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Abstract Water scarcity is one of the major problems in

the world and millions of people have no access to fresh-

water. Untreated wastewater is widely used for agriculture

inmany countries. This is one of the world-leading serious

environmental and public health concerns. Instead of using

untreated wastewater, treated wastewater has been found

more applicable and ecofriendly option. Moreover, envi-

ronmental toxicity due to solid waste exposures is also one

of the leading health concerns. Therefore, intending to

combat the problems associated with the use of untreated

wastewater, we propose in this review a multidisciplinary

approach to handle wastewater as a potential resource for

use in agriculture. We propose a model showing the

efficient methods for wastewater treatment and the utiliza-

tion of solid wastes in fertilizers. The study also points out

the associated health concern for farmers, who areworking

in wastewater-irrigated fields along with the harmful ef-

fects of untreated wastewater. The consumption of crop

irrigated by wastewater has leading health implications

also discussed in this review paper. This review further

reveals that our current understanding of the wastewater

treatment and use in agriculture with addressing advance-

ments in treatment methods has great future possibilities.
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1 Introduction

Rapidly depleting and elevating the level of freshwater

demand, though wastewater reclamation or reuse is one

of the most important necessities of the current scenario.

Total water consumption worldwide for agriculture ac-

counts 92% (Clemmens et al., 2008; Hoekstra &

Mekonnen, 2012; Tanji & Kielen, 2002). Out of which

about 70% of freshwater is used for irrigation (WRI,

2020), which comes from the rivers and underground

water sources (Pedrero et al., 2010). The statistics shows

serious concern for the countries facing water crisis.

Shen et al. (2014) reported that 40% of the global

population is situated in heavy water–stressed basins,

which represents the water crisis for irrigation. There-

fore, wastewater reuse in agriculture is an ideal resource

to replace freshwater use in agriculture (Contreras et al.,

2017). Treated wastewater is generally applied for non-

potable purposes, like agriculture, land, irrigation,

groundwater recharge, golf course irrigation, vehicle

washing, toilet flushes, firefighting, and building con-

struction activities. It can also be used for cooling pur-

poses in thermal power plants (Katsoyiannis et al., 2017;

Mohsen, 2004; Smith, 1995; Yang et al., 2017). At

global level, treated wastewater irrigation supports agri-

cultural yield and the livelihoods of millions of small-

holder farmers (Sato et al., 2013). Global reuse of treat-

ed wastewater for agricultural purposes shows wide

variability ranging from 1.5 to 6.6% (Sato et al., 2013;

Ungureanu et al., 2018). More than 10% of the global

population consumes agriculture-based products, which

are cultivated by wastewater irrigation (WHO, 2006).

Treated wastewater reuse has experienced very rapid

growth and the volumes have been increased ~10 to

29% per year in Europe, the USA, China, and up to

41% in Australia (Aziz & Farissi, 2014). China stands

out as the leading country in Asia for the reuse of

wastewater with an estimated 1.3 M ha area including

Vietnam, India, and Pakistan (Zhang & Shen, 2017).

Presently, it has been estimated that, only 37.6% of the

urban wastewater in India is getting treated (Singh et al.,

2019). By utilizing 90% of reclaimed water, Israel is the

largest user of treated wastewater for agriculture land

irrigation (Angelakis & Snyder, 2015). The detail

information related to the utilization of freshwater and

treated wastewater is compiled in Table 1.

Many low-income countries in Africa, Asia, and

Latin America use untreated wastewater as a source of

irrigation (Jiménez & Asano, 2008). On the other hand,

middle-income countries, such as Tunisia, Jordan, and

Saudi Arabia, use treated wastewater for irrigation (Al-

Nakshabandi et al., 1997; Balkhair, 2016a; Balkhair,

2016b; Qadir et al., 2010; Sato et al., 2013).

Domestic water and treated wastewater contains var-

ious type of nutrients such as phosphorus, nitrogen,

potassium, and sulfur, but the major amount of nitrogen

and phosphorous available in wastewater can be easily

accumulated by the plants, that’s why it is widely used

for the irrigation (Drechsel et al., 2010; Duncan, 2009;

Poustie et al., 2020; Sengupta et al., 2015). The rich

availability of nutrients in reclaimed wastewater reduces

the use of fertilizers, increases crop productivity, im-

proves soil fertility, and at the same time, it may also

decrease the cost of crop production (Chen et al., 2013a;

Jeong et al., 2016). The data of high nutritional values in

treated wastewater is shown in Fig. 1.

Wastewater reuse for crop irrigation showed several

health concerns (Ungureanu et al., 2020). Irrigation with

the industrial wastewater either directly or mixing with

domestic water showed higher risk (Chen et al., 2013).

Risk factors are higher due to heavy metal and pathogens

contamination because heavy metals are non-

biodegradable and have a long biological half-life

(Chaoua et al., 2019; WHO, 2006). It contains several

toxic elements, i.e., Cu, Cr, Mn, Fe, Pb, Zn, and Ni

(Mahfooz et al., 2020). These heavy metals accumulate

in topsoil (at a depth of 20 cm) and sourcing through

plant roots; they enter the human and animal body

through leafy vegetables consumption and inhalation of

contaminated soils (Mahmood et al., 2014). Therefore,

health risk assessment of such wastewater irrigation is

important especially in adults (Mehmood et al., 2019;

Njuguna et al., 2019; Xiao et al., 2017). For this, an

advanced wastewater treatment method should be ap-

plied before release of wastewater in the river, agriculture

land, and soils. Therefore, this review also proposed an

advance wastewater treatment model, which has been

tasted partially at laboratory scale by Kesari and Behari

(2008), Kesari et al. (2011a, b), and Kumar et al. (2010).

For a decade, reuse of wastewater has also become

one of the global health concerns linking to public

health and the environment (Dang et al., 2019; Narain

et al., 2020). The World Health Organization (WHO)
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drafted guidelines in 1973 to protect the public health by

facilitating the conditions for the use of wastewater and

excreta in agriculture and aquaculture (WHO, 1973).

Later in 2005, the initial guidelines were drafted in the

absence of epidemiological studies with minimal risk

approach (Carr, 2005). Although, Adegoke et al. (2018)

reviewed the epidemiological shreds of evidence and

health risks associated with reuse of wastewater for

irrigation. Wastewater or graywater reuse has adverse

health risks associated with microbial hazards (i.e.,

infectious pathogens) and chemicals or pharmaceuticals

exposures (Adegoke et al., 2016; Adegoke et al., 2017;

Busgang et al., 2018; Marcussen et al., 2007; Panthi

et al., 2019). Researchers have reported that the expo-

sure to wastewater may cause infectious (helminth in-

fection) diseases, which are linked to anemia and im-

paired physical and cognitive development (Amoah

et al., 2018; Bos et al., 2010; Pham-Duc et al., 2014;

WHO, 2006).

