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Abstract—Many mission-critical applications such as military
surveillance, human health monitoring, and obstacle detection
in autonomous vehicles impose stringent requirements for event
detection accuracy and demand long system lifetimes. Through
quantitative study, we show that traditional approaches toevent
detection have difficulty meeting such requirements. Specifically,
they cannot explore the detection capability of a deployed system
and choose the right sensors, homogeneous or heterogeneous, to
meet user specified detection accuracy. They also cannot dynam-
ically adapt the detection capability to runtime observations to
save energy. Therefore, we are motivated to propose Watchdog,
a modality-agnostic event detection framework that clusters
the right sensors to meet user specified detection accuracy
during runtime while significantly reducing energy consumption.
Through evaluation with vehicle detection trace data and a
building traffic monitoring testbed of IRIS motes, we demonstrate
the superior performance of Watchdog over existing solutions in
terms of meeting user specified detection accuracy and energy
savings.

I. I NTRODUCTION

Wireless sensor network deployments have been widely
used for event detection in military surveillance [1], ambu-
latory medical monitoring [2], and vehicle tracking [3]. These
event detection scenarios usually require high accuracy to
achieve application goals. For example, urban planners may
wish to monitor traffic flow at a troublesome intersection [3]
with less than 5% false positive and false negative vehicle
detection rates. A high false positive rate may precipitatea
costly and unneeded road expansion. Similarly, a high false
negative rate in detection may cause the planners to cancel a
proposed road expansion, leading to worsening traffic condi-
tions. Such an event detection application must meet a user’s
event detection accuracy requirements with a long deployment
lifetime. When a framework makes event detection decisions
that meet a user’s accuracy requirements in terms of desired
false positive and false negative rates, we say it isconfident.

Several challenges exist to provide a confident event detec-
tion framework:

• How to cluster the right sensors in order to meet user
detection requirements? Previous work has shown that
event detection with individual sensors can exhibit up to
60% false positive and false negative rates while sensor
collaboration through clustering can significantly reduce
such inaccuracies [1]. In order to cluster the right sensors,
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we must first determine how to differentiate the sensing
capabilities of individual sensors and sensor clusters in
a specific deployment. Secondly, how can the detection
capability of a specific deployment be obtained? Lastly, if
the detection capability of a specific deployment exceeds
the user detection requirements, how to obtain a subset
of the detection capability to save energy and still meet
the user requirements?

• Since many real deployments use multiple sensor modal-
ities, how to efficiently perform collaboration between
heterogeneous sensors to meet specific user require-
ments? Instead of relying on different sensing models
for different modalities, how to create a generic solution
that can work easily and efficiently with a wide range of
deployments and sensor modalities?

• How to adapt the detection capability to runtime sen-
sor observations? Some runtime observations may easily
yield a confident event detection decision with a small,
energy-efficient cluster of sensors. However, other run-
time observations may require more detection capability.
With different runtime observations requiring different
detection capabilities, how to form different clusters with
different detection capabilities? Furthermore, how can
these clusters of varying capability collaborate to perform
confident event detection within a deployment?

Existing approaches for event detection do not provide a
holistic solution with respect to addressing these challenges.
Sensing coverage approaches [4] [5] only provide best effort
detection and do not cluster the right sensors to meet user
detection requirements. Many machine learning [6] approaches
cluster sensors to save energy, but do not provide confident
event detection. Application or modality-specific sensingmod-
els [7] [8] can determine theoretical detection accuracy, but
this accuracy is not always achieved during runtime since
these models fail to account for sensing irregularity [5]. In
all of these existing approaches, the detection capabilityof a
deployment is not fully explored to cluster the right sensors to
meet user requirements during runtime event detection in an
energy efficient way. Therefore, we are motivated to address
these issues, and our main contributions are:

• With trace data from a vehicle detection application, we
show the drawbacks of existing solutions. We motivate
the need for a holistic framework that provides confident
event detection with user-defined accuracy, addresses



heterogeneous sensor fusion, and reduces energy usage.
• We propose Watchdog, an event detection framework,

which is able to fully explore the available event detection
capability of a specific deployment. Watchdog is also able
to cluster the right sensors to enforce user-defined event
detection accuracy during runtime.

• Watchdog is able to dynamically adjust its detection
capability to runtime observations. For observations that
can easily yield confident event detection decisions, an
energy efficientsentinelsensor cluster is used. For more
difficult observations for which thesentinel cluster is
not able to make a confident decision, a less energy
efficient but more powerfulreinforcementsensor cluster
is used. Watchdog coordinates the two clusters so that
user detection requirements can always be met with
maximum energy savings.

• Watchdog is designed as a generic framework, whose
performance is evaluated in two scenarios: a vehicle
detection application using trace data and a building
traffic monitoring application using IRIS motes. The
performance evaluation shows that Watchdog can always
meet user-specified detection accuracy with reduced en-
ergy usage, while in many cases existing solutions cannot.

