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Abstract

In the context of transition towards sustainable, cost-efficient and reliable energy systems, the im-
provement of current energy and reserve dispatch models is crucial to properly cope with the un-
certainty of weather-dependent renewable power generation. In contrast to traditional approaches,
distributionally robust optimization offers a risk-aware framework that provides performance guar-
antees when the distribution of uncertain parameters is not perfectly known. In this paper, we
develop a distributionally robust chance-constrained optimization with a Wasserstein ambiguity
set for energy and reserve dispatch, and provide an exact reformulation. While preserving the
exactness, we then improve the model by enforcing physical bounds on the uncertainty space, re-
sulting in a bilinear program. We solve the resulting bilinear model with an iterative algorithm
which is computationally efficient and has convergence guarantee. A thorough out-of-sample anal-
ysis is performed to compare the proposed model against a scenario-based stochastic program. We
also compare the performance of the proposed exact reformulation against an existing approxi-
mate technique in the literature, built upon a conditional-value-at-risk measure. We eventually
show that the proposed physically-bounded exact reformulation outperforms the other methods by
achieving a cost-optimal yet reliable trade-off between reserve procurement and load curtailment.

Keywords: OR in energy, Distributionally robust chance-constrained optimization, Energy and
reserve dispatch, Physically-bounded exact reformulation, Out-of-sample analysis.

1. Introduction

The growing integration of renewable energy sources with variable and uncertain production,
e.g., wind and solar units, in power systems increases the need for operational flexibility (NERC,
2010). To cope with such variability and uncertainty, the power system operators reserve in practice
a fraction of the capacity of flexible resources, such as hydro and fast-start gas-fired generators, in
advance, e.g., in day ahead. This reserved capacity, if needed, will be exploited later in the real-
time operation when the uncertainty is realized. This gives rise to an “energy and reserve dispatch”
optimization problem, whose objective is to cost-efficiently dispatch the power system with high
share of renewable energy sources for the following day (Morales et al., 2009, 2014; Papavasiliou
et al., 2011).

In the current real-world electricity markets, two distinct paradigms for energy and reserve
dispatch exist (González et al., 2014; Domı́nguez et al., 2019). The first one, which is consistent
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with the current regulatory policy of European electricity markets, is to design two separate day-
ahead markets for energy and reserve. In this paradigm, the reserve market is cleared independently,
before or after the energy market (Abbaspourtorbati & Zima, 2016; Toubeau et al., 2018). The
second approach is to design a single day-ahead market for energy and reserve, which is aligned
with the current regulatory policy of the U.S. electricity markets (Martin et al., 2015). This market
determines the energy and reserve dispatch jointly in a co-optimization manner.

The common practice in both aforementioned approaches is to define a minimum reserve re-
quirement for the whole system or for each area, while using a deterministic dispatch model with
a single-point forecast of renewable power generation. However, the growing penetration of renew-
ables challenges this practice, requiring a proper incorporation of uncertainty into the energy and
reserve dispatch problem (Hobbs & Oren, 2019; Litvinov et al., 2019). Following the U.S. practice,
this paper considers a co-optimization approach for energy and reserve dispatch, improved by a
probabilistic characterization of the uncertainty.

The probabilistic energy and reserve dispatch problem has been extensively addressed in the
literature, where the uncertainty is modeled using scenario-based stochastic programming (Morales
et al., 2009; Papavasiliou et al., 2011), robust optimization (Bertsimas et al., 2013; Zugno & Conejo,
2015), or chance-constrained programming (Bienstock et al., 2014; Lubin et al., 2016). Any in-
adequate representation of uncertainty in this probabilistic optimization problem leads to a sub-
optimal solution in terms of the dispatch of flexible resources, and therefore an increase in the
total operational cost of the system (Jonsson et al., 2010). The challenge is that the true probabil-
ity distribution of the renewable power generation uncertainty is not necessarily known (Pinson,
2013; Bottieau et al., 2020). Therefore, any uncertainty modeling technique relying on a specific
distribution may fail in achieving the optimal dispatch of flexible resources.

An appealing technique that has been recently developed for modeling uncertainty is Distri-
butionally Robust Optimization (DRO), which enables incorporating a family of potential dis-
tributions of the uncertainty, the so-called ambiguity set, into the problem, and solving it in a
computationally tractable manner. An extensive technical survey for DRO is available in Shapiro
(2017), Kuhn et al. (2019), and Rahimian & Mehrotra (2019). An extension of DRO to a multi-
stage stochastic program is provided in Shapiro (2021). DRO provides the decision-maker with a
degree of freedom to impose her risk attitude by varying the size of the ambiguity set. It can also
be seen as a proxy representing the confidence level of the decision-maker to her knowledge about
the underlying uncertainty. Under two extreme cases, i.e., the smallest ambiguity set containing a
unique distribution and the largest one containing all potential distributions, the outcomes of DRO
would be similar to those in a scenario-based stochastic program and in a robust optimization, re-
spectively. The choice for the size of the ambiguity set between those two extreme cases enables
the decision-maker to take a risk attitude in between. In addition, DRO generally outperforms
scenario-based stochastic programming and robust optimization due to their inherent shortcom-
ings (Ordoudis et al., 2021). On the one hand, scenario-based stochastic programming provides
poor out-of-sample performance unless the number of scenarios is very high, which in turn, in-
creases the computational burden. On the other hand, robust optimization provides a conservative
solution for a given uncertainty set. It is also challenging to describe all potential distributions
using a single uncertainty set. Therefore, our objective in this paper is to develop an efficient and
computationally tractable distributionally robust energy and reserve dispatch model.

Within the DRO framework, it is desirable to incorporate the available historical data of un-
certainty realization as much as possible within the model, aiming at making data-driven dispatch
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decisions. In the literature, two distinct paradigms for DRO exist, which differ on how the his-
torical data are embedded. The first one is the so-called moment-based DRO (Delage & Ye, 2010;
Wiesemann et al., 2014), which defines the ambiguity set according to the moments, e.g., mean and
covariance, achieved from the historical data1. The shortcoming is that the historical data may not
be used efficiently, since the whole historical data are represented via moments only. For example,
any new additional data samples will not be exploited for improving energy and reserve dispatch
decisions if they do not modify the estimation of moments. The second paradigm is the metric-
based DRO where the ambiguity set encompasses all distributions, whose probability distance from
an empirical distribution including the historical data is lower than or equal to a predefined value,
called radius. Different probability measures exist for capturing the distance between distributions,
e.g., the Wasserstein distance (Kantorovich & Rubinshtein, 1958) and Kullback-Leibler divergence
(Hu & Hong, 2013). The advantages of Wasserstein distance in the metric-based DRO over other
options have been discussed in Mohajerin Esfahani & Kuhn (2018) and Kuhn et al. (2019). Unlike
the moment-based DRO, the metric-based one takes the advantage of existing additional data,
but at the potential cost of increased computational burden. In the metric-based DRO, the power
system operator may view the radius of the ambiguity set as a tuning parameter to adjust her
risk attitude. For instance, a relatively large value for radius allows considering more potential
distributions for renewable power generation uncertainty, resulting in a more conservative dispatch
solution.

Furthermore, we model each probabilistic constraint2 of the energy and reserve dispatch opti-
mization problem in the form of a Distributionally Robust Chance Constraint (DRCC). The reasons
are twofold: The probabilistic constraints make the optimization problem infinite-dimensional and
therefore computationally intractable. By using the chance-constrained programming, the resulting
optimization problem becomes tractable. Second, each DRCC allows the violation of the underly-
ing probabilistic constraint up to a predefined extent for the worst-case distribution, ignoring the
recourse actions and their potential cost. This brings an extra degree of freedom for the decision-
maker to impose her risk attitude by setting a violation probability for each probabilistic constraint
a priori. This will result in a metric-based distributionally robust chance-constrained energy and
reserve dispatch optimization problem with Wasserstein distance, which is the focus of this paper.

Several works exist in the literature that use metric-based distributionally robust chance-
constrained programs for power system applications, e.g., Duan et al. (2018); Guo et al. (2019);
Poolla et al. (2020) and Ordoudis et al. (2021). To the best of our knowledge, all these works ap-
proximate DRCCs, e.g., using a Conditional Value-at-Risk (CVaR) reformulation, as proposed by
Zymler et al. (2013) and Mohajerin Esfahani & Kuhn (2018). This may result in a sub-optimal or an
over-conservative solution. Our main contribution is to reformulate DRCCs within the underlying
energy and reserve dispatch problem in an exact manner, resulting in optimal dispatch decisions.
In the following, we explain our methodological steps, and further clarify the contributions of this
paper.

Following Chen et al. (2018) and Xie (2021), we first provide an exact reformulation for the
worst-case expectation in the objective function and for all DRCCs. The resulting model is a

1We refer to Zhang et al. (2017); Zhao & Jiang (2018); Mieth & Dvorkin (2018); Pourahmadi et al. (2020) for
various applications of moment-based DRO to different problems in power systems. This approach has also been
widely applied in other research disciplines – see, for example, Basciftci et al. (2021); Shehadeh & Padman (2021);
Xin & Goldberg (2021).

2By probabilistic constraints, we refer to those operational constraints within the model that include uncertain
parameters.
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mixed-integer linear program (MILP). While keeping the exact reformulation, we improve the
proposed model by including the physical bounds of uncertain parameters, the so-called support.
For this purpose, we limit the renewable power dispatch to lie within zero and the installed capacity
of the corresponding renewable energy unit. We provide a stylized illustrative example, showing
the importance of including these additional limits. We revisit the exact reformulation process for
including support, resulting in a bilinear program, instead of the MILP model without support. We
solve the resulting bilinear model using an iterative algorithm, which is similar to the one in Zymler
et al. (2013). Our various numerical experiments show that the algorithm is computationally
efficient and converges to a solution, although a theoretical guarantee for convergence to optimality
does not exist. We provide an extensive numerical convergence analysis based on a case study that
allows us to quantify the gap between the optimal solution obtained by the iterative algorithm
and that achieved by the non-linear solver IPOPT (Wachter & Biegler, 2006), which serves as a
benchmark in this paper.

