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ABSTRACT 

Wastewater-based epidemiology (WBE) for disease monitoring is highly promising, but requires 

consistent methodologies that incorporate predetermined objectives, targets, and metrics. We 

demonstrate a comprehensive metagenomics-based approach for global surveillance of antibiotic 

resistance in sewage, enabling assessment of: 1) which antibiotic resistance genes (ARGs) are 

shared across regions/communities; 2) which ARGs are discriminatory; and 3) factors associated 

with overall trends including antibiotic concentrations in sewage. Across an internationally-

sourced transect of sewage samples collected using a centralized, standardized protocol, ARG 

relative abundances (16S rRNA gene-normalized) were highest in Hong Kong and India and 

lowest in Sweden and Switzerland, reflecting national policy, measured antibiotic concentrations, 

and metal resistance genes. Asian versus European/US resistomes were distinct, with macrolide-

lincosamide-streptogramin, phenicol, quinolone, and tetracycline versus multidrug resistance 

ARGs being discriminatory, respectively. Sales data were not predictive of antibiotics measured 

in sewage, emphasizing need for direct measurements. The WBE approach defined herein 

demonstrates multi-site comparability and sensitivity to local/regional factors.  
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Wastewater-based epidemiology (WBE) is a rapidly emerging framework for public health 

surveillance as it quickly and non-invasively provides anonymous population-scale information 

about human disease and anthropogenic chemical use.[1] Activity in this field has focused on 

xenobiotic and human biomarker measurements[2, 3] and the monitoring of infectious diseases 

such as polio[4] and typhoid.[5] Most recently, WBE has been proposed for surveillance of the 

spread of antibiotic resistance[6-8] as well as COVID-19.[9, 10] Within any given sewershed, the 

analysis of temporal or spatial changes in WBE targets (e.g., genes, microbes, chemicals) could 

provide an early warning of local and regional disease outbreaks,[11] while comparisons across 

sewersheds can enable insights into environmental and socioeconomic factors contributing to 

disease patterns.[12] To produce globally actionable information, however, data comparability 

across disparate systems is crucial and should be considered at the outset of commencing 

measurements. In this study, we applied a consistent sample collection and analysis protocol[13, 

14] and demonstrated the capability of an array of data analysis approaches[15-17] for 

discriminating an international transect of sewage samples from Asia (Hong Kong, India, the 

Philippines), Europe (Sweden, Switzerland), and North America (US) with the aim of advancing 

a WBE framework for antibiotic resistance surveillance.  

Sewage represents a composite of human-associated flora;  including pathogens, antibiotic 

resistant bacteria (ARB), and antibiotic resistance genes (ARGs),[18-21] carried across the 

corresponding community and thus provides opportunities for environmental antibiotic resistance 

surveillance.[6, 22] The profiles of ARB and ARGs in sewage are expected to be dependent on 

current and historic antibiotic resistance management practices, including the types and quantities 

of antibiotics used and local attention to transmission control.[18, 23] A targeted and well-designed 

WBE program could help establish baseline levels of antibiotic resistance for a given community, 

inform effective antibiotic use policy and wastewater treatment practices, and serve as a point of 

comparison for assessing the impacts of such interventions.[12, 22]  

Shotgun metagenomic sequencing provides a powerful means to characterize sewage 

microbiomes[24] and viromes,[25] producing nucleotide sequences that can be archived and 

compared to publicly-available databases to profile pathogens, pandemic viruses,[26, 27] and 

ARG composition (i.e., the “resistome”).[28-30] Recent studies have applied metagenomic 

sequencing to identify compelling sewage resistome trends. Hendriksen et al.[6] collected 
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wastewater samples from 79 sites in 60 countries and found that ARG abundance correlated with 

socioeconomic, health, and environmental factors. Using the same dataset, Karkman et al. explored 

to what extent sewage metagenomes (alone or in combination with socioeconomic factors) predict 

local clinical resistance.[8]  Pärnänen et al.[7] showed that sewage samples collected across a 

European North-South transect correlated with differences in antibiotic usage and average local 

temperatures. Going forward, precise surveillance objectives, targets, and metrics must be 

identified and validated if metagenomics enabled WBE is to be globally recommended and 

adopted.[22] In the context of antibiotic resistance, identification of informative features of 

resistomes and their relationship to other key sewage constituents, including concentrations of 

residual antibiotics, metals, metal resistance genes (MRGs), and mobile genetic elements (MGEs), 

is needed to gain insight to the factors driving resistance proliferation (Figure 1). 

Here we assessed various dimensions of sewage metagenomes, antibiotic concentrations, and 

the associated metainformation, to identify discriminatory features and factors that might reflect 

the corresponding resistomes. Taxonomic composition and the diversity of the corresponding 

microbiomes were evaluated as key constraints on ARG composition.[31, 32] In addition, 

plasmids, transposons, and integrons were quantified as plausible carriers of resistance[28, 29, 33] 

(i.e., indicating the potential for associated ARGs to spread horizontally across species). Genes 

that could provide co-selection opportunities, such as MRGs, were also quantified, addressing 

concerns that even if antibiotic use is curbed, metals and other selective agents could still select 

for ARGs. Finally, “core resistome”[31, 33, 34] and “discriminatory resistome”[16] analyses were 

carried out to account for the ARG “background” of globally-distributed or naturally-prevalent 

ARGs (e.g., those found even in 30,000 year old Arctic soils[35] and permafost[36]), and to 

differentiate ARGs that result primarily from anthropogenic activity and are of clinical concern. 

Herein, we advance a WBE framework for sewage-based surveillance of antibiotic resistance, 

focusing monitoring towards targets relevant to local evolution and dissemination. 

RESULTS AND DISCUSSION 

Comparison of Resistomes Across a Global Transect of Sewage Samples 

Fourteen influent sewage samples from twelve WWTPs located in six countries were 

systematically collected by our team using standardized protocols,[13, 14] profiled, and compared. 