The rest of this paper is organized as follows: We present
related work in Section II and motivate our Watchdog design in
Section III. We describe our detailed Watchdog design in Sec-
tion IV and present its performance evaluation in Section V.
Finally, we present conclusions and future work in Section VI.

II. RELATED WORK

Many event detection approaches attempt to address in-situ
sensing reality but do not cluster the right sensors to meet user
detection requirements. In sensing coverage approaches [9] [4]
[10] [11] [5] [12], energy savings is emphasized by ensuringat
leastk nodes are awake to cover a detection location, leaving
all other nodes asleep. The authors of [13] use statistical
models to remove outlier sensor data as noise. Regions of
similar sensor data are detected in [14]. In [15] and [16],
event detection is provided for multiple modalities along with
a sleeping scheme to save energy. Other solutions use machine
learning techniques to address in-situ sensing reality, such as
feature classification [17] [18] [19] [6] [20], Hidden Markov
Models [21] [22], or both [23]. Contrasting with Watchdog,
none of these approaches cluster the right sensors to provide
confident event detection with energy savings.

Another group of event detection solutions use a modality-
specific sensing model that allows for predicting system or
sensor cluster accuracy. An accelerometer-oriented sensing
model is used in [24]. A sensing model for camera-based target
localization is presented in [25]. Specific sensing models for
acoustic, magnetic, and PIR sensors are presented in [26]. A
signal attenuation-based model is used in [8] [27] [28] [29]
[30] [31], which gives a false positive rate and false negative
rate for a given modality and set of training data, allowing
for data fusion between multiple sensors [32]. An attenuation-
based model is also used in [33], where nodes in a cluster

collaborate in detection to provide energy savings. Both [34]
and [35] rely on mathematical sensing models to detect events,
using a probabalistic noise distribution. More general sensing
models, such as disc-based [36] [37] [38] [7], can apply to
a wider range of sensing modalities with reduced accuracy.
In comparison with Watchdog, these model-driven approaches
are modality-specific and do not reflect sensing irregularities
[5] in real deployments. None explore the detection capability
of a specific deployment to cluster the right sensors and
provide confident event detection.

III. M OTIVATION

In this section, we demonstrate the need for a new approach
to confident event detection with reduced energy consumption.
Our goal is to provide confident event detection at a critical
point, such as monitoring vehiclular traffic flow, detecting
soldiers crossing a bridge, or health monitoring with body
sensor networks. As an example, we utilize the Wisconsin
SensIT experiment [3] to perform vehicle detection at a
specific location. The SensIT experiment consists of a 75 node
network with acoustic, seismic, and infrared sensors. Withthe
trace data, we quantify the differences of detection accuracy
among individual sensors and sensor clusters and analyze their
impact on existing event detection solutions. Unlike existing
approaches, we conclude that performance differences be-
tween different sensors and sensor clusters cannot be ignored
in confident event detection.

In the trace data analysis, we define a target location at
the “X” along the road in Figure 1. Data is aggregated into
time intervals of 100ms length. A time interval is defined as
an event time interval when the vehicle is present within 2
meters of the target location. With this in mind, we determine
vehicle detection accuracy for individual sensors and sensor
clusters using the method that we present in Section IV-B and
we plot the results in Figure 1.

In Figure 1 (a), we first observe that sensors with the same
distance to the target location may exhibit different detection
accuracies. For example, nodes 41 and 50 are both 80m from
the target location, but their detection accuracies are different,
93% and 56%, respectively. This is because while accuracy
generally decreases with distance from the target location,
terrain changes and environmental conditions still produce
irregularities in sensor performance, which is consistentwith
the findings in [5]. This observed sensing irregularity can cause
modality-specific sensing models to suffer, such as [8]. For
example, a signal attenuation model for acoustic sensors [8]
derives the same acoustic signal receiving power for sensors
with the same distance to the target location. Therefore, the
same detection accuracy is statistically derived for nodeswith
the same distance (node 41 and 50 in our example). This signal
attenuation model cannot articulate the accuracy differences
among sensors, such as determining which sensor is 93%
accurate and which is 56% accurate in our example. For
this reason, the system performance suffers and the required
detection accuracy can not always be met, which we further
demonstrate in Section V-B.



(a) Individual acoustic sensors, labeled by accuracy. (b) Sensor clusters: with 100% accuracy.

Fig. 1. Sensor and cluster event detection performance withvehicle trace data. The target location is marked by the “X” on the road.

In Figure 1 (a), we also observe that not all sensors within
the 25m sensing range provide the same detection accuracy.
For example, even though both node 60 and 54 are within
the 25m sensing range of the target location, they have dif-
ferent detection accuracies, 93% and 86%, respectively. This
observed sensing difference can cause sensing coverage-based
schemes to suffer. For example, in [1], only one of multiple
sensors with the sensing range is enabled at a time to provide
sensor coverage (or 1-coverage) for energy savings. For our
example, this means that either node 60 or 54 can be turned on
to provide such 1-coverage. However, it is clear that using node
60 will provide 7% points better accuracy than with node 54.
Unfortunately, sensing coverage schemes have no knowledge
of such subtle but important detection accuracy differences,
and hence cannot provide confident event detection.