Finally, we provide a thorough numerical analysis based on an extensive out-of-sample simu-
lation to compare different alternatives for DRCC reformulation, including (i) the CVaR approx-
imation as proposed in Zymler et al. (2013), (ii) the exact MILP reformulation without support
as proposed in Chen et al. (2018) and Xie (2021), and (iii) our proposed exact physically-bounded
bilinear formulation. Such a comparison is extended by taking into account the scenario-based
stochastic programming as an additional alternative technique for modeling renewable power gen-
eration uncertainty.

As our main finding, we show that our proposed physically-bounded DRO model with the
exact reformulation outperforms all other techniques in terms of the total expected operational
cost of the system and its standard deviation. Furthermore, our numerical analysis stresses the
importance of incorporating the physical bounds of uncertain parameters in order to fully leverage
the potential benefits of the DRO approach.

Notation: In this paper, vectors are represented by bold lower cases and matrices are distinguished
by bold upper cases. Vector e is a vector of ones. The set of free, non-negative and non-positive
real numbers are represented by R, R+ and R−, respectively. The symbols with a hat, e.g.,
ξ̂, refer to historical observations. The operator |.| returns the cardinality of the underlying set.
Furthermore, (.)> is the transpose operator, whereas EP[.] refers to the expected value with respect
to the probability distribution P. The operator ||a||∗ represents the dual norm of ||a||. This dual

norm is defined as ||a||∗ =
{

max
v

a>v s.t. ||v|| ≤ 1
}

, where v is a vector with the same dimension

as vector a. All symbols are introduced throughout the paper. However, for convenience, a list of
notation is also provided in Appendix A.

2. Model

The Wasserstein distributionally robust chance-constrained energy and reserve dispatch prob-
lem reads as

min
p,r,r,Y

c>p + c>r + c>r + max
P∈P

EP
[
c>Yξ̃

]
(1a)

s.t. p + r ≤ pmax (1b)

p− r ≥ 0 (1c)

0 ≤ r ≤ rmax (1d)

e>p + e>Wµ− e>d = 0 (1e)
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e>Y + e>W = 0 (1f)

min
P∈P

P
(
−rg ≤ Ygξ̃

)
≥ 1− εg ∀g ∈ G (1g)

min
P∈P

P
(
Ygξ̃ ≤ rg

)
≥ 1− εg ∀g ∈ G (1h)

min
P∈P

P
(
TGl

(
p + Yξ̃

)
+ TWl W

(
µ+ ξ̃

)
−TDl d ≤ fmax

l

)
≥ 1− εl ∀l ∈ L, (1i)

where g ∈ G, w ∈ W, d ∈ D and l ∈ L respectively represent the set of conventional generators,
renewable generators, inelastic demands and transmission lines, with their corresponding indices.
Note that conventional generators are dispachable, whereas renewable generators are not, mean-
ing that their production level is weather-dependent. Objective function (1a) minimizes the total
expected operational cost of the power system, including the day-ahead scheduling cost (the first
three terms) and the worst-case expectation of the real-time adjustment cost (the last term). Pa-

rameter vector c ∈ R|G|+ represents the production cost of conventional generators. The production

cost of renewable generators is assumed to be zero. In addition, c ∈ R|G|+ and c ∈ R|G|+ refer to the
procurement cost of upward and downward reserve from conventional generators, respectively. The
upward (downward) reserve is required to cope with renewable power deficit (excess) in the real-

time operation. The decision variables are the energy dispatch of conventional generators p ∈ R|G|+

and their upward and downward reserve capacity dispatch, i.e., r ∈ R|G|+ and r ∈ R|G|+ . The recourse
actions of conventional generators are approximated using linear decision rules (Kuhn et al., 2011),
implying that each conventional generator responds linearly to per-unit renewable power deviations
ξ̃ ∈ R|W| in real time3. Decision variable matrix Y ∈ R|G|×|W| provides the participation factor
of conventional generators, such that Yξ̃ is the recourse action of those generators. Therefore,
the final production level of conventional generators is p + Yξ̃, i.e., their day-ahead energy dis-
patch plus recourse actions in real time. The dispatch decisions are optimal in expectation for the
worst-case distribution P that resides in the Wasserstein ambiguity set P. This set will be defined
later by equation (3). The worst-case distribution P is endogenously determined by the proposed
DRO approach. Without loss of generality, we consider deviations ξ̃ with respect to the per-unit

day-ahead forecasts µ ∈ R|W|+ as the sole source of uncertainty4. However, it is straightforward to
consider other potential sources of uncertainty.

Constraints (1b) to (1d) enforce the lower and upper bounds of power and reserve dispatch

by capacity pmax ∈ R|G|+ and maximum reserve provision capability rmax ∈ R|G|+ of conventional
generators. Constraint (1e) ensures the day-ahead balance between total power production and

consumption. Parameter vector d ∈ R|D|+ represents the consumption level of demands. In addition,

diagonal matrix W ∈ R|W|×|W|+ includes the installed capacity of renewable generators. Note that
Wµ gives the day-ahead power production forecast of renewable generators. Similarly, (1f) imposes
the power balance in real time. This constraint ensures that the total renewable power imbalances
e>Wξ̃ is adjusted by total recourse actions of conventional generators e>Yξ̃. The uncertain
parameter ξ̃ is dropped throughout the equality constraint (1f). The probabilistic constraints

3It is straightforward to improve this affine approximation via generalized decision rules (Georghiou et al., 2015),
but at the cost of increased complexity. This extension is left for future research.

4The day-ahead forecast µ and real-time deviations ξ̃ are average values over one hour, such that the hourly
balance between total production and consumption is ensured. The intra-hour fluctuations are usually balanced in
practice via other market products such as frequency reserves, which are outside the scope of this work.
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including ξ̃ are formulated as DRCCs (1g) to (1i). Each individual DRCC ensures fulfilling the
underlying constraint with a probability of 1−ε(.) under the worst-case distribution P. The violation
probability ε(.) is a non-negative parameter. This formulation provides the system operator with a
degree of freedom to separately adjust the violation probability for each conventional generator and
transmission line5. Another potential alternative is to use a joint chance-constrained framework6

that ensures the overall system reliability with a high probability. In such a framework, the
system operator assigns a single violation probability for the set of all chance constraints. Our
focus in this paper is on individual chance constraints. It is worth noting that the worst-case
distribution P for each DRCC is not necessarily identical to that of other DRCCs, or to the one
of objective function (1a). For each conventional generator g, (1g) and (1h) restrict the downward
and upward adjustment actions, respectively. The subscript in Yg picks the row corresponding
to conventional generator g in matrix Y. Finally, (1i) enforces the transmission capacity limits

fmax ∈ R|L|+ using the power transfer distribution factor matrices TG ∈ R|L|×|G|, TW ∈ R|L|×|W|

and TD ∈ R|L|×|D|. These three mapping matrices relate the nodal injections and offtakes by
conventional and renewable generators and demands to the power flow over the lines, respectively

(Christie et al., 2000). The subscript in T
(.)
l selects the row corresponding to transmission line l

in matrix T(.).
Note that the extreme recourse actions, i.e., wind spillage7 and load curtailment8, can be

incorporated into the energy and reserve dispatch problem (1) in the same way the recourse actions
of conventional generators are included. In other words, one can define participation factors for
such extreme recourse actions, too. This will complicate the resulting model, although it is less
likely that the participation factor of those extreme actions take a non-zero value, as they are
comparatively expensive recourse actions for the system. Alternatively, one can see the chance-
constrained programming as a way to simplify the dispatch model by not including the extreme
recourse actions, and allowing the probabilistic constraints to be violated up to some predefined
extent. The extreme recourse actions will be used in the real-time operation to restore infeasibility
if the flexibility of conventional generators is insufficient.

In model (1), the ambiguity set P collects all distributions in the neighborhood of a central
empirical distribution P̂N . This empirical distribution is constructed by assigning a 1

N probability
mass to each of the N available historical observations of uncertain parameters (Mohajerin Esfahani
& Kuhn, 2018). To assess the distance of a distribution P to P̂N , we use the Wasserstein metric

5For instance, transmission lines within urban areas or those connecting two neighbouring countries are usually of
more importance and have to be more reliable than other lines, e.g., those in rural areas. In our proposed model with
individual chance constraints, the system operator has freedom to assign comparatively low violation probabilities
to critical transmission lines.

6The joint chance constraint is usually approximated with a set of individual chance constraints, e.g., using a
Bonferroni approximation (Bonferroni, 1936). As such, our proposed model with individual chance constraints can
be interpreted as an approximation to a joint chance-constrained program. This program can also be efficiently
reformulated using an optimized CVaR approximation (Ordoudis et al., 2021), but at the potential cost of increased
computational burden. Although the optimized CVaR approximation may be exact under some certain circumstances,
the increased computational burden might be restricting. The reason for this is that the energy and reserve dispatch
problem in practice (e.g., in Belgium) is usually solved within the computational time restriction of one hour.

7Wind spillage refers to an operational action, which happens if there is a potential for additional wind power
generation in real time, but it cannot be realized due to the lack of flexible resources to provide additional downward
adjustment services.

8Load curtailment refers to the involuntarily curtailment of loads that occurs in operational conditions with wind
power deficit, if existing flexible resources cannot provide additional upward adjustment services.
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(Kantorovich & Rubinshtein, 1958). The Wasserstein metric dW : M(Ξ)×M(Ξ)→ R is defined
as

dW (P, P̂N ) =


min

Π

∫
Ξ2

||ξ̃ − ξ̂N ||Π(dξ̃, dξ̂N )

s.t.
Π is a joint distribution of ξ̃ and ξ̂N

with marginals P and P̂N , respectively

 , (2)

where the objective function minimizes the cost of transporting the probability mass from the
empirical distribution P̂N to the worst-case distribution P. The joint distribution Π ∈ M(Ξ ×
Ξ) reflects the optimal transportation plan. We thereby mathematically define the Wasserstein
ambiguity set as

P =
{
P ∈M (Ξ) : dW (P, P̂N ) ≤ ρ

}
, (3)

where the non-negative parameter ρ represents the displacement budget, and limits the distance
between distributions inside the ambiguity set and the empirical one.

