
Research Article

WASTK: A Weighted Abstract Syntax Tree Kernel Method for
Source Code Plagiarism Detection

Deqiang Fu,1,2 Yanyan Xu,1 Haoran Yu,2 and Boyang Yang2

1School of Information Science and Technology, Beijing Forestry University, No. 35 Qinghuadong Road,
Haidian District, Beijing 100083, China
2Jisuan Institute of Technology, Beijing Judao Youda Network Technology Co. Ltd., No. 18 Suzhoujie St., Room 1204,
Haidian District, Beijing 100080, China

Correspondence should be addressed to Yanyan Xu; xuyanyan@bjfu.edu.cn

Received 28 September 2016; Revised 23 November 2016; Accepted 21 December 2016; Published 13 February 2017

Academic Editor: Michele Risi

Copyright © 2017 Deqiang Fu et al. 	is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we introduce a source code plagiarism detection method, named WASTK (Weighted Abstract Syntax Tree Kernel),
for computer science education. Di
erent from other plagiarism detection methods, WASTK takes some aspects other than the
similarity between programs into account. WASTK �rstly transfers the source code of a program to an abstract syntax tree and
then gets the similarity by calculating the tree kernel of two abstract syntax trees. To avoid misjudgment caused by trivial code
snippets or frameworks given by instructors, an idea similar to TF-IDF (Term Frequency-Inverse Document Frequency) in the
�eld of information retrieval is applied. Each node in an abstract syntax tree is assigned a weight by TF-IDF. WASTK is evaluated
on di
erent datasets and, as a result, performs much better than other popular methods like Sim and JPlag.

1. Introduction

Due to the advancement of the Internet, source code plagia-
rism has become a big issue in the �eld of computer science
education [1]. Some students usually try to copy source code
from their classmates or search similar source code from the
Internet as their assignments without modifying. Plagiarism
diminishes the quality of education seriously. Students are
deprived of the abilities to make innovations and think
independently, which may also cause academic dishonesty.

As what happened in traditional o�ine computer science
education, online education su
ers from plagiarism, too.
Moreover, it is even harder for online education platforms
to �nd a method against source code plagiarism when the
number of submissions from students goesmuch greater than
the traditional o�ine cases. 	erefore, detecting source code
plagiarism becomes heavy load of responsible instructors’
daily work [2].

In order to detect the source code plagiarism auto-
matically, three problems have already been considered by
researchers in this �eld [3–5].

Problem 1. Computer programs are structured and hierar-
chical. Looking for a reasonable method to measure the
similarity between a pair of programs needs to be carefully
treated.

Problem 2. 	emodi�cations on programs for the plagiarism
purpose are almost changeless. Common distortions, for
example, comment alteration, whitespace padding, identi�er
renaming, code reordering, and algebraic expressions, can be
found with high con�dence.

Problem 3. 	e comparison between each pair of programs
takes a long time and leads to ine�ciency.

Additionally, there exist some other facts which need to
be considered.

Problem 4. Instructors may provide frameworks of program-
ming assignments for students to start with. 	e provided
frameworks will contribute a lot to the similarity between
each pair of programs.

Hindawi
Scientific Programming
Volume 2017, Article ID 7809047, 8 pages
https://doi.org/10.1155/2017/7809047

https://doi.org/10.1155/2017/7809047

2 Scienti�c Programming

Problem 5. Solutions for simple problems may be alike. For
example, a hundred students, without any communication,
may produce very similar programs for the task of calculating
the sum of two variables.

To solve these two problems, in this paper, two accurate
methods for source code plagiarism detection are presented,
named ASTK (Abstract Syntax Tree Kernel) and WASTK
(Weighted ASTK). Since computer programs are structured,
in this work, they are presented as abstract syntax trees
[6]. In ASTK, a method called tree kernel [7] is used
for measuring the similarity between a pair of programs.
Additionally, di
erent from traditional tree kernel methods,
to highlight the signi�cance of nontrivial parts and reduce
impacts caused by short sample source code and source code
provided by instructors, WASTK gives weights to every tree
node. Inspired by the idea of TF-IDF [8], lower weights are
given to the part of common code and code provided by the
framework of coding assignments, and higher weights are
assigned to those distinguished parts of code.

	e rest of this paper is organized as follows. Section 2
introduces related previous work. Section 3 illustrates the
methods of ASTK and WASTK. We show the experiment
results and corresponding analyses in Section 4. Finally, in
Section 5, we conclude this work and give some discussions
about possible future work.