To identify and quantify ARGs, we performed shotgun metagenomic sequencing (20-30 million 
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reads per sample; Supplementary Table S1) and annotated reads using the CARD database.[37] 

We detected an average of 449 ARGs (Range: 309-489) at each site, with the Chao index 

estimating true ARG richness ranging from 501-683 ARGs/sample (Average: 577; 

Supplementary Figure S1). When considering 16S rRNA gene normalized relative abundances, 

a clear trend emerged, whereby Asian sewage samples contained higher relative abundances of 

ARGs than European/US samples (Figure 2A, Supplementary Figures S2 and S3, 

Supplementary Data 1). Such a pattern is likely driven primarily by the relative inputs of ARGs 

and ARBs from human populations, although other factors could be at play, including differences 

in relative industrial/hospital inputs or differential selection pressures when sewage travels through 

the collection network.[38, 39]   

Hendriksen et al.[6] recently reported a global sewage survey and, although the analytical 

approach was distinct, the trend in ARG relative abundance was strikingly similar to the present 

study: higher in Africa (median: 2,100 fragments per kilo base per million fragments [FPKM]), 

Asia (1,200 FPKM), South America (1,900 FPKM), and the Middle East (1,100 FPKM), relative 

to Europe (750 FPKM), North America (900 FPKM), and Oceania (800 FPKM). Hendriksen et 

al.[6] applied FPKM normalization to address highly variable sequencing library depth (8-398 

million reads per sample), while in the present study (20-30 million reads per sample) we 

normalized to 16S rRNA genes as a biomarker of total bacteria and correspondingly indicate the 

proportion of bacteria carrying ARGs.[40] Hendriksen et al. applied the ResFinder database[41] 

for ARG annotation, which resulted in detection of an apparently larger number of ARGs. This 

difference may result from the inclusion of multiple similar variants of the same ARG in 

ResFinder, but not in CARD, or from the inclusion of multiple ARGs that result from detection of 

a single ARG cluster. The differential number of ARGs included in different databases reflects the 

rapid evolution of the field of resistome bioinformatics[42] and the need to improve comparability 

across studies for sewage surveillance.[43]  

We visualized ARG compositional similarities via non-metric multidimensional scaling 

(NMDS) ordination derived from Bray-Curtis dissimilarity matrices (Figure 2B). Clustering 

within the NMDS plot was tightest for WWTP influents originating from the same country, with 

the exception of the two Philippines WWTPs. A second level of clustering was observed between 

the Asian and European/US samples. One exception was the HKG-P1 influent, which clustered 

separately from all other samples. This latter result is consistent with the saline nature of this 
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sewage, where ocean water is used for toilet flushing. Analysis of similarity (ANOSIM) indicated 

that sewage samples strongly separated from one another when grouped by location (R=0.741, 

p=0.001). Clusters also strongly separated when grouped as Asia versus Europe/US (R=0.700; 

p=0.002). Three clusters, less strongly separated (R=0.586; p=0.001), were apparent when grouped 

by continent. Importantly, two sets of temporally independent influent samples collected from two 

Hong Kong WWTPs (HKG1-P1/HKG2-P1 vs. HKG1-P2/HKG2-P2) clustered separately, but 

reproducibly, thus indicating less variation with time relative to geographic location. Ju et al.[31] 

also noted a high level of repeatability when characterizing resistomes in sewage samples from 

different WWTPs in Switzerland. Other studies[6, 44] have similarly shown locational 

reproducibility, which is key for inferring that observed differences are primarily driven by 

geographical location rather than the particular time of sample collection. 

A number of clinically relevant ARGs (Supplementary Data 2) were detected in the 

influent of all WWTPs. OXA-type carbapenemase ARGs were ubiquitous and were detected at 

relatively high abundance (0.03-0.16 copies/16S rRNA gene copies). A variety of other β-

lactamase ARG types (GES, CARB, SHV, CTX-M, and TEM) were also broadly detected, 

although at lower abundances. The qnrS gene (quinolone resistance) was detected in all sewages 

(0.001-0.24 copies/16S rRNA gene copies) and tended towards higher abundance in Asia 

(0.085±0.099 copies / 16S rRNA gene copies) relative to Europe/US (0.012±0.011 copies/16S 

rRNA gene copies), but not significantly so (Wilcox, p=0.1649). Others have noted differences in 

qnr carriage across populations,[45, 46] but statistical power here may have been insufficient to 

detect a difference. Reads annotated as the mcr-1 colistin ARG were found at all WWTPs, with 

the exception of one Hong Kong plant.  

Core and Discriminatory Aspects of Resistomes 

We subjected the collected data to “core” and “discriminatory” resistome analysis to 

further delineate similarities and differences between sites. ARGs and resistance classes that were 

ubiquitous across all sites reflect the “core”, while those that enable locational differentiation 

reflect “discriminatory” resistomes. The core resistome of 216 ARGs (Supplementary Data 3) 

was comprised of ARGs conferring multidrug resistance and resistance to aminoglycosides, β-

lactams, macrolide-lincosamide-streptogramins (MLS), polymyxins, tetracyclines, and 

trimethoprims. The 25 most abundant ARGs found across all locations included one polymyxin 
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(pmrE), one trimethoprim (dfrE), two tetracycline (tetQ and tetC), seven MLS (msrE, mphD, ermF, 

mel, macB, mefA, ermB), one sulfonamide (sul1), three multidrug (CRP, msbA, adeJ), two 

quinolone (qnrS2, qacH), one β-lactam (cfxA6) and two aminoglycoside (aph(3’’)-lb and aph(6)-

ld) ARGs (Supplementary Table S2). Notably, among the core ARGs for which information was 

available, many were “ancient” or “natural background” ARGs identified in prior studies of 

pristine or less human-impacted environments (e.g., isolated caves, glacial soil, permafrost); thus, 

these ARGs likely predate the antibiotic era (Supplementary Data 3). However, other core ARGs 

are known to have become globally distributed more recently (e.g., sul1, sul2, dfrA3, tet(G), 

aadA8).  Based on pairwise comparison, the number of ARGs shared between sites ranged from 

296 to 401 (Supplementary Figure S4 with 349 average shared annotations. The overall 

proportion of core ARGs averaged 69% (min=62%, IND1-P2; max=72%, HKG2-P1). Notably, 

the least number of reads in common were between one of the Swedish (SWE1-P1) versus one of 

the Hong Kong sewages (HKG2-P1), which aligns with the Asia versus Europe/US divide in 

sewage resistome similarity. Consistent with the repeatability of the sampling events, the greatest 

number of common ARGs was noted for two Hong Kong sewage samples collected six months 

apart. 

