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Abstract

We introduce a new algorithm named WGAN,

an alternative to traditional GAN training. In

this new model, we show that we can improve

the stability of learning, get rid of problems like

mode collapse, and provide meaningful learning

curves useful for debugging and hyperparameter

searches. Furthermore, we show that the cor-

responding optimization problem is sound, and

provide extensive theoretical work highlighting

the deep connections to different distances be-

tween distributions.

1. Introduction

The problem this paper is concerned with is that of unsu-

pervised learning. Mainly, what does it mean to learn a

probability distribution? The classical answer to this is to

learn a probability density. This is often done by defining

a parametric family of densities (Pθ)θ∈Rd and finding the

one that maximized the likelihood on our data: if we have

real data examples {x(i)}mi=1, we would solve the problem

max
θ∈Rd

1

m

m
∑

i=1

logPθ(x
(i))

If the real data distribution Pr admits a density and Pθ is the

distribution of the parametrized density Pθ, then, asymp-

totically, this amounts to minimizing the Kullback-Leibler

divergence KL(Pr‖Pθ).

For this to make sense, we need the model density Pθ to

exist. This is not the case in the rather common situation

where we are dealing with distributions supported by low

dimensional manifolds. It is then unlikely that the model

manifold and the true distribution’s support have a non-

negligible intersection (see (Arjovsky & Bottou, 2017)),

and this means that the KL distance is not defined (or sim-

ply infinite).
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The typical remedy is to add a noise term to the model dis-

tribution. This is why virtually all generative models de-

scribed in the classical machine learning literature include

a noise component. In the simplest case, one assumes a

Gaussian noise with relatively high bandwidth in order to

cover all the examples. It is well known, for instance, that

in the case of image generation models, this noise degrades

the quality of the samples and makes them blurry. For ex-

ample, we can see in the recent paper (Wu et al., 2016)

that the optimal standard deviation of the noise added to

the model when maximizing likelihood is around 0.1 to

each pixel in a generated image, when the pixels were al-

ready normalized to be in the range [0, 1]. This is a very

high amount of noise, so much that when papers report the

samples of their models, they don’t add the noise term on

which they report likelihood numbers. In other words, the

added noise term is clearly incorrect for the problem, but is

needed to make the maximum likelihood approach work.

Rather than estimating the density of Pr which may not ex-

ist, we can define a random variable Z with a fixed dis-

tribution p(z) and pass it through a parametric function

gθ : Z → X (typically a neural network of some kind)

that directly generates samples following a certain distribu-

tion Pθ. By varying θ, we can change this distribution and

make it close to the real data distribution Pr. This is use-

ful in two ways. First of all, unlike densities, this approach

can represent distributions confined to a low dimensional

manifold. Second, the ability to easily generate samples is

often more useful than knowing the numerical value of the

density (for example in image superresolution or semantic

segmentation when considering the conditional distribution

of the output image given the input image). In general, it

is computationally difficult to generate samples given an

arbitrary high dimensional density (Neal, 2001).

Variational Auto-Encoders (VAEs) (Kingma & Welling,

2013) and Generative Adversarial Networks (GANs)

(Goodfellow et al., 2014) are well known examples of this

approach. Because VAEs focus on the approximate likeli-

hood of the examples, they share the limitation of the stan-

dard models and need to fiddle with additional noise terms.

GANs offer much more flexibility in the definition of the

objective function, including Jensen-Shannon (Goodfellow

et al., 2014), and all f -divergences (Nowozin et al., 2016)

as well as some exotic combinations (Huszar, 2015). On
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the other hand, training GANs is well known for being del-

icate and unstable, for reasons theoretically investigated in

(Arjovsky & Bottou, 2017).

In this paper, we direct our attention on the various ways to

measure how close the model distribution and the real dis-

tribution are, or equivalently, on the various ways to define

a distance or divergence ρ(Pθ,Pr). The most fundamen-

tal difference between such distances is their impact on the

convergence of sequences of probability distributions. A

sequence of distributions (Pt)t∈N converges if and only if

there is a distribution P∞ such that ρ(Pt,P∞) tends to zero,

something that depends on how exactly the distance ρ is

defined. Informally, a distance ρ induces a weaker topol-

ogy when it makes it easier for a sequence of distribution

to converge.1 Section 2 clarifies how popular probability

distances differ in that respect.

