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Abstract— As a natural approach to modeling system safety
conditions, chance constraint (CC) seeks to satisfy a set of un-
certain inequalities individually or jointly with high probability.
Although a joint CC offers stronger reliability certificate, it is
oftentimes much more challenging to compute than individual
CCs. Motivated by the application of optimal power flow, we
study a special joint CC, named two-sided CC. We model the
uncertain parameters through a Wasserstein ball centered at
a Gaussian distribution and derive a hierarchy of conservative
approximations based on second-order conic constraints, which
can be efficiently computed by off-the-shelf commercial solvers.
In addition, we show the asymptotic consistency of these
approximations and derive their approximation guarantee when
only a finite hierarchy is adopted. We demonstrate the out-of-
sample performance and scalability of the proposed model and
approximations in a case study based on the IEEE 118-bus and
3120-bus systems.

I. INTRODUCTION

Chance constraint (CC) is a natural approach for mod-
eling safety conditions of a system under uncertainty. CC
models the safety conditions as a set of inequalities and the
underlying uncertainty as a random vector. Then, it requires
to satisfy these inequalities individually or jointly with high
probability. For linear inequalities, CC takes the form

Ptrue

[
A(x)ξ̃ ≤ b(x)

]
≥ 1− ε, (CC)

where x ∈ Rn are decision or design variables, ξ̃ is a random
vector supported on Ξ := Rm, A(·) : Rn → Rq×m and
b(·) : Rn → Rq are affine mappings, Ptrue is the probability
distribution of ξ̃, and (1−ε) ∈ (1/2, 1) is a risk threshold that
is usually close to one, e.g., 0.95. We call (CC) individual
if q = 1 and joint if q ≥ 2.

With its study dating back to the 1950s [5, 4, 21, 27], CC
finds a wide range of applications in, e.g., power system [33],
vehicle routing [32], portfolio management [17], schedul-
ing [6], and facility location [22]. Despite its popularity in
real-world applications, (CC) is in general challenging to
compute because of its non-convexity and the NP-hardness
of evaluating probability through multi-dimensional inte-
gral [24, 13]. In particular, a joint (CC) is oftentimes much
more challenging to compute than individual (CC)s. For
example, the individual (CC) admits a convex or conic
reformulation in various settings (see, e.g., [20, 7, 39, 38,
16]), while the corresponding results for the joint (CC)s are
unavailable to date (see, e.g., [36, 11, 34]). Consequently,
convex and tractable approximations of joint (CC)s with per-
formance guarantee are crucial for its practical applications.
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In this paper, we consider a special joint (CC), which we
call a two-sided chance constraint (2SCC) of the form

Ptrue

[
` ≤ xTξ̃ ≤ u

]
≥ 1− ε,

where (x, `, u) are decision variables. (2SCC) is a joint
(CC) because it requires both inequalities to hold jointly, but
meanwhile it is special because the two inequalities share the
term xTξ̃ (up to the contrary sign). The particular form of
(2SCC) arises from optimal power flow (OPF) when mod-
eling the lower/upper limits of power generation and those
of power flow in a transmission line (see formulation (12)
in Section IV), as well as from other applications including
hydrothermal unit commitment [1] and robust regression [8].

(2SCC) was first proposed by [18], where Ptrue is assumed
to be Gaussian. In this case, [18] showed that (2SCC)
produces a convex feasible region and derived outer conic
approximations with approximation guarantee. Later, [9]
considered a more general case, in which Ptrue is a mixture
of K Gaussian distributions sharing the same covariance
matrix and ε is sufficiently close to 0. Then, [9] derived an
asymptotically tight conic approximation for (2SCC) using
a piecewise linear approximation of the standard Gaussian
cumulative distribution function (CDF). In most real-world
applications, however, the (true) distribution Ptrue is not
available. Under such circumstance, a common choice is
to replace Ptrue with a crude estimate P, which can be an
empirical distribution constructed from past observations of
the uncertain parameters [19], or a Gaussian distribution,
whose mean and covariance matrix can in turn be esti-
mated empirically [18]. Unfortunately, such a P is likely
to misrepresent Ptrue and the decisions thus produced have
disappointing out-of-sample performance. This motivates us
to consider alternative estimates of Ptrue, or more formally,
a Wasserstein ball

P := {Q ∈ Q0 : dW (Q,P) ≤ δ }

around P, which consists of all distributions that are close
enough to P. Above, Q0 is the set of all distributions
supported on Ξ, δ > 0 is a pre-specified radius of the
Wasserstein ball, and dW (·, ·) : Q0 ×Q0 → R+ denotes the
Wasserstein distance between two distributions, such that for
any P1 and P2 in Q0,

dW (P1,P2) := inf
Q0∼(P1,P2)

EQ0

[
‖X̃1 − X̃2‖

]
,

where X̃1 and X̃2 are two random variables following P1

and P2, respectively, Q0 is a coupling of P1 and P2, and ‖·‖
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is a norm. Accordingly, we robustify (2SCC) by satisfying
the chance constraint with regard to all distributions in
P , yielding the following two-sided distributionally robust
chance constraint (2DRC),

Z :=

{
(x, `, u) ∈ Rn+2 : inf

Q∈P
Q
[
` ≤ xTξ̃ ≤ u

]
≥ 1− ε

}
.