To focus analysis on the “variable” resistome, we removed core ARGs from the profiles in 

Figure 2A. This accentuated the continental differences in the sewage resistomes (Figure 3). 

Specifically, the relative proportions of aminoglycoside, β-lactam, rifamycin, sulfonamide, 

trimethoprim, and quinolone ARGs tended to increase, while those of MLS, multidrug, polymyxin, 

and tetracycline ARGs tended to decrease. Interestingly, the proportion of core ARGs tended to 

increase from Asia to Europe/US, which hypothetically could reflect a longer history of antibiotic 

use and management in Europe/US. 

We next characterized the “discriminatory” resistomes (i.e., ARGs that are, in terms of 

presence or abundance, indicative of local population or region). We applied the ExtrARG 

machine learning-based algorithm[16] to identify ARGs that discriminate sewage samples based 

on a priori selected groups. Sewage samples were grouped at the continent level (i.e., Asia vs. 

Europe/US) and then the relative abundances of the 50 most discriminatory ARGs were visualized 

using a heatmap (Figure 4). Two aminoglycoside ARGs, aadA8 and aadA2, were prominent in 

Asia, while ant(3”)-IIb, aac(3)-Ia and axyX were more prominent in Europe/US. Various β-lactam 

ARGs (blaCphA5, blaOXA-363, blaOXA-309, blaOXA-371, blaFOX-8, blaFOX-1, blaCPS-1) were abundant in 
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Europe/US, but were found at low concentrations in Asian sewage. Interestingly, blaCARB-2 and 

blaCARB-4 were not detected in European/US sewage, but were found in Asia. The MLS ARG ermT, 

phenicol ARGs cmlA1 and cmlA4, quinolone ARG qnrVC6, and the tetracycline ARG tet(L) were 

primarily detected in Asian sewage. The sulfonamide ARG, sul2, was 3× to 5× more abundant in 

Asian sewage, while a number of the multidrug ARGs (e.g., efflux pumps adeJ, mexK, abeM), 

were 3× to 15× higher in sewage from Europe/US. Further, we also found that a number of ARGs 

identified as discriminatory were only discovered within the last decade (e.g., ant(3”)-IIb, axyX, 

blaCphA5, blaCPS-1, blaFOX-8, qnrVC6 and qnrVC6; Supplementary Data 4). We suggest that the 

location-specific distribution of discriminatory ARGs in sewage can be used to determine if their 

global distribution is widening. Such a result would suggest potential clinical concern. 

Comparison of Microbiomes Across the Global Transect of Sewage Samples 

Similar to the resistomes, NMDS analysis of the sewage microbiomes (i.e., bacterial taxonomic 

composition derived from metagenomic data) resulted in clustering of samples as a function of 

geographic location (Figure 2C and 2D; Supplementary Figure S5). ANOSIM indicated that the 

sewage microbiomes were most strongly separated when grouped by country (R=0.701, p=0.001). 

When grouped by Asia versus Europe/US, the groups were better separated (R=0.421, p=0.001) 

than when grouped by continent (i.e., Asia vs. Europe vs. US; R=0.3; p=0.003). As was the case 

for the resistomes, Hong Kong WWTP1 (HKG-P1) clustered separately from the other sewage 

samples. Similar patterns in the clustering of the resistomes and microbiomes are expected, since 

phylogenetic constraints to ARG carriage are well known.[31] 

In accordance with the ARG-based class separations for Asia versus Europe/US, LEfSe 

analysis was performed on the microbiome data (Supplementary Figure S6). Four and ten 

classifying genera were identified in European/US versus Asian sewages, respectively. 

European/US sewages were distinguished by genera belonging to Betaproteobacteria, while 

Clostridia or Negativicute classes of the Firmicute phylum were discriminatory in Asian sewage. 

Only two non-Firmicutes genera (Dehalococcoides and Shigella) were found to be discriminatory 

in Asian sewage. Typically, higher levels of Proteobacteria are thought to reflect environmental 

conditions within the sewer system, while Firmicutes reflect greater human fecal influence.[47, 

48]  
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Potential parallels between the microbiome and resistome compositions were investigated. 

First, the Mantel test was applied to either full or continent-specific distance matrices 

representative of the microbiome (Euclidian distances between log-transformed reads to bacterial 

genera) and resistome (Bray-Curtis dissimilarity matrix). When comparing all the collection sites, 

a strong positive correlation was observed between the ARG and genus-based taxonomy distance 

matrices (r = 0.74, p < 0.001). When separated by continent, a stronger correlation was observed 

between the Asian distance matrices (r = 0.80, p < 0.001), than between the European/USA 

distance matrices (r = 0.48, p = 0.03). For comparative purposes, a Bray-Curtis dissimilarity matrix 

was generated based on MetaPhlAn[49] output of taxonomic assignments obtained from 

MetaStorm[15] for Mantel-based comparison to the ARG similarity matrix. Again, a strong 

correlation was observed, both overall (r = 0.76, p < 0.001) and when compared continentally 

within Asia (r = 0.80, p < 0.001) and Europe/US (r = 0.56, p < 0.01).  

Common pathogenic hosts of the discriminatory ARGs identified in Figure 4 were also 

examined (Supplementary Table S3). Based on the data reported in the CARD database,[37] 

eighty-two pathogenic bacterial species are known to host these ARGs. Interestingly, 

discriminatory ARGs most representative of Asian sewages tended to have a broader range of 

potential host pathogens, whereas discriminatory ARGs associated with European/US sewages 

tended to have a narrower range.  

Genes Providing Opportunities for Co-Selection and Horizontal Gene Transfer 

Genes documented to sometimes be found on plasmids were investigated as indicators of 

horizontal gene transfer potential. The average relative abundance of such genes identified via 

alignment to the ACLAME database was 56.7 copies/16S rRNA gene copies, with an observed 

minimum of 33.3 copies/16S rRNA gene copies in the Philippines (PHL1-P1) and a maximum of 

111.6 copies/16S rRNA gene copies in Hong Kong (HKG2-P1; Supplementary Figure S7). No 

clear country- or continent-specific patterns were observed in terms of abundance.  