Model (1) with ambiguity set (3) has a min-max structure with constraints involving the min
operator. This problem cannot be handled directly by the existing off-the-shelf solvers. The next
section provides different reformulation alternatives, including our proposed physically-bounded
exact reformulation.

3. Model Reformulation

This section reformulates distributionally robust objective function (1a) and DRCCs (1g)-(1i).
First, we reformulate objective function (1a). Following the exact reformulation technique proposed
by Mohajerin Esfahani & Kuhn (2018), we replace the inner maximization problem max

P∈P
EP [c>Yξ

]
by a linear minimization problem, i.e.,

min
λ,σi,γi

λρ+
1

N

N∑
i=1

σi

s.t. c>Yξ̂i + γ>i

(
h−Qξ̂i

)
≤ σi ∀i ∈ {1, ..., N}

||Q>γi − c>Y||∗ ≤ λ ∀i ∈ {1, ..., N}
γi ≥ 0 ∀i ∈ {1, ..., N},

(4)

where λ ∈ R, σ ∈ RN and γi ∈ R2|W| are auxiliary variables. The support, defined as Qξ ≤
h, restricts the worst-case distribution to take realistic values. The resulting min-min objective
function is then collapsed to a single minimization problem.

Second, we reformulate DRCCs (1g)-(1i) using three different alternatives, namely

• The CVaR approximation9 as proposed in Zymler et al. (2013),

• The exact MILP without support as proposed in Chen et al. (2018) and Xie (2021),

• Our proposed physically-bounded exact bilinear reformulation.

Pursuing completeness, the first alternative is described in Appendix B. This alternative will
be used as a benchmark in Section 4. The advantage of CVaR approximation is that it preserves

9Chen et al. (2018, Corollary 1) show that the CVaR approximation is exact under a condition for which ε ≤ 1
N

.
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linearity and allows for the incorporation of support information, but at the potential cost of a
conservative solution (Nemirovski & Shapiro, 2007). The reason for the increased conservativeness
is that the CVaR inherently accounts for the severity of the violation, resulting in a lower violation
probability compared to the predefined one. Using the CVaR approximation, the energy and
reserve dispatch model (1) is eventually reformulated as a linear program, which is provided in
Appendix B.

In the rest of this section, Subsection 3.1 details the second alternative, i.e., an exact MILP
reformulation for DRCCs without support. Unlike the first alternative, we include the modeling
framework of the second alternative in the main body of the paper, since it provides the basis for
our proposed model. Subsection 3.2 provides a stylized example, illustrating why the MILP refor-
mulation without support may not determine the optimal power and energy dispatch in a desirable
way. Subsection 3.3 presents our proposed exact reformulation with support, and highlights the
advantages.

Remark 1. Hereinafter, for the sake of notational clarity, each distributionally robust chance

constraint (1g), (1h) and (1i) is rewritten in a generic way as P
(
ξ̃ ∈ S(Y)

)
≥ 1 − ε, where

S(Y) =
{
ξ̃ ∈ R|W|| a>ξ̃ ≤ b

}
denoted as safe set. This set represents the geometrical region

where the underlying constraint is realized. Note that variable vector a = AY + ă and variable
scalar b = b>Y+ b̆ are both affine functions of decision variables Y = {p, r, r,Y} with a, ă ∈ R|W|,
A ∈ R|W|×|Y|, b, b̆ ∈ R and b ∈ R|Y|. The vector Y collects all day-ahead dispatch decisions
including those within vectors p, r, r and matrix Y in a vector form. We denote the unsafe set as

S(Y) =
{
ξ̃ ∈ R|W|| a>ξ̃ > b

}
, which is the complementarity region to S(Y).

3.1. Exact Reformulation of DRCCs Without Physical Bounds

We consider the availability of N samples, each corresponding to a historical observation of
renewable power deviation in real time with respect to the day-ahead forecast. These samples

are collected in the set
{
ξ̂i| i = 1, ..., N

}
. Fig. 1 depicts these samples as well as a half space

representing the safe set S(Y) for an individual DRCC. Note that one of the samples in Fig. 1
is outside the safe set, as the chance constraint allows violating the constraint to some extent.
We also consider a displacement budget as a function of radius ρ ∈ R+, whose value is assigned
by the system operator. The rationale behind DRO is to determine the worst-case distribution P
within the ambiguity set P that moves as much as possible samples ξ̂i outside the safe set with
the given displacement budget (Blanchet et al., 2019). These moves are illustrated by red arrows
in Fig. 1, where the worst-case distribution, for example, could fully move two samples ξ̂2 and ξ̂3

to the boundary of the safe set, while the fourth sample ξ̂4 is partially moved due to the limited
displacement budget. In Section 3.3, we will propose a new framework to move the samples while
accounting for the support.

In order to express the mathematical equivalence of each DRCC, we first introduce index πi(Y)
that reorders samples ξ̂i in increasing distance to the boundary as a function of decision variables Y.
We also define distance function dist(ξ̂i,S(Y)) that computes the distance between the underlying
sample ξ̂i within the safe set and the boundary of the unsafe set S(Y) in the geometrical space.
The samples that are already unsafe are assigned with a distance equal to zero. According to
Chen et al. (2018), each DRCC, when ρ > 0, is mathematically equivalent to a regular inequality

8



Figure 1: Historical observations and safe set corresponding to an arbitrarily selected distributionally robust chance
constraint

constraint of the form
εN∑
i=1

dist
(
ξ̂πi(Y),S(Y)

)
≥ ρN. (5)

The proof is available in Chen et al. (2018). The sum operator in (5) picks the first ε times
N number of samples. However, this number is not necessarily an integer value. For example,
assume the distance of four samples ξ̂1 to ξ̂4 close to the boundary in Fig. 1 are 5, 10, 12 and
15, respectively. If εN = 2, then the left-hand side of (5) is equal to 15 (i.e., 5 + 10). However,
in case εN = 2.5, then it would be equal to 21 (i.e., 5 + 10 + 6), taking into account the half of
the distance corresponding to the third sample. To get rid of the partial sum operator and the
permutation index πi (Y), (5) is replaced by the set of equations (6) without approximation, but
at the cost of adding extra variables t ∈ R and β ∈ RN+ (Chen et al., 2018; Xie, 2021):

εNt− e>β ≥ ρN, (6a)

dist(ξ̂i,S(Y)) ≥ t− βi ∀i ∈ {1, ..., N}. (6b)

The last task is to reformulate the distance function dist(ξ̂i,S(Y)). Following Chen et al.
(2018), we replace (6) by (7) with no approximation, but at the cost of adding binary variables
q ∈ {0, 1}N :

εNt− e>β ≥ ρN ||a||∗, (7a)

b− a>ξ̂i +Mqi ≥ t− βi ∀i ∈ {1, ..., N}, (7b)

M (1− qi) ≥ t− βi ∀i ∈ {1, ..., N}. (7c)

It is worth mentioning that (7) holds for a 6= 0, although Remark 2 in Chen et al. (2018) explains
how it generalizes to a case where a = 0. In order to maintain linearity, we pick an ∞-norm10,
i.e., ||a||∞, whose dual is a 1-norm. Constraints (7b) and (7c) include a sufficiently large constant
M ∈ R+. It is of importance to select a proper value for M , as a small value may affect optimality,

10This is an arbitrary choice. Alternatively, one can select the 1-norm to maintain linearity.
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Figure 2: An illustrative 2-node power system connecting an inelastic demand to a conventional generator and a
wind farm through a transmission line

while a very large one may result in numerical ill-conditioning. Note that if qi = 0, then (7b)
becomes binding while (7c) is inactive. On the contrary, qi = 1 makes (7c) active while (7b) is
inactive. The collection of (7b) and (7c) ensures that the value of dist(ξ̂i,S(Y)) is always non-
negative.

The DRCCs (1h), (1g) and (1i) can now be replaced in an exact way by their generic equiv-
alence (7). Using this exact technique, the energy and reserve dispatch model (1) is eventually
reformulated as an MILP, which is provided in Appendix C.

3.2. Illustrative Example: Why Is the Support Important?

The illustrative example in this subsection clarifies why the exact reformulation (7) may give
unreasonable dispatch results. We use a two-node power system as depicted in Fig. 2, including a
conventional generator, a wind farm, an inelastic demand, and a transmission line. The technical
characteristics of the conventional generator are pmax = 1200 MW, rmax = 500 MW, c = $15/MWh,
c = $2/MW and c = $3/MW. The installed capacity of the wind farm is 800 MW. The demand is
1000 MW. The transmission line, whose capacity is 2000 MW, is never congested.

Consider a case where the day-ahead forecast of wind power generation is 320 MW. Given
the day-ahead forecast and the installed capacity of wind farm, i.e., 320 MW and 800 MW, it
is trivial that the maximum required upward and downward reserves are 320 MW and 480 MW,
respectively. Assuming a specific case where the sole historical observation is ξ̂i = 0, we solve the
energy and reserve dispatch model with an exact reformulation for DRCCs. The ambiguity around
the predicted single-point distribution is modeled through the Wasserstein radius ρ = 0.03, while
the violation probability of each DRCC is set to ε = 0.05. We set the value of constant M in (7b)
and (7c) to be 104, which acts as an upper bound for a>ξ̃− b. The distributionally robust optimal
dispatch of the conventional generator is given in Table 1, obtained by Gurobi solver, implemented
in Julia using the JuMP package.

