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Abstract—In this paper, we make a case for using watchdogs
to protect against misbehavior in dense wireless networks. We
introduce “Generalized Watchdogs” and identify when and how
watchdogs can be necessary and sufficient against misbehavior.
We study feasibility of watchdog approach and show that the
order of capacity bounds is preserved asymptotically even with
watchdogs. We use generalized watchdogs to design protocols to
improve both security and performance of TCP over wireless
networks such that the application at the destination never
accepts a corrupted packet and we achieve this without modifying
TCP. We show that a strict dependence on availability and success
of watchdogs can lead to “watchdog induced losses” and establish
their effects on TCP throughput. We then propose solutions to
deal with these losses and make watchdogs intelligent so they
can tune the overheads incurred. With hop-by-hop verification
of packet correctness, we ensure that tampered packets are not
forwarded in the network and thus save potential wastage of

network resources. We use NS-2 simulations of both controlled as
well as realistic network scenarios, to show that watchdogs can
provide simple, lightweight and reliable means of misbehavior
detection, tolerance and most importantly “deterrence” while
saving costs of security infrastructure. With a combination of
intelligent watchdogs and source coding, and by leveraging
route adaptation, our scheme achieves twice the throughput of a
cryptographic alternative and that too in presence of as high as
30% packet tampering.

I. INTRODUCTION

Wireless networks are known to suffer from security issues

primarily because of their broadcast nature. One example

of misbehavior in multi-hop wireless networks is the drop-

ping attack where an intermediate node drops packets that

it is “expected” to forward. In a more malicious attack,

sometimes called the tampering attack, an intermediate node

modifies(corrupts) contents of a packet before forwarding.

This may not only render the data useless, but may also make

the application react to it in unexpected ways.

The same overhearing capabilities that raise security con-

cerns can and have been used for detection of misbehavior.

Ideally, in a multihop environment with omnidirectional an-

tennas, a sender can overhear its next-hop node forwarding

the packets. This ability, termed in literature as watchdog

functionality, was first introduced for misbehavior detection

by [1] where packet senders act as watchdogs.

After [1], a lot of work on misbehavior detection us-

ing watchdogs followed (refer to Sec. VI). However, all

these protocols tend to use UDP and CBR for traf-

fic [1], [2], [3], [4], [5], [6], [7] and any work on TCP with

watchdogs is completely missing to the best of our knowledge.

Some of these explicitly mention that they chose UDP to

avoid particularities of a complicated protocol like TCP [3].

There may be several reasons why TCP is considered more

challenging than UDP and we highlight some of them below:

1) TCP is meant to guarantee reliable and in-order delivery

whereas UDP makes no such guarantees.

2) Time-consuming and “eventually” correct and accurate

misbehavior detection schemes may be appropriate for

UDP in the long run, but since TCP provides guarantees

on reliable and in-order delivery, correctness of every

single packet must be ensured to satisfy TCP semantics.

3) Because of TCP’s congestion control algorithm, delays

in misbehavior detection can result in fast throughput

decay.

In view of above constraints, we lay down the requirements on

a misbehavior detection system suitable for TCP in particular.

First up, per-packet monitoring and checks are needed. Sec-

ondly, detection should be fast and must not cause TCP’s slow-

start to kick in too often. This requirement means that existing

schemes for UDP that require many stages of observation

collections and exchanges of suspect lists over time before

making any decision are clearly unsuitable for TCP.

Since another major component of this work relates to

source coding, we remark here that much of existing work

there also explicitly recognizes that improving TCP through-

put is complicated because TCP’s congestion control inter-

acts badly with delays required for packet accumulation at

nodes [8], [9]. In summary, while watchdogs have been studied

extensively for UDP, TCP has been left rather un-explored.

Similarly, while network and source coding has found much

use in improving TCP performance under the “good” network

assumption, it has not been used to combat misbehavior in

wireless TCP.