The recent literature has witnessed an increasing interest
in the convexity and tractable reformulations of distribu-
tionally robust chance constraints (DRC). For example, [7,
3, 38] derived second-order conic representations for in-
dividual (DRC) when the uncertainty is modeled by its
mean and covariance matrix. Using the same model of
uncertainty, [35] derived a second-order conic representation
for two-sided (DRC). Similar results were obtained when
shape information (e.g., unimodality and log-concavity) is
incorporated [12, 16, 15]. Different from these works, we
model the uncertainty using the Wasserstein ball P , which
is less conservative than the moment approaches [23, 14].

Convexity and tractable reformulations for joint (DRC)
are much scarcer to date. For example, [11, 36, 37] showed
NP-hardness results of these constraints unless the model of
uncertainty falls into certain special settings. In addition, [34,
26, 25, 30] recast joint (DRC) as (deterministic) mixed-
integer programs. On the contrary, [31] showed that a joint
(DRC) produces a convex feasible region if (i) the estimate
P in P is chosen to be log-concave and (ii) the uncertainty is
decoupled from decision variables in the chance constraint,
i.e., A(x) ≡ A is independent of x in the definition of (CC).
In the case of (2DRC), this implies that x becomes constants,
while (`, u) remain decision variables, in Z . In this paper, we
extend [31] by allowing the coupling of x and ξ̃ in (2DRC).
Our main contributions include

1) We show that Z is convex. In addition, we derive a
hierarchy of conservative approximations for Z based
on second-order conic constraints, which facilitates ef-
ficient computation through off-the-shelf commercial
solvers.

2) We show that these approximations are asymptotically
tight and derive their non-asymptotic approximation
guarantee, when only a finite hierarchy is adopted.

3) Using the OPF problem and an IEEE 118-bus system,
we numerically demonstrate the out-of-sample perfor-
mance of the proposed (2DRC) over the alternative
(CC), which does not model robustness. In addition, we
demonstrate the scalability of the approximations using
IEEE systems with up to 3120 buses.

The rest of the paper is organized as follows: In Section II,
we derive a convex representation for Z . In Section III,
we construct an asymptotically exact conic approximation
of Z and derive non-asymptotic approximation guarantee.
In Section IV, we numerically demonstrate the effectiveness
and scalability of our approach in OPF problems.

Notation. In denotes an n × n identity matrix and ‖·‖∗
denotes the dual norm of ‖·‖. Φ(·) denotes the CDF of a
1-dimensional standard Gaussian.

II. CONVEXITY OF Z

We study the convexity of Z . First, we review the defini-
tion of Value-at-Risk (VaR) [28].

Definition 1. Let X̃ be a random variable with distribution
PX̃ . Then, the (1− ε)-VaR of X̃ is defined as

VaR(1−ε)(X̃) := inf
{
x : PX̃

[
X̃ ≤ x

]
≥ 1− ε

}
.

Second, we specify the configurations of P .

Assumption 1. The Wasserstein ball P is such that (a) the
reference distribution P is a multivariate Gaussian distribu-
tion N (µ,Σ) with Σ � 0, and (b) the norm ‖·‖ in dW is an
ellipsoidal norm with regard to Σ1/2, i.e., ‖·‖ = ‖Σ−1/2(·)‖2
(or equivalently, ‖·‖∗ = ‖Σ1/2(·)‖2).

Assumption 1 facilitates the convex representation of Z
in Theorem 1 and the inner approximations derived in
Section III. In particular, Assumption 1(a) is motivated by
the OPF problem, in which the forecast errors of renewable
energy are usually modeled by a Gaussian distribution or
other log-concave alternatives [18]. Consequently, the poten-
tial misspecification by P can be restored by the robustness
of (2DRC). In addition, Assumption 1(b) can be made with-
out much loss of modeling power because all Wasserstein
distances are equivalent.

We now establish a convex representation of Z .

Lemma 1. Suppose that ε ∈ (0, 1/2) and Assumption 1
holds. Define

Z0 :=

{
(`, u) ∈ R2 : inf

Q∈P0

Q
[
` ≤ ξ̃ ≤ u

]
≥ 1− ε

}
,

where P0 is a Wasserstein ball centered around the standard
Gaussian distribution P0 with the radius δ. Then, for any
x 6= 0, (x, `, u) ∈ Z if and only if

(
`−xTµ
‖x‖∗ ,

u−xTµ
‖x‖∗

)
∈ Z0.

Proof. First, Proposition 1 in [31] implies that (`, u) ∈ Z0

if and only if it satisfies

f0(`, u) ≥ δ (1)

and P0

[
` ≤ ζ̃0 ≤ u

]
≥ 1− ε, (2)

where ζ̃0 is the standard Gaussian random variable,
φ(`, u, ζ) := min { ζ − `, u− ζ }, and

f0(`, u) :=

VaRε[φ(`,u,ζ̃0)]∫
0

(
P0

[
φ(`, u, ζ̃0) ≥ t

]
− (1− ε)

)
dt.