The interesting numerical finding is that the upward reserve dispatch of the conventional gener-
ator is r = 480 MW, which is way larger than the 320-MW dispatch of the wind farm. Obviously,
the upward reserve is overbooked by 160 MW of useless reserve, which has therefore increased
the total operational cost of the underlying power system. Furthermore, the program may even
become infeasible, e.g., for ρ = 0.05, owing to the need for dispatching a large amount of reserves
that are not available in the system.
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Table 1: Optimal dispatch of the conventional generator

p [MW] r [MW] r [MW]

ρ = 0.03 680 480 480

ρ = 0.05 Infeasible

Figure 3: Illustration of the support (green line), enforcing the gray area to be outside the feasibility space. In
comparison to Fig. 1, the support changes the displacement path (red arrows) of historical observations ξ̂i towards
the unsafe set S(Y).

The reason for such naive results is that the optimization model does not impose the limits of
320 MW and 480 MW for the upward and downward reserves. These constraints can be interpreted
as physical bounds, i.e., support, that should be imposed on the displacements of ξ̂i towards the
boundary of the safe set associated with each DRCC under the worst-case distribution. In this
direction, we develop an exact reformulation for DRCCs in the next subsection while taking into
account the support information.

3.3. The Proposed Exact and Physically-Bounded Reformulation of DRCCs

We add the information of physical bounds to the safe set, as schematically illustrated in Fig. 3
by a general green line. This line represents one of the boundaries of a convex polyhedral support.
The gray area is within the safe set but outside the support. If the worst-case distribution displaces
samples ξ̂i inside the gray area, the resulting dispatch solution will be overly naive as explained
in the previous section. The inclusion of support modifies the sample displacement strategy to
find the worst-case distribution: samples must be moved towards the unsafe set boundary without
crossing the gray area. For example, samples ξ̂3 and ξ̂4 now take another path towards the unsafe
set compared to the one in Fig. 1. This path is characterized by the direction of the shorter path
towards the boundary, while being restricted by physical bounds.

The key point is to enhance the distance function in (6b) to be able to take into account the
support information. To this purpose, we develop a mathematical framework with three consecutive
steps. First, we derive an analytical expression to compute the geometrical distance between a
sample and the boundary of the unsafe set while considering the support. Second, we reformulate
an individual DRCC based on the updated distance function, resulting in a bilinear program.
Third, we leverage an iterative algorithm to efficiently solve the resulting program.
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3.3.1. Deriving the Expression of the Updated Distance Function

The following Lemma 1 incorporates the support information into the function dist(ξ̂i,S(Y)).

Lemma 1. Let {Qξ ≤ h} be the set of |φ| linear constraints describing the physical bounds of

uncertainty, where Q ∈ R|φ|×|W| and h ∈ R|φ|. The distance between sample ξ̂i and boundary of
the unsafe set, including the support information, is obtained as

dist(ξ̂i,S(Y)) = max
wi,xi

(b− a>ξ̂i)wi −
(
h−Qξ̂i

)>
xi (8a)

s.t. ||awi −Q>xi||∗ ≤ 1, (8b)

where wi ∈ R+ and xi ∈ R|φ|+ are additional auxiliary variables.

Proof. The distance between sample ξ̂i and boundary of the unsafe set S(Y), including the physical
bounds information, can be formulated as

dist(ξ̂i,S(Y)) = min
ζi,ξi

ζi (9a)

s.t. b− a>ξi ≤ 0 : wi ≥ 0, (9b)

Qξi − h ≤ 0 : xi ≥ 0 (9c)

||ξi − ξ̂i|| ≤ ζi : (v, u) ∈ K∗, (9d)

where ζi ∈ R and ξi ∈ R|W| are the primal variables. The dual variables corresponding to each

constraint are given alongside a colon. These dual variables are wi ∈ R+ and xi ∈ R|φ|+ as well as

(v, u) ∈ R|W| × R residing in the dual cone K∗. The objective is to transfer the given sample ξ̂i
to the unsafe set imposed by (9b) while respecting support (9c) with the minimum displacement
budget. This introduces the minimum distance ζi and variable ξi. The latter is the transferred
ξ̂i, which is now located at the boundary of the unsafe set. The distance between ξ̂i and ξi is
calculated by conic constraint (9d). Inspired by the proof of Lemma 2 in Chen et al. (2018), we
aim at dualizing (9) to obtain a maximization problem. The resulting Lagrangian problem is

max
u,v,wi,xi

min
ζi,ξi

ζi − v>
(
ξi − ξ̂i

)
− uζi + wi

(
b− a>ξi

)
+ x>i (Qξi − h) (10a)

s.t. ||v||∗ ≤ u, wi ≥ 0, xi ≥ 0. (10b)

Deriving the Karush-Kuhn-Tucker conditions of the inner minimization problem allows us to
find the dual problem. This finally renders

dist(ξ̂i,S(Y)) = max
u,v,wi,xi

ξ̂>i v + bwi − h>xi (11a)

s.t. ||v||∗ ≤ u (11b)

u = 1 (11c)

v = −awi + Q>xi (11d)

wi ≥ 0, xi ≥ 0. (11e)

Substituting v and u as defined by (11c) and (11d) in (11a) and (11b) yields (8) in Lemma
1.
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3.3.2. Reformulation

Using Lemma 1, Theorem 1 provides our proposed exact and physically-bounded reformulation
of DRCCs.

Theorem 1. The exact and physically-bounded reformulation of each DRCC is

εNt− e>β ≥ ρN, (12a)

(b− a>ξ̂i)wi −
(
h−Qξ̂i

)>
xi ≥ t− βi ∀i ∈ {1, ..., N}, (12b)

||awi −Q>xi||∗ ≤ 1, (12c)

wi ≥ 0, xi ≥ 0, β ≥ 0. (12d)

Proof. Replacing dist(ξ̂i,S(Y)) in (6b) by the maximization problem (8) results in a constraint in

the form of

{
max
wi,x

f(wi,xi) s.t. (8b)

}
≥ t − βi ∀i. This implies that there exist optimal values

for w and x which respect (8b) and the optimal value of fi(wi,xi) is greater than or equal to t−βi.
Equivalently, we can drop the max operator, treat wi and xi as variables of min operator in (1a),
and impose {f(wi,xi) ≥ t− βi and (8b)} ∀i. This results in (12) in Theorem 1.

We replace individual DRCCs (1h), (1g) and (1i) by their corresponding reformulation (12) and
provide the final model in Appendix D. The final set of decision variables is now {Y, t,β, wi,xi}.
It should be noted that the set of equations (12) contains bilinear terms bwi and awi. Recall that
a and b are affine functions of the dispatch decision variable Y. However, unlike (7), the resulting
equations (12) do not include any binary variable. For the sake of clarity, we rewrite the final
dispatch model in a compact form as

min
Y,t,β,wi,xi

J (Y) (13a)

s.t. Hα (Y, t,β, wi,xi) ≤ 0 , α = {1, ..., |α|}, (13b)

Rη (Y, t,β, wi,xi) ≤ 0 , η = {1, ..., |η|}, (13c)

where J (Y) represents the objective function (1a) after its exact reformulation. The linear and
bilinear constraints are gathered in (13b) and (13c), respectively. Note that |α| and |η| represent
the number of linear and bilinear constraints, respectively.

3.3.3. Solution Algorithm

Inspired by Zymler et al. (2013) and Ordoudis et al. (2021), we solve the bilinear model (13)
using an iterative sequential algorithm, as explained in Algorithm 1. The iterative procedure is
straightforward. Step 1 sets initial variables Y and J 0 = 10−3 which ensures that the algorithm
will not terminate at the first iteration, since J 0 appears in the denominator of the convergence
criterion. In Step 2, for given decision variables Yfixed, we solve (14), aiming at enlarging the
feasible space of bilinear constraints as a function of {t,β, wi,xi}. Note that (14) is linear as the
decision variable set Y is fixed. Then, for the obtained optimal values of wi, the linear optimization
(15) updates the value of Y in Step 3. Finally, Step 4 evaluates whether the convergence criterion
is fulfilled and goes back to Step 2 if it is not. We select the convergence threshold to be equal to
10−4, meaning that the iterative algorithm will stop if two consecutive items of the sequence do
not differ by more than 0.01%.
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Algorithm 1 Find a solution to (13)

Step 1: Set initial (feasible) values for dispatch decision variables Y = Yfixed. Set k = 1 and
J 0 = 10−3.
Step 2: Solve

min
t,β,wi,xi

∑
η

Rη
(
Yfixed, t,β, wi,xi

)
(14a)

s.t. Hα
(
Yfixed, t,β, wi,xi

)
≤ 0 , α = {1, ..., |α|}, (14b)

and fix variables wi to their optimal values wfixed
i = w∗i .

Step 3: Solve

min
Y,t,β,xi

J (Y) (15a)

s.t. Hα
(
Y, t,β, wfixed

i ,xi
)
≤ 0 , α = {1, ..., |α|}, (15b)

Rη
(
Y, t,β, wfixed

i ,xi
)
≤ 0 , η = {1, ..., |η|}, (15c)

and fix dispatch variables to their optimal values Yfixed = Y∗.
Step 4: Check if the optimal objective function J k(Y) in (9(a)) verifies the convergence criterion
J k(Y)−J k−1(Y)
J k−1(Y)

≤ 10−4. If not, set k ← k + 1 and return to step 2.

Algorithm 1 is similar to the iterative procedure proposed in Zymler et al. (2013). The only
difference is that instead of one bilinear constraint, we introduce |η| number of bilinear constraints
Rη (.), and then minimize the sum of their left-hand sides in Step 2, as suggested in Ordoudis
et al. (2021). The sequence of generated objective values

{
J k
}
k∈N monotonically decreases and

converges to a finite limit. The proof of convergence is provided in Zymler et al. (2013), although
the convergence to global optimality may not be achieved. In addition, since the convergence
criterion stops the algorithm when two consecutive objective values do not differ more than a
given threshold (i.e., 10−4 in our case), a local optimum might not be achieved, too. However,
our extensive numerical study in the next section confirms the satisfactory performance of this
algorithm in terms of optimality and convergence speed. This study shows that Algorithm 1
provides outcomes that are more reliable compared to a benchmark solution obtained by the non-
linear solver IPOPT.