It was for these reasons, that we chose to work with

TCP and as our results show, watchdog based security has

considerable potential. Using watchdogs and coding, we were

able to improve TCP throughput in presence of fairly high

percentages of interference and packet tampering. We tested

our schemes in both small, controlled environments as well as

large, realistic network scenarios. Simulations under controlled

conditions gave us ideas about fundamental behavior of the

protocol while those for larger, realistic scenarios helped make



generalizations. We also allowed dynamic routing which helps

the protocol recover against excessive tampering on a certain

path. It also suggests that our scheme can work well in

presence of mobility. To the best of our knowledge, this

is the first work on misbehavior detection and tolerance in

TCP using watchdogs and coding. The rest of this paper

is organized as follows. In Section. II, we study watchdog

feasibility and availability in random networks and discuss

situations where watchdogs can be necessary and sufficient

against misbehavior. Section. III presents a simple watchdog

based security mechanism calledWD-TCP. Section. IV defines

and explains watchdog induced losses and establishes their

severity. Then in Section. V, we propose solutions to deal

with throughput degradation and watchdog induced losses in

TCP. Section. VI provides an overview of the related work

and we conclude in Section. VII.

II. GENERALIZED WATCHDOGS AND THEIR FEASIBILITY

Watchdogs were introduced by Marti et al. [1] primarily

for packet dropping attacks where the receiver either gets

correct data or no data at all and hence does not need

explicit information about misbehavior. We use the network

of Figure. 1 to explain the approach. All antennas are om-

nidirectional. Suppose S sends traffic destined for D relying

upon R to forward it. Using the sender as watchdog, if S

can overhear R forwarding the message or otherwise, it can

detect misbehavior. In essence, misbehavior detection is all

that is required for this attack and misbehavior tolerance can

be achieved with actions of S alone, by choosing an alternate

route for example.

S


W


D
R


Fig. 1. An example 4-node Network

Suppose R forwards the packets but corrupts the contents

before forwarding. Suppose further that the packet belongs

to a TCP connection. Then, even if S can detect packet

modification, D will still accept it and pass it on to the appli-

cation. Afterwards, even if S retransmits the packet explicitly

asking D to accept the new copy, it may be too late if the

application has already consumed corrupted packets. To detect

and tolerate such packet modification attacks, we introduce the

notion of Generalized Watchdogs where a watchdog must not

necessarily be sender of a packet but may be any node that

can hear both the source and the intermediate node e.g. W in

Fig. 1.

Further, since a watchdog at the source can not protect the

destination from accepting corrupted packets, we propose that

W should not only compare the packets it overhears from S

and R, but also inform D about it. Meanwhile, D does not pass

packets on to the application until it has heard from W. We

incorporate these ideas to come up with simple yet efficient

misbehavior tolerance schemes in Sec. III.

A. Availability of Generalized Watchdogs in Random Net-

works:

Before we build misbehavior detection mechanisms employ-

ing generalized watchdogs, we need to establish their easy

availability in commonly encountered network scenarios.

Fig. 2. Requirements for Watchdog Availability

We begin by investigating feasibility of watchdog based

approaches for use in reasonably dense networks. Refer to

Fig. 2 and consider placing N wireless nodes randomly in

a region of area A. All nodes have a transmission range of

r. Average number of nodes in a disc of radius r will then

be πr2 N
A
. For a watchdog to be available for transmission

from A to B, there must be at least one node in the area of

intersection of two circles of radii r, centered at A and B

respectively(bigger lens in Fig. 2). However, since we require

the watchdog to also notify the next-hop, then if B relays A’s

packets to C, we need at least one node in area of intersection

of all three circles (darkest portion of Fig. 2). Since B lies

strictly inside communication range of both A and C, there

must be some non-zero intersection between all three circles.

For watchdog availability, we need at least one node in this

non-zero intersection and this is likely to hold w.h.p when N
is large in random networks for a given A.
Watchdog availability does not imply watchdog success

because interference constraints for watchdog to successfully

hear both transmissions from A to B and B to C may

be different from those required for success of individual

transmissions from A to B and B to C. However, we also claim

that asymptotically, requirements for watchdog availability and

success preserve the order of capacity bounds for random

networks and a brief proof sketch is provided in Appendix.

For further insights, we did NS-2 simulations with the

objective of quantifying watchdog availability for monitoring a

given communication over two hops. We simulated 10 random

network topologies each for 20, 30, 50 and 75 nodes placed

randomly in a 1000x1000m area and did 10 runs for each

topology with a random seed. All nodes have a communication

range of 250m. We set up 15 UDP flows between randomly



selected source-destination pairs. We chose to work with a

network density of 50 or more nodes in a 1000mx1000m

area since similar scenarios can be seen often in misbehavior

detection and opportunistic routing literature [6], [1], [2]. We

record how many packets are overheard over two successive

hops or equivalently, the number of intermediate relays whose

behavior was observed by a generalized watchdog and aver-

aged this over all runs. The results are shown in Fig. 3.