2. Related Work

	ere exist some plagiarism detection measures. According
to the categories identi�ed by Mozgovoy in 2006 [9], there
are mainly �ngerprint based and content comparison based
approaches. Content comparison techniques have three sub-
categories including string-matching algorithms, parameter-
ized matching algorithms, and parse tree comparison algo-
rithms.

MOSS (Measure of So�ware Similarity), proposed by
University of California-Berkeley in 2003 [10], as a proposed
�ngerprint based measure, divides each program into k-
grams. Each gram is made of some substrings of length �.
	e possibility of plagiarism is determined according to the
number of overlapped �ngerprints generated by hashing each
gram.

	ere are some famous string-matching algorithms,
including Plague, YAP3 (the third version of Yet Another
Plague), JPlag, and FDPS (Fast Plagiarism Detection System)
[11]. 	ese methods all �rstly convert programs into corre-
sponding token sequences. 	en they use similarity as
the evidence of plagiarism by comparison among token
sequences generated from di
erent programs. Plague, pro-
posed by Whale in 1988, is the �rst one converting a �le into
a token sequence and using a string-matching technique for
comparison [12]. YAP3, proposed by Wise in 1996, performs
better than Plague due to a faster converting method using
Running Karp-Rabin Greedy String Tiling (RKR-GST) [13].
JPlag, proposed by Malpohl in 2006, runs even faster than
YAP3 by de�ning a minimum-matching length [14]. FDPS,
as another algorithm similar to YAP3, pays more attentions
on e�ciency which is proposed by Mozgovoy et al. in 2007

[15]. It uses an indexed data structure to store matches which
support faster searching.

Dup tool, proposed by Baker in 1995, is a parameterized
matching algorithm. It �rstly uses a lexical analyzer to scan
a program. 	en it modi�es all identi�ers and constants into
same symbols and output the transformed program together
with a list of parameter candidates. 	e similarity is deter-
mined according to �-matches between two transformed
�les, where �means a parameter [16].

Sim and Brass are based on parse tree comparison
algorithms. Sim, proposed by Gitchell and Tran in 1999, gets
a token sequence by a lexical analyzer and calculates the
sequence alignment as the similarity [17]. In order not to be
in�uenced by identi�ers or statement orders, in 2014, Kikuchi
et al. proposed a modi�ed method which uses syntactic ele-
ments for tokens with lexical elements and the method does
not include identi�er names or literal values in the tokens [4].
Brass, proposed by Belkhouche et al. in 2004, is an application
of parse tree comparison algorithms. It represents each �le as
a binary tree and a symbol table (the data dictionary), con-
taining the variables and data structures used in the �le [18].

3. Proposed Approach

De	nition 1 (abstract syntax tree). An abstract syntax tree is
an abstract syntactic structure of a piece of source code in the
form of tree.

Figure 1 shows an example of an abstract syntax tree
created from short sample code. 	e le� part is the source
code in two lines and the right part is its corresponding
abstract syntax tree a�er lexical and syntax analysis. It is easy
to �nd that a short piece of source code has a large abstract
syntax tree and only leaf nodes show the symbols of source
code. 	e in-order traversal result of all the leaf nodes will
get the source code.

De	nition 2 (tree kernel). Tree kernel is an algorithm for
computing tree structures and measuring the similarity
between two contents inNatural Language Processing (NLP),
which is �rstly proposed by Collins and Du
y in 2001 [7].

Between two trees �1 and �2, a kernel �(�1, �2) can be
represented as an inner product between two vectors:

�(�1, �2) = h (�1) ⋅ h (�2) . (1)

Each tree � can be represented as a vector h(�) =
(ℎ1(�), ℎ2(�), . . . , ℎ�(�)), where ℎ�(�) is the number of occur-
rences of the
th subtree in �.
De	nition 3 (TF-IDF). In information retrieval, TF-IDF is
a numerical statistic model that is intended to re�ect how
important a word means to a document in a collection of
documents [8].