4. Numerical Study

As our case study, we consider a slightly adapted version of the IEEE 24-node reliability test
system (Grigg et al., 1999) with 34 transmission lines, 12 conventional generators, 4 wind farms
and 17 inelastic demands. The total conventional generation capacity is 2,362.5 MW, among which
a maximum of 798 MW can be counted as reserve capacity. Furthermore, the total wind power
capacity is 1,600 MW, and the total inelastic consumption is 2,207 MW. Further details about input
data and a figure illustrating the network topology of this case study are available in Appendix F.

We use a dataset of 10,000 hourly wind power samples, which is available in the online compan-
ion (Arrigo et al., 2021). We split this dataset into two parts. The first one contains the arbitrarily
selected 1,000 samples, which are used in our in-sample simulations. The second part embodies
the remaining 9,000 samples, which are used a posteriori to assess the quality of decisions through
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an out-of-sample analysis. Using the in-sample data, we derive the mean forecast11 µ and 1,000
wind power deviation samples ξ̂i, where i = {1, ..., 1000}. These samples allow constructing the
ambiguity set. In addition, we compute the maximum and minimum deviations, i.e., ξmax and
ξmin, based on physical bounds 0 and 1 p.u. By doing so, we subtract the mean wind power
generation µ to establish a rectangular support for the forecast error uncertainty that reflects the
actual physical limits of uncertain parameters.

We solve the energy and reserve dispatch problem (1) using three different reformulation alterna-
tives of DRCCs, namely (i) CVaR approximation, (ii) exact MILP reformulation without support,
and (iii) our proposed support-based approach. As described in Section 3, the CVaR approxima-
tion incorporates the support information as well. Recall that the final reformulation of problem
(1) with these three alternatives are available in Appendixes B, C and D, respectively. These three
problems are linear, mixed-integer linear, and bilinear programs, respectively. We run all afore-
mentioned models with different numbers of historical observations, i.e., N = {50, 100} samples
selected from 1,000 in-sample data. We also solve these models with different risk-attitudes, i.e.,
ε = {0.03, 0.05}, which are considered to be equal for all DRCCs. For each set of parameters,
we solve three models for Wasserstein radii12 ρ ranging from 10−4 to 10−1, where the exponent
increases linearly with a step of 0.2.

Furthermore, we perform a computational analysis to explore the computational efficiency
of Algorithm 1 in terms of both convergence speed and the gap achieved between the solution
obtained by Algorithm 1 and the one obtained by the non-linear solver IPOPT. Although the
bilinear reformulation is exact, the solution found by Algorithm 1 is not necessarily optimal. Our
numerical analyses suggest that Algorithm 1 is more reliable than the non-linear solver. In addition,
our results clearly show the importance of support information to be accounted for when one uses
DRO to model uncertainties in the energy and reserve dispatch problem.

All linear programs and MILPs are solved under Julia 1.1.1 using JuMP package 0.19 with
Gurobi solver 8.1.1, on a 16 GB-RAM computer clocking at 3.40 GHz. All source codes are
publicly available in the online companion (Arrigo et al., 2021).

4.1. Computational Performance

As the first experiment, we retrieve the evolution of computational time for each model when
the number of in-sample scenarios N gradually varies from 10 to 100. Since problem (1) refers to a
day-ahead operational problem that should typically be solved in maximum one hour in practice,
e.g., in Belgian electricity market, we set a computational time limit of 1 hour. This means that we
count a model computationally intractable if its computational time exceeds one hour. We realize
that the exact MILP model rapidly reaches to this time limit even for a case with relatively small
number of samples, e.g., N = 20. From now on, when a comparatively large number of scenarios
is considered, the results reported for the exact MILP technique represent sub-optimal solutions

11We assume the availability of past observations. In real-life applications, the system operator would forecast the
wind power generation based on available observations and run the optimization-based decision-making tool. In this
paper, the focus is on the optimization model. We assume that the forecast is calculated as the mean of the past
observations.

12Using the same Wasserstein radius to compare different DRO models may seem improper, since they are based
on different definitions of the ambiguity set. However, this is likely the most practical and efficient way to compare
the techniques between each other. Furthermore, to the best of our knowledge, there does not exist a technique to
calculate an equivalent value for radius, given its value defined for another type of ambiguity set.
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Figure 4: Computational study

obtained within the computational time limit of 1 hour. Our next simulations account for either
N = 50 or N = 100 in-sample scenarios.

Given ρ = 0.001 and ε = 0.05, Fig. 4(a) shows the computational time as a function of
N for the CVaR approximation and our proposed support-based approach. We observe that
the computational time increases linearly with the number of in-sample scenarios for the CVaR
approximation reformulation. This appealing computational time for the CVaR approximation
comes from the fact that the corresponding model is a linear program to be solved in one iteration.
In the case of our proposed support-based approach, the increasing trend of computational time
is non-smooth, but almost linear with a steeper slope compared to the CVaR approximation.
Although our proposed reformulation has a higher computational time compared to the CVaR
approximation (about 6 times higher), the results suggest that the iterative procedure of Algorithm
1 converges in a polynomial time. Fig. 4(b) illustrates the number of iterations required by
the algorithm when the convergence criterion δ, i.e., the relative difference between the value of
objective function in two consecutive iterations, increases from 10−6 to 10−2. This figure shows
that the number of iterations decreases when δ increases, as the stopping criteria becomes less
strict. This decrease is less significant as the value of δ increases from 10−6 to 10−3. However, in
case of δ = 10−2, the algorithm converges in two iterations only.

We then study the impact of values assigned for ρ and ε on the computational time, whose
values are given in Table 2. We observe that the computational time increases with the number
of samples N , but decreases as the value assigned for the Wasserstein radius ρ increases. This is
consistent with the findings of Chen et al. (2018), showing that by increasing ρ the feasible region
of exactly reformulated problems could be potentially convexified.

In what follows, we intend to assess the gap13 between the solution obtained by the proposed
iterative algorithm and the global optimum. Recall that the underlying problem is a bilinear

13The optimality gap is mathematically defined as the difference between the primal best obtained solution and the
dual best obtained solution. In this paper, since the dual best obtained solution is not mathematically achievable,
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Table 2: Computational time [second]

CVaR approximation The proposed support-based approach
N = 50 N = 100 N = 50 N = 100

ρ = 0.0001
ε = 0.05 33.3 76.8 196.4 424.3
ε = 0.03 29.3 74.6 352.6 464.3

ρ = 0.001
ε = 0.05 26.4 54.7 203.1 343.3
ε = 0.03 29.7 62.6 304.4 357.4

ρ = 0.01
ε = 0.05 5.2 14.3 51.6 122.4
ε = 0.03 5.6 15.2 50.9 189.3

program which makes it non-convex, and therefore the global optimal point is not necessarily
accessible. In general, one potential alternative to compute the optimality gap is to derive the
dual problem and compare the dual best solution to our best obtained solution. However, the
dual problem in our setting would not allow to find a non-trivial lower bound14. As the next
alternative, a McCormick relaxation (McCormick, 1976) of the bilinear terms would allow us to
assess the optimality gap between the solution of the iterative algorithm and the one of the relaxed
problem. However, variables w within the bilinear terms have a lower bound only, which is equal
to zero, but there is no upper bound that is also required for the McCormick relaxation. We have
checked the performance of McCormick relaxation by fixing the upper bound to the value given
by the iterative algorithm’s solution. However, by doing so, we have observed that the problem
is infeasible. We hypothesize that the McCormick relaxation jeopardizes the proper displacements
of samples within the physical bounds, which in turn, makes the program infeasible, as already
observed in the illustrative example of Section 3.2.

As a pragmatic alternative, we compare the optimal value of the total expected operational
cost of the system achieved from the iterative Algorithm 1 to that obtained from the non-linear
solver IPOPT. This solver provides a solution which we could use as a benchmark against the
solution of the iterative algorithm and assess the gap. The resulting cost profiles as a function of
N are presented in Fig. 5(a). We run the IPOPT solver several times with a different initialization
for each training sample size N in a way that the number of training sample multiplied by the
number of runs stays constant15 and equal to 200. Fig. 5(a) reports the expected value of objective

our practical alternative to assess the gap (but not necessarily the optimality gap) is to compute lower bounds on
the optimal value of the objective function. We still use the term “gap” for describing the difference between our
best obtained primal solution and a potential lower bound.

14According to Boyd & Vandenberghe (2004), the dual Lagrangian function is always concave even though the
primal problem might be non-convex. Consider a set of quadratic constraints in form of x>Pix ≤ di, ∀i ∈ {1, ...,M}
with corresponding dual variables λi. In (13), all quadratic constraints are bilinear, meaning that Pi is not positive

semidefinite. An immediate conclusion is that, P (λ) =
M∑
i=1

λiPi is positive semidefinite in our bilinear problem, if

and only if all λi = 0. This refers to a very special condition under which all bilinear constraints are non-binding. In
the case there is a non-zero λi, the dual problem gives us a trivial conclusion that the lower bound is minus infinity.
In order to get a potentially non-trivial lower bound from dual problem, one has to drop all bilinear constraints in
the primal problem. However, nearly 98% of primal constraints in (13) are bilinear, e.g., in the case where N = 50.
If we drop all those constraints, the resulting problem will be highly relaxed that does not represent well the original
problem (13). For further details on how to derive the dual problem in a bilinear program, we refer the interested
reader to Andersen (2021).

15When the theoretical number of runs, e.g., 200
N

, takes a non-integer value, we round it to the smallest integer
greater than or equal to the theoretical number of runs.
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Figure 5: Comparison of results achieved by the iterative Algorithm 1 and the non-linear solver IPOPT. For different
runs of IPOPT with different initializations, the shadow area covers the area ranging from the expected value minus
the standard deviation to the expected value plus the standard deviation.

function (dashed line) achieved in all these runs as well as the standard deviation (shadow area).
We observe that the cost profile obtained from Algorithm 1 takes lower values more frequently.