Figure 1 (b) illustrates that different sensor clusters areable
to provide the same detection accuracy. For example, clusters
C1, C2, andC3 (consisting of different sensor modalities) can
all provide 100% detection accuracy even though individual
sensors cannot. As shown in [39], clustering sensors can pro-
duce a synergistic effect, allowing sensors with complimentary
detection strengths in different scenarios to collaborate. Ex-
ploring the detection capability of a deployment by evaluating
the performance of different sensor clusters allows the most
energy efficient clusters to be chosen to confidently detect
events. However, such thorough exploration is not achieved
by existing works and thus user-defined accuracy requirements
cannot be met with reduced energy usage.

While more negative impacts on existing works can be
observed in Figure 1, we leave it to individual readers due to
space limitations. From the trace data analysis, it is very clear
that existing approaches have difficulty meeting user required
detection accuracy. This is due to lack of detailed detection
accuracy knowledge of individual sensors and sensor clusters.
Therefore, it is imperative to design a scheme that can provide
confident event detection with user-defined accuracy, address
in-situ sensing reality, and reduce energy usage.

IV. WATCHDOG DESIGN

In our Watchdog architecture, depicted in Figure 2, compu-
tationally limited nodes with sensors are connected through a
link to a more powerful aggregator. Nodes collect sensor data
and return observations to the aggregator, which makes event

detection decisions. Our architecture is structured to solve the
challenges that arise from providing confident event detection
through the use of the Local Aggregation, Cluster Generation,
Sentinel and Reinforcement Selection, and Runtime Event
Detection modules.

Fig. 2. Watchdog design with node and aggregator components.

The Local Aggregation module, located on sensor nodes, is
used to provide efficient collaboration between heterogeneous
sensors. Sensor data is aggregated such that observations from
different sensor modalities can be compared and easily fused
at the aggregator to make cluster-level detection decisions.

In Cluster Generation, we explore the detection capability
of a deployment by determining the detection capabilities of
individual sensors and sensor clusters within the deployment.
We also use Hidden Markov Models [40] to determine accu-
racy between clusters of heterogeneous sensors.

In Sentinel and Reinforcement Selection, clusters are se-
lected that adapt the detection capability of a specific deploy-
ment to runtime observations. Using the deployment detection
capability determined by Cluster Generation, a subset of that
capability is selected such that the user requirements can
be met. A cluster of low-powersentinelsensors is selected
to meet the user detection requirements for many runtime
observations, when event detection decisions are easy. For
more difficult event detection decisions where more detection
capability is needed, a cluster ofreinforcementsensors is
selected to ensure the user detection requirements are met.

In Runtime Event Detection, the detection capability is
adapted to runtime observations using the clusters selected
in Sentinel and Reinforcement Selection. Specifically, a low-
power set of sentinel sensors make easy event detection deci-
sions to meet user accuracy requirements. When the sentinel
sensors determine that more detection capability is needed,
a second set of reinforcement sensors are used to make a



confident detection decision.
Currently, we make use of offline training to determine

detection models for different sensor clusters and assume
that training data is representative of runtime data. In the
evaluation, different data are used for training and runtime de-
tection, which demonstrates negligible impact on performance.
However, if computation and energy concerns permit, online
training can allow for periodic detection model updates.

A. Local Aggregation

On a sensor node, the Local Aggregation module allows
nodes to aggregate data locally at regular intervals, allowing
for reduced radio communication and heterogeneous sensor
fusion. The module is flexible to allow incorporation of
different widely used aggregation algorithms. The aggregation
interval length is selected such that an event can be captured.
For each sensorj, aggregated data is converted to discrete
observations at each aggregation intervalt: Oj,t ∈ {1...m},
where m is the same for all sensors so that readings from
different modalities can be easily compared. The aggregator
fuses observations from each sensorj in a sensor cluster
Ci to form an observationOCi,t for that cluster. The fused
observations can then be used by the aggregator to determine
sensor cluster accuracy or make runtime detection decisions.

B. Cluster Generation

In Cluster Generation, we determine the detection capa-
bilities of individual sensors and different sensor clusters,
exploring the detection capability of a specific deployment.
To do this, we determine the detection accuracy of sensor
clusters of each possible size (size is 1 for individual sensors)
in the network using training trace observations. Ideally,we
wish to generate all possible clusters of each size to completely
explore the deployment detection capability. However, if com-
puting resources are limited, we can computeM random clus-
ters of each possible size from which to choose sentinels and
reinforcements. Algorithm 1 describes the Cluster Generation
process: (1) First, to compute accuracy for a given clusterCi

in the set of generated clustersC, we train a Hidden Markov
Model for that cluster. A thorough explanation of HMMs and
training is provided by [40]; (2) Second, we determine a cluster
event decision at each training data aggregation interval using
the trained HMM; (3) Finally, we compare the cluster event
detection decision at each interval with measured ground truth
to determine the cluster detection accuracy. Ground truth can
be collected via trace data, monitored through video recording,
or provided by an upper layer application such as with [5].

