
MAX-PLANCK-INSTITUT

(

..

FUR

INFORMATIK

Waste Makes Haste: Tight Bounds for

Loose Parallel Sorting

Torbeli Hagerup Rajeev Raman

MPI-I-92- 141 September 1992

o

rnPD
_________ I N F 0 R M AT I K ________ _

Im Stadtwald

66123 Saarbrücken

Germany

Waste Makes Haste: Tight Bounds for

Loose Parallel Sorting

TorbeIi Hagerup Rajeev Rama.n

MPI-I-92-141 September 1992

Waste Makes Haste: Tight Bounds for Loose Parallel Sorting*

TORBEN HAGERUP RAJEEV RAMAN

Max-Planck-Institut für Informatik, Im Stadtwald, W-6600 Saarbrücken, Germany
e-mail:{torben.raman}@mpi-sb.mpg.de

Abstract

Conventional parallel sorting requires the n input keys to be output in an array of size
n, and is known to take fl(log n/log log n) time using any polynomial number of processors.
The lower bound does not apply to the more "wasteful" convention of padded sorting, which
requires the keys to be output in sorted order in an array of size (1 + o(1))n. We give very
fast randomized CRCW PRAM algorithms for several padded-sorting problems.

Applying only pairwise comparisons to the input and using kn processors, where 2 :s; k :s;
n, we can padded-sort n keys in O(logn/logk) time with high probability (whp), which is
the best possible (expected) run time for any comparison-based algorithm. We also show
how to padded-sort n independent random numbers in O(log*n) time whp with O(n) work,
which matches arecent lower bound, and how to padded-sort n integers in the range 1 .. n
in constant time whp using n processors. If the integer sorting is required to be stable, we
can still solve the problem in o (log log n/log k) time whp using kn processors, for any k with
2 :s; k :s; log n. The integer sorting results require the nonstandard OR PRAM; alternative
implementations on standard PRAM variants run in O(log log n) time whp. As an application
of our padded-sorting algorithms, we can solve approximate prefix summation problems of
size n with O(n) work in constant time whp on the OR PRAM, and in O(loglog n) time
whp on standard PRAM variants.

1 Introduction

Sorting is a fundamental problem that has been studied extensively in both parallel and se
quential settings. The development of very fast parallel sorting algorithms has been hindered
because it is sometimes harder to organize the output in the desired fashion than to actually
compute the ordering of the input keys. For example, the usual output convention for sorting
is that the sorted keys appear in consecutive memory locations. With this convention, sorting
even a 0-1 input of size n on the powerful PRIORITY (CRCW) PRAM needs n(lognjloglogn)
time using nO(l) processors [7].

With the recent spate of developments in the area of almost constant-time parallel algorithms
(the so-called "log-star revolution" [21]) it is clear that near-logarithmic run times cannot au
tomatically be deemed satisfactory any more. The potential of much faster algorithms is an
excellent incentive for carefully reviewing the reasons for sorting the input and, when possible,
to use alternative output conventions that are not subject to the lower bound. One such con
vention is that of chain-sorting, which requires the keys to be output in a sorted linked list.

°This work was supported by the ESPRIT II Basic Research Actions Pro gram of the EC under contract No.
3075 (project ALCOM), and partly carried out while the first author was with the Departament de LSI of the
Universitat Politecnica de Catalunya in Barcelona, Spain.

1

Hagerup [19, 20J demonstrated that small integers can be chain-sorted much faster than they
can be sorted in the usual sense. Unfortunately, a major reason for sorting is to enable fast
searching, and a chain-sorted output is inadequate for this purpose.

In this paper we consider padded sorting, which is much closer to the usual definition of
sorting. Here the n input keys are required to be output in sorted order in an array of size at
most (1 + .A)n, for some .A ~ O. .A is called the padding factoT and should be o(1) and, in general,
as small as possible. The empty locations in a padded array can be filled quickly with copies of
the nearest preceding key, so the output of a padded sorting suffices for searching. The lower
bound of [7] does not hold for padded sorting, a fact that MacKenzie and Stout [26] and Sarnath
[37] exploited to give faster padded-sorting algorithms. In the sequential context, padded arrays
were proposed by Itai et al. [25] and Willard [39] as an alternative to normal arrays because
insertions into padded arrays can be processed quick1y.

We show that in a variety of parallel sorting problems, a padded output can be obtained
dramatically faster than anormal one; in particular, the results of [26,37] are improved. When
nothing else is stated, our model of computation is the standard ARBITltARY (CRCW) PRAM; the
results also hold for the weaker TOLERANT (CRCW) PRAM. Some results use the OR (CRCW)
PRAM [6], where concurrent writing of several values to the same cell results in the bitwise OR
of these values being stored in the celL The word size islimited to o (log(n + p)) bits, where
n is the input size and p is the number of processors of the machine under consideration. As
to the computational power of the OR PRAM, note on the one hand that an n-processor OR
PRAM can simulate one step of an n-processor ARBITRARY PRAM in constant time whp [6], and
on the other hand that with the above limit on the word size, a standard CRCW PRAM can
simulate one step of an OR PRAM in constant time with a polynomial blowup in the number
of processors, so that the lower bound of [7] still holds for the OR PRAM.

Wenow describe our results in more detail. When stating that the run time of a randomized
algorithm is Ö(E), where Eis some expression, what we mean is that whp the run time is O(E).
Al1logarithms are to the base 2.

1.1 Comparison-Based Sorting

Here nothing may be assumed about the keys, except that any two of them can be compared in
constant time. If the desired run time is logarithmic or slower, the problem has been satisfactorily
solved: For every p :::; n, n keys can be sorted in O(nlognjp) time on a p-processor EREW
PRAM [1, 12]. The problem that we consider is therefore to sort n keys using kn processors,
where k . ~ 2, in a comparison-based setting.

It is known that in the parallel comparison-tree (PCT) model, solving this problem requires
n(1ognjlogk) (expected) time, for 2 :::; k :::; n [4, 3, 10]. Lower bounds for the PCT model apply
to all purely comparison-based parallel algorithms. A matching upper bound was given in [4]
fOT the peT model. Upper bounds for the PCT model do not carry over to the PRAM.

On the PRAM, no algorithm is known that matches the PCT lower bound and has a run time
of o(log n jlog log n). Rajasekaran and Reif [33] gave an algorithm that runs in Ö (log n flog log n)
time using O(n(log n)€) processors, for arbitrary fixed € > 0, which matches the lower bound;
their algorithm is easily modified to match the lower bound for smaller values of k as well. The
best known deterministic solution to the problem uses 0 (log n jlog log k) time for 4 :::; k :::; 2n

[12] - a super-polynomial number of processors is needed to achieve fast run times. Sarnath
[37] gave a deterministic padded-sorting algorithm that takes O(loglogn) time on the average
to padded-sort n keys using O(n1+€) processors, for arbitrary fixed € > 0, under the assumption

2

that all permutations of the input keys are equally likely. This does not match the lower bound
- with e(nl+t:) processors the.lower bound is 0(1) - and the algorithm also has a padding
factor of ~ = e(nt:), which may be too large for some applications. We show:

Theorem: n keys can be padded-sorted using comparisons only in Ö(logn/logk) time with 1m
processorsJ for any k with 2 ~ k ~ n.

This is the best possible run time for any comparison-based algorithm, regardless of the
output convention; for example, the run time is Ö(l) with e(nl+t:) processors, for arbitrary
fixed € > O. We actually show a tradeoff between run time and padding factor: the more space
we allow for the output, the faster we can sort (''more waste - more haste"). At one extreme of
the tradeoff - for polylogarithmic k - the padding factor drops below 1/n, hence to zero, and
we get the result of Rajasekaran and Reif. Arecent matching lower bound, due to Sarnath [38],
shows our padded-sorting algorithm to be as fast as possible for the given padding factor. We
provide a new and simpler proof of the lower bound.

1.2 Sorting Random Numbers

The problem of sorting n random numbers drawn independently from the uniform distribution
over the unit interval (0,1] has a long history. It was first considered by McLaren [31], who gave
a sequential algorithm with a linear expected run time (a survey of work on this and related
problems can be found in [14]); parallel algorithms using Ö(log n) time and O(n) operations were
later developed [11, 18]. MacKenzie and Stout [26] showed that a random input distributed as
described can be padded-sorted in Ö(loglogn) time with O(n) work. This was subsequently
improved to Ö(loglogn/logloglogn) time and O(n) work by the original authors [27] and in [20].
MacKenzie [28] recently showed that any solution to the problem with padding factor 0(1)
requires O(log*n) expected time on an n-processor standard PRAM. We show that this bound
is tight:

Theorem: n random numbers drawn independently from the uniform distribution over (0,1]
can be padded-sorted in Ö(log*n) time using O(n) operations.

We again show a tradeoff between the run time t and the padding factor ~. In one extreme,
for t = e(log*n), the padding factor is larger than that of [26, 27], but still 0(1). Another
interesting case, t = e(loglogn/logloglogn), yields a padding factor better than that of [27],
and equaling that of [20]. Our algorithmfor sorting random numbers uses a generalization ofthe
comparison-based padded-sorting algorithm to the ordered interval allocation problem, which
may be of interest in its own right.

1.3 Integer Sorting

The problem of sorting n integers in the range 1 .. n is solved in 0 (n) time by sequential bucket
sorting. Rajasekaran and Reif [33] gave a parallel algorithm that uses Ö(logn) time and O(n)
work. Later improvements yielded Ö(logn/loglogn) time with O(n) work [35,19,30]. Hagerup
[20] showed that smallintegers can be chain-sortedin Ö((log*n)2) time with O(n) work. This was
subsequently improved to Ö(log*n) time and O(n) work [15, 21]. Note that it is not obvious how
to convert a chain-sorted output to even a padded-sorted one faster than in e (log n Ilog log n)
time. We show:

Theorem: n integers in the range 1 .. n can be padded-sorted in Ö(l) time on an n-processor
OR PRAM, and in Ö(loglogn) time with O(n) work on a standard PRAM.

3

A sorting algorithm is stable if keys with equal values appear in the same order in the output
as in the input. An algorithm that sorts n keys in the range 1 .. n stably can, using the principle
of radix sorting, be turned into an algorithm that sorts n keys in the range 1 .. n C

, for arbitrary
fixed c EIN, which makes stability a very desirable property. Bucket sorting is stable and so the
stable and unstable versions of integer sorting have the same sequential complexity. A different
situation seems to prevail in the parallel setting: The best known time-processor product for
stable integer sorting in polylogarithmic time is 0(nloglogn); it was achleved with o (log n) run
time in [17], and with O(lognjloglogn) run time in [9] (see also [29,34]). We give a very fast
padded-sorting algorithm for this problem:

Theorem: n integers in the range 1 .. n can be stably padded-sorted in Ö (log log n jlog k) time
on an OR PRAM with kn processors, for any k with 2 $ k $logn, and in O(loglogn) time on
an n-processor standard PRAM.