In some cases, IPOPT finds a solution with a lower cost compared to the solution of Algorithm
1, but the gap between two solutions is relatively small. The variability around the outcome of
IPOPT stems from multiple solutions achieved by IPOPT, each with a different initialization.
This variability shows that this solver usually fails to provide reliable results. We retrieve the
computational times and report the mean (dashed line) and the standard deviation (shadow area)
in Fig. 5(b). The computational times in IPOPT and Algorithm 1 are comparable. Algorithm
1 slightly takes more time to find an optimal solution when δ = 10−4. Based on our numerical
observations, we conclude that Algorithm 1 is more reliable than IPOPT, and performs well in the
scope of our application.

4.2. In-Sample Outcomes: Dispatch Results

In this section, we present the optimal dispatch decisions
{
pg, rg, rg,Yg

}
for a arbitrarily chosen

conventional generator g = 2. For all three DRCC reformulation techniques, we compute the actual
power production pg + Ygξ̂i, which corresponds to the sum of the day-ahead power dispatch and
the real-time recourse action for each historical observation ξ̂i in the in-sample database. The
resulting distribution is shown with blue bars in Fig. 6 for a case with N = 100, ρ = 10−4 and ε
= 0.05. The day-ahead energy as well as the upward and downward reserve dispatches are shown
with green number and red arrows, respectively. The level of production is therefore restricted to
lie within the extremity of the arrows, representing the production adjustment capability of the
generator.

For all three reformulations, we observe that the corresponding distribution mostly takes values
around the day-ahead energy dispatch pg. However, DRCCs allow constraint violations, resulting in
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Figure 6: In-sample energy and reserve dispatch outcomes for conventional generator g = 2 in three models: Blue
bars show the distribution of actual power production, i.e, the day-ahead energy dispatch pg plus recourse action
Yg ξ̂i, across 100 in-sample observations ξ̂1, ..., ξ̂100. The energy dispatch pg as well as the upward and downward
reserve dispatches rg and rg are shown with green number and red arrows, respectively. The number of observations

with violated downward and upward reserve constraints is given in blue circles (fixed values: ρ = 10−4 and ε = 0.05).

a total power production that lies outside the restricted zone. The number of cases with constraint
violation is given in blue circles. We notice that our proposed support-based approach exhibits
a higher number of cases with constraint violation, compared to the CVaR approximation. The
reason for this is that the CVaR approximation is a conservative reformulation alternative and
therefore the predefined level of violation probability does not necessarily occur. Finally, the
exact MILP method overbooks downward reserve, which is due to the fact that the support is not
included within this technique, as explained in our illustrative example in Section 3.2. Therefore,
constraints are less prone to be violated.

4.3. Out-of-Sample Outcomes: Total System Cost Without Re-Optimization

We derive the total operational cost of the system, i.e., the optimal value of objective function
(1a), using an out-of-sample analysis as follows: we collect the optimal decision variables {p, r, r,Y}
obtained from each model, and calculate the optimal value of day-ahead costs c>p, c>r and c>r.
For the recourse cost, we arbitrarily select first 1,000 samples from the out-of-sample data16, say ξ̂j ,

where j = {1, ..., 1000}, and calculate the average recourse cost 10−3
∑

j c>Yξ̂j . The sum of day-
ahead and recourse costs gives the average of out-of-sample total system cost. We also calculate
the standard deviation of this cost as a measure of variability. Here, the system operator treats
the participation factors Y as informed decisions for recourse actions, and do not solve another
optimization in real time under each out-of-sample realization. Consequently, the resulting cost
neglects the potential cost associated with a constraint violation.

16In our numerical study, we have observed that the out-of-sample outcomes using either arbitrarily selected 1,000
or all 9,000 test samples are similar. For the sake of reduced computational time in our out-of-sample study, we have
only picked the first 1,000 arbitrarily selected samples from the testing dataset.
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(b) N = 100, ε = 0.05
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(c) N = 50, ε = 0.03
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(d) N = 100, ε = 0.03

CVaR Approximation Exact MILP (Chen et al., 2018) The proposed support-based approach

Figure 7: Out-of-sample analysis without re-optimization: Evolution of the total average system cost and its standard
deviation as a function of ρ for various sets of parameters N and ε
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Fig. 7 depicts the average out-of-sample total system cost (thick curves) and the cost variability
(shaded zones around the thick curves) for each model. For clarity of the figures, the shaded zones
around the thick curves exhibit 10% of the standard deviation only. In most of the cases, the
average cost obtained from the proposed support-based model is lower than the one achieved by
the other two models. This difference is significant in some cases, e.g., in the one with N = 100 and
ε = 0.05. The cost achieved by the exact MILP model oscillates between the costs obtained by the
other two approaches, depending on the optimality gap of the solution reached after the one-hour
computational time limit. By including the support information, the average cost profile saturates
for higher values of ρ. Without such support information, the program either becomes infeasible,
e.g., in plots 7(a) and 7(c), or optimizes for an unrealistic representation of the uncertainty.

However, it is worth noting that these results are obtained by assuming that real-time decisions
are fixed in day ahead. In practice, the system operator has the opportunity to re-optimize decisions
in real time to keep the balance between generation and consumption as well as to restore the
feasibility by introducing extreme recourse actions such as costly load curtailment and wind spillage.
The next subsection allows the system operator to re-optimize the recourse actions in real time.

4.4. Out-of-Sample Outcomes: Total System Cost With Re-Optimization

For a given day-ahead dispatch and under each out-of-sample realization of uncertainty ξ̂j ,
we solve a deterministic optimization problem, the so-called re-optimization, in real time to make
decisions on the optimal recourse actions including load curtailment and wind spillage. The formu-
lation of such an optimization problem is available in Appendix E. We take into account a cost of
$500/MWh for load curtailment17, while assuming a zero cost for wind spillage. There is no energy
storage system in our case study to store the excess wind energy. Similar to Fig. 7, we report in
Fig. 8 the average out-of-sample total system cost and its standard deviation with consideration
of the re-optimization process.

We compare all three models against the Sample Average Approximation (SAA) corresponding
to scenario-based stochastic programming. To apply this method, we treat the N number of in-
sample observations as equiprobable scenarios and each DRCC is replaced by N number of recourse
constraints, one per scenario18. It is worth mentioning that the SAA does not directly model the
potential risk attitude of the system operator, while such an attitude is adjusted by ρ and ε in
DRO. This is the reason why the results of SAA in Fig. 8 are unchanged as a function of ρ.
Moreover, one can interpret the DRO with a large value of ρ as a robust counterpart, in the sense
that extreme realizations of the uncertainty are considered.

These results suggest that DRO outperforms SAA when the number of training samples N
is comparatively low. This is the case where there is the lack of sufficient information about
uncertainty or the number of training samples is intentionally kept below due to computational
issues. To the best of our knowledge, the reserve market in Switzerland (Abbaspourtorbati &

17A change in recourse action costs may affect the out-of-sample performance. If recourse actions become too
expensive, the distributionally robust chance-constrained formulation may even result in a higher total operational
cost. In such a case, the optimal choice for (ρ, ε) will be (∞, 0). However, this case may not be foreseen, which in
turn makes the use of DRCCs useful to find the optimal trade-off between reserve procurement and load curtailment
costs.

18Contrary to this approach, the chance-constrained SAA models the constraints as classical chance constraints.
In view of Remark 1 in Chen et al. (2018), the latter technique may not be achieved by setting ρ = 0. In addition,
chance-constrained models are known to be computationally expensive and require analytical reformulations, which
remain outside the scope of this paper.
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(b) N = 100, ε = 0.05
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(c) N = 50, ε = 0.03
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CVaR Approximation Exact MILP (Chen et al., 2018) The proposed support-based approach

Figure 8: Out-of-sample analysis with re-optimization: Evolution of the total average system cost and its standard
deviation as a function of ρ for various set of parameters N and ε
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Figure 9: The average total operational cost of the system with re-optimization as a function of ρ and ε.

Zima, 2016) is the sole electricity market in practice with a stochastic framework, which takes
into account a very limited number of scenarios. In such a market with limited information about
uncertain parameters, we hypothesize a DRO model has potential to outperform other techniques,
including the scenario-based stochastic programming.

One can draw three additional important observations from Fig. 8. First, similar to Fig. 7,
our proposed support-based approach provides in general better results in terms of average total
operational cost of the system than the CVaR approximation and the exact MILP method without
support, while the cost variability in all these three models are similar. Second, there exist several
values for ρ under which the proposed DRO model outperforms the SAA method. For example, in
Fig. 8(d), the proposed DRO for a range of ρ from 10−4 to around 10−3 obtains a lower average
cost than the SAA. Third, the proposed DRO provides a flexibility for the decision-maker to easily
adjust ρ in such a way that it achieves either a solution better or similar to SAA, or a solution
close to the robust one. For example, the value of ρ in Fig. 8(d) between 10−3 to 10−2 provides a
solution that is lying between SAA and robust solutions. For values larger than 10−2, the proposed
DRO provides fully robust solutions.

Next, we provide three-dimensional plots of the out-of-sample average total operational cost
of the system as a function of ρ and ε, which are presented in Figures 9(a) to 9(c). These results
suggest that the total operational cost decreases when ε increases. This confirms our initial intuition
that the chance-constrained programming allows to reduce the total operational cost of the system
by allowing constraint violation to some extent. This implies that the distributionally robust
chance-constrained program finds an optimal trade-off between operational cost and reliability.
These figures further show that the exact MILP model becomes infeasible when the value assigned
for the constraint violation probability ε is comparatively low.

We emphasize that the optimal ex-ante selection of radius ρ is not straightforward and may
require learning from experience, i.e., past outcome of the DRO model. We have observed that
there exists an optimal value for ρ that leads to the minimum out-of-sample expected operational
cost. Accordingly, we suggest that the decision-maker may select a value for ρ ranging from the
value that provides the best out-of-sample performance to infinity, leading to similar decisions to
those of robust optimization. By doing so, the decision-maker is able to adapt her risk attitude.
In general, choosing the value of ρ that correctly mimics the risk attitude of the decision-maker
is challenging and is closely dependent on her preferences in terms of cost optimality, operational
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reliability, computational performance, etc.