Step 1. To distinguish events from noise and to help
determine event detection accuracy, we train a Hidden Markov
Model for each cluster. We use HMMs as our event detection
mechanism since HMMs require little initial configuration
and are built upon the premise of determining hidden states
(events) from a sequence of known observations (sensor
readings) [40]. Furthermore, HMMs allow aggregated sensor
readings from different sensor modalities to be easily fused,
providing a generic framework that is adaptable to many

Algorithm 1 Cluster Generation
Input: Set of all sensors in networkN , user-defined false

positive rateu.FP and negative rateu.FN, training obser-
vationsO = {OCi,t|Ci ⊂ N, 1 ≤ t ≤ T }, ground truth
G = {Gt|1 ≤ t ≤ T }, number of clusters for each cluster
sizeM

Output: Set of clustersC = {Ci|Ci ⊂ N}
Randomly generateM clusters for each sizek(1 ≤ k ≤
|N | − 1), add toC
for all clustersCi ∈ C do

Train HMM Ci.λ for Ci with Baum-Welch usingOCi

for Aggregation intervalt(1 ≤ t ≤ T ) do
Determine event probabilityγt with Ci.λ andOCi

if γt ≥ .5 then Et = 1 elseEt = 0
Compare system event decisionEt with Gt

UpdateCi.OA.FN, Ci.OA.FP,Ci.γ.FN, Ci.γ.FP
end for

end for

application scenarios. At each aggregation intervalt, we define
two hidden states in cluster HMMs:Et = 0 for non-events and
Et = 1 for events. We also provide a sequence of known fused
sensor observations for each clusterCi at each aggregation
interval:OCi

. In the Watchdog context, a trained cluster HMM
Ci.λ for cluster Ci assumes that events are correlated with
particular cluster observations and noise is correlated with all
other observations. For instance, in the Wisconsin SensIT data
trace, seismic sensor data may produce very high readings
when a vehicle is close to the sensor, but lower readings when
the vehicle is farther away or not present; a trained HMM will
capture this correlation. HMMs also assume that events and
non-events are correlated with time and make use of transition
probabilities to further predict the likelihood of an eventat
each aggregation interval.

Steps 2 and 3.With a trained HMM for each cluster, we can
determine a cluster’s event decisionEt for each aggregation
interval t. Et is derived from the cluster’s event probability
γt at each training aggregation intervalt. To determineγt

for each aggregation interval, we use the forward algorithm
[40] in conjunction with the trained cluster HMMCi.λ and a
cluster observation sequenceOCi

. The cluster determines an
event occurred at intervalt (Et = 1) if γt ≥ .5 and no event
occurred (Et = 0) if γt < .5. We can then use the cluster’s
event decision sequenceE = {Et|1 ≤ t ≤ T } to compare
with known ground truthG = {Gt|1 ≤ t ≤ T } at each
aggregation interval to determine cluster training accuracy. If,
at aggregation intervalt, the event detection decision is equal
to the ground truth (Et = Gt), then the cluster made a correct
decision att. Otherwise, the decision was a false positive or
false negative.

Event Probability Discussion.We can compute the overall
accuracy for each clusterCi by comparing all event detection
decisionsEt to ground truthGt to determine the overall false
negative rateCi.OA.FN and the overall false positive rate
Ci.OA.FP. However, a cluster with an overall low false positive



Fig. 3. Event probability breakdown for a clusterCi with a 6% overall
false positive rate and no overall false negative rate. For each .1 event
probability range, the associated false positive rateCi.γ.FP and false negative
rateCi.γ.FN are shown as bars. All ranges that have no observations yield a
false positive or false negative rate of 1, since no accuracycan be determined
for that range and hence we assume the worst.

or false negative rate may have all its incorrect decisions result
from event probabilities that hover near .5. During runtime
detection, it is likely that an event probability near .5 will
result in an incorrect decision. Consequently, it is beneficial to
differentiate the accuracies between event probabilities. During
runtime detection, possible bad decisions made by sentinels
due to middle-range event probabilities can be caught and
reinforcements can be used to meet the user requirements.

To study the correlation between event probability and
detection accuracy, for each clusterCi, we break down each
training event probabilityγt into p ranges of size1/p. For
each range we compute false positive ratesCi.γ.FP and false
negative ratesCi.γ.FN. Figure 3 shows an event probability
breakdown of a clusterCi from the Wisconsin vehicle trace
data with 97% overall accuracy withp = 10 probability
ranges. From the figure, it is clear that all negative event
decisions have an event probability in the[0, .1) and [.2, .3),
ranges, while all event decisions have a probability in the
[.9, 1] range. During runtime detection, the event probability
breakdown for the sentinel cluster is used to determine if an
event probabilityγt does not meet user false positive and false
negative requirements and that reinforcement observations
should be collected to make a confident decision.