1 2 3 4 5 6 7 8
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Intermediate Nodes to Destination

In
te

rm
ed

ia
te

 N
o
d

es
 W

a
tc

h
ed

/T
o
ta

l

 

 

Nodes=20

Nodes=30

Nodes=50

Nodes=75

Fig. 3. The Availability of Watchdogs

The X-axis shows number of intermediate nodes that for-

ward a packet until its final destination and Y-axis plots ratio

of the number of intermediate nodes that were watched with

respect to the total. A value of Y = 0.95 corresponding

to X = 2 means that 95% of all packets that were for-

warded by two relays were watched at both hops by some

generalized watchdogs. As our results show, for reasonably

dense networks, more than 95% packets were successfully

watched by some node even over long paths. These results

strongly back the claim that watchdogs are readily available.

Not surprisingly, Fig. 3 also suggests that watchdogs based

schemes are not well suited to sparsely populated networks.

We emphasize on use of watchdogs primarily because

they do not require additional device or computation level

capabilities for misbehavior detection. There are other reasons

too though. For example, without watchdogs, it’s not straight

forward to isolate a single node as bad with absolute certainty

and it is common to localize misbehavior to granularity of a

“nexus” i.e. two nodes and link between them [10]. We now

discuss how watchdogs can become necessary and sufficient

for isolating misbehaving nodes.

B. Watchdogs can be necessary

Cryptographic schemes including end-to-end (E2E) and

hop-by-hop authentication are popular for misbehavior detec-

tion. However, with E2E encryption, for example, neither end

of the transmission can localize the fault on a path and might

shun the whole path including possibly many fault-free nodes.

Furthermore, over long routes, valuable network resources are

wasted when a packet that was corrupted in earlier part of

the route still goes all the way to the destination only to be

dropped.

However, watchdogs can localize misbehavior and routes

may be updated accordingly. Another advantage of watch-

dogs over encryption is “deterrence” against misbehavior

because possibility of being caught can discourage malicious

activity. With hop-by-hop authentication like that suggested

in [11], misbehavior can be localized to two adjacent nodes

but overhead of establishing and maintaining authentication

relationships, (especially with mobility) combined with key

management, make it expensive for per-packet monitoring and

delay-sensitivity required for TCP.

C. Watchdogs can be sufficient

Consider the network as a connected graph G = (V,E)
where V is set of vertices(nodes) and E the set of edges(links).

For any three nodes forming a clique, when any one of them

uses the other to relay its packets, the third can function as a

watchdog. Therefore, a sufficient condition for watchdogs to

successfully detect misbehavior is if number of faulty nodes

in every clique of size = 3 in G is limited to ≤ 1.
For example, under single failure, accusation from one

watchdog is sufficient to detect misbehavior and those from

two watchdogs are sufficient to conclude that accused node

is indeed faulty. Therefore, with constraints on allowable

number of failures in the network and across neighborhoods,

watchdogs can be sufficient to detect and localize misbehavior

to one node.

III. WD-TCP: A PROTOCOL FOR TCP SECURITY WITH

GENERALIZED WATCHDOGS

With the objective of ensuring that TCP-based application

never has to accept a corrupted packet, we now propose and

evaluate a simple watchdog protocol WD-TCP. We propose

that if a node receives a packet from a sender other than its IP

source (e.g. D receives S’s packets from R in Fig. 1), it should

wait to hear from a watchdog before forwarding the packet

onwards or passing it up to application. From watchdogs, we

require that they send a notification like that in Fig. 4 to next-

hop of the packet, containing information about the forwarding

node, observed packet sequence number and a 1-bit indicator

of whether the packet is good or bad.

The algorithm at each node is explained in Algorithm. 1.