4.5. Expected Energy Not Served

In this subsection, we present additional numerical results in terms of the Expected Energy
Not Served (EENS). This indicator shows how much load (in MWh) is expected to be curtailed.
It also illustrates the violation severity of upward reserve constraints. When the upward reserve is
not sufficient, the system operator loses her ability to deliver energy to the consumer and therefore
load curtailment occurs. We calculate the EENS for each model when ε = {0.03, 0.05} and for
Wasserstein radii ranging from 10−4 to 10−1. The results are given in Figure 10.
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(b) ε = 0.05

Figure 10: Expected energy not served (EENS) as a function of ρ (fixed value: N = 100)

We observe that EENS tends to decrease when ρ increases as shown in Figure 10. These results
reflect the relation that exists between ρ and ε, which respectively set the distributional robustness
of the optimal decisions and the maximum allowed violation probability of a given constraint.
Even though their interpretation is different, those parameters are closely connected in the way
they influence the scheduling decisions. For instance, a given violation probability ε will not result
in the same empirical violation probabilities for two different distributions within the ambiguity
set, e.g., the empirical one and the worst-case one. When the distributional robustness increases,
i.e., ρ takes a comparatively high value, the EENS decreases for a given violation probability ε.
The reason for this is that the worst-case distribution in the ambiguity set (for which the decisions
are optimized) results in more conservative solutions when ρ increases.

Finally, it is worth mentioning that the overall system reliability violation, i.e., the probability
of violating at least one constraint, always reaches to 100%. This naive result comes from the
fact that the allowed individual violation probability is comparatively high, e.g., 3% or 5% in our
case study, with respect to the overall system. Our numerical case study contains 58 individual
chance constraints, which means that the overall violation probability would evaluate to 100%
if a Bonferroni approximation would be used. Hence, even if the overall violation probability is
comparatively high, the magnitude of violation remains acceptable. To support our claim, we
observe that the EENS never takes a value higher than 1.8 MWh per hour. We numerically
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conclude that the reliability of our approach based on individual chance constraints is satisfactory
from the system operator’s perspective.

5. Conclusion

In this paper, we develop a Wasserstein distributionally robust chance-constrained energy and
reserve dispatch model, and provide three different reformulations: (i) a CVaR approximation
resulting in a linear program, (ii) an exact reformulation without support, yielding an MILP, and
(iii) a physically-bounded exact reformulation. The last reformulation is proposed in this paper,
which results in a bilinear program. This problem is solved using an efficient iterative algorithm,
and its computational performance is compared with that of a non-linear solver, IPOPT. Through
an extensive out-of-sample study, we show that our proposed reformulation enables the power
system operator to make more informed dispatch decisions by including physical bounds within the
exact reformulation of DRCCs. We observe that our proposed support-based method outperforms
other techniques specially in cases wherein the value for ρ is properly selected.

One interesting future research path is to explore methodologies for ex-ante or endogenous
determination of the optimal value for ρ to further improve the applicability of the methodology
for actual field operations. This, for example, requires a cross-fold validation or a dedicated machine
learning technique, leveraging information from past realizations. As another potential research
path, a numerical discussion could shed light on how the tempo-spatial correlations affect the risk
attitude of the decision-maker. It is of interest to explore how such correlations could be included
within the problem formulation.

Appendix A. Nomenclature

Sets
g ∈ G : Set of conventional generators
l ∈ L : Set of transmission lines
d ∈ D : Set of demands
w ∈ W : Set of renewable generators
i ∈ {1, ..., N} : Set of samples (historical observations) for in-sample simulation
j ∈ {1, ..., Z} : Set of samples (historical observations) for out-of-sample simulation
P ∈ P : Worst-case distribution P residing within ambiguity set P
S(Y) : Safe set

S(Y) : Unsafe set
Parameters

c ∈ R|G| : Vector of production cost of conventional generators [$/MWh]

c ∈ R|G| : Vector of procurement cost of upward reserve from conventional generators [$/MW]

c ∈ R|G| : Vector of procurement cost of downward reserve from conventional generators [$/MW]

d ∈ R|D| : Vector of consumption level of demands [MW]

fmax ∈ R|L| : Vector of capacity of transmission lines [MW]

rmax ∈ R|G| : Vector of maximum reserve provision capability of conventional generators [MW]

pmax ∈ R|G| : Vector of capacity of conventional generators [MW]

W ∈ R|W|×|W| : Diagonal matrix of installed capacity of renewable generators [MW]

TG ∈ R|L|×|G| : Matrix of power transfer distribution factor for conventional generators
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TW ∈ R|L|×|W| : Matrix of power transfer distribution factor for renewable generators

TD ∈ R|L|×|D| : Matrix of power transfer distribution factor for demands
εg, εg, εl ∈ R : Violation probabilities

µ ∈ R|W| : Vector of day-ahead power production forecast of renewable generators [p.u.]

vShed ∈ R|D| : Vector of curtailment cost of demands [$/MWh]
ρ ∈ R : Wasserstein ball radius

Q ∈ R2|W|×|W| : Matrix for the support definition

h ∈ R2|W| : Vector for the support definition

ξ̃ ∈ R|W| : Vector of renewable power deviations from day-ahead forecast (random variables) [p.u.]

ξ̂i ∈ R|W| : Vector of historical observations of random variables ξ

ξ̂j ∈ R|W| : Vector of realization of random variables ξ in the real-time operation
Variables

p ∈ R|G| : Vector of power dispatch of conventional generators [MW]

r ∈ R|G| : Vector of upward reserve dispatch of conventional generators [MW]

r ∈ R|G| : Vector of downward reserve dispatch of conventional generators [MW]

Y ∈ R|G|×|W| : Matrix of participation factor of conventional generators [MW]
Y : Vector of day-ahead decisions {p, r, r,Y}

Appendix B. Approximate Linear Reformulation of Model (1) With CVaR Con-
straints

As thoroughly discussed in Zymler et al. (2013), a DRCC can be conservatively approximated
by a constraint including the CVaR at level ε with respect to P. This is mathematically stated by
the following implication:

max
P∈P

P-CVaRε(a
>ξ − b) ≤ 0⇒ min

P∈P
P
(
a>ξ ≤ b

)
≥ 1− ε. (B.1)

Equation (B.1) states that the CVaR formulation (on the left-hand side) is sufficient to impose
the DRCC. It is a conservative approximation, because the CVaR accounts for the violation mag-
nitude and will eventually impose the constraint with a higher probability than a priori required.
Using the definition of the CVaR, the left-hand side of (B.1) is cast as

max
P∈P

min
τ∈R

τ +
1

ε
EP
[
da>ξ − b− τe+

]
≤ 0, (B.2)

where τ ∈ R is an auxiliary variable and d.e+ = max (0, .). After rearranging the order of the
optimization operators, this formulation is equivalent to

min
τ∈R

τ +
1

ε
max
P∈P

EP
[
da>ξ − b− τe+

]
≤ 0. (B.3)

We next reformulate the worst-case expectation, following a similar procedure as the one de-
scribed by equations (4) in Section 3. This approach results in a min-min formulation, where we
merge the min operators. Eventually, we equivalently drop the min operators and add auxiliary
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variables, resulting in the following set of equations, which represents the CVaR approximation of
a DRCC:

τ +
1

ε

(
λCVaRρ+

1

N

N∑
i=1

σCVaR
i

)
≤ 0 (B.4a)

a>ξ̂i − b− τ + γ>i,1

(
h−Qξ̂i

)
≤ σCVaR

i ∀i ∈ {1, ..., N} (B.4b)

γ>i,2

(
h−Qξ̂i

)
≤ σCVaR

i ∀i ∈ {1, ..., N} (B.4c)

||Q>γi,1 − a||∗ ≤ λCVaR ∀i ∈ {1, ..., N} (B.4d)

||Q>γi,2||∗ ≤ λCVaR ∀i ∈ {1, ..., N} (B.4e)

γi ≥ 0 ∀i ∈ {1, ..., N}, (B.4f)

where λCVaR ∈ RN , σCVaR ∈ RN , γi,1 ∈ R2|W|,γi,2 ∈ R2|W| and τ ∈ R are auxiliary variables.
Note that support Qξ ≤ h is incorporated into formulation (B.4).

Recall that the objective function in model (1) has been already reformulated by equations (4)
in Section 3. Given the CVaR approximation of DRCCs in (B.4), the energy and reserve dispatch
model (1) is eventually reformulated into a linear program as

min
ΘCVaR

c>p + c>r + c>r + λρ+
1

N

N∑
i=1

σi (B.5a)

s.t. p + r ≤ pmax (B.5b)

p− r ≥ 0 (B.5c)

0 ≤ r ≤ rmax; 0 ≤ r ≤ rmax (B.5d)

e>p + e>Wµ− e>d = 0 (B.5e)

Ye + W e = 0 (B.5f)
c>Yξ̂i + γ>i

(
h−Qξ̂i

)
≤ σi ∀i ∈ {1, ..., N}

||Q>γi − c>Y||∗ ≤ λ ∀i ∈ {1, ..., N}
γi ≥ 0 ∀i ∈ {1, ..., N}

(B.5g)



τg +
1

ε

(
λgρ+

1

N

N∑
i=1

σg,i

)
≤ 0

Ygξ̂i − rg − τg + γ>g,i,1

(
h−Qξ̂i

)
≤ σg,i ∀i ∈ {1, ..., N}

γ>g,i,2

(
h−Qξ̂i

)
≤ σg,i ∀i ∈ {1, ..., N}

||Q>γg,i,1 −Yg||∗ ≤ λg ∀i ∈ {1, ..., N}
||Q>γg,i,2||∗ ≤ λg ∀i ∈ {1, ..., N}
γg,i,1 ≥ 0;γg,i,2 ≥ 0 ∀i ∈ {1, ..., N}