Thus, in particular, we achieve a constant run timewith 0(n(logn)~) processors, for arbitrary
fixed E > o. A run time of O(loglog njlog k) is natural in view of the way the problem has been
approached [17, 9, 29, 34]: the bottleneck in each case is a binary search on a path oflength
0(logn) that must be performed for every key, thus leading to the 0(nloglogn) work bound.
The bottleneckin our case is a k-ary search on a similar path, which requires more work than
a binary search.

1.4 Approximate Prefix Summation

The time complexity of exact prefix summation of n integers of 0 (log n) bits each on a CRCW
PRAM with nO(l) processors is 0(lognjloglogn). We consider the following appro:cimate prejix
summation problem: Given n nonnegative integers Zl,"" Zn, compute n approxinlate prefix
sums Yl,' .. , Yn such that with Yo = 0, the following holds for i = 1, ... , n and for some A ~ 0
with A = 0(1) called the accuracy ofthe approximation:

(1) Yi ~ Yi-l + Zi;

(2) Yi $ (1 + A) :E}=l Zj.
Note that conditions (1) and (2) together are stronger than simply requiring each approximate
prefi.x sum to be elose to its "true value", which would allow distinct y/s to be computed
independently and could not even guarantee the monotonicity of the sequence Yl, ... ,Yn' We
show:

Theorem: Appro:cimate prejiz summation problems of size n can be solved in Ö (1) time on an
n-processor OR PRAM, and in Ö(loglogn) time with O(n) work on a standard PRAM. The
constant-time result requires the input numbers to be of 0 (log n) bits each.

No results whatsoever on approximate prefi.x summation were previously known.

2 Preliminaries

A basic fact [33,13,22] is that the prefi.x sums of n integers of O(logn) bits each can be computed
in 0Unjp + log njlog logpl) time with p processors, fcir all integers n ~ 2 and p ~ 4. We also
make frequent use of the procedure characterized in the following lemma, which we term "Ragde
compaction" .

Lemma 2.1: Given an array of size n containing b objects in distinct cells (b is unknown), n
processors using O(n) space can in constant time move the objects to distinct cells in an array of
size at most bS•

4

Proof: Ragde [32] showed that the objects can be compacted to an array of size at most k 4 ,

where k is a known upper bound on b. We use this as follows: First attempt to compact the
elements to an array of size k 4

, where k = l n1/ 5 J. H this succeeds, we have enough processors
to try simultaneous compaction into 0(n 1/ 5) arrays of different sizes. It is easy to choose the
0(n1/ 5) sizes such that returning the smallest array into which the objects fit satisfies the
condition of the lemma. H the compaction into k4 space falls, on the other hand, b ~ n1 / 5 , and
the original array can be returned. •

Other crucial subroutines are drawn from the "log-star tool kit" that was developed in a
series of papers [30, 20, 5, 15, 16, 21, 6]. One of the most frequently used algorithms is for
semisorting, i.e., given n integers in the range 1 .. n, place these in (distinct cells of) an array of
size 0 (n) such that each value in the range 1 .. n occurs only in a subarray that does not overlap
the subarray of any other value (i.e., duplicates are brought together). By Lemma 2.1, we may
and will assume that the subarray of a value of multiplicity b is of size at most b5 • Semisorting
can be done in Ö(log*n) time with O(n) work on a standard PRAM [21]. It can also be done in
Ö(l) time either on a standard PRAM with O(nlog(l)n) processors, for arbitrary fixed 1 EIN,
or on an n-processor OR PRAM. Other algorithms in the log-star family exhibit the same run
times on the various models. Two such algorithms are for the problem of interual allocation, Le.,
place n intervals of totallength s (s is unknown) in nonoverlapping positions in a base interval
of length O(s), and for the closely related processor allocation problem, Le., supply each of n
requesting processors with any desired number of auxiliary processors from a pool of available
processors. The special case of interval allocation in which all intervals to be placed are of length
o or 1 is called linear approzimate compaction.

In the following, let U be a fixed ordered universe (Le., a set equipped with a total order
":5"). Given any finite nonempty set B ~ U, let Pred(z, B) = max{y E B I y :5 z} and
Pred+(z, B) = max{y E B I y < z}, for all z E U for which these quantities are defined.
B partitions any finite subset A of U into subsets called the segments induced by B in A or
the segments of B in A; two elements z, y E A belong to the same segment if and only if
Pred(z, B) = Pred(y, B), except that we consider elements in A smaller than minB to belong
to the same segment as those elements in A larger than or equal to maxB (i.e., we allow "wrap
around"). In particular, if IBI = 1 there is just one segment consisting of all elements in A.
To locate A with respect to B is to label each element of A with the segment induced by B to
which it belongs (represented in the obvious way by an element of B), and to partition A with
respect to B is to semisort the elements of A with respect to these labels. The mazimum and
minimum gap of B in A, mazgap(B, A) and mingap(B, A), are defined as the maximum and
mjnjmum cardinality, respectively, of a segment of Bin A. H A # 0, define the spread of Bin
A as the real number A ~ 0 with

mazgap(B, A) ,
----"'-.;;....::-~~ = 1 + A.
mingap(B, A)

Note that A is a measure of how weIl B splits A into segments of approximately equal sizes.
Much of the present paper is concerned with computing sampies of low spread of a given ground

set. We now discuss two special kinds of sampies. A naive sample B of a set A of size m :5 lAI
is obtained by letting each of m processors choose an element at random from the uniform
distribution over A, with distinct processors acting independently. Note that the sampie B may
be a multiset; ifwe use it in a context where only totally ordered sets aremeaningful, an arbitrary
ordering among elements of the same value is to be assumed. H A # 0 and 9 EIN, define a
g-regular sample of Aas a subset B of A with 9 :5 mingap(B, A) :5 mazgap(B, A) :5 9 + 1 that
includes the first element of A.

5

Lemma 2.2: For every 9 EIN, every finite ordered set A of size at least g2 has ag-regular sampie.
Furthermore, if each element of A is marked with its . rank in A and has an associated processor, a
g-regular sampie of A can be computed in constant time using constant space per processor. •

By a predecessor structure for a nonempty set 5 ~ U we mean a data structure that supports
Pred and Pred+ queries on 5, i.e., is able to return Pred(z, 5) and Pred+(z, 5) for arbitrary
given z E U (with a special value ''undefined'' returned as appropriate).

Lemma 2.3:

(a) For all given integers n and k with 2 ~ k ~ n, a predecessor structure for n keys drawn from an
ordered universe that can be queried in O(lognjlogk) time with k processors can be constructed
using O(lognjlogk) time, kn processors and O(kn) space with probability at least 1j2;

(b) There is a constant E > 0 such that for every fixed c E IN and for all integers n 2: 4, a
predecessor structure for n keys drawn from 1 .. nC that can be queried in 0 (log log njlog k) time
with k processors, for any integer k with 2 ~ k ~ log n, can be constructed using constant time,
O(nlogn) processors and O(nlogn) space with probability at least 1 - 2-n (;

(c) For all integers n 2: 2, a predecessor structure for n keys drawn from 1 .. n that can be queried
in constant time with one processor can be constructed in constant time either on a standard PRAM

with O(nlogn) processors and O(nlogn) space, or on an n~processor OR PRAM with O(n) space.

Proof: (a) Assume that k 2: (log n)2, since otherwise we can simply sort the keys using the
algorithm of RajaselCaran and Reif [33] and execute a query by means of k-ary search. We can
also assume that we have k 2 processors per key and that a query is executed with k2 processors,
since the time bounds of O(log njlog k) are insensitive to the substitution of .,fk for k.

Our approach is to construct a random search tree of degree k + lover the input set. Initially
the tree consists only of its root, and all keys are located at the root. In general, if m keys are
present at anode u, we allow these to be stored in an array Q of size 0 (m), and the tree
construction proceeds from u as follows: Each of k processors chooses a random location in
Q. A multiset 5 is then formed from the keys found in these locations, with dummy keys
representing empty locations, and k + 1 children of u are created, each of which corresponds to
one of the segments of the universe induced by 5. Some children will correspond to dummy keys
and be useless. Except with negligible probability, however, the number of real keys in 5 will be
n(k), which suffices for our purposes. Now each key located at tL uses k 2 associated processors to
find its predecessor in 5, after which it is moved to the appropriate child of tL. In order to move
the keys to the appropriate children, we first semisort them by their destination nodes, which
can be done in constant time with k 2: log n processors per key. This stores the keys destined
for a child v of u in aseparate subarray Q', but we do not necessarily have IQ'I = O(m'), where
IQ'I denotes the size of Q' and m' is the number of keys to be placed at v. We therefore use
an algorithm for linear approximate compaction to simultaneously attempt to compact the keys
in Q' into arrays of sizes 1,2,4, ... ,2 Llog IQ'IJ, with e (log n) trials for each size, and then select
the smallest array for which the compaction succeeded, or Q' itself if no compaction succeeded.
The size ofthe array so chosen is O(m'), except with negligible prob ability.

Once the keys of anode u are stored in an array of size at most k, 5 can instead be chosen as
the set of all keys, and the children of u become leaves in the search tree. It can be shown that
except with negligible prob ability, the height of the search tree will be 0 (log n jlog k). Finally
observe that a query can search in the tree essentially as described above.

Parts (b) and (c) were shown by Raman [34] and by Berkman and Vishkin [8], respectively.
Meeting the space bound of part (b) involves using the perfect hashing of [6] . •

6

When speaking about (padded-)sorting a set ofkeys, we assume that each key is just one field
of arecord containing arbitrary associated information, and we require of a (padded-)sorting
algorithm that it is able to move the entire input records or pointers to them to the output array
(rather than simply recreating the keys there).

3 Comparison-Based Sorting

We show in this section that the comparison-tree time bound of 0(logn/logk) for sorting with
kn processors, where 2 ::; k ::; n, can be matched exactly on a randomized PRAM. In fact, we
solve the related problem of approzimate ranking, defi.ned as follows: Given n keys drawn from
an ordered universe and A ~ 0, label each key with a rational number such that if Ti is the label
of the key of rank i, for i = 1, ... , n, and TO = 0, then ~ ::; Ti - ri-l ::; 1;>', for i = 1, ... , n (if
several keys are identical, the ranks 1, ... , n must be assigned to the n keys in a way consistent
with any stability requirement). A is called the ranking accuracy . .

As demonstrated in the following simple lemma, going from approximate ranking with ac
curacy A to padded sorting with padding factor A is a matter of multiplying by n and rounding.