Table 1 Freshwater and treated wastewater utilization status in different countries

Country Water utilizing sectors Status of water reuse (major sectors

reusing water)

Reference

Europe Agriculture 44% Landscape irrigation 20% EEA CSI, 2018; GWI/PUB Water Reuse

Inventory, 2009Groundwater Recharge 2.2%

Recreational 6.8%

Industry and energy

production

40% Non-potable urban uses 8.3%

Indirect potable uses 2.3%

Agriculture irrigation 32%

Public water supply 16% Industrial 19.3%

Environmental Enhancement 8%

Other 1.5%

South

Africa

Agriculture 60% Landscape and sports field irrigation 9% Adewumia et al., 2010; CoCT, 2007

Domestic 27%

Industrial 3% Industry 48%

Power 4%

Mining 3% Agriculture 43%

Other 3%

USA Freshwater thermoelectric

plants

41% Agricultural irrigation 37% Kenny et al., 2009; SWRCB, 2011

Agricultural irrigation 37% Geothermal energy 2%

Industries 6% Golf course irrigation 7%

Domestic 14% Landscape irrigation 17%

Livestock and aquaculture 3% Groundwater recharge 12%

Seawater intrusion barrier 7%

Recreational impoundment 4%

Wetlands, wildlife habitat 4%

Industrial and commercial 8%

Other 2%

India Agriculture 87% Agricultural irrigation 78% Jindal & Kamat, 2011

Industrial 7% Industrial use 12%

Domestic 4% Thermal power plant 4%

Energy 2% Groundwater recharge and artificial

lakes

6%

Greece Irrigation 83 Agricultural irrigation 58.38 Frontistis et al., 2011; Tsagarakis et al., 2001

Animal husbandry 1.3 Irrigation of forested land and

firefighting

17.7

Industry 2.2 Landscape irrigation 23.92

Public use (potable) 13

Other 1.2
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Owing to an increasing population and a growing

imbalance in the demand and supply of water, the use of

wastewater has been expected to increase in the coming

years (World Bank, 2010). The use of treated wastewa-

ter in developed nations follows strict rules and regula-

tions. However, the direct use of untreated wastewater

without any sound regulatory policies is evident in

developing nations, which leads to serious environmen-

tal and public health concerns (Dickin et al., 2016).

Because of these issues, we present in this review, a

brief discussion on the risk associated with the untreated

wastewater exposures and advanced methods for its

treatment, reuse possibilities of the treated wastewater

in agriculture.

2 Environmental Toxicity of Untreated Wastewater

Treated wastewater carries larger applicability such as

irrigation, groundwater recharge, toilet flushing, and

firefighting. Municipal wastewater treatment plants

(WWTPs) are the major collection point for the different

toxic elements, pathogenic microorganisms, and heavy

metals. It collects wastewater from divergent sources

like household sewage, industrial, clinical or hospital

wastewater, and urban runoff (Soni et al., 2020).

Alghobar et al. (2014) reported that grass and crops

irrigated with sewage and treated wastewater are rich

in heavy metals in comparison with groundwater (GW)

irrigation. Although, heavy metals classified as toxic

elements and listed as cadmium, lead, mercury, copper,

and iron. An exceeding dose or exposures of these

heavy metals could be hazardous for health (Duan

et al., 2017) and ecological risks (Tytła, 2019). The

major sources of these heavymetals come from drinking

water. This might be due to the release of wastewater

into river or through soil contamination reaches to

ground water. Table 2 presenting the permissible limits

of heavy metals presented in drinking water and its

impact on human health after an exceeding the amount

in drinking water, along with the route of exposure of

heavy metals to human body.

Fig. 1 Nutrient concentrations

(mg/L) of freshwater/wastewater

(Yadav et al., 2002)

208    Page 4 of 28 Water Air Soil Pollut (2021) 232: 208



Direct release in river or reuse of wastewater for

irrigation purposes may create short-term implications

like heavy metal and microbial contamination and path-

ogenic interaction in soil and crops. It has also long-term

influence like soil salinity, which grows with regular use

of untreated wastewater (Smith, 1995). Improper use of

wastewater for irrigation makes it unsafe and

environment threatening. Irrigation with several differ-

ent types of wastewater, i.e., industrial effluents, munic-

ipal and agricultural wastewaters, and sewage liquid

sludge transfers the heavy metals to the soil, which leads

to accumulation in crops due to improper practices. This

has been identified as a significant route of heavy metals

into aquatic resources (Agoro et al., 2020). Hussain et al.

Table 2 Total permissible limits of heavy metals in drinking water and diseases associated with the surplus amount

Heavy

metals

polluting

the water

quality

Permissible

limits in

drinking water

according to

WHO (mg/L)

Permissible

limits in

effluent water

according to

WHO (mg/L)

Diseases associated with the

excess amount

Exposure routes References

Arsenic 0.01 5.0 Skin, lung, bladder, kidney

cancer, skin manifestations,

gastrointestinal disorders,

neurological effects, hormone

disruption and infertility,

psoriasis

Inhalation and ingestion Kinuthia et al. (2020)

Kumar et al. (2021);

Punshon et al. (2017);

Jyothi (2020)

Cadmium 0.005 0.003 Psychological disorders,

gastrointestinal disorders,

central nervous system

complications, immune system

deficiencies, DNA impairment,

cancer, Itai-itai disease,

osteoporosis, respiratory dis-

ease

Ingestion of contaminated

food and water and, to a

significant extent,

through inhalation and

cigarette smoking

Kinuthia et al. (2020);

Briffa et al. (2020);

Zhang and Reynolds

(2019); Genchi et al.

(2020); Jyothi (2020)

Chromium 0.1 0.05 Gastrointestinal ulceration,

nausea and vomiting, fever,

diarrhea, toxic nephritis, liver

damage, gingivitis, bronchitis,

pneumonia, lung cancer

Inhalation and ingestion Kinuthia et al. (2020);

Briffa et al. (2020);

Jyothi (2020)

Iron 1.0 2.0 Genetic disorder, hemorrhagic

necrosis

Ingestion Yuen and Becker (2020);

Jaishankar et al., 2014;

EPA 2002.

Lead 0.01 0.05 Hypertension, miscarriages,

premature and low births,

renal impairment, brain injury,

abdominal pain

Inhalation through the nose

and ingestion through

drinking water and soil

Wani et al. (2015); Goel

et al. (2005); Kinuthia

et al. (2020); Briffa

et al. (2020);

Jyothi (2020),

Mercury 0.006 0.001 Down’s syndrome, affects the

reproductive system, speech

defects, memory loss, tremors

and muscle incoordination,

deafness, vision complication

Inhalation, ingestion and

dermal contact

Kinuthia et al. (2020);

Briffa et al. (2020);

Jyothi and

Farook (2020).

Copper 2.0 0.25 Insomnia, anxiety, agitation,

restlessness, fatigue, jaundice,

dizziness

Ingestion Sharma et al. (2012);

Briffa et al. (2020);

WHO 2003 Taylor

et al. (2020).

(Agoro et al., 2020)

Nickel 0.07 0.02 Lung embolisms, asthma,

respiratory failure, heart

disorders, dizziness,

increased possibilities of cancer

Inhalation and ingestion Kinuthia et al. (2020);

Briffa et al. (2020);

Jyothi (2020)
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(2019) investigated the concentration of heavy metals

(except for Cd) was higher in the soil irrigated with

treated wastewater (large-scale sewage treatment plant)

than the normal ground water, also reported by

Khaskhoussy et al. (2015).