Each node maintains two sets of packets: PendingNotif for

packets whose notifications have not been received yet and

HeardOnce for packets it has overheard once. Both sets are

initially empty. When node i receives data packet p meant

for itself (line 3), this implies i is either a relay or final

destination for p. i checks whether a notification for p has

been received (line 4). If notification was positive (line 5),

i forwards p otherwise it drops p. If i has not received a

notification for p yet, it adds p to PendingNotification (line

10). On the other hand, if i receives a notification (line 11),

then it forwards or drops the corresponding packet from the

set PendingNotification depending upon whether notification



Algorithm 1 WD-TCP Algorithm

1: At node i :
2: Received pkt = p
3: if (dst(p) == i)AND(type(p) == data) then

4: if (notif(p) == received) then

5: if ((notif(p)− > is Bad == 0)) then

6: fwd(p);
7: else

8: drop(p);
9: else

10: PendingNotification← p;
11: else if (dst(p) == i)AND(type(p) == Notif) then

12: notif(p) = received;
13: if (notif == good) then

14: fwd(PendingNotif(p));
15: else

16: drop(PendingNotif(p));
17: else if (dst(p)! = i)AND(type(p) == Data) then

18: if (p ∈ HeardOnce) then

19: if (p == HeardOnce(p)) then

20: sendNotif(0);
21: else

22: sendNotif(1);
23: Delete(HeardOnce(p))
24: else

25: HeardOnce← p;

is positive or negative (lines 13-16). Finally, if i is not the

packet’s destination (implying i overheard p and may be a

watchdog), if it has heard this packet before, it compares the

two versions and sends a notification accordingly by setting

Is Bad to ′0′ or ′1′ (lines 18-23), otherwise i buffers p in

HeardOnce.

We implement WD-TCP without modifying TCP by in-

serting watchdog functionality with MAC layer to intercept

packets and buffer them. Each node only forwards packets to

next-hop (or hands them to application layer at the destina-

tion), after a notification verifying their correctness has been

received from a watchdog. Therefore, effectively, TCP sink

releases acknowledgements only for verified packets.

We now evaluate WD-TCP in a 4-node network of Fig. 1

for a TCP flow from S to D via R. There is no tampering.

These settings help us compare the compromise we make by

adding a dependence of TCP on watchdogs. We simulated

this scenario in NS-2 with RTS/CTS disabled. A single

simulation lasts 100 seconds for all results reported in this

work. The results, averaged over several runs, are shown in

Fig. 5. Throughout this paper, we use number of untampered

TCP packets received at the destination as an indicator of

throughput. We compare this metric for WD-TCP and basic

TCP (TCP without watchdogs) in top two curves in Fig. 5.

Not surprisingly, watchdog based TCP performs worse than

unmodified TCP because of per-packet notification overhead

but it still seems that WD-TCP has not compromised too badly

in terms of throughput. However, note that this degradation

came in the best case scenario i.e. when there was neither

interference nor tampering/misbehavior in the network.

Watched Id
 Packet Seq

Num


IsBad?


Fig. 4. Contents of Per-Packet Watchdog Notification
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Fig. 5. A comparison of TCP performance with and without Watchdog for
4-node network

In real networks, even if misbehavior were uncommon,

interference is still the norm rather than the exception implying

that WD-TCP has a high cost which may soar further when

there is in fact a real threat. To validate this, we simulated

the 4-node network by adding cross traffic to cause inter-

ference only at watchdog. Results form the lowest curve

in Fig. 5 showing disappointing performance of WD-TCP.

We had expected that overhead of notifications will degrade

TCP throughput but as we now elaborate on, the effects of

dependence upon watchdogs manifest themselves in some

other interesting ways too.

IV. WATCHDOGS INDUCED LOSSES

Watchdogs notifications inject non-data traffic. Since WD-

TCP is constrained such that intermediate nodes can only

forward packets after receiving WD notifications, there arises

a new problem. We call it the watchdog induced loss (WD-

induced loss) problem and explain it below.

Consider, 4-node network of Fig. 1 and assume that WD-

TCP with per-packet notifications from watchdogs is used. In

this scenario, a watchdog induced loss can happen as follows:

1) Type-I WD-Induced Loss: Suppose R forwards the

packet and D receives it but W fails to overhear it due

to collision/cross traffic at W. W can therefore not send

a notification and even though D received the (possibly

untampered) packet correctly, D can not acknowledge

it until S times out and retransmits the packet giving



TABLE I
TCP RETRANSMISSIONS AND WATCHDOG INDUCED LOSSES FOR 4-NODE

NETWORK

Data Rate Mbps 0.5 1 2 4 6

Total Retransmissions 319 517 725 943 1041

TypeI WD-Induced Loss 294 483 670 872 980

TypeII WD-Induced Loss 8 21 23 31 46

W another chance to observe it. The same happens if

W misses overhearing the packet from S to R and only

overhears it from R to D.