Lemma 3.1: Let nEIN and let ro, ... , r n be real numbers with ro = 0 and ~ ::; ri - Ti-l ::; 1;>',

for i = 1, ... ,n. For i = O, ... ,n, let Yi = LnTiJ. Then

(a) For i = 1, .. . ,n, Yi > Yi-l;

(b) For i = 1, ... , n, Yi ::; (1 + A)i;

(c) For 0::; i::; j::; n, Yj - Yi::; f(l + A)(j - i)l .•

Our algorithm is best described as storing the input in an (a, b)-tree T, where a and b are
large and bl a is elose to 1. The n input keys are hence stored in order from left to right in the
nieaves of T, all of which are at the same depth h, and the degree of each internal node in T
lies in the set {a, ... , b} (this is not quite exact; see below). Associate a subinterval of the unit
interval [0,1] with each node of T as follows. The root of T is associated with the full interval
[0,1], and the interval [a, ß] associated with a nonleaf node 'U of degree dis partitioned into d

equal-sized subintervals, the ith of which, [a + i-;/ (ß - a), a + ~(ß - a)], is associated with the
ith child of 'U, for i = 1, _ .. , d. Since the interval associated with a leaf results from exactly h
splittings into between a and b subintervals, it is elear that the length of each such leaf interva1.
lies between b-h and a-h . Furthermore, ah ::; n ::; bh . Rence for any A with 1 + A/3 ~ (bla)h,

the length of each leaf intervallies between n(1~>.j3) and 1+;/3. Thus if we define ri as 1 + A/3
times the right endpoint of the interval assoClated with the ith leaf of T, for i = 1, .. _, n, and

ak - 0 h r . - 1 1.. (1+>'/3)2 ill ·d d h \ . t e ro - , t en ~or Z - . , ••• , n, ;i ::; r, - r,-l ::; n ::; n ' proVl etat" ::; 1, l_e., we
have solved the approximate ranking problem with accuracy A. Note that the above argument
remains valid even if the node degrees in T do not lie between a and b, as long as the ratio
between the degrees of any two internal nodes in T on the same level is bounded by bl a. We
use this to allow nodes at height 1 to have more than b children.

T is constructed as follows: For an appropriate integer 9 ~ 5 we compute sampies So, ... , Sh
ofthe input set X. Sh = X, and for i = 0, ... ,h-1, gi1+;jg ::; ISil::; gi, and Si has spread

at most 1 I 9 in X and ineludes the smallest element Zl of X. For i = 0, ... , h, we identify the
nodes in Tat depth i with Si and defi.ne the parent of anode z at depth i ~ 1 as Pred(z, Si-I)
(because zl E Si-I, this is well-defi.ned). It is now easy to see that the degree of every node in

7

Tat depth i ~ h - 2 isat most

r
mazgap(Si,X) 1 r n(1+1/g)2/gi 1

mingap(Si+1,X) ~ n/(gi+1(1 + 1/g)) ~ 9 + 4

and, similarly, at least 9 - 4. Furthermore, since the spread of Sh-1 in Sh is at most 1/g, the
ratios of the degrees of two nodes in T at height 1 is at most 1 + 1/ g. We have hence realized
the scheme outlined above with a = 9 - 4 and b = 9 + 4.

We do not know how to compute So, ... , Sh deterministically. Furthermore, naive random
sampling falls far short of providing the required low spread. We instead use a more sophisticated
sampling due to Reif and Valiant [36, Lemma 7.1], the basic idea of which is very simple: to
obtain a sampie of size 8, pick a naive sampie of size 8 log n rather than 8, then keep only every
(log n)th element of the sampie. The resulting 8 keys are far more evenly spaced than if they
had been chosen direct1y using naive sampling. Whereas Reif and Valiant keep sampie elements
that are exactly equally-spaced in the originaliarger sampie, this is impossible in our setting,
and we have to generalize their approach somewhat.

Lemma 3.2: Let A be a nonempty finite ordered set and let 9 be a positive integer with 9 ~ log lAI.
Let B be a naive sampie of A and let C be an arbitrary subset of B such that the spread of C in
B is at most 1/ 9 and the minimum gap of C in B is at least 19293 . Then the spread of C in A
exceeds 8/ 9 with probability at most 2-g

•

Proof: H the spread of C in A exceeds 8/g, then either mazgap(C, A) ~ ~J1 + 8/g ~

~(1 + 2/g) or mingap(C,A) ~ ~(1 + 2/g)-1. H mazgap(C,A) ~ ~(1 +2/g), then some

contiguous segment D of A (allowing "wrap-around") of size at least I~I (1 + 2/ g) - 1 contains

no elements of C, and therefore fewer than mazgap(C,B) elements of B. The number N of
elements of B falling into D is binomially distributed with expected value

IBIIDI > ~ (~(1 + 2/g) -1) > ~(1 + 2/g)-1
lAI - lAI ICI - ICI

> mazgap(C, B) (1 + 2/g) _ 1 > mazgap(C, B).
- 1 + 1/ 9 - 1 - 1/ (4g)

Now by the Chernoffbound Pr(N ~ (1-e)E(N)):$ e-ilE(N)/2, used with e = 1/(4g), the above
event happens for each fixed set D with prob ability at most e-192g3 /(32g2) ~ e-4g . S11Tnmjng

over the at most IAI 2 choices of D yields Pr(mazgap(C, A) ~ ~(1 + 2/g)) :$ IAI 2 • e-4g :$

~ IAI 2
• 2-2g . 2-g ~ i . 2-g. Likewise, Pr(mingap(C, A) :$ ~(1 + 2/ g)-l) :$ ~ . 2-g. •

Our actual sampling procedure is described in the following lemma.

Lemma 3.3: Let n, k, t, 8 and 9 be given positive integers with n, k ~ 4, t ~ flog n/log k 1,
log n :$ 9 :$ 2tloglog(kn) and 8g64 :$ n. Then, given an ordered set A of size n, a sampie C of A

with 8 • 1+;/g ~ ICI :$ 8 that includes the first element of A and has spread at most 1/ 9 in A can

be computed using O(t) time, kn processors and O(kn) space with probability at least 1- 2-g.

Proof: We show only a weaker statement that does not ~equire C to contain the first element
of A. Observe first that a sampie C of the required form always exists, so that we can ignore
values of n (and hence g) below any fixed constant. Let g' = 192(8g)3 and assume (by the
observation just made) that 8(g')21 :$ n. Let B be a naive sampie of A of size 8g'. We now
describe the main steps of how to obtain C from B, and only afterwards worry about the actual
implementation of these steps.

8

H s < (g')2, let C be an s-element subset of B of zero spread. H s ~ (g')2, instead let 5 be
a naive sampie of B of size l s / (g')2 J, merge each segment of B induced by 5 of size less than
(g')2 with the segment following it by removing oneelement from 5 and let 5' ~ 5 be the set of
elements of 5 that survive this process. Obviously every segment of B induced by 5' is of size
at least (g')2. Now use Lemma 2.2 to compute a g'-regular sampie of each such segment and let
C be the union ofthese g'-regular sampies.

In either case we have obtained a sampie C with s . l+i/
g

::; ICI ::; s and with spread at

most 1/ g' in B; to see this in the case s ~ (g')2, it suflices to note that g' ::; mingap(C, B) ::;
maxgap(C, B) ::; g' + 1 and to recall thatlBI = sg'. We may therefore conelude from Lemma 3.2
that the spread of C in A exceeds 8/ (8g) = 1/ 9 with prob ability at most 2-89 .

We now show how to carry out the procedure described above for the case s ~ (g')2; it will

become obvious how to handle the easier case s < (g')2. It is easy to see that it sufD.ces to
describe how to execute the following steps, first with R= 5 and afterwards with R = 5':

(1) Partition B according to R;

(2) Sort the elements of each segment of B indticed by R (without padding); in particular, this
computes the size of each segment.

We implement Step (1) using Lemma 2.3(a). By executing 2g' independent attempts to
construct the predecessor structure öf Lemma 2.3(a) and to carry out the subsequent semisorting,
we can ensure that the failure prob ability is at most 2-g'.

In Step (2) we will assume that each segment to be sorted is of size at most 2(g')4. H this
is not the case, some (g')4 successive elements of B comprise either at least (g')2 elements of
5 (none of which are ineluded in 5'), or none at all. The expected number of elements of 5
among any (g')4 fixed elements of B being elose to g', an application of Chernoft"s bounds easily
shows the assumption to be violated with prob ability at most 2-8g (say). Since we have at
least k(g')20 processors for each element of B, it is easy to sort a segment of B of size at most
2(g')4, and therefore stored in an array of size 0((g')20), by comparing every pair of elements
in the segment and obtaining the rank of each element as one more than the number of smaller
elements. The number of smaller elements is counted using prefix summation, which, given the
n(k) processors per element, runs in time

o (logg) _ 0 (tloglog(lm)) _ 0 (tloglog(kn))
loglog(kg) - loglogk+loglogg - 2loglogk+logt

_ 0 (tloglog(kn)) _ 0 (tloglog(kn)) - O()
- loglogk+log(tlogk) - loglogk+loglogn - t.

Finally note that the various failure probabilities incurred add up to less than 2-g • •

Theorem 3.4: There is a constant € > 0 such that for all given integers n, k ~ 2 and t >
flog n/log k 1, n elements drawn from an ordered universe can be approximately ranked with accuracy
2-tloglog(Jm) using O(t) time, kn processors and O(kn) space with probability at least 1 _ 2-nE

•

Proof: Obtaining the very small failure prob ability of 2-nE requires some additional ideas
not explained here. We describe a simpler algorithm with a larger (but still small) failure
probability and in fact, in the interest of brevity, omit all references to actual probabilities. The
algorithm furthermore achieves an accuracy of 2-tlogloglc only, the full accuracy of 2-tloglog(Jm)

being reached via a recursive application. As in the proof ofLemma 2.3(a), we can assume that
k ~ log n and that each input key has k 2 associated processors.

9

Let 9 = 48 ·2t [1og1ogkl. If g64 > n, the input can be sorted in O(t) time using the algorithm of
eole [12]. Otherwise let h 2: 1 be the largest integer with gh-lg64 ~ n. The algorithm cönsists
of the following steps:

(1) Construct the tree T, i.e.,

(l.a) Compute the sets So, ... , Shi

(l.b) Determine the parent of each node in U?=l Si;

(l.c) Sort each set of siblings in T;

(2) Determine the ancestors of each leaf in T;

(3) Compute the interval associated with each leaf.

The steps are implemented as follows:

Step (1.a): In order to obtain So, ... , Sh-l, simply apply Lemma 3.3 with s = 1,g, ... ,gh-l (in
parallel), which requires hkn ~ k2n processors and O(t) time.

Step (l.b): By dEmnition, our task is to locate SHI with respect to Si, for i = 0, ... , h - l.
We therefore use Lemma 2.3(a) to construct a predecessor structure for Si, for i = 0, ... , h - l.
Since E?;~ ISil ~ E?;~ gi ~ gh ~ nj g63, we can attem.pt each construction sufficiently many
times in parallel to achieve a high re1iability. The construction and the subsequent search take
O(i1ognjlogkl) = O(t) time.