Potential associations between ARGs and MRGs known to sometimes occur on plasmids or 

other MGEs were investigated and visualized via network analysis of assembled scaffolds (Figure 

5). While acknowledging that there is uncertainty in the accuracy of scaffolds assembled from 

metagenomic data,[50] we carried out the analysis for empirical comparison assuming a consistent 

error rate across a sample set generated from the same sequencing platform.  A substantial portion 
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of reads were assembled, averaging 34% and ranging from 24% (HKG1-P1) to 50% (PHL1-P2). 

For each sewage sample, the number of generated scaffolds ranged from 64,576 (USA1-P1) to 

243,356 (CHE1-P2), with an average length of 719 bp. All of the major classes of ARGs were 

detected on the scaffolds, with the most frequently observed belonging to the multidrug, MLS, 

glycopeptide, and tetracycline categories (Supplementary Figure S8). The relative distribution 

of ARGs (based on antibiotic category) among the scaffolds was remarkably similar for all sewage 

samples. Across all locations, the most common ARGs with plasmid associations were pmrE 

(peptide ARG), acrB (multidrug efflux), dfrE (trimethoprim ARG), MuxB (multidrug efflux), and 

rosB (peptide ARG) with 301, 186, 133, 125, and 101 co-occurrences, respectively. pmrE and 

dfrE were present at high abundance at all of the sites, thus suggesting globalization of these genes. 

Other notable plasmid ARG co-occurrences include sul1 (sulfonamide ARG, 20 co-occurrences), 

MCR-3 (peptide, 32 co-occurrences), and the blaCARB, blaOXA, and blaTEM β-lactam ARGs (between 

1-13 co-occurrences). sul1 is known to be highly associated with both class 1 integrons[51] as well 

as plasmids. Some of these co-occurrences correspond to resistance against carbapenems and 

colistin, which are critically-important antibiotics of last resort. This analysis illustrates that 

clinically-important classes of ARGs were readily found on assembled scaffolds that also 

contained genes commonly found on plasmids, an indicator that they are potentially in a mobile 

form in sewage. 

ARGs and MRGs are often subject to co-selection pressure when they are both present on a 

single genetic element, such as a plasmid, or cross-selection if the same gene is both an ARG and 

an MRG, as is commonly the case for multidrug efflux pumps capable of pumping both metals 

and antibiotics.[52] The ranking of total MRG relative abundances, identified via alignment to the 

BacMet database,[53] was strikingly similar to that of the total ARG relative abundances 

(Spearman r = 0.66, p = 0.013), except both Indian WWTPs and one Philippines plant ranked much 

lower than the other Asian WWTPs, while a Swiss WWTP had extremely low MRG relative 

abundance (Figure 6). This finding is suggestive that there are, or have been, common drivers, 

such as metals, antibiotics or other agents, either within human gastrointestinal tracts, in industrial 

inputs, or in sewers themselves, that exert (or have exerted) selection pressure for carriage of both 

ARGs and MRGs.  

Across all locations, multidrug ARGs were the most common type associated with MRGs 

(Supplementary Figure S9). The most common co-occurrences within the assembled scaffolds 
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were noted between acrB and MexB ARGs, co-located with copper/zinc MRGs (160 and 83 co-

occurrences, respectively), and muxB ARG co-located with zinc MRGs (96 co-occurrences). 

These co-locations were consistently among the most abundant at all sample sites. A literature 

review was conducted to examine whether any of these presumed co-occurrences were actually 

the same gene, and thus indicative of cross- rather than co-selection. We identified nine genes that 

were consistently abundant across all the sample sites and confer resistance to both antibiotics and 

metals, namely, mdtA, mdtB, mdtC, baeS, baeR, cmeB, acrD, mexI and pmrC. As anticipated, 

most of these genes are known to be associated with efflux pump systems (Supplementary Data 

5). 

Sewage Antibiotic Concentrations 

Antibiotic, pharmaceutical, and personal care product (PPCP) concentrations measured in 

these sewage samples were recently reported in detail by Singh et al.[14] and trends relevant to 

the present study are summarized in Table 1 and Supplementary Figure S10.  We note that 

chemical stability issues precluded quantification of the β-lactams and that, due to logistical 

constraints, the antibiotic measurements for the Indian sewage were made during a sampling trip 

that occurred one year later. We measured the highest antibiotic concentrations in Hong Kong 

sewage, where total concentrations of macrolides, quinolones, sulfonamides, tetracyclines, and 

trimethoprim reached levels >63,000 ng/L. The antibiotics with the highest concentrations in the 

sewage were ciprofloxacin (48,100 ng/L, HKG1-P1) and clarithromycin (39,551 ng/L, IND2-P2). 

In particular, Indian sewage contained very high levels of anhydro-erythromycin and norfloxacin.   

To contextualize these measured antibiotic concentrations, we first compared them to 

predicted no effect concentrations (PNECs; Table 1)[54] for resistance selection. All samples, 

except one from Sweden, were above the PNEC for ciprofloxacin, while norfloxacin was near or 

above the PNEC in both Swiss sewages and one Indian sewage sample. Clarithromycin was above 

the PNEC in one US sample. Two Hong Kong sewage samples had concentrations greater than 

the PNEC for the tetracyclines, while both the Hong Kong and Indian sewages contained the 

macrolides azithromycin and clarithromycin at levels exceeding the PNEC. It is noted that PNEC 

values provide a point of reference, but measured concentrations that either exceed or fall short of 

a PNEC do not necessarily delineate the presence or absence of selection pressure within 

sewage.[54] Resistance metrics quantified in sewage likely reflect both current and historic 

drivers, including past patterns of antibiotic use and selection pressures that may have occurred in 
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the human gut, that collectively shape the resistome; however, antibiotic measurements can only 

reflect usage at the time of sampling. 