C. Sentinel and Reinforcement Selection

With the deployment detection capability explored by deter-
mining accuracy for all generated clusters, we choose a subset
of the deployment to remain awake during runtime detection
as sentinels and reinforcements to make confident detection
decisions. We choose sentinels such that all negative event
decisions can be made with confidence: that the user’s false
negative requirement is met by sentinels. Since communication
is the most energy intensive operation in wireless sensor net-
works [41], we minimize energy usage by selecting a sentinel
cluster with sensors on the fewest number of nodes, for only
one radio transmission is needed to report observations from
multiple sensors on the same node in one aggregation interval.

Since sentinels are only concerned with determining the
lack of an event with confidence, we leave more difficult
observations to the more powerful reinforcements when nega-

Algorithm 2 Sentinel and Reinforcement Selection
Input: Set of all sensors in networkN , set of trained clusters

C, user-defined false positive rateu.FP and negative rate
u.FN

Output: Sentinel sensorss, Reinforcement sensorsr
/*Sentinel Selection*/
s.FN=1; s.numNodes=|N |; s = N ;
for all clustersCi ∈ C do

/*Meet user FN with least energy*/
if Ci.OA.FN≤u.FN and Ci.numNodes≤s.numNodes
then

s = Ci

end if
end for
/*Reinforcement Selection*/
r.FP=1;r.FN=1; r.numNodes=|N |; r = N ;
for all clustersCi ∈ (C − s) do

/*Meet user FP and FN with least energy*/
if (s∪Ci).numNodes≤r.numNodesand Ci.OA.FP≤u.FP
and Ci.OA.FN≤u.FN then

r = Ci

end if
end for

tive event decisions cannot be confidently made by sentinels.
Therefore we choose reinforcements so that both the user’s
false positive and false negative requirements are met. We also
ensure that the combined sentinel and reinforcement clusters
are located on the fewest number of nodes to save energy.
The reinforcement cluster has at least one sensor that is not
in the sentinel cluster in order to ensure there is some added
benefit from sampling reinforcement data. The sentinel and
reinforcement selection algorithm is given in Algorithm 2.

D. Runtime Event Detection

In Runtime Event Detection, sentinels and reinforcement
sensors sample observations at each aggregation interval while
all other nodes are asleep. The aggregator dynamically de-
termines an event detection decisionEt for each intervalt
using sentinel or reinforcement observations. From training
observations, a default observation value is determined for
each sensor, which is associated with non-events. To save
energy, a node only transmits observations when at least
one of its sensors makes a non-default observation. If the
aggregator does not receive an observation from a sentinel
or reinforcement sensor when such an observation is needed,
it assumes the default observation value. The Runtime Event
Detection algorithm is described in Algorithm 3.

As shown in the algorithm, for each runtime aggregation
intervalt, sentinels determine an event probabilityγt using the
same method performed in Cluster Generation except runtime
observations are used. Ifγt < .5, the sentinels can confidently
determine that no event has taken place (Et = 0) since the
sentinels were selected such that the user’s false negative
requirement is always met. However, ifγt ≥ .5, we must check



Algorithm 3 Runtime Event Detection
Input: Sentinelss, reinforcementsr, runtime observation for

s for the current aggregation intervalOs,t, may also receive
runtime observations forr for the previous and currrent
aggregation intervalsOr,t−1, Or,t

Output: Event detection decision for the current aggrega-
tion interval Et and for the previous intervalEt−1 if
Et−1=UNDECIDED
if Et−1=UNDECIDED then

/*Make a confident decision att − 1 usingr*/
Determineγt−1 using HMM r.λ andOr,t−1

if γt−1 ≥ .5 then Et−1 = 1 elseEt−1 = 0
end if
Determineγt using HMM s.λ andOs,t

if γt < .5 then
Et = 0 /*s confidently determines no event att*/

else if γt ≥ .5 and s.γ.FP≤u.FP then
Et = 1 /*s confidently determines an event att*/

else if γt ≥ .5 and requestedOr,t has been receivedthen
/*Make a confident decision att usingr*/
Determineγt using HMM r.λ andOr,t

if γt ≥ .5 then Et = 1 elseEt = 0
else

/*A confident decision cannot be made att usings*/
Et=UNDECIDED; requestOr,t andOr,t+1

end if

if the sentinels meet the user’s false positive requirementfor
the given probability range in whichγt falls into, s.γ.FP. If
the user false positive requirement is met,s.γ.FP≤ u.FP, the
sentinels can confidently determine that an event has occurred
(Et = 1). Otherwise, whens.γ.FP> u.FP, then the user false
positive requirement is not met,Et is undecided, and more
detection capability is required by requesting reinforcement
observations. The aggregator sends a request message to
retrieve reinforcement observations for intervalst and t + 1
when a confident decision cannot be made by the sentinels.
The reinforcement observations fort will be returned at the
end of intervalt+1. Piggybacking reinforcement observations
for interval t + 1 along with the observations fort will allow
the aggregator to use reinforcement observations to make
a decision fort + 1 if the sentinels are not confident for
t + 1. Another reinforcement observation request message for
interval t + 1 would not be necessary.