Step (l.c): After partitioning Si+! with respect to Si using the predecessör structures constructed
in Step (l.b), for i = 0, ... , h - 1, we sort each set of siblings using the algorithm of Cole [12].
Since the degree of each internal node in T is gO(l) (note, in particu1ar, that this hold.s for th~
nodes at level 1), the time needed is O(loggjloglogk) = O(t).

Step (2): For each leaf v in T and for i = 0, ... , h, let Pie v) be the ancestor of v in T at depth i
and note that there is a "natural candidate" for pi(V), namely U = Pred(v, Si). We may in fact
have Pie v) :/; u, but then Pi (v) = Pred+ (u, Si). The proof of this fact, informally, bounds how
far the ancestors of v can get from v. In precise terms, let Pj be the rank of pj(v) in the input
set X, for j = 0, ... , h. Then clearly ° ~ Pj+! - Pj ~ mazgap(Sj, X), for j = 0, ... , h - 1, and
hence if i < h, ° ~ Ph - PHI ~ Ej~l+! mazgap(Sj,X) ~ mingap(Si, X), from which the claim

follows.
Using the predecessor structures constructed in Step (l.b), each leaf v in T can easily de

termine its two candidate ancestors at each level. This leaves only 2h candidates for the an
cestor sequence (Ph(V) = V,Ph-l(V), ... ,po(v)). Each candidate sequence (Uh = V,Uh-ll" .,tto)
can be checked in constant time by h processors, who simply verify that Uj-l is indeed the
parent of Uj, for j = 1, ... , h. Using h . 2h processors, v can therefore check all candidate se
quences in parallel and determine the correct sequence of its ancestors in constant time. Since
h = O(lognjlogg) = o (log kjloglog k), this uses o(k) processors per leaf.

Step (3): Label each node in T in the following way with a subinterval of [0,1] called its
immediate interval: The immediate interval of the root of T is [0,1], and the immediate interval
of the ith child of anode of degree d is [id1, ~]. The immediate intervals of the nodes in T
should not be confused with the intervals introduced previously, which we call their compounded

intervals. Given two subintervals 11 and 12 of [0,1], define their composition, 11 012 , as the
intervaI obtained by scaling and translating 12 in a way that would transform [0,1] to 11 , i.e.,
[al, ßl] 0 [a2,ß2] = [al + a2(ßl - a1), al + ß2(ßl - al)]' The operation 0 is associative, and it
is easy to see that the compounded interval of a leaf v is [ao,ßo] 0 ••• 0 [ah,ßh], where [~,ßi]
is the immediate interval of the ancestor of v at depth i, for i = 0, .. . ,h. Our task is hence to

10

compose the immediate intervals on every root-to-leafpath in T, which we do independently for
each such path.

Let us first look at the size of the objects involved. We represent an interval in the obvious
way by a pair of two rational numbers, each of which is in turn represented by two integers. For
every j E [N, the endpoints of the composition of j immediate intervals can be expressed with
denominators of size g0(;), and the naive algorithm for computing the composition (Le., not
attempting to reduce fractions) creates no larger integers. We can hence fix a constant c E [N

such that the composition of j immediate intervals can be represented in cj log 9 bits, for every
j E [N. In particular, every compounded interval can be represented in 0 (h log g) = 0 (log n)
bits, which implies that all relevant operations on the intervals manipulated by the algorithm
can be executed in constant time.

For k < g2c, it is therefore easy to compute the compounded interval of a leaf 1): One processor
simply follows the path in T from the root to 1), composing immediate intervals as it goes along,
which takes O(h) = O(t) time. For k ~ g2c, let j E [N be maximal with cjlogg ::; ~ logk
and note that j = n(logk/logg). We compose groups of min{j, h + 1} consecutive immediate
intervals on the path in T from the root to 1) in constant time using table lookup. This leaves
0Uh/ jl) = O(t) intervals that can be processed sequentially as before. In more detail, since
the representations of j immediate intervals involve altogether at most ~ log k bits, these can

easily be stored together in one word by O(jVk) = o(k) processors. This word is then converted
to the composition of the j intervals by lookup in a table, which, being of size O(Jk), can
be constructed in constant time by k processorSj we omit the details. The total number of
processors needed per leaf in T is o(hk) = o(k2

).

As follows from calculations carried out in the beginning of this section, the algorithm
achieves an accuracy' of)' where 1+),/3 = g+4 = 1+_8_ < 1+~ Le.). < 48/g < 2-tlogloglc. • , g-4 g-4 - 9 , ,- -

Corollary 3.5: There is a constant € > 0 such that for all given integers n, k ~ 2 and t ;:::
[log n/log k 1, n elements drawn from an ordered universe can be padded-sorted with padding factor
2-tloglog(lcn) using O(t) time, kn processors and O(kn) space with probability at least 1- 2-

nE
. •

The corollary follows immediately from Lemma 3.1. Note the following remarkable con
sequence of part (c) of that lemma: .Any run of r1 /).1 consecutive input keys are stored in
consecutive locations of the output array, except that there may be a single empty cell between
the first and the last element of the run.

We finally consider a generalization of padded sorting called ordered interval allocation. The
problem here is, given n keys Z1, ... ,Zn with associated nonnegative integer demands d1 , ••• , d",

and a padding factor). ;::: 0, to compute nonoverlapping intervals 11."" In of sizes dl, ... , d",

within a base interval of size at most (1+).) Ei=1 dj such that for all i,j E {1, ... , n}, if Zi < Zj,

then Ii is to the left of Ij. The following theorem shows that ordered interval allocation is no
harder than padded sorting.

Theorem 3.6: There is a constant € > 0 such that for all given integers n, k ;::: 2 and t ;:::
[log n/log k 1, ordered interval allocation problems of size n with padding factor 2-tloglog(lcn) can be
solved using O(t) time, kn processors and O(kn) space with probability at least 1- 2-nE

.

Proof: Let the input keys and their demands be Z1, ... , Zn and d1 , .•• , d"" respectively, and take
). = 2-tnoglog(lcn)l and D = Ei=1 dj . A simple solution to the problem would be to padded
sort a multiset of D keys where Zj occurs dj times, for j = 1, ... , n, using the algorithm of
Corollary 3.5. This procedure, referred to below as t~e naive algorithm, cannot be used directly,
since the number of operations needed would be at least proportional to D, on which we have

11

placed no bound. Since a relative accuracy of A is all that is needed, however, we can scale down
the demands, solve the problem for the smaller demands, and scale back up the solution.

For every r ~ 1, ifwe replace d j by r(dj + l)/rl, for j = 1, ... , n, solve the resulting ordered
interval allocation problem with padding factor J.L and scale up the solution by replacing each
interval endpoint y by lryJ, then the scaled-up intervals are nonoverlapping and of at least the
required sizes. The sum of the scaled-down demands is at most D;11. + n, and the size of the
scaled-up base interval will therefore be at most r(1 + J.L)(D;11. + n) = (1 + J.L)(D + (r + l)n).

We first use the algorithm of Corollary 3.5 to padded-sort the keys with padding factor 1.
Let 9 = l/A and divide the padded-sorted output array into r2Anl segments of at most 9 ce1ls
each. We then scale the demands within each segment so that the scaled values are in the range
o .. 8g2 + 1 and perform ordered interval allocation inside the segment using ordinary prefix
summation. In more detail, consider any fixed segment, let m be the maximum demand in this
segment and let s be the sum of the demands in the segment. H m ~ 8g2 , scale the demands
in the segment as described above with r = m/(8g2

); otherwise use the original demands. In

either case the allocation within the segment is now done exactly (Le., J.L = 0) by means of
prefix summation; all demands can be satisfied with a base interval of size $ if no scaling was
applied, and otherwise of size at most s + (r + l)g ~ s + 2rg = s + m/(4g) ~ (1 + A/4)s.
The prefix summation is of 9 values of 0 (log g) bits each and can therefore be carried out in
time O(logg/loglog(kg)) = O(t). Since m can be computed in constant time if k ~ 9 and in
O(log log g) time otherwise, this takes no more time.

We have now reduced the problem to one with r2Anl keys. H r2Anl = 1, we are done.
Hence assume that the number of keys in the reduced problem is bounded by 4An and let
D' ~ (1+A/4)D be the sum ofthe demands in the reduced problem. We again scale the demands
byan appropriate number rand solve the resulting problem with padding factor A/4. It suflices
to choose r so that the size of the scaled-up base interval is at most (1 + A/2)D' ~ (1 + A)D,
which is guaranteed if (1 + A/4)(D' + (r + 1)4An) ~ (1 + A/2)D', and hence if 32(r + l)n ~ D'.
Compute an approximation D to D' with D' ~ D ~ 2D' (see [20, 21]). H D ~ 128n, we can

take r = /L - 1 ~ ~~ - 1, which is small enough, while the sum of the scaled-down demands

is at most X~'±11.) + n < 130n. Theseconsiderations reduce the original problem to one with
D 12811. -

total demand O(n), which can be solved using the naive algorithm above. The only nontrivial
implementation problem, how to create the multiset of keys to be sorted, can be solved using
ordinary interval allocation. •

4 The Lower Bound

Sarnath [38] recently showed that the lower bound ofHastad [23] can be modified to yield a lower
bound for padded sorting. Translated to the PRAM setting, his result is that any (deterministic)
algorithm that runs on a CRCW PRAM with nO(1) processors and padded-sorts n bits into an

output array of size n + n~ - 1, where 0 < € < 1, has a run time of n (f~;~~:~~), for some
constant c. In this section we give a simpler proof of the lower bound and render it in a form
that brings out more clearly its relationship to our upper bounds. A still simpler proof was
given by Hästad [24].

The lower bound extends to randomized algorithms, as we show using standard techniques.
Although the proof below assumes the given padded-sorting algorithm to be a Las Vegas algo
rithm, which is always correct, the result also holds for Monte Carlo algorithms, which work
in a fixed time, but mayerr (with prob ability bounded by a constant smaller than 1). This is

12

because any Monte Carlo algorithm for padded sorting with run time t can be turned into a
Las Vegas algorithm with expected run time O(t) -:- simply execute the Monte Carlo algorithm
repeatedly until its output is correct.

Theorem 4.1: Suppose that a Las Vegas algorithm padded-sorts n ~ 2 bits with padding factor
.\ ~ 1jn in expected time t on a p-processor OR PRAM (with a word length of O(log(n + p)) bits),
where p ~ 4. Then A = 2-0 (tloglogp).

Proof: Hp< fo" the claim is trivial, since t = O(y'n). On the other hand, for p ~ fo, we have
loglogp = O(loglogn). Assume hence that p ~ n 2

• We also assume that A::; 1j(2d), where dis
a constant to be :fi.xed below.