∀g ∈ G (B.5h)
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τg +
1

ε

(
λgρ+

1

N

N∑
i=1

σg,i

)
≤ 0

−Ygξ̂i − rg − τg + γ>
g,i,1

(
h−Qξ̂i

)
≤ σg,i ∀i ∈ {1, ..., N}

γ>
g,i,2

(
h−Qξ̂i

)
≤ σg,i ∀i ∈ {1, ..., N}

||Q>γ
g,i,1

+ Yg||∗ ≤ λg ∀i ∈ {1, ..., N}

||Q>γ
g,i,2
||∗ ≤ λg ∀i ∈ {1, ..., N}

γ
g,i,1
≥ 0;γ

g,i,2
≥ 0 ∀i ∈ {1, ..., N}



∀g ∈ G (B.5i)



τl +
1

ε

(
λlρ+

1

N

N∑
i=1

σl,i

)
≤ 0(

TGl (p + Yξ) + TWl W (µ+ ξ)−TDl d

−fmax
l )− τl + γ>l,i,1

(
h−Qξ̂i

)
≤ σl,i

∀i ∈ {1, ..., N}

γ>l,i,2

(
h−Qξ̂i

)
≤ σl,i ∀i ∈ {1, ..., N}

||Q>γl,i,1 −
(
TGl Y + TWl W

)
||∗ ≤ λl ∀i ∈ {1, ..., N}

||Q>γl,i,2||∗ ≤ λl ∀i ∈ {1, ..., N}
γi ≥ 0 ∀i ∈ {1, ..., N}



∀l ∈ L, (B.5j)

where the variable set ΘCVaR includes p, r, r, Y, τ g, λg, σg,i, γg,i,1, γg,i,2, τ g, λg, σg,i, γg,i,1, γ
g,i,2

τl, λl, σl,i, γl,i,1, γl,i,2, λ, σi and γi. Note that constraints (B.5b)-(B.5f) come from the original
model, whereas constraints (B.5g) correspond to the objective function reformulation. Finally,
constraints (B.5h), (B.5i) and (B.5j) present the CVaR approximation of DRCCs (1g), (1h) and
(1i), respectively.

Appendix C. Exact MILP Reformulation of Model (1) Without Support

Given the exact reformulation of DRCCs presented in Section 3.1, the energy and reserve
dispatch model (1) is reformulated into a mixed-integer linear program as

min
ΘMILP

c>p + c>r + c>r + λρ+
1

N

N∑
i=1

σi (C.1a)

s.t. p + r ≤ pmax (C.1b)

p− r ≥ 0 (C.1c)

0 ≤ r ≤ rmax; 0 ≤ r ≤ rmax (C.1d)

e>p + e>Wµ− e>d = 0 (C.1e)

Ye + W e = 0 (C.1f)
c>Yξ̂i + γ>i

(
h−Qξ̂i

)
≤ σi ∀i ∈ {1, ..., N}

||Q>γi − c>Y||∗ ≤ λ ∀i ∈ {1, ..., N}
γi ≥ 0 ∀i ∈ {1, ..., N}

(C.1g)
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εNtg − e>βg ≥ ρN ||Yg||∗
rg −Ygξ̂i +Mqg,i ≥ tg − βg,i ∀i ∈ {1, ..., N}
M
(
1− qg,i

)
≥ tg − βg,i ∀i ∈ {1, ..., N}

qg ∈ {0, 1}
N
, β ≥ 0

 ∀g ∈ G (C.1h)



εNtg − e>βg ≥ ρN || −Yg||∗

rg + Ygξ̂i +Mq
g,i
≥ tg − βg,i ∀i ∈ {1, ..., N}

M
(

1− q
g,i

)
≥ tg − βg,i ∀i ∈ {1, ..., N}

q
g
∈ {0, 1}N , β ≥ 0


∀g ∈ G (C.1i)



εNtl − e>βl ≥ ρN ||TGl Y + TWl W||∗
fmax
l −

(
TGl (p + Yξ) + TWl W (µ+ ξ)

−TDl d
)

+Mql,i ≥ tl − βl,i
∀i ∈ {1, ..., N}

M (1− ql,i) ≥ tl − βl,i ∀i ∈ {1, ..., N}

ql ∈ {0, 1}N , β ≥ 0


∀l ∈ L, (C.1j)

where the variable set ΘMILP includes p, r, r, Y, tg, βg, qg, tg, βg, qg, tl, βl, ql, λ, σi and γi. Note

that constraints (C.1b)-(C.1f) are identical to those within the original model (1). Constraints
(C.1g) are associated with the objective function reformulation. Finally, constraints (C.1h), (C.1i)
and (C.1j) present the exact MILP reformulation of DRCCs (1g), (1h) and (1i), respectively.

Appendix D. Physically-Bounded Exact Reformulation of Model (1)

Following our proposed physically-bounded exact reformulation of DRCCs presented in Section
3.3, the energy and reserve dispatch model (1) is reformulated into a bilinear program as

min
ΘExact

c>p + c>r + c>r + λρ+
1

N

N∑
i=1

σi (D.1a)

s.t. p + r ≤ pmax (D.1b)

p− r ≥ 0 (D.1c)

0 ≤ r ≤ rmax; 0 ≤ r ≤ rmax (D.1d)

e>p + e>Wµ− e>d = 0 (D.1e)

Ye + W e = 0 (D.1f)
c>Yξ̂i + γ>i

(
h−Qξ̂i

)
≤ σi ∀i ∈ {1, ..., N}

||Q>γi − c>Y||∗ ≤ λ ∀i ∈ {1, ..., N}
γi ≥ 0 ∀i ∈ {1, ..., N}

(D.1g)



εNtg − e>βg ≥ ρN

(rg −Ygξ̂i)wg,i −
(
h−Qξ̂i

)>
xg,i ≥ tg − βg,i ∀i ∈ {1, ..., N}

||Ygwg,i −Q>xg,i||∗ ≤ 1 ∀i ∈ {1, ..., N}
wg,i ≥ 0, xg,i ≥ 0, βg ≥ 0


∀g ∈ G (D.1h)
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εNtg − e>βg ≥ ρN

(rg + Ygξ̂i)wg,i −
(
h−Qξ̂i

)>
xg,i ≥ tg − βg,i ∀i ∈ {1, ..., N}

|| −Ygwg,i −Q>xg,i||∗ ≤ 1 ∀i ∈ {1, ..., N}
wg,i ≥ 0, xg,i ≥ 0, β

g
≥ 0


∀g ∈ G (D.1i)



εNtl − e>βl ≥ ρN(
fmax
l −

(
TGl (p + Yξ) + TWl W (µ+ ξ)−TDl d

))
wl,i

−
(
h−Qξ̂i

)>
xl,i ≥ tl − βl,i

∀i ∈ {1, ..., N}

||
(
TGl Y + TWl W

)
wl,i −Q>xl,i||∗ ≤ 1 ∀i ∈ {1, ..., N}

wl,i ≥ 0, xl,i ≥ 0, βl ≥ 0


∀l ∈ L, (D.1j)

where the variable set ΘExact includes p, r, r, Y, tg, βg, wg,i, xg,i, tg, βg, wg,i, xg,i , tl, βl, wl,i,

xl,i, λ, σi and γi. Constraints (D.1b)-(D.1f) are identical to the operational limits of conventional
generators and power balance conditions within the original model (1). Constraints (D.1g) pertain
to the objective function reformulation. Finally, constraints (D.1h), (D.1i) and (D.1j) present the
physically-bounded exact reformulation of DRCCs (1g), (1h) and (1i), respectively.

Appendix E. Optimization Problem in the Real-Time Operation

This appendix presents the optimization problem used in Section 4.4 for the out-of-sample
simulations. For given day-ahead dispatch decisions (pfixed, rfixed, rfixed) and realized renewable

power deviation ξ̂j , the power system operator solves a deterministic linear program during the
real-time operation as

min
Y,∆d,∆w

c>Yξ̂j + v>Shed∆d (E.1a)

s.t. 0 ≤∆d ≤ d (E.1b)

0 ≤∆w ≤W(µ+ ξ̂j) (E.1c)

− rfixed ≤ Yξ̂j ≤ rfixed (E.1d)

e>Yξ̂j + e>Wξ̂j + e>∆d− e>∆w = 0 (E.1e)

TGl

(
pfixed + Yξ̂j

)
+ TWl W

(
µ+ ξ̂j

)
−TDl d ≤ fmax

l ∀l ∈ L. (E.1f)

The objective function (E.1a) minimizes the total operational cost of the system for adjusting
imbalances, including the recourse cost of conventional generators (first term) and the load curtail-
ment cost (second term). Note that the recourse action of conventional generators Y ∈ R|G|×|W| is
a decision variable, meaning that those generators are not imposed to stick to their participation
factors obtained in the day-ahead stage. Parameter vector vShed ∈ R|D| gives the load curtail-
ment cost of demands, whereas variable vector ∆d ∈ R|D| provides the optimal load curtailment
quantities. In addition to the recourse action of conventional generators and the load curtailment
of demands, the third adjustment option for the system operator is the renewable power spillage
∆w ∈ R|W|, which is assumed to be cost-free. Constraint (E.1b) restricts the load curtailment
quantity to lie within zero and the consumption level. Similarly, (E.1c) enforces the renewable
power spillage quantity to be non-negative, and not exceed the realized level of renewable power
generation. The recourse action of conventional generators is limited by their reserve dispatch fixed
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in the day-ahead stage. The power balance is ensured by (E.1e). Finally, the capacity limit of
transmission lines is enforced by (E.1f).

Appendix F. Input Data

Our case study in Section 4 is built upon the IEEE 24-node reliability test system (Grigg et al.,
1999). The data for wind farms is borrowed from Ordoudis et al. (2016). The network topology of
the system is illustrated in Fig. F.11. In addition, all technical data corresponding to conventional
generators, wind farms, demands and transmission lines are given in Table F.4.

Fig. F.11: The network topology of the IEEE 24-node reliability test system (Grigg et al., 1999)
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