 25]. Splits have been performed 20 times. Note that

we have also added experiments with Isolet, USPS, MNIST and Caltech datasets under this

validation setting but without the additional noisy features. Table 2 presents the performance

of competing methods. We note that our WDA is more robust than all other methods and

is able to capture relevant information in the learned subspaces. Its average ranking on all

datasets is 2.2 while the second best, LMNN is 3.4. There is only one dataset (vehicles) for

which WDA performs significantly worse than top methods. Interestingly LSDR and LSQMI

seem to be less robust than LMNN and FDA, against which they have not been compared in

the original paper (Tangkaratt et al. 2015).

6 Conclusion

This work presents the Wasserstein Discriminant Analysis, a new and original linear dis-

criminant subspace estimation method. Based on the framework of regularized Wasserstein

distances, which measure a global similarity between empirical distributions, WDA operates

by separating distributions of different classes in the subspace, while maintaining a coherent

structure at a class level. To this extent, the use of regularization in the Wasserstein formula-

tion allows to effectively bridge a gap between a global coherency and the local structure of

the class manifold. This comes at a cost of a difficult optimization of a bi-level program, for

which we proposed an efficient method based on automatic differentiation of the Sinkhorn

algorithm. Numerical experiments show that the method performs well on a variety of fea-

tures, including those obtained with a deep neural architecture. Future work will consider

stochastic versions of the same approach in order to enhance further the ability of the method

to handle large volume of high-dimensional data.
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Fig. 8 Illustration of the evolution of the transport for two classes c = 1 and c′ = 2

Appendix A: Illustration of the transport Tc,c
′

In this Section, we provide intuition on how the transport Tc,c′
between class c and c′ behaves

in 2D toy problem. Remind that this matrix plays an essential role on how the covariance

matrix C is estimated in Eq. (6).

In this example, illustrated in Fig. 8, two bi-modal Gaussian distributions are sampled

to produce two distributions representing two classes. We illustrate in Fig. 9 the transport

T1,2 (inter-class) and {T1,1T2,2} (intra-class). The corresponding transport matrices are either

displayed in matrix form as inserts, or as connections between the samples. Those connections

have a width parametrized by the magnitude of the connection (i.e. a small ti, j value will be

displayed as a very thin connection). We note that for visualization purpose, the magnitude

of the T elements displayed in matrix form are normalized by the the largest magnitude in

the matrix. The transport maps can be observed in Fig. 9 for three different values of the

λ parameter (λ = 1, 0.5, 0.1). One can notice the locality induced by large values of λ,

which allows to concentrate the connections on specific modes of the distributions. When

λ is smaller, inter-modes connections start to appear, which allows to consider the data

distributions at a larger scale when computing C. Regarding the inter-class transport T1,2,

one can also observe the specific relations induced by the optimal transport maps, that do not

associate modes together, but rather dispatch one mode of each class onto the two modes of

the other.

Appendix B: Implicit function gradient computation

In this section, we propose to compute this Jacobian based on the implicit function theorem.
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Fig. 9 Illustration of the evolution of the transport for two classes for three values of the λ parameter (first

row) λ = 1 (second row) λ = 0.5 (last row) λ = 0.1. The left column illustrates inter-class relations, while

the right column illustrates intra-class relations
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For clarity’s sake, in this subsection we will not use the c, c′ indices and T represents an

optimal transport matrix between n and m samples projected with P. First, we express the

function T(P) as an implicit function using the optimality conditions of the equation defining

the optimal T in Eq. 6. The Lagrangian of this problem can be expressed as (Cuturi 2013):

L =
∑

i, j

(

ti, j mi, j (P) + ti, j log(ti, j )
)

+
∑

i

αi

⎛

⎝

∑

j

ti, j − ri

⎞

⎠ +
∑

j

β j

(

∑

i

ti, j − c j

)

where α and β are the dual variables associated to the sum constraints, mi, j = ‖Pxi −Pz j‖2

and in our particular case ri = 1
n

and c j = 1
m

,∀i, j . One can define an implicit fonction

g(P, T,α,β) : R
p×d+n×m+n+m → R

n×m+n+m from the above lagrangian by computing

its gradient w.r.t. (T,α,β) and setting it to zero owing to optimality. The implicit function

theorem gives us the following relation:

∇Pg =
∂g

∂P
+

∂g

∂T

∂T

∂P
+

∂g

∂α

∂α

∂P
+

∂g

∂β

∂β

∂P
= 0

which can be reformulated as

⎡

⎢

⎢

⎢

⎢

⎣

∂T

∂P
∂α

∂P
∂β

∂P

⎤

⎥

⎥

⎥

⎥

⎦

= −E−1 ∂g

∂P
, with E =

[

∂g

∂T

∂g

∂α

∂g

∂β

]

(16)

when the function is well defined and E is invertible. The derivative ∂T
∂P

can be deduced from

the upper part of the term on the left. Note that all the partial derivatives in Eq. (16) are easy

to compute. Additionally, E is a (pd + nm + n + m) × (pd + nm + n + m) matrix which

is very sparse, as shown in the sequel. However, assuming for instance that the number of

points in each class m = n is the same, using this technique would amount to solve a large

n2 × n2 linear system with a worst case complexity of O(n6).