When sentinel observations are returned during an interval
t for the previous intervalt − 1, the aggregator can make a
confident decision, since the sentinels meet the user accuracy
requirements.γt is determined using the reinforcement obser-
vations and an event,Et−1 = 1, is confidently determined if
γt ≥ .5. Otherwise,Et−1 = 0.

To illustrate Runtime Event Detection, an example is pre-
sented in Figure 4. In the figure, the sensors on node 1 are
sentinels while the other two sensors on nodes 60 and 61
are reinforcements. During the first intervalt = 1, no sensors
report non-default observations, so the base station determines

Fig. 4. Runtime detection timeline with sentinel and reinforcement event
decisions, whereu.FN = u.FP = .05. Gray areas indicate sensor readings
that trigger non-default observations. Aggregator-determined event probabil-
ities are indicated byγt and event decisions are indicated byEt. Radio
transmissions due to non-default observations are indicated by the arrows.

an event probability of .02. Since the sentinels have been
determined to meet the overall false negative requirement,
s.OA.FN ≤ u.FN = .05, the decision is confident. A similar
decision also occurs att = 3. At t = 2, the sentinels capture
an event and report their observations via radio, yielding an
event probability of .98. The false positive rate for sentinels
when γt = .98 was determined during training as .02, so
this is a confident decision (.02≤ u.FP = .05). At t = 4
the seismic sentinel sensor does not capture the event, and
the sentinel false positive rate for the current observation and
event probability was determined from training as .45. Since
.45 is greater thanu.FP = .05, the aggregator could not
make a confident decision and more detection capability is
needed. Therefore, reinforcements are signaled to return their
data for t = 4 at the end of intervalt = 5. At t = 5,
the reinforcement data yields a confident event decision for
t = 4 since sentinels always meet the user requirements and
the sentinel data determines that no event has occurred.

V. EVALUATION

Watchdog is designed as a generic framework, so we evalu-
ate its performance in two different application scenarios: vehi-
cle detection using trace data and a building traffic monitoring
application using IRIS motes. Our evaluation is conducted
through three aspects. First, we demonstrate that Watchdog
is able to explore the detection capability of a specific de-
ployment and cluster the right sensors to meet user detection
requirements. Next, we compare against a sensing coverage-
based framework and illustrate that Watchdog achieves a
significantly higher performance. Finally, we compare against
a detection framework which uses a modality-specific sensing
model and show that Watchdog can adapt the detection capa-
bility to runtime observations and always meet user detection
requirements while the model-driven approach cannot. In the
experiments, for Watchdog, we generateM = 15 clusters for
each possible cluster size, and for each cluster, we aggregate
sensor readings at each interval into two observations: 0 and
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Fig. 5. Cluster Training and Runtime Detection. An integer besides the “x” denotes the number of clusters that give the corresponding FP or FN rate.

1. Energy is measured as usage of CC2420 radios [42] and is
derived as power consumption (W)× time (s).

A. Exploring Detection Capability and Meeting Requirements

In this group of experiments, we show that by exploring
the detection capability of a specific deployment, Watchdog
can choose the right sensor clusters to meet user-defined false
positive and false negative rates. We place five IRIS motes
with attached MTS310 sensorboards (2-axis accelerometer,2-
axis magnetometer, acoustic, light sensors) [43] on the main
entrance door of the Computer Science building to monitor
the traffic pattern of when people are most often entering
and leaving the building. We define an event and measure the
ground truth as the time period during which someone opens
the door and walks through (either entering or exiting), with
the door automatically closing behind. We obtained ground
truth via video recording of the building entrance and sampled
data at 20ms intervals using the heterogeneous sensors on the
mote sensorboards. Using the collected trace data, in Figure
5 (a) (b), we plot the number of clusters for each cluster size
that achieve the same training false positive or false negative
rate. In Figure 5 (c) (d), we plot cluster training performance
compared with runtime performance. In Figure 5 (a) (b), there
are only a limited and discrete number of false positive and
false negative rates that the deployed system can support. To
that end, a user can only require a false positive or false
negative rate that can be supported by the system. For example,
most sensors and sensor clusters have false positive and false
negative rates near zero, while only a few experience false
positive rates greater than 70% or false negative rates greater
than 45%. This set of cluster performances is determined by

the sensor hardware and local sensing reality where the system
is deployed. Different scenarios may produce different false
positive and false negative rates for each cluster.

In Figure 5 (a) (b), we also observe that even in a small
deployment with “5 IRIS× 6 sensors each = 30 sensors”,
there are a large number of sensor clusters available to meet
user specified false positive or false negative rate. As shown
in Figure 5 (a), there are exactly 3+3+2=8 sensor clusters that
demonstrate a 5% false positive rate in the training data and
there are 189 sensor clusters in Figure 5 (a) that demonstrate
smaller than a 5% false positive rate. So, in total, 8+189=197
different sensor clusters can be chosen to meet the user-
specified 5% false positive rate.