TF-IDF includes two parts: TF is the abbreviation for
“Term Frequency” and IDF is the abbreviation for “Inverse
Document Frequency.” TF(�, �) denotes the frequency of
word � in document �. Similarly, DF(�,) is the frequency

Scienti�c Programming 3

block_item_list

block_item

declaration

decl_specs

type_spec

T_INT

init_declarator_list

init_declarator

declarator

direct_declarator

V_ID

SEMICOLON

block_item

stat

exp_stat

exp

assignment_exp

unary_exp

post�x_exp

primary_exp

V_ID

assignment_operator

ASSIGN

conditional_exp

logical_or_exp

SEMICOLON

additive_exp

mult_exp

unary_exp

post�x_exp

primary_exp

V_ID

O_ADD mult_exp

unary_exp

post�x_exp

primary_exp

const_val

V_INTEGER

int a;

...

<int>

<a>

<a>

<a>

<;>

<;>

<=>

<+>

<2>

a = a + 2;

Figure 1: A piece of source code and its corresponding abstract syntax tree.

Source code 1 Source code 2

Lexical analyzer and
syntax analyzer

AST 1 AST 2

Parse tree kernel

Normalized score

TF-IDF TF-IDF

Figure 2: Weighted Abstract Syntax Tree Kernel.

of documents containing word � in the set of all documents
. IDF(�,) is the reciprocal of DF(�,). TF focuses on the
importance of words in a document while IDF concerns the
universality of words in all documents. TF-IDF can help to
compute the importance of words for solving Problems 4 and
5.

	e process of WASTK is shown in Figure 2. 	e
proposed method �rstly transforms programs into abstract
syntax trees. Inspired by the idea of TF-IDF, weights are
calculated for every subtree, giving expressions with high
frequency in a document but low frequency in other doc-
uments higher weights and giving expressions that appear
everywhere (in all documents) lower weights. Finally, tree
kernel is applied with calculated weights on nodes to deter-
minewhether plagiarismhappens.	edetails of the designed
approach are shown in Figure 2.

3.1. Adjust the Structure of Abstract Syntax Tree. To solve
Problem 1, programs are parsed into abstract syntax trees for
further understanding the semantics.

	en some adjustments are applied to each abstract
syntax tree. As mentioned in Problem 2, replacing variable
names and size declarations of arrays are common ways
to plagiarize. To solve this problem, all variable tokens are
replaced with a uni�ed token.	e tokens for size declarations
of arrays and the indices of array elements are uni�ed as well.

Because rephrasing expressions into di
erent expressions
is not trivial, there is rarely a problem about plagiarism
by modifying expressions. 	e structure information of
expressions related to subtrees in the abstract syntax tree is
abandoned. 	e resulting strings of the in-order traversal of
leaf nodes on the subtrees are adopted as replacements of the
subtrees. Besides, a simpli�ed abstract syntax tree results in
less time needed by running ASTK andWASTK, which helps
to solve Problem 3.

A�er adjusting, the abstract syntax tree in Figure 1 is
transformed into a new tree shown in Figure 3. All variable
names are replaced with “temp.” Because the node “exp” is
a type of expression, it is adjusted to be a leaf node and
represents the in-order traversal of leaf nodes on the previous
subtree with the root “exp”; that is to say the dotted portion
in Figure 3 is cut out from the original abstract syntax
tree.

3.2. Determine Node Weights. In ASTK, the weights on all
nodes are equal to 1. However, in WASTK, the weights of
nodes depend on TF-IDF. Actually, this is the only di
erence
between ASTK andWASTK. InWASTK, it is considered that
weights on abstract syntax tree nodes re�ect the signi�cance
of the corresponding subtree fragments of code. Taking Prob-
lems 4 and 5 into consideration, lowerweights are given to the
nodes that represent common expressions appearing inmany
other programs.