In order to optimize the parameter θ, it is of course desir-

able to define our model distribution Pθ in a manner that

makes the mapping θ 7→ Pθ continuous. Continuity means

that when a sequence of parameters θt converges to θ, the

distributions Pθt also converge to Pθ. However, it is essen-

tial to remember that the notion of the convergence of the

distributions Pθt depends on the way we compute the dis-

tance between distributions. The weaker this distance, the

easier it is to define a continuous mapping from θ-space to

Pθ-space, since it’s easier for the distributions to converge.

The main reason we care about the mapping θ 7→ Pθ to be

continuous is as follows. If ρ is our notion of distance be-

tween two distributions, we would like to have a loss func-

tion θ 7→ ρ(Pθ,Pr) that is continuous, and this is equivalent

to having the mapping θ 7→ Pθ be continuous when using

the distance between distributions ρ.

The contributions of this paper are:

• In Section 2, we provide a comprehensive theoretical

analysis of how the Earth Mover (EM) distance be-

haves in comparison to popular probability distances

and divergences used in the context of learning distri-

butions.

• In Section 3, we define a form of GAN called

Wasserstein-GAN that minimizes a reasonable and ef-

ficient approximation of the EM distance, and we the-

oretically show that the corresponding optimization

problem is sound.

• In Section 4, we empirically show that WGANs cure

the main training problems of GANs. In particular,

training WGANs does not require maintaining a care-

ful balance in training of the discriminator and the

1More exactly, the topology induced by ρ is weaker than that
induced by ρ′ when the set of convergent sequences under ρ is a
superset of that under ρ′.

generator, does not require a careful design of the net-

work architecture either, and also reduces the mode

dropping that is typical in GANs. One of the most

compelling practical benefits of WGANs is the ability

to continuously estimate the EM distance by training

the discriminator to optimality. Because they correlate

well with the observed sample quality, plotting these

learning curves is very useful for debugging and hy-

perparameter searches.

2. Different Distances

We now introduce our notation. Let X be a compact metric

set, say the space of images [0, 1]d, and let Σ denote the

set of all the Borel subsets of X . Let Prob(X ) denote the

space of probability measures defined on X . We can now

define elementary distances and divergences between two

distributions Pr,Pg ∈ Prob(X ):

• The Total Variation (TV) distance

δ(Pr,Pg) = sup
A∈Σ
|Pr(A)− Pg(A)| .

• The Kullback-Leibler (KL) divergence

KL(Pr‖Pg) =

∫

log

(

Pr(x)

Pg(x)

)

Pr(x)dµ(x) ,

where both Pr and Pg are assumed to admit densities

with respect to a same measure µ defined on X .2 The

KL divergence is famously assymetric and possibly

infinite when there are points such that Pg(x) = 0
and Pr(x) > 0.

• The Jensen-Shannon (JS) divergence

JS(Pr,Pg) = KL(Pr‖Pm) +KL(Pg‖Pm) ,

where Pm is the mixture (Pr + Pg)/2. This diver-

gence is symmetrical and always defined because we

can choose µ = Pm.

• The Earth-Mover (EM) distance or Wasserstein-1

W (Pr,Pg) = inf
γ∈Π(Pr,Pg)

E(x,y)∼γ

[

‖x− y‖
]

, (1)

where Π(Pr,Pg) is the set of all joint distributions

γ(x, y) whose marginals are respectively Pr and Pg .

Intuitively, γ(x, y) indicates how much “mass” must

be transported from x to y in order to transform the

distributions Pr into the distribution Pg . The EM dis-

tance then is the “cost” of the optimal transport plan.