2) Type-II WD-Induced Loss: Suppose W completely

misses out on overhearing some packet over both SR and

RD. W will realize this when it overhears a packet with

a sequence number N2 while the last packet it overheard

had a sequence number N1 such that N2 > N1 + 1.
3) Type-III WD-Induced Loss: Finally, suppose W has

overheard the packet over the links SR and RD but finds

the channel busy due to cross traffic and its notification

must wait. If this takes long enough, S might timeout

waiting for the ACK and retransmit a packet that has

already been received and even monitored.

We saw how watchdog dependent WD-TCP may create artifi-

cial packet losses that can severely degrade throughput. This

is aggravated further under heavy traffic, channel errors and

interference and renders our simple scheme very inefficient.

We now evaluate these effects and try to quantify them.

Notice that WD-induced losses would cause a retransmis-

sion of a packet that may well have been received at the

destination. We therefore compare total number of retransmis-

sions with ones that were triggered by WD-induced losses.

The results in Table. I show that the biggest contributor to

WD-induced losses were of Type I. Also, the total number of

retransmissions is only slightly larger than the sum of Type I

and Type II WD-induced losses. Since throughput of WD-TCP

suffers badly because of increased notification overhead and

watchdog induced losses, it is imperative to overcome with

these limitations. This is our focus in the next section.

V. COPING WITH WATCHDOGS INDUCED LOSSES AND

THROUGHPUT DEGRADATION

We wanted our watchdog based protocols to be reliable,

lightweight and that their overhead must not outweigh the

benefit. Therefore, in this section, we propose measures to help

ameliorate throughput degradation and watchdog induced loss

problem in WD-TCP.

A. Decreasing Watchdog Notification Frequency

One way to reduce throughput degradation is by decreas-

ing frequency of watchdog notifications i.e. send cumulative

notifications. The notification content had to be modified

accordingly as shown in Fig. 6. Two new fields were added:

Last Notification field contains sequence number of the last

notification sent by watchdog. Using Packet Sequence Num
and Last Notification fields, the receiver can update verifi-

cation status of all packets with sequence numbers SN where

Packet Sequence Num ≥ SN > Last Notification. This
holds true because we only allow watchdogs to delay notifica-

tions for untampered, in-order packets. Upon detecting packet

tampering, a new notification is sent promptly with IsBad
field set to 1. This way, we only need to indicate goodness of

current packet with delayed notifications instead of all packets

in the interval. The second field, Missed Packet, is a 1-

bit field used when a watchdog misses overhearing a packet

or overhears out of order packets. It then sends two prompt

notifications. One about all consecutive packets it heard and

for the second, it sets Missed Packet to 1 indicating that

it overheard all good packets with sequence numbers from

Last Notification onwards but missed the packet(s) with

sequence number(s) Sn such that Packet Sequence Num−
1 ≥ SN > Last Notification

Watched Id

Packet Seq


Num

IsBad?


Last


Notification


Missed


Packet


Fig. 6. Contents of Delayed Watchdog Notification

We experimented with fixed notification intervals and saw

throughput improvements since more time could be used

for sending TCP data and ACKs. But instead of a hard

notification interval, we decided to use information available to

the watchdog to adaptively decide when to send notifications.

We propose a scheme similar to Additive Increase Multiplica-

tive Decrease (AIMD), where watchdogs increase notification

interval additively upon overhearing in-order packets and bring

it down to 1 upon hearing retransmissions or out of order

packets. This essentially estimates congestion window size at

the sender so watchdogs can delay notifications for as long

as the sender can keep releasing packets without receiving an

ACK.

With adaptive notification interval at W, we again run WD-

TCP from S to D (Fig. 1) and show howWD-TCP outperforms

basic TCP in Fig. 7.
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Throughput of WD-TCP improved because when W sends

cumulative notifications, watchdog shim at D hands packets

over to the application only after receiving notifications for

them. Therefore, TCP sink is bound to send cumulative

acknowledgements. As congestion window size grows, so does

the notification and cumulative ACK interval. This reduces

ACK traffic (lowest curve in Fig. 7) and channel contention

for WD-TCP.

We also show in Fig. 8 (datarate = 1Mbps), that

notification interval adaptation algorithm follows congestion

window at the source well even in presence of interference.