Di
erent types of symbols and expressions frequently
appear in the programs.	ey do not have abundant semantic

4 Scienti�c Programming

block_item_list

block_item

declaration

decl_specs

type_spec

T_INT

init_declarator_list

init_declarator

declarator

direct_declarator

V_ID

SEMICOLON

block_item

stat

exp_stat

exp

assignment_exp

unary_exp

post�x_exp

primary_exp

V_ID

assignment_operator

ASSIGN

conditional_exp

logical_or_exp

SEMICOLON

additive_exp

mult_exp

unary_exp

post�x_exp

primary_exp

V_ID

O_ADD mult_exp

unary_exp

post�x_exp

primary_exp

const_val

V_INTEGER

...

<;>

<;>

<=>

<+>

<2>

<temp>

<temp>

<temp>

<int>

(<temp=temp+2>)

Figure 3: A new abstract syntax tree a�er adjustments.

Table 1: A list of stop words.

Type Function Example(s)

Round brackets ()
Square brackets []
Curly brackets {}
Comma ,

Semicolon ;

Equality sign =

Pointer star 	e star denoting the pointer ∗
Variable type 	e type of a variable int

Variable name 	e name of a variable a b temp

Pointer name 	e name of a pointer ∗a ∗b ∗temp

Size of array 	e declaration of an array’s size 100 N N+10

De�nition of array 	e de�nition of an array a[100] a[N]

meaning and can be treated as stopwords. A list of stopwords
is shown in Table 1.

Let� denote the abstract syntax tree. For each subtree � of
�, there is a weight��,�.	e in-order traversal on � is denoted
as word�. If word� is treated as a stop word, the weight of �
is specially adjusted to 0, that is, ��,� = 0. For example, the
weight of the nodes in Figure 3 is 0 whose type is “T INT,”
“V ID,” and “SEMICOLON.” On the contrary, if word� is not
a stop word, the weight ��,� can be computed as follows:

��,� = TF (�, �) ⋅ IDF (�, �) . (2)

By De�nition 3, TF(�, �) and IDF(�, �) can be calculated
as follows:

TF (�, �) = cnt (�, �)
� (�) ,

IDF (�, �) = log2 (1 + �� (�)) ,
(3)

where cnt(�, �) is the frequency of the appearances of subtree
� ∈ ��. �(�) is the number of subtrees in � and �(�) is the
number of abstract syntax trees which contains �.� is used to
represent the number of generated abstract syntax trees from
programs related to a speci�c assignment.

3.3. Calculate Tree Kernel and Similarity. ByDe�nition 2, the
similarity between two abstract syntax trees �1 and �2 can be
measured by a tree kernel and denoted by�(�1, �2):

�(�1, �2) = h (�1) ⊙ h (�2)
= ∑
��∈(��1∪��2)

cnt (��, �1) ⋅ cnt (��, �2) , (4)

where �� denotes the set of all subtrees in�.When calculating
�(�1, �2) directly, it needs to enumerate each subtree in
both �1 and �2 and then calculate cnt(��, �1) and cnt(��, �2),
respectively. 	is method appears ine�cient and a recursive
method is applied:

�(�1, �2) = ∑
�1∈��1

∑
�2∈��2

� (�1, �2) . (5)

Scienti�c Programming 5

�(�1, �2) is calculated as follows.

(1) If the roots of �1 and �2 are both leaf nodes of the “exp”
type, then

� (�1, �2) = �tree ⋅ dist (word�1 ,word�2) ⋅ ��1 ,�1 ⋅ ��2 ,�2 , (6)

where �tree is a decay factor to avoid the changes
near the root producing too much in�uence [6]. As
the height increases, the kernel value of the subtree

is penalized by (�tree)size, where size is the height of
the subtree. word� is a string denoted the in-order
traversal on the subtree � as de�ned in Section 3.2.
dist(�, �) is de�ned as follows:

dist (�, �) = lev
,�
max (|�| , |�|) , (7)

where lev
,� is the edit distance between strings �
and �. |�| is the length of string �. Di
erent from
the traditional tree kernel, the similarity between
expressions is not equal to 0. It is denoted by the edit
distance between two expressions. By using the above
de�nition of dist(�, �), expression-level modi�cations
that arementioned in Problem 2will be discovered by
ASTK and WASTK.