 To further contextualize the measured antibiotic concentrations, we compared them to 

values predicted based upon antibiotic sales data. Prior studies have used sales data to explain 

global differences in resistomes in sewage[6] and other contexts.[55] Antibiotic consumption data 

between 2000-2015 for each site was obtained from ResistanceMap.[56] As shown in 

Supplementary Figure S11, total antibiotic consumption (defined daily doses (DDD) per 1000 

population) was reported to be highest in the US, followed by Hong Kong, Sweden, and 

Switzerland.[55]  Reported antibiotic use in India and the Philippines has historically been lower 

than that in Europe/US, but in recent years, reported use in India has increased and is estimated to 

be similar to that in Sweden and Switzerland as of the 2015. Reported antibiotic use in the 

Philippines lags relative to other countries and has remained fairly stable over the 2000-2015 

period.  

We calculated expected antibiotic concentrations within our sewage samples based upon 

sales data, data on pharmaceutical excretion rates, and published relationships between xenobiotic 

analyte concentrations and sewershed populations. As illustrated in Supplementary Figure S10, 

these estimated antibiotic concentrations overestimate the measured antibiotic concentrations by 

orders of magnitude. Such overestimates hold true regardless of the locality or the xenobiotic used. 

Similar overestimates were also found using estimated sewershed populations and sewage flow 

rates employed. These disparities are unsurprising given the many potential disconnects at the 

national, local, and regional level between antibiotic sales, consumption, and disposal patterns[57, 

58] as well as the wide differences in biological and chemical decay rates exhibited by these 

antibiotics.[59] Considering that measured antibiotic data better reflected measured trends in the 

resistome, (i.e., Hong Kong and Indian sewage ranked highest in total ARG relative abundance; 

Figure 2A), we recommend that determination of actual antibiotic concentrations in sewage 

should take precedence over extrapolations from general sales or consumption reports. Because 

antibiotic use often follows seasonal patterns, ideally such measurements should take place 

regularly throughout the year. It is recognized, however, that some antibiotics (e.g., beta lactams) 

have short half-lives and/or recoveries and thus, while better, direct measurement of antibiotics in 

sewage is not a perfect solution. 
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We also explored if prior reports of links between antibiotic concentrations and resistant 

clinical isolates58,59 held true for sewage resistomes. Bonferroni-corrected Spearman rank order 

correlation analyses were conducted to identify potential relationships between concentrations of 

antibiotics or pharmaceuticals and PPCPs, individual ARGs, and ARG classes (Supplementary 

Data 6). At the individual ARG level, few correlations were observed when comparing against 

antibiotic compound concentrations: clarithromycin concentration showed a positive correlation 

with tet(L) (≥ 0.93, p<0.01) and a negative correlation with mphB (≥ -0.91, p<0.05); and 

norfloxacin showed a positive correlation with the cat gene (≥ 0.91, p<0.05). At the ARG class 

level, macrolide antibiotics positively correlated with quinolone ARGs (≥ 0.84, p<0.05). Of the 

four macrolide antibiotics tested, clarithromycin presented the strongest correlations with 

quinolone ARGs. A remarkably similar pattern of macrolide antibiotics and quinolone ARG 

correlation was previously observed in Swiss sewage.30 Overall, few correlations between ARGs 

and antibiotics were observed and those that were observed pertained to macrolides. Lack of 

simplistic correlations between antibiotics and ARGs is consistent with prior work[6, 19] and is to 

be expected considering that the subset of antibiotics analyzed do not capture the full range of 

antibiotics actually present, while certain dominant ARGs may not be subject to selection pressure 

and others may be negatively selected by certain antibiotics. Also, effective concentrations of 

antibiotics may be too low to exert measurable selection pressure in the sewage or selection 

pressure might have occurred historically in the human gut and thus there is a spatiotemporal 

disconnect between the two measures.  

Surveillance Effectively Reveals Key Sewage Resistome Trends 

We observed that the relative abundances of total ARGs were elevated in Asian versus 

European/US sewages, consistent with general perceptions of rigor in antibiotic use policy across 

countries[19] and the generally higher antibiotic loadings in Asia. The lowest relative abundances 

of ARGs were found in the sewage from Sweden which has incorporated numerous proactive 

measures to avoid misuse and overuse of antibiotics.[60] Hong Kong, India, and the Philippines, 

on the other hand, are characterized by dense urban populations and either have problems with 

illegal antibiotic sales without a prescription[61] or do not require prescriptions for antibiotic 

use.[57]   
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Removal of core ARGs (i.e., those ubiquitously detected in urban sewage) from the 

resistome profiles accentuated the differences between Asia and Europe/US, while delineation of 

discriminatory ARGs identified those that uniquely circulate in each corresponding region. In 

general, a greater variety of ARGs across multiple resistance classes were identified as 

discriminatory in Asian sewage, while a subset of aminoglycoside and multi-drug ARGs were 

characteristic of European/US sewages. Such knowledge provides information about the ARGs 

within local regions in terms of their prevalence, novelty, or their potential carriage by pathogens.  

Surveillance is a key component of the global action plan to combat antimicrobial 

resistance.[62] Within that context, consistent methods and approaches are required to facilitate 

robust data comparability (Figure 1). The approach outlined herein provides such consistency, but 

it would costly to apply everywhere due to its reliance on a dedicated sampling and analysis team. 

The alternative approach,[6] relying upon centralized processing of large numbers of shipped 

samples, has the capacity to more broadly elucidate global trends, while more focused efforts, such 

as that delineated herein, provide the potential for greater granularity (e.g., comparing local 

sewersheds, sampling within a sewershed). Implementation of coordinated sewage resistome 

surveillance efforts will be key to improved understanding of baseline resistome 

characteristics.[42] Such information can be used as a reference point for future sampling to aid in 

early identification of previously unobserved ARGs that may pose clinical threats, including the 

emergence of new resistance types.[22] 

Implications for Wastewater-Based Epidemiology 

WBE is rapidly gaining attention as a highly promising tool for infectious disease 

monitoring.[2, 6, 7, 12, 33, 63] Here we demonstrated the potential for metagenomic-based 

surveillance of ARGs and other key metainformation in sewage to provide a foundation for WBE 

of antibiotic resistance, and we have illustrated challenges that must be considered as the field 

develops. In particular, it is critical to define WBE surveillance objectives; including what will be 

monitored, how samples (and appropriate metainformation) will be collected and analyzed, and 

how the data will ultimately be interrogated prior to investing in extensive sampling campaigns. 