Likewise, the same proposition implies that (x, `, u) ∈ Z if
and only if it satisfies

f(x, `, u) ≥ δ
and P

[
` ≤ xTζ̃ ≤ u

]
≥ 1− ε,



where ζ̃ is a random variable with distribution P, ψ̃ :=
φ(`, u, xTζ̃)/‖x‖∗, and

f(x, `, u) :=

VaRε(ψ̃)∫
0

(
P
[
ψ̃ ≥ t

]
− (1− ε)

)
dt.

Second, pick any (x, `, u) ∈ Z with x 6= 0. By definition,
we recast ψ̃ as

min{xTζ̃ − `, u− xTζ̃}
‖x‖∗

= min

{
xT(ζ̃ − µ)

‖x‖∗
− `− xTµ
‖x‖∗

,
u− xTµ
‖x‖∗

− xT(ζ̃ − µ)

‖x‖∗

}
.

Since xT(ζ̃ − µ)/‖x‖∗ is Gaussian, E[xT(ζ̃ − µ)/‖x‖∗] =
0, and Var[xT(ζ̃ − µ)/‖x‖∗] = 1, xT(ζ̃ − µ)/‖x‖∗ is a
standard Gaussian random variable and ψ̃ follows the same
distribution as φ

(
(` − xTµ)/‖x‖∗, (u − xTµ)/‖x‖∗, ζ̃0

)
. It

follows that

f0

(
`− xTµ
‖x‖∗

,
u− xTµ
‖x‖∗

)
= f(x, `, u) ≥ δ.

Similarly, we have

P0

[
`− xTµ
‖x‖∗

≤ ζ̃0 ≤
u− xTµ
‖x‖∗

]
= P

[
`− xTµ
‖x‖∗

≤ xT(ζ̃ − µ)

‖x‖∗
≤ u− xTµ
‖x‖∗

]
= P

[
` ≤ xTζ̃ ≤ u

]
≥ 1− ε,

which yields that
(
`−xTµ
‖x‖∗ ,

u−xTµ
‖x‖∗

)
∈ Z0.

Third, pick any (x, `, u) ∈ Rn+2 with
(
`−xTµ
‖x‖∗ ,

u−xTµ
‖x‖∗

)
∈

Z0 and x 6= 0. Then, same arguments yield that

f(x, `, u) = f0

(
`− xTµ
‖x‖∗

,
u− xTµ
‖x‖∗

)
≥ δ

and P
[
` ≤ xTζ̃ ≤ u

]
= P0

[
`− xTµ
‖x‖∗

≤ ζ̃0 ≤
u− xTµ
‖x‖∗

]
≥ 1− ε.

It follows that (x, `, u) ∈ Z and this completes the proof.

Theorem 1. Suppose that ε ∈ (0, 1/2) and Assumption 1
holds. Define

gε(`, u) :=

+∞∫
0

[
Φ(u− t)− Φ(`+ t)− (1− ε)

]+
dt

and Z1 := cl { (`, u, s) : s > 0, (`/s, u/s) ∈ Z0 } , (3)

where cl denotes the closure operator. Then,

Z0 = { (`, u) : δ ≤ gε(`, u) } .
In addition, (x, `, u) ∈ Z if and only if there exists an s ≥
‖x‖∗ such that (`−xTµ, u−xTµ, s) ∈ Z1. Finally, both Z0

and Z are convex and closed.

Proof. First, Theorem 8 in [31] and Theorem 4.39 in [29]
imply that (1) and (2) produce a convex and closed feasible
region, i.e., Z0 is convex and closed.

Second, we represent f0(`, u) as

VaRε[φ(`,u,ζ̃0)]∫
0

(
P0

[
φ(`, u, ζ̃0) ≥ t

]
− (1− ε)

)
dt

=

+∞∫
0

(
P0

[
φ(`, u, ζ̃0) ≥ t

]
− (1− ε)

)+

dt

=

+∞∫
0

[
Φ(u− t)− Φ(`+ t)− (1− ε)

]+
dt,

where the first equality is because the integrand is monoton-
ically decreasing in t and the second equality is by definition
of the function φ. Since δ > 0, constraint (1) implies that
there exists a t ≥ 0 such that Φ(u− t)−Φ(`+ t) > 1− ε, or
equivalently, P0[`+ t ≤ ζ̃0 ≤ u− t] > 1− ε, which implies
constraint (2). Hence, Z0 = { (`, u) : δ ≤ gε(`, u) }.

Third, Z1 is convex and closed because it is the conic
hull of Z0. Hence, to prove that Z is convex and closed, it
remains to show that (x, `, u) ∈ Z if and only if there exists
an s ≥ ‖x‖∗ such that (`− xTµ, u− xTµ, s) ∈ Z1. To this
end, we discuss the following two cases.