In Figure 5 (c) (d), we observe that during runtime detection,
Watchdog is able to meet the false positive or false negative
rate explored during training. For example, Figure 5 (c) shows
that 48 clusters with a training false positive rate of 0% achieve
this performance during runtime; Figure 5 (d) shows that 182
clusters with a false negative rate of 0% also demonstrate
no false negatives during runtime. In Figure 5 (c) (d), we
also observe that clusters with higher training false positive
or false negative rates achieve significantly better runtime
performance: 6 clusters with a training false positive rateof
72% achieve a runtime false positive rate of 10%, and 13
clusters with a training false negative rate greater than 20%
achieve a runtime false negative rate of 5% or less.

To summarize, these data illustrate that Watchdog is able
to cluster the right sensors to meet user requirements during
runtime. Plus, many clusters of different sizes exist to meet
user-required accuracy. This allows for freedom in sentinel
and reinforcement selection to adapt the detection capability
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Fig. 6. Watchdog and V-SAM comparison for different modalities, levels of V-SAM coverage, and training lengths.

to runtime observations and maximize energy savings.

B. Comparison with V-SAM

We compare Watchdog to the most recent sensing coverage
framework that addresses sensing irregularity, V-SAM [5].V-
SAM measures data similarity between sensors, and keeps
awake only a cluster of sensors whose members sample
dissimilar data. This similarity is recomputed at every update
interval along with a new sleep schedule. V-SAM detects an
event if energy readings of awake sensors surpass a dynamic
noise threshold, causing all sensors to wake up to monitor the
event. A node only transmits a packet if it detects at least
one event during an update interval. In this experiment, we
use the building traffic monitor application. Besides the de-
fault V-SAM similarity-based coverage approach, we forcek-
coverage on V-SAM to illustrate performance under different
levels of sensor coverage. We set the Watchdog aggregation
interval and the V-SAM update interval to 4s and give V-
SAM the same training data as Watchdog with performance
compared using runtime data. Though V-SAM cannot provide
guaranteed accuracy, we set the Watchdog user requirements
to the lowest false positive and false negative rates determined
from training. Evaluation results are presented in Figure 6
with 95% confidence intervals over 20 runs. In Figure 6
(a) (b), We observe that Watchdog outperforms V-SAM in
every configuration: all modalities, individual modalities, and
varying levels of V-SAM coverage. Although using higherk-
coverage and similarity-based coverage helps improve V-SAM
performance, it is always outperformed by Watchdog, which
consistently demonstrates close to 100% detection accuracy in
Figure 6 (a) and close to zero false negatives in Figure 6 (b).

None of the Watchdog or V-SAM configurations experience
statistically noticeable false positives, so false positive rates are
not illustrated. Watchdog can consistently outperform V-SAM
because Watchdog fully explores the detection capability of
individual sensors and sensor clusters in a deployed systemand
cluster the right sensors to meet user requirements. However,
V-SAM has no detailed knowledge of detection accuracy, so
the most accurate sensors may be excluded while poor per-
forming sensors may become involved in detection decisions.

In Figure 6 (c), we observe that Watchdog is much more
energy efficient than V-SAM. As shown in Figure 6 (c),
Watchdog energy consumption is relatively constant for all
modalities and for each modality, hovering around9 × 10−4

J, while V-SAM energy consumption (when achieving good
performance) varies within10 × 10−4 ∼ 26 × 10−4 J. Even
though Watchdog may use more energy than 1 or 2-coverage
V-SAM, Watchdog achieves about 35% points better accuracy
compared with those V-SAM configurations. Watchdog is sig-
nificantly more energy efficient than V-SAM since Watchdog
fully explores the detection capability of individual sensors and
sensor clusters. Hence, Watchdog can use this knowledge to
adapt sensing capability to runtime observations while making
confident detection decisions, but V-SAM cannot.

Training Length. In Figure 6 (d), we observe that for
Watchdog to achieve the aforementioned superior detection
accuracy and energy efficiency compared with V-SAM, only a
short training length is needed. As shown in Figure 6 (d), when
the training length increases, Watchdog performance improves
quickly, surpasses V-SAM performance, and converges to near
perfect accuracy after about 2 minutes, which is reasonably
short for real applications. Even though V-SAM requires little
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Fig. 7. Watchdog and modality-specific sensing model comparison with sensors located within 25m of, or more than 40m from, the target location.

training, which is invisible in Figure 6 (d), it demonstrates
much lower detection accuracy and much higher energy usage
than Watchdog. Since the training length is short, the use of
periodic retraining can handle environmental changes.