(2) If the root of �1 is di
erent from the root of �2, then
� (�1, �2) = 0. (8)

(3) If the roots of �1 and �2 are both leaf nodes, then

� (�1, �2) = �tree ⋅ ��1 ,�1 ⋅ ��2 ,�2 . (9)

(4) Otherwise,

� (�1, �2) = �tree

⋅
ns(�1)∏
�
(1 + ns(�2)

max
�
� (st (�1,
) , st (�2, !)))

⋅ ��1 ,�1 ⋅ ��2 ,�2 ,

(10)

where ns(�) is the number of subtrees rooted at children
nodes of root� and st(�,
) is the subtree rooted at the
th
children node of root�. Due to the root of �1 being the same
as the root of �2, ns(�1) = ns(�2).

A�er computing tree kernel�(�1, �2) between�1 and�2,
a normalization is needed.	emethod of normalization is as
follows:

� (�1, �2) = � (�1, �2)
√� (�1, �1) ⋅ � (�2, �2)

, (11)

where�(�1, �2) is the cosine similarity ofh(�1) andh(�2). In
ASTK and WASTK, �(�1, �2) is the similarity of two pieces
of source code.

Table 2: 	e sizes of datasets.

Fold # Type of set Number of code pairs

1 Training set 14810

1 Testing set 7404

2 Training set 14809

2 Testing set 7405

3 Training set 14809

3 Testing set 7405

4. Experimental Results

4.1. Datasets. 	ere are two groups of data. 	e programs in
each group are generated from 10 independent submissions of
programs for the same assignment by applying to 40 di
erent
generators. Table 2 shows the sizes of datasets.

	reefold cross-validation has been adopted for the
experiment.	e dataset has been randomly split into 3 parts.
Each time, one part is used as a testing set and the other two
parts are used as a training set.

	e 10 independent submissions of programs for each
assignment are randomly picked from the submitted solution
of “Problem I” and “Problem J” by students who attend the
�nal exam of C programming course in Harbin University of
Science andTechnology.	ese pieces of code are very short as
the average number of lines is no more than 20. Particularly,
a programming framework is provided in “Problem J.”

	e 40 generators are designed by 40 players who attend
the Jisuan-zhidao programming contest (https://nanti
.jisuanke.com/contest). 	e generator reads original pro-
grams as the input and returns the plagiarized programs as
results. Only the generated programs functionally equivalent
to the original ones are used.

All valid generated programs are used in the datasets and
labeled. 	e programs generated from the same program are
labeled as the same origin. Any pair of programs that are
labeled as the same origin will be treated as plagiarism.

4.2. Evaluation of Proposed Methods. A�er determining the
similarity score of a pair of programs, it still needs to eval-
uate whether these two programs are plagiarized or not.
	erefore, a threshold # of the similarity score is suggested.
	e threshold # is determined by setting it to di
erent values
in � = {0.01� | 0 < � < 100} and using a training set to
�nd which value generates the best outcome. 	e pair with
the similarity score higher than # will be treated as a plagia-
rism.

In this study, precision is a measurement method des-
cribed as the number of true plagiarized programs over the
number of all programs that are marked as plagiarism. Recall
is another measurement method described as the number
of all found plagiarized programs over the number of all
plagiarized programs.

Since we have the assumption that the positive case of
plagiarism is rare and the negative case of plagiarism is com-
mon, in addition to precision and recall, Jaccard score is
picked as a reasonable method for evaluation.

https://nanti.jisuanke.com/contest
https://nanti.jisuanke.com/contest

6 Scienti�c Programming

Table 3: 	e thresholds # of WASTK, ASTK, Sim, and JPlag.