For robustness, we also added a time-out based notification.

This way, if the source starts sending packets slower, or if

watchdog misses many packets, it does not wait indefinitely

to send a notification.
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We also ran WD-TCP with adaptive notifications for a large

network of 75 nodes spread randomly over a 1000mx1000m

area. The transmission radius is fixed at 250m. We set up

10 TCP flows between randomly chosen source-destination

pairs and repeat the simulation 10 times with random seeds.

There is interference between flows and also at watchdogs

causing WD-induced losses. There is no tampering. Any node

can be a generalized watchdog and multiple watchdogs may

also be available for some packets. At each hop, the packet

is forwarded only after a notification for its correctness is

received. Otherwise, it is dropped right there. For multiple

watchdogs e.g. W1 and W2, suppose W1 sends notification

first and W2 overhears it. Then, if W2’s own observation

conflicts with that of W1, W2 sends a prompt notification,

otherwise it sends the notification with some probability (set to

0.5 in simulations). There are several advantages of this. First,

it reduces overhead in case of multiple watchdogs. Second, if

W1 and W2 conflict, and W2 is malicious, then W1 can be

certain of this and does not trust W2 anymore. Third, with

notifications from multiple watchdogs, the receiver can also

find out which node is actually malicious based on majority.

We use AODV for routing and when intermediate nodes drop

packets because of negative reports from watchdogs, AODV

finds another route. We compare unmodified TCP with WD-

TCP for varying data rates. We could have used static routing

but we wanted to keep the simulation realistic because the

protocol’s performance in face of changing routes also gives

ideas about its performance with mobility. The results for

aggregate throughput over all flows in the network are shown

in Fig. 9. Surprisingly, WD-TCP seems to perform better in

the larger network than it did in the 4-node network with

interference(refer to Fig. 5). This is because interference is no

longer limited to the watchdog alone but traffic sources, desti-

nations and relays also experience interference which is more

realistic. Furthermore, it turned out that sometimes, watchdog

requirement lead to use of routes that were better (shorter

or had lesser interference) than those used with basic TCP.

However, lesser opportunities were available for accumulating

several notifications. This was because a significant amount

of time was spent waiting for channel access and watchdogs

timed out in the meanwhile and sent notifications.
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Fig. 9. Aggregate throughput for 75-node network with 10 flows

To get more insights into whether WD-TCP compromised

on route length and forced flows to use much longer sub-

optimal routes, we also plot the quantity packet-relays product

which gives the number of relays traversed by a packet

summed over all the packets. This is shown in Fig. 10 for

both basic TCP and WD-TCP for the 75-node network. The

fact that bars for WD-TCP are not significantly higher than

those for basic TCP suggests that the routes chosen by WD-

TCP were not very suboptimal.

To sum up, in this section, we incorporated intelligence

in the watchdogs so they can reduce overheads and still

perform well. Next we look at WD-Induced loss problem and a

solution that works well in presence of interference and packet

tampering.

B. Increasing Watchdog Success Probability

The major contributor to WD-induced losses is failure of

a watchdog to overhear packets because of cross traffic inter-

ference. Therefore, one way to deal with WD-induced losses

is by minimizing probability of this event or maximizing the

probability of a watchdog successfully overhearing a packet.
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We propose a combination of source coding and watchdog

mechanism to design a scheme that ameliorates WD-induced

loss problem. We add a coding shim below TCP layer at the

sender and receiver. At the sender, the coding layer uses an

(n, k) online code to encode k data packets followed by n−k
coded packets calculated from the k uncoded packets just sent.

It also adds a sub-sequence number to each packet to let the

watchdog and receiver identify packets correctly. If watchdog

can then observe and notify about any k of the n packets

from one generation, the receiver can decode the verified

packets before passing them to application layer. The added

redundancy increases watchdog success probability since it no

more has to observe each and every packet. Therefore, even

though it may still fail to overhear some packets, WD-induced

retransmissions can be prevented to a great extent. This idea

of using source coding with watchdogs is similar to [12] but

their work did not present any results. We show actual results

of running TCP to get an understanding of TCP’s interaction

with watchdogs and source coding. As part of implementation

in NS-2, our coding layer adds a new coding header containing

the subsequence number and information about the code.

The watchdog notifications, Fig. 11 also include subsequence

number to indicate whether notification is about a raw packet

or a coded packet.