2Recall that a probability distribution Pr ∈ Prob(X ) admits
a density Pr(x) with respect to µ, that is, ∀A ∈ Σ, Pr(A) =∫
A
Pr(x)dµ(x), if and only it is absolutely continuous with re-

spect to µ, that is, ∀A ∈ Σ, µ(A) = 0 ⇒ Pr(A) = 0 .
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Figure 1: These plots show ρ(Pθ,P0) as a function of θ when ρ is the EM distance (left plot) or the JS divergence (right plot). The EM
plot is continuous and provides a usable gradient everywhere. The JS plot is not continuous and does not provide a usable gradient.

The following example illustrates how apparently simple

sequences of probability distributions converge under the

EM distance but do not converge under the other distances

and divergences defined above.

Example 1 (Learning parallel lines). Let Z ∼ U [0, 1] the

uniform distribution on the unit interval. Let P0 be the dis-

tribution of (0, Z) ∈ R
2 (a 0 on the x-axis and the random

variable Z on the y-axis), uniform on a straight vertical line

passing through the origin. Now let gθ(z) = (θ, z) with θ
a single real parameter. It is easy to see that in this case,

• W (P0,Pθ) = |θ|,

• JS(P0,Pθ) =

{

log 2 if θ 6= 0 ,

0 if θ = 0 ,

• KL(Pθ‖P0) = KL(P0‖Pθ) =

{

+∞ if θ 6= 0 ,

0 if θ = 0 ,

• and δ(P0,Pθ) =

{

1 if θ 6= 0 ,

0 if θ = 0 .

When θt → 0, the sequence (Pθt)t∈N converges to P0 un-

der the EM distance, but does not converge at all under

either the JS, KL, reverse KL, or TV divergences. Figure 1

illustrates this for the case of the EM and JS distances.

Example 1 gives a case where we can learn a probability

distribution over a low dimensional manifold by doing gra-

dient descent on the EM distance. This cannot be done with

the other distances and divergences because the resulting

loss function is not even continuous. Although this simple

example features distributions with disjoint supports, the

same conclusion holds when the supports have a non empty

intersection contained in a set of measure zero. This hap-

pens to be the case when two low dimensional manifolds

intersect in general position (Arjovsky & Bottou, 2017).

Since the Wasserstein distance is much weaker than the JS

distance,3 we can now ask whether W (Pr,Pθ) is a contin-

uous loss function on θ under mild assumptions:

Theorem 1. Let Pr be a fixed distribution over X . Let

Z be a random variable (e.g Gaussian) over another

space Z . Let Pθ denote the distribution of gθ(Z) where

g : (z, θ) ∈ Z × R
d 7→ gθ(z) ∈ X . Then,

1. If g is continuous in θ, so is W (Pr,Pθ).

2. If g is locally Lipschitz and satisfies regularity as-

sumption 1, then W (Pr,Pθ) is continuous every-

where, and differentiable almost everywhere.

3. Statements 1-2 are false for the Jensen-Shannon di-

vergence JS(Pr,Pθ) and all the KLs.

As a consequence, learning by minimizing the EM distance

makes sense (at least in theory) for neural networks:

Corollary 1. Let gθ be any feedforward neural network4

parameterized by θ, and p(z) a prior over z such that

Ez∼p(z)[‖z‖] < ∞ (e.g. Gaussian, uniform, etc.). Then

assumption 1 is satisfied and therefore W (Pr,Pθ) is con-

tinuous everywhere and differentiable almost everywhere.

Both proofs are given in Appendix C.

All this indicates that EM is a much more sensible cost

function for our problem than at least the Jensen-Shannon

divergence. The following theorem describes the relative

strength of the topologies induced by these distances and

divergences, with KL the strongest, followed by JS and TV,

and EM the weakest.

Theorem 2. Let P be a distribution on a compact space X
and (Pn)n∈N be a sequence of distributions on X . Then,

considering all limits as n→∞,

3Appendix A explains to the mathematically inclined reader
why this happens and how we arrived to the idea that Wasserstein
is what we should really be optimizing.

4By a feedforward neural network we mean a function com-
posed of affine transformations and componentwise Lipschitz
nonlinearities (such as the sigmoid, tanh, elu, softplus, etc). A
similar but more technical proof is required for ReLUs.
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1. The following statements are equivalent

• δ(Pn,P)→ 0 with δ the total variation distance.