We now detail the computation of the gradient using the implicit function theorem. Note

that we use the notation of the paper and that we want to compute the Jacobian ∂T
∂P

. First

we compute the implicit function g(P, T,α,β) : R
p×d+n×m+n+m → R

n×m+n+m from the

Lagrangian function given in the paper by computing the OT problem optimality conditions:

∂L

∂tk,l

= λ(xk − zl)
⊤P⊤P(xk − zl) + log(tk,l)

+ 1 + αk + βl = 0

∂L

∂αi

=
∑

j

ti, j − ri = 0

∂L

∂β j

=
∑

i

ti, j − c j = 0
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∀k, l, i, j . The Jacobian ∂T
∂P

can be computed using the implicit function by solving the

following linear problem:

⎡

⎢

⎢

⎢

⎢

⎣

∂T

∂P
∂α

∂P
∂β

∂P

⎤

⎥

⎥

⎥

⎥

⎦

= −E−1 ∂g

∂P
, with E =

[

∂g

∂T

∂g

∂α

∂g

∂β

]

(17)

First t = vec(T) is vectorized as in Matlab with column major format.

∂g

∂T
=

⎡

⎣

diag( 1
t
)

InIn, . . . , In

L1
m,nL2

m,n, . . . , Lm
m,n

⎤

⎦ (18)

where Lk
m,n is R

m×n matrix of 0 with all coefficients on line k equal to 1.

∂g

∂α
=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

In

In

· · ·
In

0n,n

0m,n

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∂g

∂β
=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

L1
m,n

⊤

L2
m,n

⊤

· · ·
Lm

m,n
⊤

0n,n

0m,n

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(19)

Now we compute the last element
∂g
∂P

using a vectorization p = vec(P) and Δi, j = xi − z j

First note that

∂x⊤P⊤Px

∂pm,l

= 2xl

∑

i

xi pm,i = 2xl(P(m, :)x)

which leads to the following Jacobian

∂g

∂P
= 2λ

⎡

⎢

⎢

⎢

⎢

⎣

Δ⊤
1,1 ⊗ Δ⊤

1,1P⊤

Δ⊤
2,1 ⊗ Δ⊤

2,1P⊤

· · ·
Δ⊤

n,m ⊗ Δ⊤
n,mP⊤

0n+m,dp

⎤

⎥

⎥

⎥

⎥

⎦

(20)

where the upper part of the matrix can be seen as a column-only Kroenecker product between

Δ and PΔ.

All the elements are now in place for the linear system (17), which can be solved using

any efficient method for sparse linear system.

Appendix C: Lemmas

Lemma 1 If the matrix M ∈ R
n×n is non-negative symmetric then the matrix T defined as

in

argminT∈Un,n
λ〈T, M〉 − Ω(T)

is also symmetric non-negative. Here, Ω is the entropy of the matrix T
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Proof As this optimization problem is strictly convex for λ < ∞, and thus admits an unique

solution. We show in the sequel that T⊤ achieves the same objective value than T and thus

T⊤ is also a minimizer, which naturally leads to T⊤ = T.

First note that the constraints are symmetric thus, T⊤ is feasible. In addition because the

entropy only depends on single entries of the matrix hence Ω(T) = Ω(T⊤). Finally,

〈T⊤, M〉 =
∑

i, j

Mi, j T ⊤
i, j =

∑

i, j

Mi, j T j,i =
∑

i, j

M j,i T j,i

= 〈T, M〉

which proves that both matrices lead to the same objective values. ⊓⊔

Lemma 2 Suppose that T is the solution of an entropy-smoothed optimal transport problem,

with matrix K being symmetric and such that ∀i, Ki,i = 1. There exists a vector v such that

∀i, j, Ti, j = Ki, j vi v j and ∀i, vi ≤ 1.

Proof Existence of the v such that Ti, j = Ki, j vi v j comes from the fact that the optimization

problem can be solved using the Sinkhorn–Knopp algorithm. Through the constraints of the

optimal transport problem, we have

∀i, j Ti, j = Ki, j vi v j ≤
1

n
.

When, i = j , as Ki,i = 1, we have v2
i ≤ 1

n
and thus vi ≤ 1. ⊓⊔
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