For all integers n ~ 1 and m ~ 0, consider the following (n, m)-counting problem: Given n

bits :1:1, ••• , :1:1'1' compute an integer r with r ::; E7=l:1:j ::; r + m. Informally, the (n, m)-counting
problem is to count the number of 1 's among the input bits with an error of at most m. We will
show by induction on i that there are constants c, dEIN' such that P(i) holds for all integers
i ~ 0, where P(i) is the assertion

(n, l nj giJ)-counting problems can be solved in expected time
at most c(i + l)t on a p-processor OR PRAM,

and 9 = llj(dA)J ~ 2.
P(O) is trivial. Assume now that P(i) holds for some integer i ~ 0 and suppose that we are

given an (n, l nj gi+1 J)-counting problem. Begin by padded-sorting the input using the algorithm
assumed in the theorem, which takes expected time t. Then determine the position of the first 1
in the output, trivial to do in constant time with n 2 processors, and mark each empty cell in
the output array following this first 1. Counting the number of 1 's in the input with error at
most m now reduces to determining the number S of marked cells in the output array with
error at most m. We have S ::; An. Rence with the constant d chosen suitably, we can use an
algorithm for linear approximate compaction to store the s marked cells in an array Q of size
at most dAn. This takes constant expected time.

Since 9 . dAn::; n, we can easily derive from Q a bit array Q' of size n that contains exactly
gs 1 's: Simply replace each marked cell in Q by 9 1 's, replace each unmarked cell in Q by 9
O's, and add so many O's as to have exactly n bits. Apply the (n, lnjgiJ)-counting algorithm
implied by P(i) to Q', which pro duces an integer r with r ::; gs ::; r + lnjgiJ and hence
rjg::; s::; rjg+ lnjgiJjg. Since s is an integer,

i.e., we have determined s with error at most l nj gi+l J, as desired. The expected time consumed
by the complete algorithm is at most c(i + l)t + t + 0(1), which for echosen sufficiently large
is bounded by c(i + 2)t. This ends the inductive proof.

Let i o = llognjloggJ + 1 and observe that P(io) states that (n, O)-counting problems can be
solved with p processors in time O(iot) = O(tlognjlogg). But the (n,O)-counting problem is
simply to compute the exact sum of n bits. Rence by the lower bound of Beame and Hästad [7,
Theorem 4.1(b)], the solution of (n, O)-counting problems requires O(lognjloglogp) time on any
deterministic p-processor standard PRAM. Using the simulation mentioned in the introduction
and (a simple version of) the method of Ajtai and Ben-Or [2], the bound of O(lognjloglogp)
can be extended to the OR PRAM and to the expected run time of randomized algorithms,
respectively. Hence tlognjlogg = O(lognjloglogp), i.e., logg = O(tloglogp). Since 9 =
O(ljA), it follows that A = 2-0 (tloglogp). •

13

5 Sorting Random Numbers

Theorem 5.1: There is a constant € > 0 such that for all given integers n ~ 2 and t ~ log*n,
n random numbers drawn independently from the uniform distribution over the interval (0,1] can
be padded-sorted with padding factor t-t using O(t) time, O(n) operations and O(n) space with
probability at least 1 _ 2-n

f! •

Proof: Let the numbers to be sorted be Z1, .•• , Zn and conceptually assign these to n buckets
by taking Zj = r nZj 1, for j = 1, ... , n. For i = 1, ... , n, let Bi be the set ofthose input elements
Zj with Zj = i and take bi = IBil. Let A = c 2t . The algorithm consists of the following steps:

(1) Semisort the input by bucket numberj

(2) Independently padded-sort each bucket with padding factor A. As a result, we have arrays
Q1, ... , Qn of sizes at most (1 + A)b1, ... , (1 + A)bn such that Qi contains the elements of Bi in
sorted order, for i = 1, ... , nj

(3) Place (the contents of) Q1, ... , Qn in that order in an array of size at most (1 + t-t)n.

Step (1) can be executed optimally in O(t) time. For Step (2), we use the following:

(a) Except with negligible probability, max{bi : 1 ~ i ~ n} ~ n1/ 20 j

(b) Except with negligible prob ability, I:i:1 min{2b
., n1

/
3

} = O(n).

We omit proofs of (a) and (b), but note that (a) follows easily from aChernoff bound, and
that (b) can be shown by a martingale argument. For i = 1, ... , n, let Ooi ~ bf be the size ofthe
subarray holding the elements of Bi after the semisorting in Step (1).

H t > logn, the n buckets can be sorted exactly in O(t) time using O(I:i:1 Ooi log(Ooi + 1))
operationsj by (a) and (b), this is O(n) operations, except with negligible probability.

H t ~ log n, we distinguish between small and large buckets: For i = 1, ... , n, if Ooi <
1/5 b / 1/5

(HlognJ)5 and hence 2c • ~ min{2 ',n1 3}, allocate 9(2c •) processors to Bi and sort Bi in

constant time using the algorithm of Cole [12]. H Ooi ~ (i LlognJ)5 and hence n 1/
3 ~ 2bi+1,

instead allocate 9(n1/ 3 jlogn) processors to Bi and padded-sort Bi using Corollary 3.5j by (a),
this can be done in O(t) time with a padding factor of 2-2tloglogn ~ A, and with nn(1) trials

for each bucket. By (b), the total number of operations executed is O(n) with high prob ability
both for small and for large buckets. This ends the description of Step (2). Step (3) is more of
achallenge. Our solution can be seen as an instance of the generic log-star algorithm of [5, 15],
but several new ideas are needed. We first provide an overview of the algorithm.

Recall that the goal of Step (3) is to place (the contents of) Q 11 ••• , Q n in that order in an
array of size at most (1 + t-t)n. We will disregard the actual elements stored in Q1,.·., Qn
and simply represent Qi by a brick Ji of length equal to the size of Qi, for i = 1, ... , n. Here a
brick should be understood as an abstract one-dimensional object of a certain length that can
be placed anywhere on the realline (we might have employed the word "interval" , except that
we already use it in a different sense). To combine 1 bricks 11, ... ,!z into one large brick 1 is to
compute integer offsets m1 ~ ... ~ mz such that if 11, ... , 1z and 1 are placed on the realline
with the left endpoint of 1i a distance of ~ to the right oft he left endpoint of 1, for i = 1, ... ,1,
then 111 ••• , 1z are fully contained in 1 and do not overlap. In this formulation Step (3) is easily
seen to be a special case of ordered interval allocation~ We will carry out Step (3) by gradually
combining bricks into larger and larger bricks, until only a single brick remains. This brick can
then be fixed, e.g., its left endpoint can be placed atO. This implicitly fixes the positions of all
bricks involved in the combining process, where the position of a brick is defined as the position

14

of its left endpoint. In order to calculate these positions explicitly, we can retrace the combining
steps of the brick combination process in the opposite order. If 1 bricks 11 , ... , 1z were combined
into a brick 1 and the position of 1 is known, the positions of 11 , ... , 1, can be computed simply
by adding their offsets relative to 1 to the position of 1; running the brick construction process
backwards therefore in particular computes the positions of the n original bricks J1 , •.• , Jm and
we are done.

Note carefully that when speaking about bricks manipulated by the algorithm to be de
scribed, we distinguish between constant-size "brick descriptors" and the true bricks, each of
which is of a certain length. Objects of the two types are actually represented in the same way,
but the set of applicable operations differs in the two cases. Bricks can be combined into larger
bricks as described above, in which process their lengths are of prime importance. Brick de
scriptors may be compacted for the purpose of effi.cient access, but this is standard compaction
of constant-size objects, and the lengths of the bricks involved are of no relevance.

We place the n original bricks J1 , ••• , J", in order from left to right at the nieaves of a tree
T ofheight O(log*n). Define the width of anode 'U in T as the number ofleaf descendants of'U.

N odes in T at level 1 (directly above the leaves) have width vi5
, where VI = 1/ A, and the parent

of anode of width vI5 has width vl!l' where VZ+1 = 2V
', for 1 = 1,2, ... (Le., the degrees increase

roughly exponentially as one moves away from the leaves). We here ignore certain problems
related to rounding (in particular, n may not be of the form v15

, for some 1 ~ 1). Note that
each node in T is associated in a natural way with a subinterval of (0, 1].

Starting from the leaves of T, the algorithm attempts to combine the descendant leaf bricks
of anode 'U at level 1 and of width v15 in left-to-right order into one large brick of length at
most (1 + A)Z+lv15 . This may or may not succeed, depending on which we call 'U goOO or bad.

We actually care only about the root and want to show that it is good with high prob ability.
The combining at anode 'U is done using ordinary prefix summation for nodes at level 1

and using the ordered interval allocation algorithm of Section 3 for nodes at level ~ 2. The
latter combining is facilitated by the fact that many descendant leaf bricks have already been
combined into larger bricks by the good descendants of 'U. This allows us to obtain enough
processors per brick to make the algorithm of Theorem 3.6 run in constant time at each node.

Anode 'U may become bad for essentially three different reasons:

(A) 'U may have so many bad descendants and, as a result, so many surviving descendant bricks
that enough processors to make the algorithm of Theorem 3.6 run in constant time are not
available ("Bad Subcontractors");

(B) Even if the number of surviving descendant bricks is small, their totallength may be too
large ("Act of God");

(C) Even in the best of circumstances, the randomized algorithm executed at 'U may fail ("Bad
Luck").

The goal of the analysis is to show that anode of width v15 becomes bad with probability
2-0 (v

2
), which implies that the root is bad with negligible prob ability. This is easy as regards

the probabilities associated withreasons (B) and (C) ("Act of God" and "Bad Luck"), since
individual nodes can be analyzed independently. Because of the strong interdependence between
ancestors and descendants, reason (A) ("Bad Subcontractors") is somewhat more difficult to
handle, and we proceed by induction from the leaves to the root of T.

Recall that the goal is to combine the descendant leaf bricks of anode 'U at level 1 in left
to-right order into one large brick of length at most (1 + A)z+lvI5

• For the base case, if 'U is at
level 1, the combining is done by prefix summation. Let N the number of input numbers falling

15

into the subinterval of (0,1] associated with u. If N :$ (1 + A)vi5, then the totallength of the
bricks to be combined is no more than (1 + A)2vt5, i.e., u will not become bad. N is binomially
distributed, and E(N) = vi5. Hence by aChernoff bound, the prob ability that u becomes bad
is at most e-A2vf5/3 = 2-0 (vf). .

Now let u be anode at level 1 ~ 2 and of width v15 . We analyze in turn the three main
reasons why u may become bad. We will assume n to be larger than some (unspecified) constant.

"Act of God": Call u heavy if some bucket represented by a leaf descendant of u contains more
than v 2 elements. The expected number of elements in any fixed bucket being 1, aChernoff
bound shows the prob ability that any fixed bucket contains more than v 2 elements to be 2-0 (11

2
).