The hypothesis that the sewage resistome composition differs by geographical location could only 

be supported through the use of consistent experimental and data analysis protocols, which will be 

particularly vital in future efforts to further dissect the role of geographical sub-factors, such as 
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socioeconomics, population density, antibiotic use, diet, sanitation status, and local 

climate/temperature.[19, 20] Comparison of results obtained using widely varying methods (e.g., 

nucleic acid extraction kits,[13] solid-phase extraction protocols[14]) or metagenomic platforms 

present inherent and substantial limitations to identifying key factors driving the spread of 

antibiotic resistance.  

For WBE to be applied towards estimating the prevalence of infectious disease or antibiotic 

resistance for a given region, reasonably accurate estimates of the population contributing to a 

sewage sample are needed.[2, 64] We utilized xenobiotic analyte measurements to develop 

estimates of the population within a given sewershed. These measurements enabled estimation of 

the de facto[64] population (i.e., incorporating transient contributors to the sewershed) at the time 

of sampling. A required input to these calculations is the sewage flow rate. Such metainformation 

is not necessarily collected in all studies and the lack of such information for the sewage samples 

from the Philippines precluded estimation of antibiotic concentrations for that country. An 

additional consideration of such population estimates is the assumption that relationships 

developed within Australia relating PPCP concentrations to population are globally applicable. 

Given disparities in antibiotic and PPCP use across the world this latter assumption requires 

evaluation. Incorporation of antibiotic and PPCP measurements within the context of WBE 

requires a priori planning if such measurements are to be used to estimate study populations within 

the sewershed. Given these considerations, alternative approaches to estimate human contributions 

to sewage (e.g., quantification of pepper mottle mild virus[65] or crAssphage[21]) may be 

preferable. 

The WBE approach defined herein demonstrates a means to identify geographic “hot-spots” 

where attention towards curbing the spread of antibiotic resistance may be particularly warranted. 

This is especially relevant as we emerge from the new era of pandemic awareness and concern, 

where multidrug resistant pathogens, ARGs, and infectious viruses have been observed to rapidly 

spread across international borders.[66] Estimates that several thousands of deaths per year 

globally can be attributed to antibiotic resistance amplifies the need for coordinated, global 

surveillance. Ultimately, widescale online implementation of metagenomic surveillance of ARGs 

and other disease determinants within sewage in the context of a WBE framework promises to 

yield new insights. Such insights will help illuminate the specific factors that drive the 
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dissemination and spread not only of antibiotic resistance, but also other diseases of emerging 

concern. 

METHODS 

Sample locations. A total of 14 sewage samples were collected from 12 WWTPs located in India, 

Hong Kong, the Philippines, Sweden, Switzerland and the US, with 2 WWTPs per location and 

the Hong Kong WWTPs subjected to two separate sampling events. The WWTP capacities ranged 

from 2.6-66 MGD with a majority of the sewage consisting of domestic wastewater, with some 

industrial and hospital inputs (Table 2).  

Sample collection and processing. Sample collection and processing were standardized as 

described previously.[13, 14] In brief, influent grab samples were collected in sterile 

polypropylene containers and transported to a local laboratory on ice. Sewage biomass was 

concentrated in triplicate via vacuum filtration of equal influent volumes onto three separate 0.22 

µm mixed cellulose ester membranes (MilliporeSigma Darmstadt, Germany), which were then 

preserved in 50% ethanol and stored at -20 °C. Ethanol-fixed membrane samples were shipped to 

Virginia Tech for DNA extraction and biomolecular analyses. Sewage samples (0.5 L) for 

chemical analysis were acidified and filtered using 0.45 µm glass microfiber filters to remove 

microorganisms and particulate matter. Na2EDTA (2 mL, 5% v/v in water) and isotopically labeled 

surrogate standards (50 µL of 1000 µg/L surrogate mix solution) were added to each sample.  

DNA extraction, shotgun metagenomic sequencing and analyses. As described previously,[13] 

DNA extraction was carried out using the FastDNA Spin Kit for Soil (MP Biomedicals, Solon, 

OH). Composite samples were prepared by pooling equal masses of triplicate samples. TrueSeq 

libraries (Illumina, San Diego, CA) were prepared for shotgun metagenomic sequencing via 

Illumina HiSeq 2500 with 2 × 100 paired-end reads. Sequencing was performed at the Virginia 

Tech Biocomplexity Institute Genomic Sequencing Center (Blacksburg, VA). Library preparation 

and sequencing were duplicated independently for two samples to verify sequencing 

reproducibility. After quality trimming, sequencing depth ranged from 10 to 16 million paired-end 

reads per sample with an average of 13 million reads per sample (Supplementary Table S1).  

Taxonomic, ARG, plasmid, and metal resistance gene (MRG) analyses.  Sequences were 

uploaded to the metagenomics RAST server (MG-RAST) and annotated against the RefSeq 

database to identify bacterial phyla and genera using default parameters.[67] Taxonomic beta 
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diversity was examined via NMDS based ordination according to Euclidian distances between 

rlog-transformed reads to bacterial genera.[68] ARG annotation was carried out via 

MetaStorm[15] with read matching to CARD (protein homolog model) version 1.2.1.[69] The 

pipeline uses the DIAMOND BLASTX71 aligner with the representative hit approach (E-

value<1e-10, identity>90%, and minimum length of 25 amino acids). The ARGs in CARD version 

1.2.1 were assigned into resistance categories based on the updated ARGminer database.[17] 

Manual curation was subsequently performed to fill in missing categories or to update existing 

categories and to segregate the genes thought to confer resistance via point mutations. Gene names 

and the ARG category to which they were assigned are found in Supplementary Data 7.  If an 

ARG conferred resistance to two or more antibiotics classes, it was categorized as “multidrug.” 