• JS(Pn,P)→ 0 with JS the Jensen-Shannon di-

vergence.

2. The following statements are equivalent

• W (Pn,P)→ 0.

• Pn
D
−→ P where

D
−→ represents convergence in

distribution for random variables.

3. KL(Pn‖P) → 0 or KL(P‖Pn) → 0 imply the state-

ments in (1).

4. The statements in (1) imply the statements in (2).

Proof. See Appendix C

This highlights the fact that the KL, JS, and TV distances

are not sensible cost functions when learning distributions

supported by low dimensional manifolds. However the EM

distance is sensible in that setup. This leads us to the next

section where we introduce a practical approximation of

optimizing the EM distance.

3. Wasserstein GAN

Again, Theorem 2 points to the fact that W (Pr,Pθ) might

have nicer properties when optimized than JS(Pr,Pθ).
However, the infimum in (1) is highly intractable. On the

other hand, the Kantorovich-Rubinstein duality (Villani,

2009) tells us that

W (Pr,Pθ) = sup
‖f‖L≤1

Ex∼Pr
[f(x)]− Ex∼Pθ

[f(x)] (2)

where the supremum is over all the 1-Lipschitz functions

f : X → R. Note that if we replace ‖f‖L ≤ 1 for

‖f‖L ≤ K (consider K-Lipschitz for some constant K),

then we end up with K ·W (Pr,Pg). Therefore, if we have

a parameterized family of functions {fw}w∈W that are all

K-Lipschitz for some K, we could consider solving the

problem

max
w∈W

Ex∼Pr
[fw(x)]− Ez∼p(z)[fw(gθ(z)] (3)

and if the supremum in (2) is attained for some w ∈ W
(a pretty strong assumption akin to what’s assumed when

proving consistency of an estimator), this process would

yield a calculation of W (Pr,Pθ) up to a multiplicative

constant. Furthermore, we could consider differentiat-

ing W (Pr,Pθ) (again, up to a constant) by back-proping

through equation (2) via estimating Ez∼p(z)[∇θfw(gθ(z))].
While this is all intuition, we now prove that this process is

principled under the optimality assumption.

Algorithm 1 WGAN, our proposed algorithm. All exper-

iments in the paper used the default values α = 0.00005,

c = 0.01, m = 64, ncritic = 5.

Require: : α, the learning rate. c, the clipping parameter.

m, the batch size. ncritic, the number of iterations of the

critic per generator iteration.

Require: : w0, initial critic parameters. θ0, initial genera-

tor’s parameters.

1: while θ has not converged do

2: for t = 0, ..., ncritic do

3: Sample {x(i)}mi=1 ∼ Pr a batch from the real data.

4: Sample {z(i)}mi=1 ∼ p(z) a batch of priors.

5: gw ← ∇w[
1
m

∑m
i=1 fw(x

(i))

− 1
m

∑m
i=1 fw(gθ(z

(i)))]
6: w ← w + α · RMSProp(w, gw)
7: w ← clip(w,−c, c)
8: end for

9: Sample {z(i)}mi=1 ∼ p(z) a batch of prior samples.

10: gθ ← −∇θ
1
m

∑m
i=1 fw(gθ(z

(i)))
11: θ ← θ − α · RMSProp(θ, gθ)
12: end while

Theorem 3. Let Pr be any distribution. Let Pθ be the dis-

tribution of gθ(Z) with Z a random variable with density p
and gθ a function satisfying assumption 1. Then, there is a

solution f : X → R to the problem

max
‖f‖L≤1

Ex∼Pr
[f(x)]− Ex∼Pθ

[f(x)]

and we have

∇θW (Pr,Pθ) = −Ez∼p(z)[∇θf(gθ(z))]

when both terms are well-defined.