Tool 1st-fold 2nd-fold 3rd-fold Average

WASTK 0.77 0.77 0.77 0.77

ASTK 0.96 0.96 0.96 0.96

Sim 0.12 0.15 0.15 0.14

JPlag 0.11 0.10 0.08 0.10

Jaccard score is calculated as follows:

Jaccard score = TP

TP + FP + FN , (12)

where TP is the number of plagiarized programs that are
marked as plagiarism. FP is the number of nonplagiarized
programs that are marked as plagiarism. FN is the number
of plagiarized programs that are not marked as plagiarism.

4.3. Results. Our experiments select Sim and JPlag to com-
pare with ASTK and WASTK. In a survey, Deokate and
Hanchatementioned four popular plagiarism detection tools:
JPlag, Sim, MOSS, and Plaggie in 2016 [19]. However, MOSS
is running on the web server, and the results contain nomore
than 250 pairs of code in high similarity. Plaggie is similar
to JPlag but it only supports Java [20]. As a result, we select
Sim and JPlag as comparison tools while Sim represents the
parse tree algorithm and JPlag represents the string-matching
algorithm.

In all experiments, the decay factor �tree is set to 0.1
empirically. Table 3 shows the thresholds # for WASTK,
ASTK, Sim and JPlag, which are determined by using the
training data. 	e performance results are judged according
to Jaccard score.	e average value is used as the threshold for
each model in the experiments.

	e results by applying di
erent models on the testing
data of each fold are shown in Table 4, and the corresponding
comparison of these four tools is illustrated in Figure 4.

According to the results, the precision values of ASTK
and WASTK are much higher than Sim and JPlag. 	e
recall values of ASTK and WASTK are much higher than
JPlag but slightly less than Sim. 	e Jaccard score, as the
overall evaluation measure, shows the advantage of ASTK
and WASTK. 	e Jaccard scores of ASTK and WASTK are
much greater than Sim and JPlag.

	e added weights in WASTK damage precision but
increase recall. 	e Jaccard score of WASTK is higher than
ASTK, showing that the TF-IDF weighting is worthy.

4.4. An Online Example. WASTK has been applied to an
online exam held on Jisuanke (https://www.jisuanke.com/)
for code plagiarism detecting, and 290 accepted pieces of
source code are collected about one problem in this exam.
	is problem inputs only two numbers � and � and outputs
the result whether number � can be divided by number
�. 	e average number of lines of these pieces of code is
11.

	e following illustrates two pieces of code selected to be
analyzed.

(1) #include"stdio.h" (1) #include<stdio.h>
(2) intmain() (2) intmain()
(3) { (3) {int a,b;
(4) intM,N; (4) scanf("%d",&a);
(5) scanf("%d",&M); (5) scanf("%d",&b);
(6) scanf("%d",&N); (6) if(a%b==0)
(7) if(M%N==0) (7) printf("YES");
(8) printf("YES\n"); (8) else
(9) else (9) printf("NO");
(10) printf("NO\n"); (10)
(11) return 0; (11)
(12) } (12)

(13)
(14)
(15) }

	eir similarity is 0.694 detected by WASTK while the
similarity is 0.93 detected by Sim. It is easy to �nd that the
structures of these two pieces of code are almost the same.	e
variable names in them are di
erent. Also, themethods of the
head �le reference are di
erent.	ere is one line of “return 0;”
at the end of the le� one but it is not found in the right one.
Moreover, these two pieces of code contain di
erent linefeed
at the beginning and the end of the function “main.”

For these short pieces of code of simple problems, a
higher similarity is obtained by the ordinary detection tool
like Sim, but it may lead to a wrong judgment. However,
WASTK acquires a more accurate result by catching the
unique features of each piece of code.

5. Conclusions

In this paper, a method and its enhancement for detecting
source code plagiarism are proposed. 	is method not only
considers the similarity between two pieces of code but
also takes the context of programming into consideration.
WASTK transforms string based programs to abstract syntax
trees. 	e nodes on trees are weighted according to both tree
structural similarity between a pair of programs and common
structures of all programs in the dataset.