In other words, irrigation with wastewater mitigates

the quality of crops and enhances health risks. Excess

amount of copper causes anemia, liver and kidney dam-

age, vomiting, headache, and nausea in children (Bent &

Bohm, 1995; Madsen et al., 1990; Salem et al., 2000). A

higher concentration of arsenic may lead to bone and

kidney cancer (Jarup, 2003) and results in osteopenia or

osteoporosis (Puzas et al., 2004). Cadmium gives rise to

musculoskeletal diseases (Fukushima et al., 1970),

whereas mercury directly affects the nervous system

(Azevedo et al., 2014).

3 Spread of Antibiotic Resistance

Currently, antibiotics are highly used for human disease

treatment; however, uses in poultries, animal hus-

bandries, biochemical industries, and agriculture are

common practices these days. Extensive use and/or

misuse of antibiotics have given rise to multi-resistant

bacteria, which carry multiple resistance genes (Icgen &

Yilmaz, 2014; Lv et al., 2015; Tripathi & Tripathi,

2017; Xu et al., 2017). These multidrug-resistant bacte-

ria discharged through the sewage network and get

collected into the wastewater treatment plants. There-

fore, it can be inferred that the WWTPs serve as the

hotspot of antibiotic-resistant bacteria (ARB) and anti-

biotic resistance genes (ARGs). Though, these

antibiotic-resistant bacteria can be disseminated to the

different bacterial species through the mobile genetic

elements and horizontal gene transfer (Gupta et al.,

2018). Previous studies indicated that certain pathogens

might survive in wastewater, even during and after the

treatment processes, including methicillin-resistant

Staphylococcus aureus (MRSA) and vancomycin-

resistant enterococci (VRE) (Börjesson et al., 2009;

Caplin et al., 2008). The use of treated wastewater in

irrigation provides favorable conditions for the growth

and persistence of total coliforms and fecal coliforms

(Akponikpe et al., 2011; Sacks & Bernstein, 2011).

Furthermore, few studies have also reported the pres-

ence of various bacterial pathogens, such as Clostridi-

um, Salmonella, Streptococci, Viruses, Protozoa, and

Helminths in crops irrigated with treated wastewater

(Carey et al., 2004; Mañas et al., 2009; Samie et al.,

2009). Goldstein (2013) investigated the survival of

ARB in secondary treated wastewater and proved that

it causes serious health risks to the individuals, who are

exposed to reclaimed water. The U.S. Centers for Dis-

ease Control and Prevention (CDC) and the World

Health Organization (WHO) have already declared the

ARBs as the imminent hazard to human health. Accord-

ing to the list published by WHO, regarding the devel-

opment of new antimicrobial agents, the ESKAPE (En-

terococcus faecium, S. aureus, Klebsiella pneumoniae,

Acinetobacter baumannii, Pseudomonas aeruginosa,

and Enterobacter species) pathogens were designated

to be “priority status” as their occurrence in the food

chain is considered as the potential and major threat for

the human health (Tacconelli et al., 2018).

These ESKAPE pathogens have acquired the multi

drug resistance mechanisms against oxazolidinones,

lipopeptides, macrolides, fluoroquinolones, tetracy-

clines, β-lactams, β-lactam–β-lactamase inhibitor com-

binations, and even those antibiotics that are considered

as the last line of defense, including carbapenems and

glycopeptides (Giddins et al., 2017; Herc et al., 2017;

Iguchi et al., 2016; Naylor et al., 2018; Zaman et al.,

2017), by the means of genetic mutation and mobile

genetic elements. These cluster of ESKAPE pathogens

are mainly responsible for lethal nosocomial infections

(Founou et al., 2017; Santajit & Indrawattana, 2016).

Due to the wide application of antibiotics in animal

husbandry and inefficient capability of wastewater treat-

ment plants, the multidrug-resistant bacteria such as

tetracyclines, sulfonamides, β-lactam, aminoglycoside,

colistin, and vancomycin in major are disseminated in

the receiving water bodies, which ultimately results in

the accumulation of ARGs in the irrigated crops (He

et al., 2020).

4 Toxic Contaminations in Wastewater Impacting

Human Health

The release of untreated wastewater into the river may

pose serious health implications (König et al., 2017;

Odigie, 2014; Westcot, 1997). It has been already

discussed about the household and municipal sewage

which contains a major amount of organic materials and

pathogenic microorganisms and these infectious micro-

organisms are capable of spreading various diseases like

typhoid, dysentery, diarrhea, vomiting, and
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malabsorption (Jia & Zhang, 2020; Numberger et al.,

2019; Soni et al., 2020). Additionally, pharmaceutical

industries also play a key role in the regulation and

discharge of biologically toxic agents. The untreated

wastewater also contains a group of contaminants,

which are toxic to humans. These toxic contaminations

have been classified into two major groups: (i) chemical

contamination and (ii) microbial contamination.

4.1 Chemical Contamination

Mostly, various types of chemical compounds released

from industries, tanneries, workshops, irrigated lands,

and household wastewaters are responsible for several

diseases. These contaminants can be organic materials,

hydrocarbons, volatile compounds, pesticides, and

heavy metals. Exposure to such contaminants may

cause infectious diseases like chronic dermatoses and

skin cancer, lung infection, and eye irritation. Most of

them are non-biodegradable and intractable. Therefore,

they can persist in the water bodies for a very long

period and could be easily accumulated in our food

chain system. Several pharmaceutical personal care

products (PPCPs) and surfactants are available that

may contain toxic compounds like nonylphenol, es-

trone, estradiol, and ethinylestradiol. These compounds

are endocrine-disrupting chemicals (Bolong et al.,

2009), and the existence of these compounds in the

human body even in the trace amounts can be highly

hazardous. Also, the occurrence of perfluorinated com-

pounds (PFCs) in wastewater, which is toxic in nature,

has been significantly reported worldwide (Templeton

et al., 2009). Furthermore, PFCs cause severe health

menaces like pre-eclampsia, birth defects, reduced hu-

man fertility (Webster, 2010), immunotoxicity (Dewitt

et al., 2012), neurotoxicity (Lee & Viberg, 2013), and

carcinogenesis (Bonefeld-Jorgensen et al., 2011).

4.2 Microbial Contamination

Researchers have reported serious health risks associat-

ed with the microbial contaminants in untreated waste-

water. The diverse group of microorganisms causes

severe health implications like campylobacteriosis, di-

arrhea, encephalitis, typhoid, giardiasis, hepatitis A, po-

liomyelitis, salmonellosis, and gastroenteritis (ISDH,

2009; Okoh et al., 2010). Few bacterial species like

P. aeruginosa, Salmonella typhimurium, Vibrio

cholerae, G. intestinales, Legionella spp., E. coli,

Shigella sonnei have been reported for the spreading

of waterborne diseases, and acute illness in human being

(Craun et al., 2006; Craun et al., 2010). These afore-

mentioned microorganisms may release in the environ-

ment from municipal sewage water network, animal

husbandries, or hospitals and enter the food chain via

public water supply systems.