C. Comparison with a Modality-Specific Sensing Model

In this section, we compare Watchdog with a classical
model-driven event detection solution [8] that uses a modality-
specific sensing model. In [8], a signal attenuation model is
used to estimate signal energy for targets of different distances
with a Gaussian noise distribution model. Given user-defined
false positive rate, the model-driven implementation in [8] can
derive an event detection threshold for the average energy
readings of all sensors in a cluster. Clusters are formed by
including all sensors within a fixed distance (fusion range)to a
target location with all others put to sleep. For fair comparison,
we use the same Wisconsin SensIT experiment trace data [10]
used in [8] and make use of acoustic sensors to detect vehicles
at a target location. An event occurs when a vehicle is located
within 2 meters of the target location. Data is sampled at
4960 Hz and we make use of the AAV8 run for training and
the AAV11 run for runtime detection. Ground truth of the
vehicle location is provided in the trace. Further details on
the experimental setup are given in [3]. For Watchdog and the
model-driven scheme, we set an 100ms aggregation interval
and compare with varying levels of desired false positive rates
since the model-driven scheme in [8] cannot take user-defined
false negative rates as input. Our evaluation is conducted in
two scenarios: when the target location is well within the
sensing range of all sensors, and when the sensors are located
at the fringe of the detection range. In the first scenario, we
use 5 acoustic sensors< 25m to the target location; in the
second, we use 7 acoustic sensors with distances> 40m from
the target location. The results are plotted in Figure 7.

For the<25m scenario, we observe from Figure 7 (b) that
Watchdog always meets the user false positive requirement
while the model-driven scheme cannot. For instance, in Figure
7 (b), the model-driven scheme has a 28% false positive rate
when 20% is required, and gives a 42% false positive rate
when 40% is required. We also observe from Figure 7 (a)
that Watchdog yields perfect accuracy, while model-driven
accuracy drops when the desired false positive rate increases.
Watchdog performs better than the model-driven scheme be-
cause Watchdog always chooses sentinels and reinforcements

that meet user requirements for confident event detection.
The model-driven scheme does not exploit such subtle but
important information.

For the >40m scenario, we also observe that Watchdog
always meets user requirements but the model-driven scheme
performs poorly or even fails. For example, when user requires
a 5% false positive rate, the model-driven approach experi-
ences very low accuracy, 67% in Figure 7 (a), and a very high
false negative rate, 100% in Figure 7 (c). This is because for
a low desired false positive rate, the model-driven detection
threshold is set too high to detect any events. We also find in
Figure 7 (c) that requesting higher false positive rates does not
help much. The poor performance of the model-driven scheme
and the good performance of Watchdog can be explained with
the same reasons attributed to the<25m scenario.

For both scenarios, Watchdog is found to consume signif-
icantly less energy than the model-driven scheme as shown
in Figure 7 (d). This is because the model-driven scheme in
[8] has a very simple energy saving scheme: nodes within
the 25m “fusion range” are awake and nodes beyond the
range all sleep. On the contrary, Watchdog adapts the detection
capability to runtime observations through the use of sentinels
and reinforcements for more aggressive energy savings. In
Figure 7 (d), we also observe that the model-driven scheme
consumes more energy in the>40m scenario than the<25m
scenario. This is because 7 nodes are used instead of 5.

TABLE I
ADAPTING DETECTION CAPABILITY TO RUNTIME OBSERVATIONS.

Sentinel FP/FN (%) Reinforc. FP/FN (%) Reinforc. Requests (%)
9.5/0.0 0.0/0.0 21

Adapting Detection Capability. Using the<25m scenario
we illustrate in Table I how Watchdog adapts the detection
capability to runtime observations. With desired false positive
and false negative rates of 0%, a sentinel cluster is selected
with a 9.5% false positive rate and 0% false negative rate.
A more powerful reinforcement cluster is selected with a 0%
false positive and false negative rate. During runtime, 79%
observations are comparatively easy and hence confident deci-
sions are entirely made by sentinels. When the sentinels make
a decision that does not meet user requirements (for the 21%
more difficult observations), reinforcements are used to make a
confident decision. The reduction in radio transmissions made
by using only the sensors necessary to meet user requirements



ensures significant energy savings.

VI. CONCLUSIONS ANDFUTURE WORK

Existing works do not provide a holistic solution with
respect to clustering the right sensors for confident event
detection, heterogeneous deployments, and adaptation of de-
tection capability during runtime. Consequently, we present
Watchdog, a generic event detection framework which can
function in a wide array of applications and deployments.
Unlike existing approaches, Watchdog can obtain the detection
capability of a specific deployment and use this knowledge to
cluster the right sensors to perform confident event detection.
With a short training length, Watchdog chooses sentinel and
reinforcement sensors which adapt the detection capability to
confidently detect events while saving energy. Our evaluation
demonstrates that Watchdog largely exceeds the detection
accuracy of existing approaches with reduced energy con-
sumption. Our evaluation also demonstrates that Watchdog
always meets user detection requirements when in many cases
existing approaches cannot. In future work, we plan to extend
our confident Watchdog framework to provide distributed
detection with online training for environmental adapability.
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