The core resistome is defined as the collection of ARGs that are ubiquitous and are an inherent 

part of the resistome. Core resistome analysis was carried out by subsetting the list of ARGs that 

were identified in all samples (Supplementary Data 3). Plasmid-associated sequences were 

annotated using the ACLAME database, version 0.4.[70] MRGs were annotated using the list of 

experimentally confirmed metal resistance genes from BacMet, antibacterial biocide and metal 

resistance genes database, version 1.1.[53] Gene abundances were normalized within MetaStorm 

to 16S rRNA gene abundances as previously described.[40] NMDS and analysis of similarities 

(ANOSIM) was conducted considering each individual ARG detected (i.e., not grouped by class) 

with square root transformation and Bray-Curtis dissimilarities. R-value cutoffs as defined by 

Clarke and Warwick[71] were used (R>0.75, well separated; 0.75>R>0.25, separated but 

overlapping; R<0.25, barely separated). Clinically-relevant ARGs were selected from a manually 

curated list prioritizing human health impacts of ARGs carried by infectious bacteria 

(Supplementary Table S3). Discriminatory ARGs were identified via the ExtrARG[16] machine 

learning based approach. ExtrARG is based on the extremely randomized trees classifier that uses 

a Bayesian strategy to optimize the parameters of the classifier and identify discriminatory ARGs 

based on the user-defined categorizing scheme or groups. LEfSe[72] enables biomarker discovery 

among class conditions within metagenomic samples. It first performs a non-parametric Kruskal-

Wallis sum-rank test to detect features with differential abundance among the conditions of 

interest; it then applies an unpaired Wilcoxon rank-sum test to test for biological consistency. 

LEfSe uses linear discriminant analysis to estimate the effect size of each differentially abundant 

feature.  Reads were assembled de novo in MetaStorm according to default parameters and 
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scaffolds were mapped against the CARD and ACLAME databases. Network visualization was 

conducted using Gephi (version 0.8.2).  Potential pathogenic ARG hosts were determined using 

the CARD prevalence tool, which examines the occurrence of each ARG of interest on NCBI 

archived pathogen chromosomes and assembled whole genome sequences, as well as 

plasmids.[37] 

Antibiotic analysis. Sample processing and analysis for antibiotics was conducted as previously 

described.[14] Solid phase extraction (SPE) was performed on 1 L filtered wastewater samples by 

conditioning Oasis HLB cartridges with acetonitrile and nanopure water before the water samples 

were loaded at a rate of 3-5 mL/min. Cartridges were dried under vacuum and then shipped to the 

University at Buffalo for elution and liquid chromatography with tandem mass spectrometry (LC-

MS/MS) analysis. LC-MS/MS analysis was carried out using an Agilent 1200 LC system (Palo 

Alto, CA). 

Antibiotic loading. Anticipated antibiotic loads in sewage were calculated using the following 

expression: 

 !!,#$%&'$ =
(((×*×+

,
 

where Ci,sewage (g/L) is the expected concentration of compound i in sewage, DDD (g/day) is the 

defined daily dose per person, P is the estimated sewershed population, F is the fraction of 

antibiotic excreted, and Q is the reported wastewater flow. Sewershed populations are notoriously 

challenging to obtain; however, they may be estimated based upon known excretion rates for 

widely used PPCPs such as carbamazepine, caffeine, and iopromide. For those systems where we 

detected one or more of these PPCPs, we estimated the sewershed population using: 

 # =
-!!"!,$%&'(%×,

.!!"!
 

where CPPCP,sewage is the measured concentration of carbamazepine (CBZ), caffeine (CAF), or 

iopromide (IOP) and βPPCP is an empirical parameter relating sewage PPCP concentration to 

population. βCBZ = 8.6 (± 1.4 at 95% confidence level) × 10-8  kg/day-person; βCAF = 6.8 (± 3.2 at 

95% confidence level) × 10-7  kg/day-person; βIOP = 1.1 (± 0.19 at 95% confidence level) × 10-5  

kg/day-person. To date, βPPCP values have only been reported for samples collected within 

Australia and thus this calculation inherently assumes it is universally applicable across all 

samples. Such an assumption requires future verification.  

Data availability 
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The wastewater influent metagenomic datasets have been deposited in NCBI Short Read Archive 

(SRA) under bioproject PRJNA527877. 

Supporting Information: 

SI: Supplementary Figures (S1-S11) and Tables (S1-S3). 

Supplementary Data 1: 16S Normalized Gene Counts 

Supplementary Data 2: Clinically Relevant ARGs  

Supplementary Data 3: Common ARGs 

Supplementary Data 4: Discriminatory ARGs 

Supplementary Data 5: Cross Resistance Genes 

Supplementary Data 6: Antibiotic correlations 

Supplementary Data 7: Manually curated database of ARGs included in analyses.  
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Table 1: Proposed no effect concentrations (PNEC),52 representing the cutoff below which no selection of resistant bacteria is 

anticipated to occur and concentrations (ng/L) of antibiotics detected in the influent of each WWTP. Concentration data 

originally published in Singh et al. 13 

 
 

Note: Highlighted rows reflect total concentrations of the given class of antibiotic. 

*Antibiotic measurements were made for Indian sewage samples collected one year after the samples subject to metagenomic analys 

 

PNEC (ng/L) COMPOUND HKG1-P1 HKG1-P2 HKG2-P1 HKG2-P2 IND2-P1* IND2-P2* PHL1-P1 PHL1-P2 SWE1-P1 SWE1-P2 CHE1-P1 CHE1-P2 USA1-P1 USA1-P2

Caffeine 14846.1 11969.6 60880.6 22752.9 26884.8 35133 41781.1 6726.8 23673 16512

Carbamazepine 1576.3 391.4 309.7 100.2 270.6 88.6 n.d. 2.2 8176.8 7961 22.7 91.4 174.6 82.2

Iopromide 149.7 162.9 6401.4 2324

1000 Tetracyclines -- -- 11694.9 4790.6 -- 240.5 30.5 n.d. 170.3 -- -- -- 16.2 1.1

500 Trimethoprim 31.7 12 120.3 45.1 -- -- < LOD 50.5 38.5 39.1 -- 121.3 438.6 137.2

 Acetylsulfamethoxazole 338 97.2 -- -- -- 377.1 394.9 195.4 145.3 38.1 296.8 419.5 1214.2 634.8

 Sulfadiazine -- -- -- -- -- -- -- -- -- -- -- -- -- --

 Sulfamethoxydiazine 66.4 36.5 -- -- -- -- -- -- -- -- -- -- -- --

16000  Sulfamethoxazole 124.6 107 -- -- -- -- 360.4 -- 21 5.7 175.5 177.6 -- 1941.3

∑Sulfonamides 529 240.7 -- -- -- 377.1 755.3 195.4 166.3 43.9 472.3 597.1 1214.2 2576.2