1) Suppose that x = 0. For any (0, `, u) ∈ Z , we have
` ≤ 0 ≤ u because otherwise P[` ≤ 0 ≤ u] < 1/2 <
1− ε, violating the assumption that (0, `, u) ∈ Z . Then,
s := 1/n for a sufficiently large integer n ensures that
(`/s, u/s) ∈ Z0 and so (`, u, s) ∈ Z1. On the contrary,
for any (0, `, u) ∈ Rn+2 such that there exists an s ≥ 0
with (`, u, s) ∈ Z1, by definition of Z1 there exists a
sequence {(`n, un, sn)}∞n=1 converging to (`, u, s) such
that sn > 0 and gε(`n/sn, un/sn) ≥ δ for all n.
Then, `n < 0 and un > 0 for all n because otherwise
gε(`n/sn, un/sn) = 0 < δ. Driving n to infinity yields
that ` ≤ 0 and u ≥ 0. Hence, (0, `, u) ∈ Z .

2) Suppose that x 6= 0. Pick any (x, `, u) ∈ Z , then
Lemma 1 implies that

(
`−xTµ
‖x‖∗ ,

u−xTµ
‖x‖∗

)
∈ Z0. Hence,

s := ‖x‖∗ > 0 ensures that (`−xTµ, u−xTµ, s) ∈ Z1.
On the contrary, pick any (x, `, u) ∈ Rn+2 such that
x 6= 0 and there exists an s ≥ ‖x‖∗ > 0 with
(` − xTµ, u − xTµ, s) ∈ Z1. By definition of Z1,
there exists a sequence {(`n, un, sn)}∞n=1 converging
to (` − xTµ, u − xTµ, s) such that sn > 0 and
gε(`n/sn, un/sn) ≥ δ for all n. Then,

gε

(
`− xTµ
‖x‖∗

,
u− xTµ
‖x‖∗

)
≥ gε

(
`− xTµ

s
,
u− xTµ

s

)
= lim

n→∞
gε

(
`n
sn
,
un
sn

)
≥ δ,

where the first inequality is because the function gε(`, u)
is nonincreasing in ` and nondecreasing in u, and the
equality is due to the dominated convergence theorem. It



follows that
(
`−xTµ
‖x‖∗ ,

u−xTµ
‖x‖∗

)
∈ Z0 and so (x, `, u) ∈ Z

by Lemma 1. This completes the proof.

III. TIGHT CONIC APPROXIMATION OF Z
Although Theorem 1 produces a convex representation of

Z , it is not computable because gε(`, u) is defined by an
integration. In this section, we derive an inner approximation
of Z from that of Z0. The basic idea was proposed by [18]
to derive outer approximations for chance constraints.

A. Polyhedral inner approximation of Z0

To illustrate the basic idea, we define the δ-level set of
gε(`, u):

Cδ :=
{

(`, u) ∈ R2 : gε(`, u) = δ
}
.

The set Cδ ⊆ R− × R+ because ε < 1/2. We plot Cδ with
fixed ε = 0.1, δ = 0.05 and varying δ in Figure 1, from
which we observe that (i) Cδ is convex and (ii) a polyhedral
inner approximation of Cδ can be constructed based on a set
of points on Cδ . We now formalize this idea.

−4.0 −3.5 −3.0 −2.5 −2.0

`

2.00

2.25

2.50

2.75

3.00
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u

(`5, u5)
(`4, u4)

(`3, u3)
(`2, u2)

(`1, u1)

0.175

0.150

0.125

0.100

0.075

0.
05

0

0.025

Fig. 1: Contour of gε(`, u) with varying δ and a polyhedral
inner approximation

Definition 2. Define ẐN0 as the inner approximation of Z0

(i.e., ZN0 ⊆ Z0) obtained from the N points

{ (`1, u1), . . . , (`i, ui), . . . , (`N , uN ) }

on Cδ with decreasing `i’s. Then,

ẐN0 := { (`, u) : (4), (5), (6) } ,

where

` ≤ `1, (4)
∀i ∈ [N − 1] :

(u− ui)(`i − `i+1) ≥ (ui − ui+1)(`− `i), (5)
u ≥ uN . (6)

Specifically, the boundary of (4) (resp. (6)) is the vertical
(resp. horizontal) ray emitting from (`1, u1) (resp. (`N , uN ))
and the boundaries of (5) are the line segments connecting
(`i, ui) Accordingly, we obtain the following conic inner
approximation of Z by Theorem 1:

ẐN :=

{
(x, `, u) :

∃s ∈ R : ‖x‖∗ ≤ s,(
(`− xTµ)/s, (u− xTµ)/s

)
∈ ẐN0

}
,

where the last constraint in ẐN can be recast as the following
linear inequalities:

`− xTµ ≤ `1s,
u− xTµ ≥ uNs,
∀i ∈ [N − 1] :(
`i − `i+1

ui − ui+1

)(
u− xTµ− uis

)
≥ `− xTµ− `is.

ẐN can be directly computed by commercial solvers, and
it inherits the approximation guarantee of ẐN0 , which we
analyze in Sections III-B–III-C.

B. Approximation error induced by (5)

We first quantify the error of approximating a concave
function h by an affine function h̄ from above.