Since u has only v 15 leaf descendants, the prob ability that u is heavy is therefore 2-0 (11
2

) .

"Bad Luck": Call the node u well-supplied if it is not heavy and has at most v 2 bad children. We
show that a we1l-supplied node becomes bad with prob ability 2-0 (11

2
). U sing Ragde compaction,

u first attempts to place its bad children in an array of size v 10
• If this fails, u clearly is not

we1l-supplied and we give up. Otherwise, since (for sufficiently large values of n) even a bad
child provides no more than ~v bricks (due to the rapid increase of V1, V2, ... , its width is no
bigger), the compaction implicitly places descriptors of all bricks contributed by bad children in
an array of size at most ivll. We clearly cannot place descriptors of all bricks contributed by
the good children in an array of comparable size, since there are close to v15 such arrays. At
this point, however, we malte a crucial observation. The bricks contributed by good children are
all of the same length. Given a run of consecutive good children of u between two successive
bad children, we can therefore combine the associated bricks into a single brick in a trivial way.
Since there are at most (v2 + 1) such !Uns, descrlptors of combined bricks derived from the bricks
provided by the good children of u can be compacted using Ragde compaction into an array
of size (v2 + 1)5. Altogether, we have succeeded (for sufficiently large values of n) in placing
descriptors of all bricks to be combined by u in an array of size vll .

A brick provided by a child of u is either one of the original bricks J1 , ••• , Jn (that never
participated in a successful combining), in which case its length is at most (1 + A)V2 (since u is

not heavy), or it is a brick created by some (good) nonleaf descendant u' of u at level l' < 1, in
which case its length is at most (1 + A)I'+l :$ (1 + A)l times the width of u'. All bricks provided
by good children of u are of the second kind. Rence the totallength of the bricks to be combined
by u is at most .

(recall that v ~ V2 = 21/\ so that v2 ~ 4/ A). Run in constant time with v12 processors,
the algorithm of Theorem 3.6 can therefore combine the at most vll bricks into a brick of
length at most (1 + 2-10g10gv-1)(1 + A)I(1 + A/4)V15. Since 2-10g1ogll-1 :$ 210~1I2 = A/2 and

(1 + A/2)(1 + A/4) :$ 1+ A, this is at most (1 + A)I+1v15 , as desired.
If we actually run the algorithm v 2 times in parallel, the prob ability that all trials fall is

2-0 (11
2

) . Altogether, the node 'U needs v14 processors. Since the number of nodes at the same
level as 'U is n/v15 , the total processor requirements are n/v.
"Bad Subcontractors": N odes at level 1 - 1 are of width (log v) 15 • Rence by the inductive
assumption, each node at level 1 - 1 becomes bad with prob ability 2-0 ((10gll)2) = v-O(logv).

Assume for a moment that the events of distinct nodes on the same level becoming bad were
independent. Then the number ofbad children of u would be bounded by a binomial distribution
with expected value V 15 . v-O(logv) = 0(1), and the prob ability of u having more than v2 bad
children would be 2-0 (v

2
), as desired, which finishes the analysis.

16

Nodes on the same level are not reall.y independent, as assumed above. Since the dependen
cies are very weak and furthermore appear to work in our favor, this paragraph merely sketches
the technical justification for what should already be plausible. What we do know is that the
expected number of bad nodes at level 1 - 1 is n . v-O(logv). By a martingale argument, the
actual number of such nodes is comparably small, except with negligible prob ability (we here
gloss over some easy details). Furthermore, the set V of bad nodes at levell - 1 is symmetrically
distributed, by which we mean that Pr(V = VI) = Pr(V = V2) whenever VI and V2 are subsets
of the set of all nodes at levell - 1 with lVII = IV2 1. It now follows from Fact 5 of [19] that the
prob ability that 1L has more than v2 bad children is 2-0 (v

2
).

Finally note that the entire input is packed into a brick of length (1 + A)O(log*")n, which
for sufficiently large values of n is bounded by (1 + Ct)n. The combining at nodes at level 1

requires o (log VI j10g log VI) = O(t) time and O(n) operations. The combining at no des at level
~ 2 takes constant time per level, a total of o (log*n) = O(t) time, and never uses more than
njvI processors, so that the total number of operations executed is O(n). •

6 Integer Sorting

In this section we consider the problem of (padded-)sorting a multiset of integers in the range
1 .. n, both with and without the stability requirement. No assumption is made about the
distribution of the input values. Note that for all n, mEIN, (padded-)sorting a multiset of n
integers in the range 1 . . m stably reduces to (padded-)sorting n distinct integers in the range
1 .. nm.

The core of our algorithms for padded-sorting integers is a subroutine that approximately
ranks n integers in the range 1 .. ne(l) using (logn)9(1) processors per input number. The top
level structure of this subroutine, described in Lemma 6.2, is similar to that of our comparison
based padded-sorting algorithm, but some new ideas (and the extra power of the OR PRAM) are
needed because fast run times are desired with only a polylogarithmic number of processors per
input number. The rest of the section describes how to reduce the size of the original problem
by a polylogarithmic factor to make Lemma 6.2 applicable, both when stability is required and
when it is not.

We begin by enumerating some tasks that can be done quicklyon the OR PRAM for small
inputs.

Lemma 6.1: For all integers m, w ~ 4 the following problems can be solved on an m-processor
OR PRAM with O(m) space and a word length of w bits, using tables that can be constructed in
constant time using 20(10) processors and 2°(10) space:

(a) Compute the prefix sums of m integers of O(logm) bits each in O(logmjlogw) time;

(b) Sort m integers of O(logm) bits each in O«logmjlogw?) time.

Proof: Let r = rwl/41 and h = logmjlogr = 0(logmjlogw). If logm > r, both claims are
trivial, since then h = n(logmjloglogm). Assume hence that logm:s; r.
(a) The prefix sums of r integers of 0 (log m) bits each can be computed in constant time by
table lookup, and it is easy to see that the relevant table can be constructed as claimed in the
lemma. Use this at every node of a tree with m leaves, degree at most r and height O(h), with
the input numbers fed into the leaves and the computation proceeding from the leaves to the
root. Subsequently each prefix sum of the input numbers can be determined in O(h) time by
one processor from a root-to-leaf path in the tree.

17

(b) Since the algorithm of part (a) does not utilize the full word length, we can use it to carry
out r simultaneous pre:fix summations. Assuming that the input consists ofintegers in the range
O .• r -1, use this to count the number of occuxrences of each value in the input. By table lookup
applied to the result (which is stored in 0(1) words), each input element can tell the number of
smaller elements. Moreover, by inspecting the intermediate values computed at its ancestors in
the tree, it can deduce the number of elements of the same value as itself to its left, Le., it can
compute its rank among the input elements. This gives a procedure for stably sorting integers
in the range O •• r - 1 in O(h) time. Use radix sort to sort the full input numbers of O(logm)
bits each in a total time of 0(h2). •

Lemma 6.2: There is a constant € > 0 such that for all given integers n, k, t 2: 2, n distinct integers
in the range 1 .. n 2 can be approximately ranked as follows with probability at least 1 - 2-nf

:

(a) With accuracy 2-tloglog(len) on an OR PRAM using O(t) time, 0(kn(logn)2) processors and

O(kn(logn)2) space;

(b) With accuracy c t on a standard PRAM using O(t) time, O(n(logn)2) processors and
O(n(logn)2) space, provided that t 2: loglogn.

Proof: We again describe an algorithm with a larger failure prob ability, whose top-level struc
ture is identical to that of Theorem 3.4. We give the proof for part (a) first and outline the
modifications necessary for part (b) later.

Let 9 = 48· 2 t [loglog(len)1. H g64 > n, the input can be sorted using one of the algorithms
of [12, 33]. Otherwise again let h 2: 1 be the largest integer with gh-lg64 ~ n and execute the
following steps:

(l.) Construct the tree T, Le.,

(1.a) Compute the sets So, .. . , Shi

(lob) Determine the parent of each node in Ur=l Sii

(loc) Sort each set of siblings in Ti

(2) Determine the ancestors of each leaf in Ti

(3) Compute the interval associated with each leaf.

For the implementation of Step (1.a), we essentially use the algorithm of Lemma 3.3 in
parallel for s = 1, g, ... ,gh-l, w hich requires 0 (hkn) = 0 (kn log n) processors. Since the
condition t 2: flog n Ilog k 1 is not necessarily satisfied, we have to realize the steps of the algo
rithm slightly differently. For Step (1), simply use part (b) of Lemma 2.3 instead of part (a)i
as we have n(logn) processors per element, the time needed is constant. For Step (2), use
Lemma 6.1(a). Since the word length is at least E>(log(kn)) bits, we obtain a run time of
O(logg/loglog(kn)) = O(t). Step (lob) takes constant time usingpredecessor structures like
those constructed in Step (1.a). For Step (loc) we first padded-sort each set of siblings using
the algorithm of Corollary 3.5, run E>(log n) times in parallel to achieve sufficient reliability, and
then compact the resulting sequence by means of Lemma 6.1(a). In Step (2) each leaf v first
computes its candidate predecessors 'Ui = Pred(v, Si) and U~ = Pred+('Ui, Si) at depth i, for
i = 0, ... , h, which requires O(hnlogn) = 0(n(10gn)2) processors. The entire subgraph of the
tree T induced by {uo, u~, ... , Uh, u~J can now be represented in 0 (h) = 0 (log n) bits by noting
for each of 'Ui+l and u~+l' for i = 0, ... , h - 1, whether its parent is 'Ui, ui or neither of these,
after which the ancestors of v can be determined in constant time using table lookup. Recalling
that the compounded interval of each leaf is determined by O(logn) bits, it is easy to see that
Step (3) can be executed in constant time in a similar way.

18

This proves the lemma for the OR PRAM. For a standard PRAM we take 9 = 48· tt, employ
usual prefu: summation instead ofLemma 6.1(a) and carry out Steps (2) and (3) using standard
pointer-doubling techniques. •

Theorem 6.3: There is a constant E > 0 such that for all given integers n, k 2: 4 and t 2:
flog log njlog k 1, n integers in the range 1 .. n can be stably approximately ranked with accuracy
2-tloglog(len) on an OR PRAM using O(t) time, kn processors and O(kn) space with probability at
least 1 - 2-nE

• For t 2: log log n the result holds for a standard PRAM with ranking accuracy C t .

Proof: We give the proof for the OR PRAM. As usual, we describe a simpler algorithm. with a
somewhat larger failure prob ability. Let X be the input set, take 9 = min{2tl1og1og(Ien)1,n + 1}
and let .A = 1j(4g). The algorithm. consists of the following main steps:

(A) Compute a sampie C of X ofsize 0(nj(logn)2) with maxgap(C,X) = gO(l) that inc1udes
the first element of X and has spread at most .A in X. For i = 1, ... , I CI, let Ci be the ith
segment of C in X;

(B) Rank. C approximately with accuracy .A using the algorithm. of Lemma 6.2. We can assume
that this marks Ci with a label qi, for i = 1, ... , ICI, such that with qo = 0, we have Ibl ::;

qi - qi-1 ::; \M, for i = 1, ... , I CI;
(C) For i = 1, ... , ICI, sort Ci (without padding);

(D) Output the sequence oflabels ofthe elements of X computed as follows: If z EX is the Ith
element of Cj, then the label of z is (1 + .A)(qj-1 + IJ;I (qj - qj-1)).