5 Wastewater Impact on Agriculture

The agriculture sector is well known for the largest user

of water, accounting for nearly 70% of global water

usage (Winpenny et al., 2010). The fact that an estimated

20 million hectares worldwide are irrigated with waste-

water suggests a major source for irrigation (Ecosse,

2001). However, maximum wastewater that is used for

irrigation is untreated (Jiménez & Asano, 2008; Scott

et al., 2004). Mostly in developing countries, partially

treated or untreated wastewater is used for irrigation

purpose (Scott et al., 2009). Untreated wastewater often

contains a large range of chemical contaminants from

waste sites, chemical wastes from industrial discharges,

heavy metals, fertilizers, textile, leather, paper, sewage

waste, food processing waste, and pesticides. World

Health Organization (WHO) has warned significant

health implications due to the direct use of wastewater

for irrigation purposes (WHO, 2006). These contami-

nants pose health risks to communities (farmers, agricul-

tural workers, their families, and the consumers of

wastewater-irrigated crops) living in the proximity of

wastewater sources and areas irrigated with untreated

wastewater (Qadir et al., 2010).Wastewater also contains

a wide variety of organic compounds. Some of them are

toxic or cancer-causing and have harmful effects on an

embryo (Jarup, 2003; Shakir et al., 2016). The pathway

of untreated wastewater used in irrigation and associated

health effects are shown in Fig. 2.

Alternatively, in developing countries, due to the

limited availability of treatment facilities, untreated

wastewater is discharged into the existing waterbodies

(Qadir et al., 2010). The direct use of wastewater in

agriculture or irrigation obstructs the growth of natural

plants and grasses, which in turn causes the loss of

biodiversity. Shuval et al. (1985) reported one of the

earliest evidences connecting to agricultural wastewater

reuse with the occurrence of diseases. Application of

untreated wastewater in irrigation increases soil salinity,

land sealing followed by sodium accumulation, which
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results in soil erosion. Increased soil salinity and sodium

accumulation deteriorates the soil and decreases the soil

permeability, which inhibits the nutrients intake of crops

from the soil. These causes have been considered the

long-term impact of wastewater reuse in agriculture

(Halliwell et al., 2001). Moreover, wastewater contam-

inated soils are a major source of intestinal parasites

(helminths—nematodes and tapeworms) that are trans-

mitted through the fecal–oral route (Toze, 1997).

Already known, the helminth infections are linked to

blood deficiency and behavioral or cognitive develop-

ment (Bos et al., 2010). One of the major sources of

helminth infections around the world is the use of raw or

partially treated sewage effluent and sludge for the

irrigation of food crops (WHO, 1989). Wastewater-

irrigated crops contain heavy metal contamination,

which originates from mining, foundries, and metal-

based industries (Fazeli et al., 1998). Exposure to heavy

Fig. 2 Exposure pathway representing serious health concerns from wastewater-irrigated crops
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metals including arsenic, cadmium, lead, and mercury in

wastewater-irrigated crops is a cause for various health

problems. For example, the consumption of high

amounts of cadmium causes osteoporosis in humans

(Dickin et al., 2016). The uptake of heavy metals by

the rice crop irrigated with untreated effluent from a

paper mill has been reported to cause serious health

concerns (Fazeli et al., 1998). Irrigating rice paddies

with highly contaminated water containing heavy

metals leads to the outbreak of Itai-itai disease in Japan

(Jarup, 2003).

Owing to these widespread health risks, the WHO

published the third edition of its guidelines for the safe

use of wastewater in irrigating crops (WHO, 2006) and

made recommendations for threshold contaminant

levels in wastewater. The quality of wastewater for

agricultural reuse have been classified based on the

availability of nutrients, trace elements, microorgan-

isms, and chemicals contamination levels. The level of

contamination differs widely depending on the type of

source, household sewage, pharmaceutical, chemical,

paper, or textile industries effluents. The standard mea-

sures of water quality for irrigation are internationally

reported (CCREM, 1987; FAO, 1985; FEPA, 1991; US

EPA, 2004, 2012; WHO, 2006), where the recommend-

ed levels of trace elements, metals, COD, BOD, nitro-

gen, and phosphorus are set at certain limits. Re-

searchers reviewed the status of wastewater reuse for

agriculture, based on its standards and guidelines for

water quality (Angelakis et al., 1999; Brissaud, 2008;

Kalavrouziotis et al., 2015). Based on these recommen-

dations and guidelines, it is evident that greater aware-

ness is required for the treatment of wastewater safely.

6 Wastewater Treatment Techniques

6.1 Primary Treatment

This initial step is designed to remove gross, suspended

and floating solids from raw wastewater. It includes

screening to trap solid objects and sedimentation by

gravity to remove suspended solids. This physical

solid/liquid separation is a mechanical process, although

chemicals can be used sometimes to accelerate the sed-

imentation process. This phase of the treatment reduces

the BOD of the incoming wastewater by 20–30% and

the total suspended solids by nearly 50–60%.

6.2 Secondary (Biological) Treatment

This stage helps eliminate the dissolved organic matter

that escapes primary treatment. Microbes consume the

organic matter as food, and converting it to

carbondioxide, water, and energy for their own growth.

Additional settling to remove more of the suspended

solids then follows the biological process. Nearly 85%

of the suspended solids and biological oxygen demand

(BOD) can be removed with secondary treatment. This

process also removes carbonaceous pollutants that settle

down in the secondary settling tank, thus separating the

biological sludge from the clear water. This sludge can

be fed as a co-substrate with other wastes in a biogas

plant to obtain biogas, a mixture of CH4 and CO2. It

generates heat and electricity for further energy distri-

bution. The leftover, clear water is then processed for

nitrification or denitrification for the removal of carbon

and nitrogen. Furthermore, the water is passed through a

sedimentation basin for treatment with chlorine. At this

stage, the water may still contain several types of mi-

crobial, chemical, and metal contaminations. Therefore,

to make the water reusable, e.g., for irrigation, it further

needs to pass through filtration and then into a disinfec-

tion tank. Here, sodium hypochlorite is used to disinfect

the wastewater. After this process, the treated water is

considered safe to use for irrigation purposes. Solid

wastes generated during primary and secondary treat-

ment processes are processed further in the gravity-

thickening tank under a continuous supply of air. The

solid waste is then passed into a centrifuge dewatering

tank and finally to a lime stabilization tank. Treated

solid waste is obtained at this stage and it can be proc-

essed further for several uses such as landfilling, fertil-

izers and as a building.

Other than the activated sludge process of wastewater

treatment, there are several other methods developed

and being used in full-scale reactors such as ponds

(aerobic, anaerobic, facultative, and maturation), trick-

ling filters, anaerobic treatments like up-flow anaerobic

sludge blanket (UASB) reactors, artificial wetlands, mi-

crobial fuel cells, and methanogenic reactors.

UASB reactors are being applied for wastewater

treatment from a very long period. Behling et al.

(1996) examined the performance of the UASB reactor

without any external heat supply. In their study, the

COD loading rate was maintained at 1.21 kg COD/m3/

day, after 200 days of trial. They achieved an average of

85% of COD removal. Von-Sperling and Chernicharo
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(2005) presented a combined model consisted of an Up-

flow Anaerobic Sludge Blanket-Activated Sludge reac-

tor (UASB–AS system), using the low strength domes-

tic wastewater with a BOD5 amounting to 340 mg/l.