Lemma 2. Suppose that h(λ) : [0, 1] → R+ is a positive,
subdifferentiable, and strictly concave function. Define

ĥ(λ) := min {h(0) + ∂h(0)λ, h(1) + ∂h(1)(λ− 1) } ,
where ∂h(λ) is a subgradient of h at λ,

τ :=
ĥ(λ∗)

λ∗h(1) + (1− λ∗)h(0)
≥ 1, (7)

where λ∗ := h(1)−h(0)−∂h(1)
∂h(0)−∂h(1) ∈ [0, 1], and

h̄(λ) := τ ·
(
h(1)− h(0)

)
λ+ τ · h(0).

Then, 1
τ h̄(λ) ≤ h(λ) ≤ h̄(λ) for all λ ∈ [0, 1].

Proof. By concavity of h, h(λ) ≤ ĥ(λ). First, we show
h(λ) ≤ h̄(λ). Observe that: (i) h(0) = τh(0) ≥ h(0) =
ĥ(0), and h(λ∗) = ĥ(λ∗), implying ∇h ≤ ∂h(0); (ii)
h(1) = τh(1) ≥ h(1) = ĥ(1), implying ∇h ≥ ∂h(1). It
follows that h is a supporting hyperplane of the hypograph
of ĥ. Thus, we have h(λ) ≤ ĥ(λ) ≤ h̄(λ) for all λ ∈ [0, 1].
Second, 1

τ h̄(λ) ≤ h(λ) because h is concave.

Now we quantify the approximation error induced by (5).

Proposition 1. Suppose that ε ∈ (0, 1/2), δ > 0, and
(`1, u1), (`2, u2) are two points in Cδ . Let (`λ, uλ) be their
convex combination such that (`λ, uλ) := (1− λ)(`1, u1) +
λ(`2, u2) for λ ∈ [0, 1] and define s(λ) := gε(`λ, uλ). Then,
it holds that

1)
√
s(λ) is a positive, concave, and differentiable func-

tion over an open interval containing [0, 1];
2) supλ∈[0,1] s(λ) ≤ τ2

s δ, where τs is constructed from (7)
by replacing h(λ) with

√
s(λ).



3) 1 ≤ τs ≤ 1 +O(‖(`1, u1)− (`2, u2)‖1).

Proof. Since ε < 1/2, the function ϕ(`, u, t) :=
Φ(u − t) − Φ(` + t) is jointly concave on
{(`, u, t) : ϕ(`, u, t) ≥ (1− ε)}. Then,

√
gε(`, u) is concave

on { (`, u) : P0[` ≤ ζ̃0 ≤ u] ≥ 1− ε } by Theorem 2 in [10].
Thus,

√
s(λ) is positive and concave over an open interval

containing [0, 1]. By the Leibnitz integration rule, s(λ) is
differentiable on [0, 1] and

d

dλ
s(λ)

=

+∞∫
0

d

dλ

(
Φ(uλ − t)− Φ(`λ + t)− (1− ε)

)+

dt

=

+∞∫
0

1√
2π

(
e−

(uλ−t)2
2 (u2 − u1)− e−

(`λ+t)2

2 (`2 − `1)

)

· 1 { Φ(uλ − t)− Φ(`λ + t) ≥ (1− ε) }dt.

Hence,
√
s(λ) is differentiable by the chain rule. By

Lemma 2, there exists a τs > 0 such that√
s(λ) ≤ τs

(
(1− λ)

√
s(0) + λ

√
s(1)

)
= τs
√
δ.

Then, for M1,2 := max { |u1|, |u2|, |`1|, |`2| }, we have∣∣∣ d
dλ
s(λ)

∣∣∣
≤

+∞∫
0

1√
2π

(
|u2 − u1|+ |`2 − `1|

)
· 1 { Φ(uλ − t)− Φ(`λ + t) ≥ (1− ε) } dt

≤ (|u2 − u1|+ |`2 − `1|) · Leb
([

0,min { |uλ|, |`λ| }
])

≤M1,2 (|u2 − u1|+ |`2 − `1|) ,

where Leb (·) denotes the Lebsgue measure and the second
inequality is because ε ∈ (0, 1/2), implying that uλ − t ≥
0 and `λ + t ≤ 0, i.e., t ≤ uλ and t ≤ −`λ. Finally, for all
λ ∈ [0, 1], we derive

ŝ(λ) := min

{√
s(0) +

d

dλ

√
s(0) · λ,√

s(1) +
d

dλ

√
s(1) · (λ− 1)

}
≤
√
δ + min

{∣∣∣ d
dλ

√
s(0)

∣∣∣, ∣∣∣ d
dλ

√
s(1)

∣∣∣}
=
√
δ +

1

2
√
δ

min

{∣∣∣ d
dλ
s(0)

∣∣∣, ∣∣∣ d
dλ
s(1)

∣∣∣}
≤
√
δ +

1

2
√
δ
M1,2

(
|u2 − u1|+ |`2 − `1|

)
,

where we use the fact s(0) = s(1) = δ. Thus, by definition

of τs we have

τs =
ŝ(λ∗)

λ∗
√
s(1) + (1− λ∗)

√
s(0)

≤ 1√
δ

(√
δ +

1

2
√
δ
M1,2

(
|u2 − u1|+ |`2 − `1|

))
= 1 +

M1,2

2δ
‖(`1, u1)− (`2, u2)‖1.