Proof. See Appendix C

Now comes the question of finding the function f that

solves the maximization problem in equation (2). To

roughly approximate this, something that we can do is

train a neural network parameterized with weights w ly-

ing in a compact space W and then backprop through

Ez∼p(z)[∇θfw(gθ(z))], as we would do with a typical

GAN. Note that the fact thatW is compact implies that all

the functions fw will be K-Lipschitz for some K that only

depends on W and not the individual weights, therefore

approximating (2) up to an irrelevant scaling factor and the

capacity of the ‘critic’ fw. In order to have parameters w lie

in a compact space, something simple we can do is clamp

the weights to a fixed box (say W = [−0.01, 0.01]l) after

each gradient update. The Wasserstein Generative Adver-

sarial Network (WGAN) procedure is described in Algo-

rithm 1.
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Figure 2: Different methods learning a mixture of 8 gaussians spread in a circle. WGAN is able to learn the distribution without mode
collapse. An interesting fact is that the WGAN (much like the Wasserstein distance) seems to capture first the low dimensional structure
of the data (the approximate circle) before matching the specific bumps in the density. Green: KDE plots. Blue: samples from the model.

Figure 3: Optimal discriminator and critic when learning to dif-
ferentiate two Gaussians. As we can see, the traditional GAN
discriminator saturates and results in vanishing gradients. Our
WGAN critic provides very clean gradients on all parts of the
space.

The fact that the EM distance is continuous and differen-

tiable a.e. means that we can (and should) train the critic

till optimality. The argument is simple, the more we train

the critic, the more reliable gradient of the Wasserstein we

get, which is actually useful by the fact that Wasserstein

is differentiable almost everywhere. For the JS, as the dis-

criminator gets better the gradients get more reliable but

the true gradient is 0 since the JS is locally saturated and

we get vanishing gradients, as can be seen in Figure 1 of

this paper and Theorem 2.4 of (Arjovsky & Bottou, 2017).

In Figure 3 we show a proof of concept of this, where we

train a GAN discriminator and a WGAN critic till optimal-

ity. The discriminator learns very quickly to distinguish

between fake and real, and as expected provides no reliable

gradient information. The critic, however, can’t saturate,

and converges to a linear function that gives remarkably

clean gradients everywhere. The fact that we constrain the

weights limits the possible growth of the function to be at

most linear in different parts of the space, forcing the opti-

mal critic to have this behaviour.

Perhaps more importantly, the fact that we can train the

critic till optimality makes it impossible to collapse modes

when we do. This is due to the fact that mode collapse

comes from the fact that the optimal generator for a fixed

discriminator is a sum of deltas on the points the discrimi-

nator assigns the highest values, as observed by (Goodfel-

low et al., 2014) and highlighted in (Metz et al., 2016).

In the following section we display the practical benefits of

our new algorithm, and we provide an in-depth comparison

of its behaviour and that of traditional GANs.
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Figure 4: Training curves and samples at different stages of training. We can see a clear correlation between lower error and better
sample quality. Upper left: the generator is an MLP with 4 hidden layers and 512 units at each layer. The loss decreases constistently
as training progresses and sample quality increases. Upper right: the generator is a standard DCGAN. The loss decreases quickly
and sample quality increases as well. In both upper plots the critic is a DCGAN without the sigmoid so losses can be subjected to
comparison. Lower half: both the generator and the discriminator are MLPs with substantially high learning rates (so training failed).
Loss is constant and samples are constant as well. The training curves were passed through a median filter for visualization purposes.

4. Empirical Results

We run experiments on image generation using our

Wasserstein-GAN algorithm and show that there are sig-

nificant practical benefits to using it over the formulation

used in standard GANs. We claim two main benefits:

• a meaningful loss metric that correlates with the gen-

erator’s convergence and sample quality

• improved stability of the optimization process

4.1. Mixtures of Gaussians

In (Metz et al., 2016) the authors presented a simple mix-

ture of Gaussians experiments that served a very specific

purpose. In this mixture, the mode collapse problem of

GANs is easy to visualize, since a normal GAN would ro-

tate between the different modes of the mixture, and fail

to capture the whole distribution. In 2 we show how our

WGAN algorithm approximately finds the correct distribu-

tion, without any mode collapse.

An interesting thing is that the WGAN first seems to learn

to match the low-dimensional structure of the data (the ap-

proximate circle), before zooming in on the specific bumps

of the true density. Similar to the Wasserstein distance, it

looks like WGAN gives more importance to matching the

low dimensional supports rather than the specific ratios be-

tween the densities.