Outcomes of their experiment have shown a 60% re-

duction in sludge construction and a 40% reduction in

aeration energy consumption. In another experiment,

Rizvi et al. (2015) seeded UASB reactor with cow

manure dung to treat domestic wastewater; they ob-

served 81%, 75%, and 76% reduction in COD, TSS,

and total sulfate removal, respectively, in their results.

6.3 Tertiary or Advanced Treatment Processes

The tertiary treatment process is employed when specif-

ic constituents, substances, or contaminants cannot be

completely removed after the secondary treatment pro-

cess. The tertiary treatment processes, therefore, ensure

that nearly 99% of all impurities are removed from

wastewater. To make the treated water safe for drinking

purposes, water is treated individually or in combination

with advanced methods like the US (ultrasonication),

UV (ultraviolet light treatment), and O3 (exposure to

ozone). This process helps to remove bacteria and heavy

metal contaminations remaining in the treated water. For

the purpose, the secondarily treated water is first made

to undergo ultrasonication and it is subsequently ex-

posed to UV light and passed through an ozone chamber

for the complete removal of contaminations. The possi-

ble mechanisms by which cells are rendered inviable

during the US include free-radical attack and physical

disruption of cell membranes (Phull et al., 1997;

Scherba et al., 1991). The combined treatment of US +

UV + O3 produces free radicals, which are attached to

cell membranes of the biological contaminants. Once

the cell membrane is sheared, chemical oxidants can

enter the cell and attack internal structures. Thus, the

US alone or in combinat ion faci l i ta tes the

deagglomeration of microorganisms and increases the

efficiency of other chemical disinfectants (Hua &

Thompson, 2000; Kesari et al., 2011a, b; Petrier et al.,

1992; Phull et al., 1997; Scherba et al., 1991). A com-

bined treatment method was also considered by

Pesoutova et al. (2011) and reported a very effective

method for textile wastewater treatment. The effective-

ness of ultrasound application as a pre-treatment step in

combination with ultraviolet rays (Blume & Neis, 2004;

Naddeo et al., 2009), or also compared it with various

other combinations of both ultrasound and UV radiation

with TiO2 photocatalysis (Paleologou et al., 2007), and

ozone (Jyoti & Pandit, 2004) to optimize wastewater

disinfection process.

An important aspect of our wastewater treatment

model (Fig. 3) is that at each step of the treatment

process, we recommend the measurement of the quality

of treated water. After ensuring that the proper purifica-

tion standards are met, the treated water can be made

available for irrigation, drinking or other domestic uses.

6.4 Nanotechnology as Tertiary Treatment

of Wastewater Converting Drinking Water Alike

Considering the emerging trends of nanotechnology,

nanofillers can be used as a viable method for the

tertiary treatment of wastewater. Due to the very small

pore size, 1–5-nm nanofillers may eliminate the

organic–inorganic pollutants, heavy metals, as well as

pathogenic microorganisms and pharmaceutically ac-

tive compounds (PhACs) (Mohammad et al., 2015;

Vergili, 2013). Over the recent years, nanofillers have

been largely accepted in the textile industry for the

treatment of pulp bleaching pharmaceutical industry,

dairy industry, microbial elimination, and removal of

heavy metals from wastewater (Abdel-Fatah, 2018).

Srivastava et al. (2004) synthesized very efficient and

reusable water filters from carbon nanotubes, which

exhibited effective elimination of bacterial pathogens

(E. coli and S. aureus), and Poliovirus sabin-1 from

wastewater.

Nanofiltration requires lower operating pressure and

lesser energy consumption in comparison of RO and

higher rejection of organic compounds compared to UF.

Therefore, it can be applied as the tertiary treatment of

wastewater (Abdel-Fatah, 2018). Apart from

nanofilters, there are various kinds of nanoparticles like

metal nanoparticles, metal oxide nanoparticles, carbon

nanotubes, graphene nanosheets, and polymer-based

nanosorbents, which may play a different role in waste-

water treatment based on their properties. Kocabas et al.

(2012) analyzed the potential of different metal oxide

nanoparticles and observed that nanopowders of TiO2,

FeO3, ZnO2, and NiO can exhibit the exceeding amount

of removal of arsenate from wastewater. Cadmium con-

tamination in wastewater, which poses a serious health

risk, can be overcome by using ZnO nanoparticles

(Kumar & Chawla, 2014). Latterly, Vélez et al. (2016)

investigated that the 70% removal of mercury from

wastewater through iron oxide nanoparticles
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successfully performed. Sheet et al. (2014) used graph-

ite oxide nanoparticles for the removal of nickel from

wastewater. An exceeding amount of copper causes

liver cirrhosis, anemia, liver, and kidney damage, which

can be removed by carbon nanotubes, pyromellitic acid

dianhydride (PMDA) and phenyl aminomethyl

trimethoxysilane (PAMTMS) (Liu et al., 2010).

Nanomaterials are efficiently being used for micro-

bial purification from wastewater. Carbon nanotubes

(CNTs) are broadly applied for the treatment of waste-

water contaminated with E. coli, Salmonella, and a wide

range of microorganisms (Akasaka & Watari, 2009). In

addition, silver nanoparticles reveal very effective re-

sults against the microorganisms present in wastewater.

Fig. 3 Awastewater treatment schematic highlighting the various methods that result in a progressively improved quality of the wastewater

from the source to the intended use of the treated wastewater for irrigation purposes
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Hence, it is extensively being used for microbial elimi-

nation from wastewater (Inoue et al., 2002). Moreover,

CNTs exhibit high binding affinity to bacterial cells and

possess magnetic properties (Pan & Xing, 2008).

Melanta (2008) confirmed and recommended the

applicability of CNTs for the removal of E. coli

contamination from wastewater. Mostafaii et al. (2017)

suggested that the ZnO nanoparticles could be the po-

tential antibacterial agent for the removal of total coli-

form bacteria from municipal wastewater. Apart from

the previously mentioned, applicability of the nanotech-

nology, the related drawbacks and challenges cannot be

neglected. Most of the nanoengineered techniques are

currently either in research scale or pilot scale

performing well (Gehrke et al., 2015). Nevertheless, as

discussed above, nanotechnology and nanomaterials ex-

hibit exceptional properties for the removal of contam-

inants and purification of water. Therefore, it can be

adapted as the prominent solution for the wastewater

treatment (Zekić et al., 2018) and further use for drink-

ing purposes.

6.5 Wastewater Treatment by Using Plant Species

Some of the naturally growing plants can be a poten-

tial source for wastewater treatment as they remove

pollutants and contaminants by utilizing them as a

nutrient source (Zimmels et al., 2004). Application of

plant species in wastewater treatment may be cost-

effective, energy-saving, and provides ease of opera-

tion. At the same time, it can be used as in situ, where

the wastewater is being produced (Vogelmann et al.,

2016 ) . N i zam e t a l . ( 2020 ) ana lyzed the

phytoremediation efficiency of five plant species

(Centella asiatica, Ipomoea aquatica, Salvinia

molesta, Eichhornia crassipes, and Pistia stratiotes)

and achieved the drastic decrease in the amount of

three pollutants viz. total suspended solids (TSS),

ammoniacal nitrogen (NH3-N), and phosphate levels.