This completes the proof.

C. Approximation errors induced by (4) and (6)

We define the approximation errors induced by ` ≤ `1
and u ≥ uN as err1 := supu≥u1

gε(`1, u) − δ and
errN := sup`≤`N gε(`, uN ) − δ, respectively. Since the
function gε(`, u) is nonincreasing in ` and nondecreasing in
u, we have

g(uN ) = sup
`≤`N

gε(`, uN ) = gε(−∞, uN ), (8)

and g(`1) = sup
u≥u1

gε(`1, u) = gε(`1,∞), (9)

where we define, for any (`, u) ∈ R− × R+,

g(u) :=

+∞∫
0

(Φ(u− t)− (1− ε))+
dt,

g(`) :=

+∞∫
0

(ε− Φ(`+ t))
+

dt.

The next two propositions imply that if `N (resp. u1)
is sufficiently small (resp. large) then errN (resp. err1)
becomes arbitrarily small.

Proposition 2. Suppose that ε ∈ (0, 1/2) and δ > 0. Then,
for a sequence of points { (`n, un), n ∈ N } ⊆ Cδ , if `n ↘
−∞ as n→∞ then un → u∗ as n→∞, where u∗ is the
solution of the equation g(u) = δ.

Proof. Since `n ↘ −∞ and (`n, un) ∈ Cδ , un is decreasing
in n. Consider the sequence of functions { gn, n ∈ N }, where

gn(u) :=

+∞∫
0

(
Φ(u− t)− Φ(`n + t)− (1− ε)

)+
dt.

Evidently, gn is increasing, bounded from above by g, and
continuous for all n by the dominated convergence theorem.
Take a u > 0 such that g(u) < δ and define a restricted
domain domg := [u, u1] for all gn’s and g. Since gn(u) ≤
g(u) < δ for all n and gn(u1) ≥ g1(u1) = δ, the solution
of equations {u : gn(u) = δ } ⊆ domg by the intermediate
value theorem. First, we show that gn → g uniformly as



n→∞ on domg . Notice that

|gn(u)− g(u)|

≤
+∞∫
0

∣∣∣(Φ(u− t)− Φ(`n + t)− (1− ε)
)+

−
(
Φ(u− t)− (1− ε)

)+∣∣∣ dt
≤

+∞∫
0

Φ(`n + t) · 1 { Φ(u− t) ≥ (1− ε) } dt

=

+∞∫
0

Φ(`n + t) · 1
{
t ≤ u1 − Φ−1(1− ε)

}
dt.

For any u ∈ domg , the dominated convergence theorem
implies that

lim
n→∞

∣∣∣gn(u)− g(u)
∣∣∣

≤
+∞∫
0

lim
n→∞

Φ(`n + t) · 1
{
t ≤ u1 − Φ−1(1− ε)

}
dt = 0.

Due to the strict monotonicity of g in u, its inverse function
(g)−1 is well defined. Furthermore, it is continuous because
domg is compact. Second, we bound the distance between
un and u∗. For any ε > 0, there exists Nε ∈ N such that

n > Nε =⇒ sup
u∈domg

|gn(u)− g(u)| < ε.

Let u∗n be the solution of gn(u) = δ, then for all n > Nε,

u∗ ≤ u∗n ≤ (g)−1(δ + ε),

where the first inequality is because gn is monotone and
gn(u∗n) = δ = g(u∗) ≥ gn(u∗), and the second inequality
is because (g)−1 is monotone and g(u∗n) ≤ gn(u∗n) + ε. We
complete the proof by noting that

inf
ε>0

sup
n≥Nε

|u∗n − u∗| ≤ inf
ε>0

(
(g)−1(δ + ε)− u∗

)
= 0,

where the last equality is because (g)−1 is continuous.

Proposition 3. Suppose that ε ∈ (0, 1/2) and δ > 0. Then,
for a sequence of points { (`n, un), n ∈ N } ⊆ Cδ , if un ↗
+∞ as n → ∞, then `n → `∗ as n → ∞, where `∗ is the
solution of the equation g(`) = δ.

Proof. By Φ(x) = 1− Φ(−x), for any t ∈ R, we have

Φ(u− t)− Φ(`+ t) = 1− Φ(−u+ t)− (1− Φ(−`− t))
= Φ(−`− t)− Φ(−u+ t),

therefore gε(`, u) = gε(−u,−`), i.e. { (−un,−`n) } ⊆ Cδ is
a sequence of points on Cδ with −un ↘ −∞ as n → ∞.
Then, Proposition 2 yields that −`n → −`∗.

Algorithm 1: ẐN0 Construction

Inputs: ε ∈ (0, 1
2 ), δ > 0, and an odd integer N ≥ 3.

1 Find u0, ` such that

gε(−u0, u0) = δ and g(`) = δ,

2 Obtain (N − 1)/2 evenly spaced points { `i }(N−1)/2
i=1

over the interval [−u0, `].
3 for i = 1, 2, . . . , (N − 1)/2 do
4 Find ui such that g(`i, ui) = δ.