For i = 1, .. . ,n, let ri be the label computed in Step (D) for the element in X ofrank i. It
is easy to see that for each i E {1, ... , n}, there is a j E {1, ... , ICI} such that

!< 1+.A «1+.A)qj-qj-1_._. < (1+.A)2 < (1+.A)3 <l+ljg
n - IClmazgap(C, X) - ICjl - r~ r~-l - IClmingap(C,X) - n - n .

This demonstrates the correctness of the algorithm. We now discuss the implementation of Steps
(A) and (C).

Step (·A) is carried out using the algorithmofLemma 3.3, modified as described for Step (1.a)
in the proof of Lemma 6.2. Since we no longer have n(logn) processors per element, the
time bound becomes O(floglognjlogkl). In Step (C) we break each segment Ci into pieces
of polylogarithmic size, each of which can be sorted in O(floglognjlogkl) time, and then
concatenate the sorted pieces. In more det~, Step (C) consists of the following substeps:

(C.1) Compute a sampie 8 of X with 181 = 0(nj(10gn)2) and maxgap(8, X) = 0((10gn)3);

(C.2) Padded-sort Cu 8 with padding factor 0(1) using Lemmas 6.2 and 3.1;

(C.3) Partition X according to Cu 8;

(C.4) Padded-sort each segment of X induced by Cu 8 with padding factor 0(1);

(C.5) For i = 1, ... , ICI, complete the sorting of Ci.

Step (C.1) is easy, since taking 8 as a naive sampie of X of size 9(nj(logn)2) will do. Steps
(C.3) and (C.4) are carried out using Lemma 2.3(b) and Corollary" 3.5, respectively. The task in
Step (C.5) is, for i = 1, ... , ICI, to compact the subsegments of Ci sorted in Step (C.4) and to
place them ne.xt to each other in the right order. What this involves is to use Lemma 6.1(a) to
compute prefu: sums, first within each segment of X induced by Cu 8, and afterwards within
each segment of 8 induced by C (as computed in Step (C.2)). With high prob ability, this takes
O(loggjloglog(kn)) = O(t) time. •

19

Theorem 6.4: There is a constant E > 0 such that for all given integers n, t ~ 2, n integers in the
range 1 .. n can be (unstably) approximately ranked with accuracy 2-tloglogn on an OR PRAM using
O(t) time, O(n) operations and O(n) space with probability at least 1- 2-n~. For t ~ loglogn the
result holds for a standard PRAM with ranking accuracy r t .

Proof: Again we give the prooffor the OR PRAM. Although any nondegenerate input contains
duplicate keys, for the purpose of sampling we have to consider all keys to be distinct. We begin
by semisorting the input keys by their values into an array Q and define a particularly convenient
total order among the keys of a common value as that given by their order in Q. It is now easy
to see that for any nonempty subset S of the input set X, a predecessor structure for S that can
be queried in constant time by one processor for arguments in X can be constructed in constant
time with n processors: For the preprocessing, apply Lemma 2.3(c) both to the set of positions
in Q that contain elements of S and to the set of values that occur in S, and determine for each
value occurring in S the largest (i.e., rightmost in Q) key of that value. The predecessor of an
element Z E X is now found as the nearest element of S preceding it in Q, unless the value of
that element is different from that of z, in which case the predecessor of Z is the largest element
in S of the preceding value. If we substitute this predecessor structure for the one used in the
proof of Theorem 6.3 and take 9 = min{2t[loglogn1, n+ 1}, only Step (C.4) needs to be modified.

Recall that Step (C.4) sorts a collection of segments o(polylogarithmic sizes. If subtracting
an arbitrary value occurring in a segment from all keys in the segment leaves keys of absolute
value bounded by (log n)4, the segment can be sorted in constant time using Lemma 6.1(b). On
the other hand, the number of segments violating this condition is O(nj(logn)4), so that we can
allocate 0(log n) processors to each key in each such segment and padded-sort the segment in
constant time using Corollary 3.5. •

7 Approximate Prefix Summation

Recall that the approximate prefi.x summation problem with accuracy >. is, given n nonnegative
integers Zl, ... , Zn, to compute n integers Yl, ... , Yn such that with Yo = 0, the following holds
for i = 1, ... , n:

(1) Yi ~ Yi-l + Zij

(2) Yi :-::; (1 + >') E~=l Zj.

Theorem 7.1: There is a constant E > 0 such that for all given integers n, t ~ 4, approximate
prefix summation problems of size n and with input numbers of size polynomial in n can be solved
with accuracy 2-tloglogn on an OR PRAM using O(t) time, O(n) operations and O(n) space with
probability at least 1 - 2-n~ .

Proof: Let the input be Zl,' .. , Zn and take Si = E~=l Zj, for i = 1, ... , n, and>' =: 2-t[loglognl.
Consider first the simple unary case where Zi E {O, 1}, for i = 1, ... , n. Derive from the input
a new sequence Zl,' .. , Zn by setting Zi = i if Zi = 1 and Zi = n + 1 if Zi = 0, for i = 1, ... , n.
Then padded-sort Zl, ... , Zn with padding factor >. using the algorithm of Theorem 6.4 combined
with Lemma 3.1 and note that for i = 1, ... , n, if Zi = 1, then Si is precisely the rank of Zi

in the resulting sorted sequence. This quantity, of course, is not readily available, but it is
approximated well by the position of Zi in the output array, which we therefore take to be Yi.

This defines Yi for all i E {1, .. . ,n} with Zi = 1. Compute Yi for all other i by "copying the
nearest value to the left", Le., by letting Yi = Yj, where j < i is maximal with Zj = 1 (Yi = 0 if
no such j exists). Using Lemma 2.3(c), this can be done in constant time.

20

Condition (1) in the definition of approximate prefix summation is easily seen to be satisfied.
As for condition (2), since the padded sorting of Zl, ... , Zn places the element ofrank i in position

at most (1 + A)i of the output array, for i = 1, ... , n, we have Yi ::; (1 + A)Si, for i = 1, ... , n.
We now move to the general case ofinput numbers drawn from a set U = {O, ... , M}, where

M = nO(l), and first describe a preprocessing phase that re duces the problem size by 0(10gn).
Since this is easy if t = O(loglog n), we can assume that A ;? 2-(loglogn)2. Without loss of gener

ality suppose that the sum of the input numbers also belongs to U. The basic idea is to proceed
as in the proof of Lemma 6.1(a), i.e., to use a tree of constant height and degree 0((logn)1/2)
to compute prefix sums within groups of 0(10g n) input numbers, the prefix summation at each
node being performed in constant time by table lookup. The immediate difficulty with this
approach is that the input numbers are of o (log n) bits each, so that 0((log n)1/2) of them will
not fit into one word. We therefore represent the values involved only approximately, using fewer
bits. More precisely, for every fixed i, there is a set R ~ U of "representable" numbers such
that

(1) The elements of R can be represented using (loglogn)O(l) bits, and the corresponding

encoding and decoding functions can be evaluated in constant time by a single processor;

(2) For every Z E U, there is a "rounded value" r(z) E R with z ::; r(z) ::; (1 + J..l.)z, where
J..l. = 2-(loglogn)"'f. Moreover, r(z) can be computed in constant time by a single processor.

Given z,y E R, let z EI1 Y = r(min{z + y, M}) and note that EI1 can be evaluated in constant
time by a single processor. EI1 serves as our approximation to addition. Every time it is applied,
we incur a relative error of up to J..l.; if i is chosen sufliciently large, however, no computed
quantity will be larger than 1 + ~ times its "true value". Now n processors can in constant time

construct a table that "takes as input" 0((10gn)1/2) numbers Zl1Z2,Z3, ... in R and "pro duces
as output" their approximate prefix sums Zl, Zl EI1 Z2, (Zl EI1 Z2) EI1 Z3, etc. Using this table it is
easy to realize the basic idea for the preprocessing described above.

In order to compute approximate prefix sums for input numbers Zl, ... , Zn of O(logn) bits
each, we apply the algorithm for the unary case in parallel to every bit position of the input
numbers (this is where we need a superlinear number of processors) with a required accuracy
of 1 + ~. This yields each approximate prefix sum as a collection of 0(log n) values, one for

each bit position, that can be added with relative error at most ~ as in the preprocessing. Even

though the input numbers Zl, ... , Zn may also be affected by relative errors of up to ~ due to the

preprocessing, the overall relative error in the output variables will be at most (1 + ~)3 -1 ::; A .

•
Replacing the constant-time preprocessing described above by the straightforward prefi.x

summation in groups of size 0(10g n), it is easy to obtain a result for the standard PRAM

identical to that of Theorem 7.1, except that we must require t ;? loglogn, and that the
accuracy obtained is t-t; below we refer to the corresponding algorithm as the basic algorithm.
We can do better, however. Assuming only that standard operations like addition take constant
time on integers as large as the input numbers, we can allow the latter to be any nonnegative
integers whatsoever, rather than integers of O(logn) bits.

Theorem 7.2: There is a constant € > 0 such that for all given integers n;? 4 and t ~ loglogn,
approximate prefix summation problems of size n can be solved with accuracy C t using O(t) time,
O(n) operations and O(n) space with probability at least 1 - 2-n(.

Proof: We describe an algorithm with a larger failure prob ability. Since for t ~ 10gnJloglogn
an accuracy of 2-

2t can be obtained through simple rounding to 2®(t) bits followed by exact

21

prefix summation [22], we will assume that A ~ 12/n, where A = t-t.
The basic idea is that if the input numbers vary widely in size, then the smallest of them

can be safely ignored. This is not quite true, since a small number that is preceded only by
other small numbers cannot necessarily be ignored, but the observation enables us to divide
the sequence of input numbers into segments, within each of which numbers can be rounded to
O(logn) bits.

In more detail, let the input be ZI,"" Zn and begin by computing the prefix maxima
ml," ., Tnn, where mi = max({Zj : 1 ~ j ~ i} U {I}), for i = 1, ... , n. This is easy to do
in O(loglogn) time; we omit the details. The next task is to partition the index set {I, ... , n}
into consecutive segments SI, ... , Sv' We define the division into segments by describing the set
of indices i E {I, ... , n -I} such that i and i + 1 are separated, i.e., belong to distinct segments.
In fact, we operate with strong and weak separations. For i = 1, . . . , n-1, i is strongly separated
from i + 1 exactly if Tni+1 ~ n 2 • Tni. Intuitively, a strong separation implies a splitting into
practically independent subproblems: The numbers in the left subproblem add up to less than
1 Intimes the first number in the right subproblem and can therefore essentially be ignored in
the solution of the right subproblem.