All the five species found to be efficient removal of

the level of 63.9-98% of NH3-N, TSS, and

phosphate. Coleman et al. (2001) examined the phys-

iological effects of domestic wastewater treatment by

three common Appalachian plant species: common

rush or soft rush (Juncus effuses L.), gray club-rush

(Scirpus Validus L.), and broadleaf cattail or bulrush

(Typha latifolia L.). They observed in their experi-

ments about 70% of reduction in total suspended

solids (TSS) and biochemical oxygen demand

(BOD), 50% to 60% of reduction in nitrogen,

ammonia, and phosphate levels, and a significant

reduction in feacal coliform populations. Whereas,

Zamora et al. (2019) found the removal efficiency

of chemical oxygen demand (COD), total solids

suspended (TSS), nitrogen as ammonium (N-NH4)

and nitrate (N-NO3), and phosphate (P-PO4) up to

Table 3 Various plant species applied for the wastewater remediation and their effects

S.N. Plant species Common name Effects References

1. Juncus

effusus L.

Common rush or soft rush Reduction of BOD, COD, TSS,

nitrogen, phosphate, and fecal coliforms

Coleman et al. (2001)

2. Scirpus

validus L.

Grey club-rush

3. Typha

latifolia

L.

Broadleaf cattail or bulrush

4. Azolla

californi-

ana

Fairy moss Reduction of turbidity BOD, COD, and TSS Jacquez and Walner

(1985)

5. Oenanthe

javanica

Chinese celery, Indian

pennywort, Japanese

parsley,

Influences dissolved oxygen, pH, and temperature

wastewater purification and nutrient uptake

Zhou and Wang (2010);

Zhu et al. (2011)

6. Hydrocotyle

vulgaris

marsh pennywort Removal of total nitrogen and NH4
− nitrogen Duan et al. (2016).

7. Ipomoea

aquatica

Swamp morning or water

spinach

8. Eichornia

crassipes

Water hyacinth Reduction of ammonia, nitrate BOD, COD, TSS,

turbidity, and heavy metals

Brumer (2000); Jacquez

and Walner (1985)
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20–60% higher using the three ornamental species of

plants viz. Canna indica, Cyperus papyrus, and

Hedychium coronarium. The list of various plant

species applied for the wastewater treatment is shown

in Table 3.

6.6 Wastewater Treatment by Using Microorganisms

There is a diverse group of bacteria like Pseudomo-

nas fluorescens, Pseudomonas putida, and different

Bacillus strains, which are capable to use in biolog-

ical wastewater systems. These bacteria work in the

cluster forms as a floc, biofilm, or granule during the

wastewater treatment. Furthermore, after the recog-

nition of bacterial exopolysaccharides (EPS) as an

efficient adsorption material, it may be applied in a

revolutionary manner for the heavy metal elimination

(Gupta & Diwan, 2017). There are few examples of

EPS, which are commercially available, i.e., alginate

(P. aeruginosa, Azotobacter vinelandii), gellan

(Sphingomonas paucimobilis), hyaluronan ( .

aeruginosa, Pasteurella multocida, Streptococci at-

t enua ted s t ra in s ) , xan than (Xan thomonas

campestr is ) , and galac topol (Pseudomonas

oleovorans) (Freitas et al., 2009; Freitas, Alves, &

Reis, 2011a; Freitas, Alves, Torres, et al., 2011b).

Similarly, Hesnawi et al. (2014) experimented bio-

degradation of municipal wastewater using local and

commercial bacteria (Sludge Hammer), where they

achieved a significant decrease in synthetic wastewa-

ter, i.e., 70%, 54%, 52%, 42% for the Sludge Ham-

mer, B. subtilis, B. laterosponus, and P. aeruginosa,

respectively. Therefore, based on the above studies, it

can be concluded that bioaugmentation of wastewater

treatment reactor with selective and mixed strains can

ameliorate the treatment. During recent years,

microalgae have attracted the attention of researchers

as an alternative system, due to their applicability in

wastewater treatment. Algae are the unicellular or

multicellular photosynthetic microorganism that

grows on water surfaces, salt water, or moist soil.

They utilize the exceeding amount of nutrients like

nitrogen, phosphorus, and carbon for their growth

and metabolism process through their anaerobic sys-

tem. This property of algae also inhibits eutrophica-

tion; that is to avoid over-deposit of nutrients in water

bodies. During the nutrient digestion process, algae

produce oxygen that is constructive for the heterotro-

phic aerobic bacteria, which may further be utilized

to degrade the organic and inorganic pollutants. Kim

et al. (2014) observed a total decrease in the levels of

COD (86%), total nitrogen (93%), and total phospho-

rus (83%) after using algae in the municipal waste-

water consortium. Nmaya et al. (2017) reported the

heavy metal removal efficiency of microalga

Scenedesmus sp. from contaminated river water in

the Melaka River, Malaysia. They observed the ef-

fective removal of Zn (97-99%) on the 3rd and 7th day

of the experiment. The categorized list of microor-

ganisms used for wastewater treatment is presented in

Table 4.

7 The Computational Approach in Wastewater

Treatment

7.1 Bioinformatics and Genome Sequencing

A computational approach is accessible in wastewater

treatment. Several tools and techniques are in use such

as, sequencing platforms (Hall, 2007; Marsh, 2007),

metagenome sequencing strategies (Schloss &

Handelsman, 2005; Schmeisser et al., 2007; Tringe

et al., 2005), bioinformatics tools and techniques

(Chen & Pachter, 2005; Foerstner et al., 2006; Raes

et al., 2007), and the genome analysis of complex mi-

crobial communities (Fig. 4). Most of the biological

database contains microorganisms and taxonomical in-

formation. Thus, these can provide extensive details and

supports for further utilization in wastewater treatment–

related research and development (Siezen & Galardini,

2008). Balcom et al. (2016) explored that the microbial

population residing in the plant roots immersed in the

wastewater of an ecological WWTP and showed the

evidence of the capacity for micro-pollutant biodegra-

dation using whole metagenome sequencing (WMS).

Similarly, Kumar et al. (2016) revealed that bioremedi-

ation of highly polluted wastewater from textile dyes by

two novel strains were found to highly decolorize Joyfix

Red. They were identified as Lysinibacillus sphaericus

(KF032717) and Aeromonas hydrophila (KF032718)

through 16S rDNA analysis. More recently, Leddy

et al. (2018) reported that research scientists are making

strides to advance the safety and application of potable

water reuse with metagenomics for water quality analy-

sis. The application of the bio-computational approach

has also been implemented in the advancements of

wastewater treatment and disease detection.

Page 13 of 28     208Water Air Soil Pollut (2021) 232: 208



7.2 Computational Fluid Dynamics in Wastewater

Treatment

In recent years, computational fluid dynamics (CFD), a

broadly used method, has been applied to biological

wastewater treatment. It has exposed the inner flow state

that is the hydraulic condition of a biological reactor

(Peng et al., 2014). CFD is the application of powerful

predictive modeling and simulation tools. It may calcu-

late the multiple interactions between all the water quality

and process design parameters. CFDmodeling tools have

already been widely used in other industries, but their

application in the water industry is quite recent. CFD

modeling has great applications in water and wastewater

treatment, where it mechanically works by using hydro-

dynamic and mass transfer performance of single or two-

phase flow reactors (Do-Quang et al., 1998). The level of

CFD’s capability varies between different process units.