5 Collect all points

L := { (`i, ui), (−ui,−`i) }(N−2)/2
i=1 ∪ { (−u0, u0) }

6 return L.

D. Approximation bound of ẐN0
We summarize the approximation bounds derived in Sec-

tions III-C and III-B as follows.

Theorem 2. Let bd
(
ẐN0
)

be the boundary of ẐN0 , then we
have

δ ≤ max
(`,u)∈bd

(
ẐN0
) gε(`, u)

≤ max { (1 +O(∆N )) · δ, g(uN ), g(`1) } , (10)

where ∆N := max
i∈[N−1]

‖(`i, ui) − (`i+1, ui+1)‖1. Further-

more, we have

lim
∆N→0
`n↘−∞
un↗+∞

max
(`,u)∈bd

(
ẐN0
) gε(`, u) = δ. (11)

Proof. In (10), the first inequality is by construction, and
the second inequality follows from Proposition 1 and defi-
nitions (8)–(9). Finally, equality (11) follows from Proposi-
tions 1, 2, and 3.

IV. NUMERICAL EXPERIMENTS

We evaluate the approximation bound of ẐN0 in Sec-
tion IV-A and conduct a case study on OPF in Section IV-B.
All experiments are implemented using the Python API of
Gurobi 9.1.1 and conducted on a single node of the Great
Lakes cluster provided by University of Michigan, which
contains two 3.0GHz Intel Xeon Gold 6154 CPUs.

A. Approximation bound of ẐN0
Given an odd integer N ≥ 3, we construct ẐN0 using

Algorithm 1 and report the approximation bound

Apx-Bd := max { (1 +O(∆N )) · δ, g(uN ), g(`1) } /δ

of ẐN0 in Table I with respect to various values of ε, δ, and N
using Theorem 2. From this table, we observe that for fixed ε
and δ, Apx-Bd decreases as N increases. For example, when
ε = 0.01, δ = 0.1, Apx-Bd improves from 1.012 to 1.002
when N increases from 3 to 29. Furthermore, the larger

https://www.gurobi.com/documentation/9.1/quickstart_mac/cs_python.html
https://www.gurobi.com/products/gurobi-optimizer/prior-version-enhancements/
https://arc-ts.umich.edu/greatlakes/
https://arc-ts.umich.edu/greatlakes/
https://arc-ts.umich.edu/greatlakes/configuration/


the Wasserstein radius δ is, the better our approximation
becomes. For example, when ε = 0.01, N = 3, Apx-Bd
improves from 1.114 to 1.012 as δ increases from 0.01
to 0.10. In addition, the marginal improvement in Apx-Bd
diminishes as N increases. For example, when ε = 0.01, δ =
0.1, the improvement in Apx-Bd is 0.004 as N increases
from 3 to 9, while from N = 19 to N = 29 the improvement
is less than 0.001.

TABLE I: Approximation bound of ẐN0
(a)

ε δ N Apx-Bd

0.01 0.01 3 1.114
5 1.076
9 1.046
19 1.023
29 1.016

0.05 3 1.023
5 1.016
9 1.010
19 1.006
29 1.004

0.10 3 1.012
5 1.008
9 1.005
19 1.002
29 1.002

(b)

ε δ N Apx-Bd

0.05 0.01 3 1.537
5 1.350
9 1.207
19 1.102
29 1.068

0.05 3 1.137
5 1.091
9 1.055
19 1.028
29 1.019

0.10 3 1.068
5 1.046
9 1.027
19 1.013
29 1.009

B. A case study on OPF

In a transmission grid, the OPF problem seeks to find a
minimum-cost plan for power generation and transmission
so that all electricity loads are satisfied and all system safety
conditions, including the power generation limits and the
transmission capacity limits, are respected. When uncertain
renewable energy (e.g., wind power) is incorporated, chance-
constrained OPF [2] is a natural approach to keeping the
system safe with high probability. We first introduce some
notation. B and G denote the index sets of buses and thermal
generators, respectively. For two buses i, j ∈ B, (i, j)
denotes the directed branch from i to j and E represents
the set of all branches. We use subscripts i, j ∈ B, g ∈ G,
or (i, j) ∈ E to denote a quantity related a specific bus,
generator, or branch. For example, Pmax

g and Pmin
g denote

the maximum and minimum power generation capacity of
thermal unit g ∈ G, respectively. For each branch (i, j) ∈ E ,
fij and fmax

ij denote the power flow on branch (i, j) and its
maximum capacity, respectively. In addition, pg ∈ R denotes
the amount of power generation of each thermal generator
g ∈ G, and di and θi denote the electricity load and voltage
phase angle at each bus i ∈ B, respectively.