According to the results of the experiments, ASTK and
WASTK perform much better than other popular methods
on the same datasets. ASTK and WASTK are both based on
the structure of programs instead of text like JPlag or token
sequences like Sim. Besides, improved tree kernel considers
the similarity between corresponding expressions for two
subtrees, which is helpful for detecting plagiarismwithminor
changes. Additionally, WASTK adds weights to ASTK, which
increases the recall and Jaccard score by applying TF-IDF.
When the pieces of code have common frameworks or are
based on similar solutions, TF-IDF sets lower weights to their
nodes to avoid misjudgments.

WASTK can help instructors to detect whether plagiarism
exists in the assignments of students in both online and o�ine
computer science education. Also, it can be applied to online
programming contests to detect plagiarism. When programs

https://www.jisuanke.com/

Scienti�c Programming 7

Table 4: 	e results of WASTK, ASTK, Sim, and JPlag on the testing data of each fold.

Fold # Tool Precision Recall Jaccard TP FP FN

1 WASTK 0.878981 0.532134 0.495808 414 57 364

1 ASTK 1.0 0.48329 0.48329 376 0 402

1 Sim 0.271504 0.596401 0.229362 464 1245 314

1 JPlag 0.311388 0.224936 0.150215 175 387 603

2 WASTK 0.872527 0.518954 0.482382 397 58 368

2 ASTK 1.0 0.461438 0.461438 353 0 412

2 Sim 0.272888 0.603922 0.231463 462 1231 303

2 JPlag 0.280702 0.20915 0.13617 160 410 605

3 WASTK 0.871965 0.50641 0.47136 395 58 385

3 ASTK 1.0 0.442308 0.442308 345 0 435

3 Sim 0.275656 0.592308 0.231695 462 1214 318

3 JPlag 0.289286 0.207692 0.137521 162 398 618

0

0.2

0.4

0.6

0.8

1

1 2 3

WASTK

ASTK

Sim

JPlag

(a) Precision

WASTK

ASTK

Sim

JPlag

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3

(b) Recall

0

0.1

0.2

0.3

0.4

0.5

1 2 3

WASTK

ASTK

Sim

JPlag

(c) Jaccard

Figure 4: Comparison of four tools.

contain a common framework or solutions for problems are
simple, WASTK will show a better performance.

However, there is still space for improvement.	e current
method employs the tree kernel, a symmetric similarity
measurement which may lead the judgment to a wrong
direction. Moreover, e�ciency is still a problem since the
comparison has to be made between each pair of programs.

Disclosure

	is work is performed when Deqiang Fu is visiting Jisuan
Institute of Technology at Beijing Judao Youda Network
Technology Co. Ltd. as a research intern.

Competing Interests

	e authors declare that they have no competing inter-
ests.

Acknowledgments

	is work is supported by the Fundamental Research Funds
for the Central Universities (no. 2016JX06), the National
Natural Science Foundation of China (no. 61472369), and the
Computer Science Education Foundation of Jisuan Institute
of Technology at Beijing Judao Youda Network Technology
Co. Ltd.

8 Scienti�c Programming

References

[1] D. Kermek and M. Novak, “Process model improvement for
source code plagiarism detection in student programming
assignments,” Informatics in Education, vol. 15, no. 1, pp. 103–
126, 2016.

[2] E. Eret and A. Ok, “Internet plagiarism in higher education:
tendencies, triggering factors and reasons among teacher can-
didates,”Assessment and Evaluation inHigher Education, vol. 39,
no. 8, pp. 1002–1016, 2014.

[3] D. Sraka and B. Kaučič, “Source code plagiarism,” in Proceedings
of the ITI 31st International Conference on Information Technol-
ogy Interfaces (ITI ’09), pp. 461–466, Cavtat/Dubrovnik, Croa-
tia, June 2009.

[4] H. Kikuchi, T. Goto, M. Wakatsuki, and T. Nishino, “A
source code plagiarism detecting method using alignment with
abstract syntax tree elements,” in Proceedings of the 15th IEEE/
ACIS International Conference on So�ware Engineering, Arti	-
cial Intelligence, Networking, and Parallel/Distributed Comput-
ing (SNPD ’14), 6, 1 pages, July 2014.