4.2. Experimental Procedure for Image Generation

We run experiments on image generation. The target dis-

tribution to learn is the LSUN-Bedrooms dataset (Yu et al.,

2015) – a collection of natural images of indoor bedrooms.

Our baseline comparison is DCGAN (Radford et al., 2015),

a GAN with a convolutional architecture trained with the

standard GAN procedure using the− logD trick (Goodfel-

low et al., 2014). The generated samples are 3-channel im-

ages of 64x64 pixels in size. We use the hyper-parameters

specified in Algorithm 1 for all of our experiments.

4.3. Meaningful loss metric

Because the WGAN algorithm attempts to train the critic f
(lines 2–8 in Algorithm 1) relatively well before each gen-

erator update (line 10 in Algorithm 1), the loss function at

this point is an estimate of the EM distance, up to constant

factors related to the way we constrain the Lipschitz con-

stant of f .

Our first experiment illustrates how this estimate correlates

well with the quality of the generated samples. Besides

the convolutional DCGAN architecture, we also ran exper-

iments where we replace the generator or both the generator

and the critic by 4-layer ReLU-MLP with 512 hidden units.

Figure 4 plots the evolution of the WGAN estimate (3) of

the EM distance during WGAN training for all three archi-

tectures. The plots clearly show that these curves correlate
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Figure 5: JS estimates for an MLP generator (upper left) and a DCGAN generator (upper right) trained with the standard GAN
procedure. Both had a DCGAN discriminator. Both curves have increasing error. Samples get better for the DCGAN but the JS estimate
increases or stays constant, pointing towards no significant correlation between sample quality and loss. Bottom: MLP with both
generator and discriminator. The curve goes up and down regardless of sample quality. All training curves were passed through the
same median filter as in Figure 4.

well with the visual quality of the generated samples.

To our knowledge, this is the first time in GAN litera-

ture that such a property is shown, where the loss of the

GAN shows properties of convergence. This property is

extremely useful when doing research in adversarial net-

works as one does not need to stare at the generated sam-

ples to figure out failure modes and to gain information on

which models are doing better over others.

However, we do not claim that this is a new method to

quantitatively evaluate generative models yet. The con-

stant scaling factor that depends on the critic’s architecture

means it’s hard to compare models with different critics.

Even more, in practice the fact that the critic doesn’t have

infinite capacity makes it hard to know just how close to

the EM distance our estimate really is. This being said, we

have succesfully used the loss metric to validate our exper-

iments repeatedly and without failure, and we see this as a

huge improvement in training GANs which previously had

no such facility.

In contrast, Figure 5 plots the evolution of the GAN esti-

mate of the JS distance during GAN training. More pre-

cisely, during GAN training, the discriminator is trained to

maximize

L(D, gθ) = Ex∼Pr
[logD(x)] + Ex∼Pθ

[log(1−D(x))]

which is is a lower bound of 2JS(Pr,Pθ)− 2 log 2. In the

figure, we plot the quantity 1
2L(D, gθ) + log 2, which is a

lower bound of the JS distance.

This quantity clearly correlates poorly the sample quality.

Note also that the JS estimate usually stays constant or goes

up instead of going down. In fact it often remains very

close to log 2 ≈ 0.69 which is the highest value taken by

the JS distance. In other words, the JS distance saturates,

the discriminator has zero loss, and the generated samples

are in some cases meaningful (DCGAN generator, top right

plot) and in other cases collapse to a single nonsensical im-

age (Goodfellow et al., 2014). This last phenomenon has

been theoretically explained in (Arjovsky & Bottou, 2017)

and highlighted in (Metz et al., 2016).

When using the − logD trick (Goodfellow et al., 2014),

the discriminator loss and the generator loss are different.

Figure 9 in Appendix F reports the same plots for GAN

training, but using the generator loss instead of the discrim-

inator loss. This does not change the conclusions.

Finally, as a negative result, we report that WGAN train-

ing becomes unstable at times when one uses a momentum

based optimizer such as Adam (Kingma & Ba, 2014) (with

β1 > 0) on the critic, or when one uses high learning rates.