Assume that S = {i, .. . ,i} is a (maximal) segment remaining after the introduction of
strong separations. We describe how S is split into a collection of final segments by means of
weak separations. Ideally, we would like to split S at the prefix maxima Tni . n2

, Tni . n4 , Tni . n6
,

etc., i.e., to separate two indices 1 and 1 + 1 exactly if for some integer h ~ 1, m, < Tni . n2h,
but m'+1 ~ Tni . n 2h • Not knowing how to do this efficiently using only standard operations,
we proceed as follows: Associate a processor with each element of S and let these processors
generate the sequence Tni . n2 , Tni . n4, ... , Tni . n2(j-i+1), where n is the smallest power of 2 no
smaller than n (n is substituted for n because it is easy to compute powers of n). Then stably
merge this sequence with the sequence Tni, ... , mj of prefix maxima and (weakly) separate 1 and
1 + 1, for 1 = i, ... , j - 1, exactly if m, and m'+l are not consecutive in the resulting sequence
(i.e., if they are separated by an element Tni . n2h of the first sequence).

Let S = {SI, ... , Sv} be the sequence of segments resulting from the execution of the above
procedure. For each segment S = {i, ... , i} ES, if each number in S is rounded to the nearest
larger multiple ofmax{lTniln2J, I}, we commit a relative error of at most 1/n, which is negligible
(we ignore it in the following). Furthermore, by construction of the segments, no number in S
is larger than Tni ·n2

, so that the rounding expresses each element in S in O(logn) bits. This
means that the basic algorithm can be applied to (the sequence ofnumbers with indices in) S.
The same holds for the union of two consecutive segments, provided that they are only weakly
separated. We now compute preliminary prefix sums YlI" .,Yn as follows: Let iE {l, . .. ,n}
and suppose that i E Sj. Then Yi is computed by applying the basic algorithm 0(logn) times
in parallel to Sj if j = 1 or Sj-l and Sj are strongly separated, and to Sj_l U Sj if j ~ 2
and Sj-l and Sj are only weakly separated. For these applications of the basic algorithm we
will require an accuracy of AIS. Since each segment participates in at most two applications of
the basic algorithm, the computation of Yl,' .. ,Yn uses O(n) operations. For j = 1, .. . ,V, let
qj = YmmSj' For i E S1I the final prefix sum Yi is taken to be simply Yi. For i E Sj with j ~ 2,

let Yi = Yi + L~(qj + qj-l)J.
We must show that the algorithmis correct, i .e., that Y1I"" Yn satisfy conditions (1) and (2)

for i = 1, ... , n. We leave the (easy) case i = 1 to the reader; hence let i E {2, ... , n}. H i-I
and i are not separated, the condition Yi ~ Yi-l + Zi is equivalent to Yi ~ Yi-l + Zi, and it is
satisfied by the correctness of the basic algorithm and the fact that the rounding within segments
is upwards. Suppose now that i-I and i are separated, say i-I E Sj-l and i E Sj. The

22

condition Yi ~ Yi-l + Xi is then satisfied if (1 + ~)Yi ~ Yi-l + Xi + ~qj-2 + 1, where qo = O. Since

qj-2 ~ (1 + i); and Xi ~ n2, it suffices to prove that (1 + ~)Yi ~ Yi-l + (1 + ~)Xi. If i - 1 and

i are strongly separated, this is easy, since Yi ~ Xi and Yi-l ~ (1 + i)Si-l ~ (1 + i);. If i - 1
and i are not strongly separated, let Wh = LlESh xl, for h E {j -l,j - 2} (take Wo = 0) and

observe that Yi ~ Wj-l + Xi and Yi-l ~ (1 + i)(Wj-l + Wj-2) ~ (1 + i)Wj-l + (1 + i);, from
which the desired relation follows.

Condition (2) is also satisfied, since for i E Sj with j ~ 2 we have Yi = fh + l~(q; + qj-l)J ~

(1 + ~)Si + ~(1 + i)Si ~ (1 + ~)Si' •

References

[1] M. Ajtai, J. KomMs, and E. Szemeredi, An O(nlogn) sorting network, in Proc. 15th STOC
(1983), pp. 1-9.

[2] M. Ajtai and M. Ben-Or, A theorem on probabilistic constant depth computations, in

Proc. 16th STOC (1984), pp. 471-474.

[3] N. Alon and Y. Azar, The average comple.xity of deterministic and randomized parallel
companson-sorting algorithms, SIAM J. Comput. 17 (1988), pp. 1178-1192.

[4] Y. Azar and U. Vishkin, Tight comparison bounds on the comple.xity of parallel sorting,
SIAM J. Comput. 16 (1987), pp. 458-464.

[5] H. Bast and T. Hagerup, Fast and reliable parallel hashing (preliminary version), in Proc.
3rd SPAA (1991), pp. 50-61.

[6] H. Bast, M. Dietzfelbinger, and T. Hagerup, A perfect parallel dictionary, in Proc. 17th
MFCS (1992), LNCS 629, pp. 133-141.

[7] P. Beame and J. Hästad, Optimal bounds for decision problems on the CRCW PRAM, J.

ACM 36 (1989), pp. 643-670.

[8] O. Berkman and U. Vishkin, Recursive *-tree parallel data-structure, in Proc. 30th FOCS
(1989), pp. 196-202.

[9] P. C. P. Bhatt, K. Diks,T. Hagerup, V. C. Prasad, T. Radzik, and S. Saxena, Improved
deterministic parallel integer sorting, Morm. and Comp. 94 (1991), pp. 29-47.

[10] R. B. Boppana, The average-case parallel complexity of sorting, IPL 33 (1989), pp. 145-146.

[11] B. S. Chlebus, Parallel iterated bucket sort, IPL 31 (1989), pp. 181-183.

[12] R. Cole, Parallel merge sort, SIAM J. Comput. 17 (1988), pp. 770-785.

[13] R. Cole and U. Vishkin, Faster optimal parallel prefix sums and list ranking, Inform. and
Comp. 81 (1989), pp. 334-352.

[14] L. Devroye, LectuTe Notes on Bucket Algorithms, Birkhäuser, Boston, MA, 1986.

[15] J. Gil, Y. Matias, and U. Vishkin, Towards a theory of nearly constant time parallel
algorithms, in Proc. 32nd FOCS (1991), pp. 698-710.

[16] M. T. Goodrich, Using approximation algorithms to design parallel algorithms that may
ignore processor allocation, in Proc. 32nd FOCS (1991), pp. 711-722.

[17] T. Hagerup, Towards optimal parallel bucket sorting, Morm. and Comp. 75 (1987), pp.
39-51.

23

[18] T. Hagerup, Hybridsort revisited and parallelized, IPL 32 (1989), pp. 35-39.

[19] T. Hagerup, Constant-time parallel integer sorting, in Proc. 23rd STOC (1991), pp. 299-
306.

[20] T. Hagerup, Fast parallel space allocation, estimation and integer sorting, TR MPI-I-91-
106, MPI für Informatik, 6600 Saarbrücken, Germany, 1991. Preliminary version in Proc.
23rd STOC (1991).

[21] T. Hagerup, The log-star revolution, in Proc. 9th STACS (1992), LNCS 577, pp. 259-278.

[22] T. Hagerup, The parallel complexity ofinteger prefix summation, TR LSI-92-18-R, Dept.
de LSI, Universitat Politecnica de Catalunya, 08028 Barcelona, Spain, 1992.

[23] J. Hästad, Almost optimallower bounds for small depth circuits, in Proc. 18th STOC
(1986), pp. 6-20.

[24] J. Hästad, Personal communication, Sep. 1992.

[25] A. Itai, A. G. Konheim, and M. Rodeh, A sparse table implementation of priority queues,
in Proc. 8th ICALP (1981), LNCS 115, pp. 417-431.

[26] P. D. MacKenzie and Q. F. Stout, Ultra-fast expected time parallel algorithms, in Proc.
2nd SODA (1991), pp. 414-423. i

[27] P. D. MacKenzie and Q. F. Stout, Ultra-fast expected time parallel algorithms, TR CSE
TR-115-91, Dept. ofElectricalEngineering and Computer Science, The University ofMichi
gan, Ann Arbor, MI 48109, USA, 1991.

[28] P. D. MacKenzie, Load balancing requires n(log* n) expected time, in Proc. 3rd SODA
(1992), pp. 94-99.

[29] Y. Matias and U. Vishkin, On parallel hashing and integer sorting, J. Algoritb.ms 12
(1991), pp. 573-606.

[30] Y. Matias and U. Vishkin, Converting high prob ability into nearly-constant time - with
applications to parallel hashing, in Proc. 23rd STOC (1991), pp. 307:"'316.

[31] M.D. McLaren, Internal sorting by radix plus süting, J. ACM 13 (1966), pp. 401-411.

[32] P. Ragde, The parallel simplicity of compaction and chaining, in Proc. 17th ICALP (1990),
LNCS 443, pp. 744-751.

[33] S. Rajasekaran and J. H. Reif, Optimal and sublogarithmic time randomized parallel sorting
algorithms, SIAM J. Comput. 18 (1989), pp. 594-607.

[34] R. Raman, The power of Collision: Randomized parallel algorithms for chaining and integer
sorting, in Proc. 10th FST & TCS Conf. (1990), LNCS 472, pp. 161-175. Also as TR 336,
Dept. of Computer Science, University of Rochester, Rochester, NY 14627, USA, 1991.

[35] R . Raman, Optimal sub-Iogarithmic time integer sorting on the CRCW PRAM (note), TR
370, Dept. of Computer Science, University ofRochester, Rochester, NY 14627, USA, 1991.

[36] J. H. Reif and L. G. Valiant, A logarithmic time sort for linear size networks, J. ACM 34

(1987), pp. 60-76.

[37] R. Sarnath, Very fast parallel comparison sorting, Manuscript, 1991.

[38] R. Sarnath, Lower bounds for padded sorting and approximate counting, Manuscript, 1992.

[39] D. E. Willard, A density control algorithmfor doing insertions and deletions in a sequentially
ordered file in a good worst-case time, Inform. and Comp. 97 (1992), pp. 150-204.

24

	92-1410001
	92-1410002
	92-1410003
	92-1410004
	92-1410005
	92-1410006
	92-1410007
	92-1410008
	92-1410009
	92-1410010
	92-1410011
	92-1410012
	92-1410013
	92-1410014
	92-1410015
	92-1410016
	92-1410017
	92-1410018
	92-1410020
	92-1410021
	92-1410023
	92-1410025
	92-1410026
	92-1410027
	92-1410028
	92-1410029
	92-1410030
	92-1410031