It has a high frequency of application in the areas of final

sedimentation, activated sludge basin modeling, disinfec-

tion, and greater needs in primary sedimentation and

anaerobic digestion (Samstag et al., 2016). Now, re-

searchers are enhancing the CFD modeling with a devel-

oped 3D model of the anoxic zone to evaluate further

hydrodynamic performance (Elshaw et al., 2016). The

overall conceptual framework and the applications of the

computational approach in wastewater treatment are pre-

sented in Fig. 4.

Table 4 Microorganisms applied for wastewater treatment

S.N. Species Effects References

Algae

1. Scenedesmus sp. Removal of heavy metal (Zn) from wastewater Nmaya et al. (2017)

2. Scenedesmus abundans Removal of Cd and Cu, detoxification of cyanide from wastewater. Oilgae (2014)

3. Botryococcus braunii Removal of nitrogen, phosphorus, and other inorganic compounds

from industrial wastewater

Oilgae (2014)

4. Dunaliella salina Eliminates Cu, Cd, Co, and Zn from polluted water,

applied in the treatment of hypersaline wastewater

Oilgae (2014)

5. Sargassum muticum Removes Methylene Blue dye from wastewater. Oilgae (2014)

6. Chlorella sp. Removal of lead (II), N, P,

and detoxification of cyanide from wastewater

Oilgae (2014)

Fungi

1. Bjerkandera adusta MUT 2295, Effective in wastewater decolourisation and detoxification Anastasi et al. (2010);

Spina et al. (2012)

2. Phanerochaete chrysosporium

(white-rot fungi)

Degrade several aromatic compounds Spina et al. (2012)

3. Trametes versicolor Wastewater decolourisation, humic acid removal from industrial

wastewater

Zahmatkesh et al. (2018)

4. Rhizopus arrhizus Biosorption of heavy metals Sağ (2001)

5. Fusarium flocciferum Absorption of Ni(II) and Cd(II) from wastewater Delgado et al. (1998)

6. Penicillium chrysogenum Absorption of Cd(II) from wastewater Volesky (1994)

Bacteria

1. Sphingomonas sp. strain BN6 Degrades naphthalene-2-sulphonate (a building block of azo dyes)

present in contaminated water

Russ et al. (2000)

2. Paenibacillus azoreducens Color removal from wastewater with 98% efficiency Meehan et al. (2001)

3. Pseudomonas luteola Decoloration of wastewater Chang et al. (2001)

4. Bacillus subitlis Reduction of TOC Hesnawi et al. (2014)

5. Bacillus laterosponus

6. Pseudomonas aeruginosa

7. Methylobacterium

organophilum

Removal of Cu and Pb from wastewater Kim et al. (1996)

8. Herminiimonas arsenicoxydans Arsenic absorption in wastewater Marchal et al. (2010)
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7.3 Computational Artificial Intelligence Approach

in Wastewater Treatment

Several studies were obtained by researchers to imple-

ment computer-based artificial techniques, which pro-

vide fast and rapid automated monitoring of water

quality tests such as BOD and COD. Recently,

Nourani et al. (2018) explores the possibility of waste-

water treatment plant by using three different kinds of

artificial intelligence methods, i.e., feedforward neural

network (FFNN), adaptive neuro-fuzzy inference sys-

tem (ANFIS), and support vector machine (SVM). Sev-

eral measurements were done in terms of effluent to tests

BOD, COD, and total nitrogen in the Nicosia wastewa-

ter treatment plant (NWWTP) and reported high-

performance efficiency of artificial intelligence

(Nourani et al., 2018).

7.4 Remote sensing and Geographical Information

System

Since the implementation of satellite technology, the

initiation of new methods and tools became popular

nowadays. The futuristic approach of remote sensing

and GIS technology plays a crucial role in the identifi-

cation and locating of the water polluted area through

satellite imaginary and spatial data. GIS analysis may

provide a quick and reasonable solution to develop

atmospheric correction methods. Moreover, it provides

a user-friendly environment, which may support com-

plex spatial operations to get the best quality informa-

tion on water quality parameters through remote sensing

(Ramadas & Samantaray, 2018).

8 Applications of Treated Wastewater

8.1 Scope in Crop Irrigation

Several studies have assessed the impact of the reuse of

recycled/treated wastewater in major sectors. These are

agriculture, landscapes, public parks, golf course irri-

gation, cooling water for power plants and oil refiner-

ies, processing water for mills, plants, toilet flushing,

dust control, construction activities, concrete mixing,

and artificial lakes (Table 5). Although the treated

wastewater after secondary treatment is adequate for

reuse since the level of heavy metals in the effluent is

similar to that in nature (Ayers & Westcot, 1985),

experimental evidences have been found and evaluated

the effects of irrigation with treated wastewater on soil

fertility and chemical characteristics, where it has been

Fig. 4 A schematic showing the

overall conceptual framework on

which depicting the

computational approach in

wastewater treatment
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concluded that secondary treated wastewater can im-

prove soil fertility parameters (Mohammad &

Mazahreh, 2003). The proposed model (Fig. 3) is test-

ed partially previously at a laboratory scale by treating

the wastewater (from sewage, sugar, and paper indus-

try) in an ultrasonic bath (Kesari et al., 2011a, b; Kesari

& Behari, 2008; Kumar et al., 2010). Advancing it with

ultraviolet and ozone treatment has modified this in the

proposed model. A recent study shows that the treated

water passed quality measures suited for crop irrigation

(Bhatnagar et al., 2016). In Fig. 3, a model is proposed

including all three (UV, US, nanoparticle, and ozone)

techniques, which have been tested individually as

well as in combination (US and nanoparticle) (Kesari

et al., 2011a, b) to obtain the highest water quality

standards acceptable for irrigation and even drinking

purposes.

A wastewater-irrigated field is a major source of

essential and non-essential metals contaminants such

as lead, copper, zinc, boron, cobalt, chromium, arsenic,

molybdenum, and manganese. While crops need some

of these, the others are non-essential metals, toxic to

plants, animals, and humans. Kanwar and Sandha

(2000) reported that heavy metal concentrations in

plants grown in wastewater-irrigated soils were signifi-

cantly higher than in plants grown in the reference soil

in their study. Yaqub et al. (2012) suggest that the use of

US is very effective in removing heavy or toxic metals

and organic pollutants from industrial wastewater. How-

ever, it has been also observed that the metals were

removed efficiently, when UV light was combined with

ozone (Samarghandi et al., 2007). Ozone exposure is a

potent method for the removal of metal or toxic com-

pounds from wastewater as also reported earlier (Park

et al., 2008). Application of US, UV, and O3 in combi-

nation lead to the formation of reactive oxygen species

(ROS) that oxidize certain organics, metal ions and kill

pathogens. In the process of advanced oxidizing process

(AOP) primarily oxidants, electricity, light, catalysts etc.

are implied to produce extremely reactive free radicals

Fig. 5 Energy production through wastewater (reproduced from Bhatnagar et al., 2016; Kesari & Jamal, 2017)
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(such as OH) for the breakdown of organic matters

(Oturan &Aaron, 2014). Among the other AOPs, ozone

oxidization process is more promising and effective for

the decomposition of complex organic contaminants

(Xu et al., 2020). Ozone oxidizes the heavy metal to

their higher oxidation state to form metallic oxides or

hydroxides in which they generally form limited soluble

oxides and gets precipitated, which are easy to be fil-

tered by filtration process. Ozone oxidization found to

be efficient for the removal of heavy metals like cadmi-

um, chromium, cobalt, copper, lead, manganese, nickel,

and zinc from the water source (Upadhyay &

Srivastava, 2005). Ultrasonic-treated sludge leads to

the disintegration of biological cells and kills bacteria

in treated wastewater (Kesari, Kumar, et al., 2011a;

Kesari, Verma, & Behari, 2011b). This has been found

that combined treatment with ultrasound and nanoparti-

cles is more effective (Kesari, Kumar, et al., 2011a).