Since the loss for the critic is nonstationary, momentum

based methods seemed to perform worse. We identified

momentum as a potential cause because, as the loss blew up

and samples got worse, the cosine between the Adam step

and the gradient usually turned negative. The only places

where this cosine was negative was in these situations of

instability. We therefore switched to RMSProp (Tieleman

& Hinton, 2012) which is known to perform well even on

very nonstationary problems (Mnih et al., 2016).
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Figure 6: Algorithms trained with a DCGAN generator. Left: WGAN algorithm. Right: standard GAN formulation. Both algorithms
produce high quality samples.

Figure 7: Algorithms trained with a generator without batch normalization and constant number of filters at every layer (as opposed
to duplicating them every time as in (Radford et al., 2015)). Aside from taking out batch normalization, the number of parameters is
therefore reduced by a bit more than an order of magnitude. Left: WGAN algorithm. Right: standard GAN formulation. As we can see
the standard GAN failed to learn while the WGAN still was able to produce samples.

Figure 8: Algorithms trained with an MLP generator with 4 layers and 512 units with ReLU nonlinearities. The number of parameters
is similar to that of a DCGAN, but it lacks a strong inductive bias for image generation. Left: WGAN algorithm. Right: standard GAN
formulation. The WGAN method still was able to produce samples, lower quality than the DCGAN, and of higher quality than the MLP
of the standard GAN. Note the significant degree of mode collapse in the GAN MLP.

4.4. Improved stability

One of the benefits of WGAN is that it allows us to train

the critic till optimality. When the critic is trained to com-

pletion, it simply provides a loss to the generator that we

can train as any other neural network. This tells us that we

no longer need to balance generator and discriminator’s ca-

pacity properly. The better the critic, the higher quality the

gradients we use to train the generator.

We observe that WGANs are more robust than GANs when

one varies the architectural choices for the generator in cer-

tain ways. We illustrate this by running experiments on

three generator architectures: (1) a convolutional DCGAN

generator, (2) a convolutional DCGAN generator without

batch normalization and with a constant number of filters

(the capacity of the generator is drastically smaller than that

of the discriminator), and (3) a 4-layer ReLU-MLP with

512 hidden units. The last two are known to perform very

poorly with GANs. We keep the convolutional DCGAN ar-

chitecture for the WGAN critic or the GAN discriminator.

Figures 6, 7, and 8 show samples generated for these three

architectures using both the WGAN and GAN algorithms.

We refer the reader to Appendix H for full sheets of gener-

ated samples. Samples were not cherry-picked.

In no experiment did we see evidence of mode collapse

for the WGAN algorithm.

5. Related Work

We refer the reader to Appendix D for the connections to

the different integral probability metrics (Müller, 1997).

The recent work of (Montavon et al., 2016) has explored

the use of Wasserstein distances in the context of learn-

ing for Restricted Boltzmann Machines for discrete spaces.

Even though the motivations at a first glance might seem

quite different, at the core of it both our works want to com-

pare distributions in a way that leverages the geometry of

the underlying space, which Wasserstein allows us to do.

Finally, the work of (Genevay et al., 2016) shows new al-

gorithms for calculating Wasserstein distances between dif-

ferent distributions. We believe this direction is quite im-

portant, and perhaps could lead to new ways to evaluate

generative models.

6. Conclusion

We introduced an algorithm that we deemed WGAN, an

alternative to traditional GAN training. In this new model,

we showed that we can improve the stability of learning,

get rid of problems like mode collapse, and provide mean-

ingful learning curves useful for debugging and hyperpa-

rameter searches. Furthermore, we showed that the corre-

sponding optimization problem is sound, and provided ex-

tensive theoretical work highlighting the deep connections

to other distances between distributions.
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Mehdi, Graves, Alex, Lillicrap, Timothy P., Harley, Tim,

Silver, David, and Kavukcuoglu, Koray. Asynchronous

methods for deep reinforcement learning. In Proceed-

ings of the 33nd International Conference on Machine

Learning, ICML 2016, New York City, NY, USA, June

19-24, 2016, pp. 1928–1937, 2016.
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