We model the uncertain power output of each renewable
source i ∈ B as µi + ξ̃i, where µi represents the forecast
amount of power generation and ξ̃i is a zero-mean random
variable representing the forecast error. In response to the un-
certain fluctuation in renewable output, we adjust the power
outputs of the thermal units using Automatic Generation
Control, i.e., p̃g := pg − αg · ξ̃tot for all g ∈ G, where

decision variable αg is called the participation factor of g,
and it represents the percentage of the total forecast error
ξ̃tot :=

∑
i∈B ξ̃i compensated by generator g. The chance-

constrained OPF with (2DRC) is formulated as follows.

min
∑
g∈G

cg(pg) (12a)

s.t.
∑
i∈G

αi = 1, α ≥ 0, pg ≥ 0, (12b)∑
i∈B

(pi + µi + di) = 0, (12c)

Bθ = p+ µ+ d, (12d)

inf
Q∈Pg

Q
(
Pmin
g ≤ pg − ξ̃tot αi ≤ Pmax

g

)
≥ 1− εg,∀g ∈ G,

(12e)

inf
Q∈Pij

Q
(
fmin
ij ≤ βij(θi − θj) +

[
B̆(ξ̃ − ξ̃totα)

]
i
−[

B̆(ξ̃ − ξ̃totα)
]
j
≤ fmax

ij

)
≥ 1− εb,∀(i, j) ∈ E ,

(12f)

where cg(·) : R → R+ is a quadratic function representing
the fuel cost of thermal generator g ∈ G, d denotes the vector
of electricity loads, pg denotes the vector of power outputs,
βij denotes the line susceptance of (i, j) ∈ E , and matrices B
and B̆ denote the weighted Laplacian matrix and its pseudo-
inverse, respectively (see Equation (1.5) and (2.5) in [2]).
For each g ∈ G (resp. (i, j) ∈ E), Pg (resp. Pij) represents
a Wasserstein ball centered around a Gaussian distribution
with empirical mean and covariance matrix. Finally, 1 − εg
and 1− εb are risk thresholds for the power generation limit
and transmission capacity limit constraints, respectively.

We demonstrate the out-of-sample (OOS) performance of
the (2DRC) formulation (12) on a modified IEEE 118-bus
system, where we follow [2] to adjust the capacities of
branches, and we place four wind farms at buses 2, 7, 43, and
86. The true distribution of the wind power output is assumed
to be Weibull with scale parameter 1.0 and shape parameters
1.2, 3.5, 0.5, 4.0, respectively. For a fixed solution of (12),
its OOS performance refers to the probability of violating
the system safety conditions (12e)–(12f) under the true
distribution. Specifically, we draw 10, 000 samples from the
true distribution to obtain an empirical estimate of OOS. In
this experiment, we first obtain M ∈ { 5, 10, 100, 200, 500 }
training data from the true distribution and construct the
Wasserstein balls Pg and Pij using empirical mean and
covariance with respect to the five different training data
sizes. Then, with εg = εb = 0.05 and Wasserstein radii
δ ∈ { 0.01, 0.05, 0.1 }, we generate 5 random instances
for all parameter settings, each of which is solved using
formulation (12) with (2DRC) and with (CC), respectively.
In addition, we estimate the average OOS, as well as its 95%
confidence interval, for both solutions and report the results
in Figs. 2a–2b. From Fig. 2a, we observe that as the training
data size M increases the OOS of both models improve.
Nevertheless, (2DRC) achieves an OOS of at least 95% with
as few as 10 training data, while (CC) fails to achieve the



target threshold even with 500 training data. From Fig. 2b,
we notice that the OOS of (2DRC) exceeds the target risk
threshold once δ reaches 0.05, and it keeps improving as δ
increases further.

0 100 200 300 400 500
M

0.80

0.85

0.90

0.95

1.00

(CC)

(2DRC)

(1− ε)

(a) δ = 0.05

0.02 0.04 0.06 0.08 0.10
δ

0.80

0.85

0.90

0.95

1.00

(CC)

(2DRC)

(1− ε)

(b) M = 100

Fig. 2: OOS performance on different problem sizes.

Next, we demonstrate the strength of the proposed inner
approximation ẐN0 on a problem instance with ε = 0.05, δ =
0.08,M = 100. From Fig. 3, we observe that as the number
of pieces N increases the OOS decreases but still remains
above the target threshold of 95%, while the optimal value
(OPT) of (12) improves. This makes sense because ẐN0
becomes tighter as N increases, as promised by Theorem 2.
Nonetheless, Fig. 3 also indicates that the change in OOS and
OPT is quite limited as N increases, implying that in reality
a small N can already lead to an excellent approximation.

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5
N

12.5

15.0

17.5

20.0

22.5
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27.5

+5.101×105

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

OPT

OOS

Fig. 3: Change in OPT and OOS when N increases.

Finally, we demonstrate the scalability of our approach
using IEEE systems with various sizes. We report the sizes
and run time of these instances in Table II. These results
show that the run time increases mildly as the size of the
instance increases. For example, we are able to solve IEEE
instances with 2, 000+ and 3, 000+ buses within 10 seconds.

TABLE II: Computational Time on IEEE systems with
various sizes with ε = 0.1, δ = 0.5, N = 7,M = 1000

case30 case39 case118 case2383 case3120

|B| 30 39 118 2383 3120
|E| 41 46 186 2896 3693
|G| 6 10 54 327 505

# of renewables 3 4 4 10 10

Time (sec) 0.028 0.099 0.172 6.852 8.201
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