Ultrasonication has the physical effects of cavitation

inactivate and lyse bacteria (Broekman et al., 2010).

The induced effect of US, US, or ozone may destroy

the pathogens and especially during ultrasound irradia-

tion including free-radical attack, hydroxyl radical at-

tack, and physical disruption of cell membranes (Kesari,

Kumar, et al., 2011a; Phull et al., 1997; Scherba et al.,

1991).

8.2 Energy and Economy Management

Municipal wastewater treatment plants play a major role

in wastewater sanitation and public health protection.

However, domestic wastewater has been considered as a

resource or valuable products instead of waste, because

it has been playing a significant role in the recovery of

energy and resource for the plant-fertilizing nutrients

like phosphorus and nitrogen. Use of domestic

wastewater is widely accepted for the crop irrigation in

agriculture and industrial consumption to avoid the

water crisis. It has also been found as a source of

energy through the anaerobic conversion of the

organic content of wastewater into methane gas.

However, most of the wastewater treatment plants are

using traditional technology, as anaerobic sludge

digestion to treat wastewater, which results in more

consumption of energy. Therefore, through these

conventional technologies, only a fraction of the

energy of wastewater has been captured. In order to

solve these issues, the next generation of municipal

wastewater treatment plants is approaching total

retrieval of the energy potential of water and nutrients,

mostly nitrogen and phosphorus. These plants also play

an important role in the removal and recovery of

emerging pollutants and valuable products of different

nature like heavy and radioactive metals, fertilizers

hormones, and pharma compounds. Moreover, there

are still few possibilities of improvement in

wastewater treatment plants to retrieve and reuse of

these compounds. There are several methods under

development to convert the organic matter into

bioenergy such as biohydrogen, biodiesel, bioethanol,

and microbial fuel cell. These methods are capable to

produce electricity from wastewater but still need an

appropriate development. Energy development through

wastewater is a great driver to regulate the wastewater

energy because it produces 10 times more energy than

ch em i c a l , t h e rma l , a nd hyd r au l i c f o rms .

Vermicomposting can be utilized for stabilization of

sludge from the wastewater treatment plant. Kesari and

Jamal (2017) have reported the significant, economical,

and ecofriendly role of the vermicomposting method for

the conversion of solid waste materials into organic

fertilizers as presented in Fig. 5. Solid waste may come

from several sources of municipal and industrial sludge,

for example, textile industry, paper mill, sugarcane, pulp

industry, dairy, and intensively housed livestock. These

solid wastes or sewage sludges have been treated suc-

cessfully by composting and/or vermicomposting

(Contreras-Ramos et al., 2005; Elvira et al., 1998; Fra-

ser-Quick, 2002; Ndegwa & Thompson, 2001; Sinha

et al., 2010) Although collection of solid wastes mate-

rials from sewage or wastewater and further drying is

one of the important concerns, processing of dried mu-

nicipal sewage sludge (Contreras-Ramos et al., 2005)

and management (Ayilara et al . , 2020) for

vermicomposting could be possible way of generating

organic fertilizers for future research. Vermicomposting

of household solid wastes, agriculture wastes, or pulp

and sugarcane industry wastes shows greater potential

as fertilizer for higher crop yielding (Bhatnagar et al.,

2016; Kesari & Jamal, 2017). The higher amount of

solid waste comes from agricultural land and instead

of utilizing it, this biomass is processed by burning,

which causes severe diseases (Kesari & Jamal, 2017).

Figure 3 shows the proper utilization of solid waste after

removal from wastewater; however, Fig. 5 showing

greater possibility in fertilizer conversion which has also

been discussed in detail elsewhere (Bhatnagar et al.,

2016; Nagavallemma et al., 2006)
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9 Conclusions and future perspectives

In this paper, we have reviewed environmental and

public health issues associated with the use of untreated

wastewater in agriculture. We have focused on the cur-

rent state of affairs concerning the wastewater treatment

model and computational approach. Given the dire need

for holistic approaches for cultivation, we proposed the

ideas to tackle the issues related to wastewater treatment

and the reuse potential of the treated water. Water re-

sources are under threat because of the growing popu-

lation. Increasing generation of wastewater (municipal,

industrial, and agricultural) in developing countries es-

pecially in India and other Asian countries has the

potential to serve as an alternative of freshwater re-

sources for reuse in rice agriculture, provide appropriate

treatment, and distribution measures are adopted.

Wastewater treatment is one of the big challenges for

many countries because increasing levels of undesired

or unknown pollutants are very harmful to health as well

as environment. Therefore, this review explores the

ideas based on current and future research. Wastewater

treatment includes very traditional methods by follow-

ing primary, secondary, and tertiary treatment proce-

dures, but the implementation of advanced techniques

is always giving us a big possibility of good water

quality. In this paper, we have proposed combined

methods for the wastewater treatment, where the con-

cept of the proposed model works on the various types

of wastewater effluents. The proposed model not only

useful for wastewater treatment but also for the utiliza-

tion of solid wastes as fertilizer. An appropriate method

for the treatment of wastewater and further utilization

for drinking water is the main futuristic outcome. It is

also highly recommendable to follow the standard

methods and available guidelines provided WHO. In

this paper, the proposed role of the computational mod-

el, i.e., artificial intelligence, fluid dynamics, and GIS, in

wastewater treatment could be useful in future studies.

In this review, health concerns associated with waste-

water irrigation for farmers and irrigated crops con-

sumers have been discussed.

The crisis of freshwater is one of the growing

concerns in the twenty-first century. Globaly, about

330 km3 of municipal wastewater is generated annu-

ally (Hernández-Sancho et al., 2015). This data pro-

vides a better understanding of why the reuse of

treated wastewater is important to solve the issues of

the water crisis. The use of treated wastewater

(industrial or municipal wastewater or Seawater) for

irrigation has a better future for the fulfillment of

water demand. Currently, in developing countries,

farmers are using wastewater directly for irrigation,

which may cause several health issues for both

farmers and consumers (crops or vegetables). There-

fore, it is very imperative to implement standard and

advanced methods for wastewater treatment. A local

assessment of the environmental and health impacts

of wastewater irrigation is required because most of

the developed and developing countries are not using

the proper guidelines. Therefore, it is highly required

to establish concrete policies and practices to encour-

age safe water reuse to take advantage of all its po-

tential benefits in agriculture and for farmers.
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