∑Sulfonamides+Trimethoprim 560.7 252.7 377.1 755.3 245.9 204.8 83 472.3 718.4 1652.8 2713.4

1000  Anhydro-Erythromycin -- -- 222 86.2 310 1894 467.3 230.4 126.2 19 1.5 18.5 -- 55.8

1000  Roxithrymycin 263.1 85.2 -- -- -- -- -- -- -- -- -- -- -- --

250  Azithromycin 4585.1 -- 1213.2 249.5 239.4 4127.5 -- -- n.d. 17.1 14.2 41.7 -- 212.2

250  Clarithromycin 10107.6 1282.1 1473 490.7 65.8 39551.3 97.2 58.6 8.3 5 18.6 206.6 -- 387.3

∑Macrolides 14955.7 1367.3 2908.2 826.4 615.1 45572.8 564.5 289 134.6 41 34.2 266.8 -- 655.2

64  Ciprofloxacin 48103.1 146 1620.9 521.6 1589.1 1357.6 567.4 375.1 58 86.2 825.5 2505.3 1090.2 514.8

64  Enrofloxacin -- -- -- -- 45.6 -- -- -- -- -- -- -- -- --

500  Norfloxacin 75.7 8 155.6 45.6 1853.8 430.1 -- -- -- -- 438.8 803.2 -- --

∑Fluoroquinolones 48178.8 154 1776.6 567.2 3488.5 1787.8 567.4 375.1 58 86.2 1264.4 3308.5 1090.2 514.8

Europe/USAsia
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Table 2: Sewage sample characteristics 

Country Sample ID Sampling Date WWTP 

Capacity (MGD) 

Sewage Composition Temperature 

(∘C)	

Dissolved Oxygen 

(mg/L) 

pH 

Asian        

  Hong Kong HKG1-P1 14.07.2016 66 Municipal sewage 31.8 0.51 7.80 

 HKG1-P2 14.07.2016 22 Municipal sewage + 
treated seawater 

30.3 1.78 5.78 

 HKG2-P1 06.12.2016 66 Municipal sewage 24.5 1.89 7.50 

 HKG2-P2 06.12.2016 22 Municipal sewage + 

treated seawater 

25.6 1.61 7.30 

  India IND1-P1 10.03.2016 14 Municipal sewage 29.8 0.94 7.96 

 IND1-P2 10.03.2016 14 Municipal sewage 30.9 0.22 7.64 

  Philippines PHL1-P1 02.12.2016  Municipal sewage + 

industrial input 

28.1 2.88 8.16 

 PHL1-P2 29.11.2016  Municipal sewage 26.5  7.17 

        

Europe/US        

  Sweden SWE1-P1 08.06.2016 26 Municipal sewage + 

hospital and industrial 
input 

15   

 SWE1-P2 09.06.2016 2.6 Municipal sewage + 

hospital and industrial 
input 

16.5   

  Switzerland CHE1-P1 17.05.2016 32.6 90% municipal, 10% 

industrial 

13.4 6.63 7.55 

 CHE1-P2 18.05.2016 5.8 50% municipal, 50% 
industrial 

16.4 4.22 8.17 

  United States USA1-P1 01.11.2016 6 95% municipal  18.9 3.24 6.79 

 USA1-P2 19.01.2017 13.45 80% municipal, 20% 

industrial 

15.8 0.42 6.95 
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Figure 1. General strategy for antibiotic resistance monitoring.  
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Figure 2. A: ARG distribution and relative abundance by corresponding antibiotic categories. ARGs were annotated via MetaStorm using CARD 

version 1.2.1. ARG categories were assigned in-house (Supplementary Data 7). Genes corresponding to two or more categories were labeled as 

“multidrug.” ARG abundances were normalized via MetaStorm to 16S rRNA gene abundances. B: Non-metric multidimensional scaling (NMDS) 

ordination of WWTPs according to ARG-based Bray-Curtis distance. Ellipses enclose sites of noted similarities, ranging from 0 to 100 (perfect 

similarity); thus, ellipses with similarity of 80, represent sites with highest similarity C: Relative abundance of top 20 bacterial phyla in WWTP 

influents. Genus-level annotations were done via MG-RAST using the Refseq database. D: NMDS ordination of WWTPs according to Euclidian 

distances between rlog-transformed reads to bacterial genera. Ellipses enclose sites of noted distances, where the shortest distance denotes the 

highest resemblance and longer distance denotes the least resemblance among the sites. Sample names refer to countries (IND: India, PHL: 

Philippines, USA: United States, CHE: Switzerland, HKG: Hong Kong, SWE: Sweden) along with the visit number (1,2) and WWTP plant 

number (P).
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Figure 3. Distribution and relative abundance of ARGs comprising the “variable” resistome, i.e., with 

“core” ARGs removed from the analysis, by corresponding antibiotic categories. 
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Figure 4. Heatmap representing the relative abundance of discriminatory ARGs for influent 

samples grouped according to their sampling continent identified using the ExtrARG python 

package. 
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Figure 5. Co-occurrence of ARGs and plasmid gene markers on de novo assembled scaffolds 

generated by shotgun metagenomic sequencing reads pooled from all samples. This analysis 

highlights ARGs that are probable candidates for potential horizontal gene transfer (co-

occurrences with plasmid associated genes) or co-selection (co-occurrences with ARGs of 

different classes). Proximity of nodes and width of lines indicate frequency of associations 

between genes. Node diameter is proportional to the number of co-occurrences for that gene. Co-

occurences with fewer than 3 instances were excluded from the network analysis rendering. MLS 

= macrolide, lincosamide, and streptogramin resistance.
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Figure 6. Distribution and relative abundance of metal resistance genes in WWTP influents. Metal 

resistance genes were annotated via MetaStorm using the BacMet database version 1.1. Meta 

resistance gene abundances were normalized to 16S rRNA gene abundances. Sample names refer 

to countries (IND: India, PHL: Philippines, USA: United States, CHE: Switzerland, HKG: Hong 

Kong, SWE: Sweden) along with the visit number and WWTP plant (P) number.  Order is 

according to the ranked comparison of total ARG relative abundance shown in Figure 1. 
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