[5] Bradley Beth. A comparison of similarity techniques for detect-
ing source codeplagiarism, Department of Computer Science,
	e University of Texas at Austin, 2014, https://www.cs.utexas
.edu/∼bbeth/�les/AComparisonOfSimilarityTechniquesForDe-
tectingSourceCodePlagiarism.pdf.

[6] H.-J. Song, S.-B. Park, and S. Y. Park, “Computation of program
source code similarity by composition of parse tree and call
graph,”Mathematical Problems in Engineering, vol. 2015, Article
ID 429807, 12 pages, 2015.

[7] M. Collins and N. Du
y, “Convolution kernels for natural lan-
guage,” in Proceedings of the 15th Annual Neural Information
Processing Systems Conference (NIPS ’01), pp. 625–632, Vancou-
ver, Canada, December 2001.

[8] K. S. Jones, “A statistical interpretation of term speci�city and
its application in retrieval,” Journal of Documentation, vol. 28,
no. 1, pp. 11–21, 1972.

[9] M.Mozgovoy, “Desktop tools for o�ine plagiarism detection in
computer programs,” Informatics in Education, vol. 5, no. 1, pp.
97–112, 2006.

[10] S. Schleimer, D. S. Wilkerson, and A. Aiken, “Winnowing: local
algorithms for document �ngerprinting,” in Proceedings of the
ACM SIGMOD International Conference on Management of
Data, pp. 76–85, San Diego, Calif, USA, June 2003.

[11] G. Cosma and M. Joy, “An approach to source-code plagiarism
detection and investigation using latent semantic analysis,”
IEEE Transactions on Computers, vol. 61, no. 3, pp. 379–394,
2012.

[12] G. Whale, Plague: Plagiarism Detection Using Program Struc-
ture, School of Electrical Engineering and Computer Science,
University of New South Wales, 1988.

[13] M. J. Wise, “Yap3: improved detection of similarities in com-
puter program and other texts,” ACM SIGCSE Bulletin, vol. 28,
no. 1, pp. 130–134, 1996.

[14] G. Malpohl, Jplag: detecting so�ware plagiarism, 2006, http://
www.ipd.uka.de/.

[15] M. Mozgovoy, S. Karakovskiyz, and V. Klyuev, “Fast and reli-
able plagiarism detection system,” in Proceedings of the 37th
Annual Frontiers in Education Conference-Global Engineering:
Knowledge Without Borders, Opportunities Without Passports,
pp. S4H-11–S4H-14, IEEE,Milwaukee,Wis, USA, October 2007.

[16] B. S. Baker, “On �nding duplication and near-duplication in
large so�ware systems,” in Proceedings of the 2nd Working Con-
ference on Reverse Engineering, pp. 86–95, July 1995.

[17] D. Gitchell and N. Tran, “Sim: a utility for detecting similarity
in computer programs,”ACM SIGCSE Bulletin, vol. 31, pp. 266–
270, 1999.

[18] B. Belkhouche, A. Nix, and J. Hassell, “Plagiarism detection in
so�ware designs,” in Proceedings of the 42nd Annual Southeast
Regional Conference (ACM-SE 42 ’04), pp. 207–211, Huntsville,
Ala, USA, April 2004.

[19] B. V. Deokate andD. B. Hanchate, “So�ware source code plagia-
rism detection: a survey,” Journal of Multidisciplinary Engineer-
ing Science and Technology, vol. 3, no. 1, pp. 3747–3750, 2016.

[20] J. Hage, P. Rademaker, andN. vanVugt,AComparison of Plagia-
rism Detection Tools, Utrecht University, Utrecht, 	e Nether-
lands, 2010.

https://www.cs.utexas.edu/~bbeth/files/AComparisonOfSimilarityTechniquesForDetectingSourceCodePlagiarism.pdf
https://www.cs.utexas.edu/~bbeth/files/AComparisonOfSimilarityTechniquesForDetectingSourceCodePlagiarism.pdf
https://www.cs.utexas.edu/~bbeth/files/AComparisonOfSimilarityTechniquesForDetectingSourceCodePlagiarism.pdf
http://www.ipd.uka.de/
http://www.ipd.uka.de/

Submit your manuscripts at

https://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