Watched Id

Packet Seq


Num

IsBad?


Last


Notification


Missed


Packet


Subsequence


Num


Fig. 11. A Watchdog Notification Packet with Coding

We now compare three different versions of TCP:

• TCP with End-to-end encryption: Here, the TCP sink

can detect tampered packets and reject them soliciting

a retransmission.

• WD-TCP: Is our simple watchdog based TCP protocol

where watchdogs send a notification for every packet.

• (6,5) Coded WD-TCP: Is WD-TCP with (6,5) source

coding such that if the watchdog can monitor any 5 out of

6 packets of the same generation, it can help the receiver

decode the whole generation.

Our threat model is characterized by malicious relays mod-

ifying contents of TCP data before forwarding them with a

probability p for all three versions of TCP compared. We first

experiment with the 4-Node network. Our objective is to infer

whether degradation in throughput is due to watchdogs or will

it be fundamental to TCP if it only accepts good packets.

A comparison for the three variations of TCP is shown in

Figs. 12 with p = 0.1. We mention here that for coded WD-

TCP, we did not count redundancy packets among goodput and

therefore the number shown in figure represents only uncoded

data. Comparing WD-TCP with coded WD-TCP, we see the

improvement brought about by source coding especially at

higher rates. More surprisingly, despite WD-induced losses

and tampering, coded WD-TCP even outperforms TCP with

E2E encryption. This is a direct consequence of the fact

that coding saves many timeouts and retransmissions because

tampered or missed packets can be extracted from added

redundancy.
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Fig. 12. A Comparison of E2E Encrypted TCP with uncoded WD-TCP and
(6,5) Coded WD-TCP in 4-node network
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We also simulated coded WD-TCP protocol for the 75 node

network. 20 nodes were chosen randomly to do packet tam-

pering. These remain same across all three versions of TCP.

The results for aggregate throughput are shown in Fig. 13.

It can be seen that coded WD-TCP outperforms other TCP

versions except at data rate of 4Mbps. Our investigation into

this scenario revealed, that for one particular flow, uncoded

WD-TCP was repeatedly able to find a route without packet

tamperers and therefore achieved slightly higher aggregate

throughput.

Next, in Fig. 14, we show how throughput degrades when

probability of packet tampering is increased. Nearly a quarter

(20/75) of the nodes tamper packets with increasing probabil-

ity. Data rate is set to 1Mbps. As can be seen, coded WD-TCP

performs much better than E2E encrypted TCP especially for

p ≥ 0.2. We studied these scenarios carefully and found that

because tampered packets are dropped as soon as they are

detected at relays, AODV considers the route to be broken

and looks for alternate routes. For this reason, with p = 0.5
for example, AODV constantly modified routes for codedWD-

TCP unless a path with least packet tamperers was found. For

E2E encrypted TCP however, the packets are forwarded all the

way to the destination leading to poor response time towards

route adaptation.
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With the modifications made to WD-TCP, we have now

shown results to support our claim that a combination of

watchdogs and coding can provide strong protection against

hostile channel conditions as well as malicious network ele-

ments.

VI. RELATED WORK

Wireless misbehavior detection and deterrence has long

interested researchers. A complete watchdog based misbe-

havior detection and tolerance protocol was first proposed

by [1]. It used NS-2 simulations to show improvements in

UDP throughput. Since they strictly avoid suspected nodes,

their protocol must minimize frequency of false detections.

Following that, many trust and reputation based protocols

became popular. CORE [13] presents a theoretical framework

for building reputation with watchdogs and reputation tables.

They use watchdog observations to formulate direct, indirect

and functional reputation such that a node’s positive reputation

keeps on increasing as long as it behaves well, but if its repu-

tation goes negative beyond a threshold, the node is shunned

and excluded from the network. The paper is theoretical and

lacks simulation/experimental results. CONFIDANT [3] uses

watchdogs to build trust relationships and informs a node-

specific “friend list” about observed misbehavior. They do not,

however, propose a way to dynamically build/maintain this

list and consider it as pre-configured on user-to-user basis.

Recently, Zouridaki et.al [14] presented numerical results for

trust establishment where watchdogs are used to form opinions

about others in the network and this opinion is incorporated

in routing decisions to protect against misbehavior.

Another component of our work used source coding for

protection against watchdog induced losses. This idea of

mixing multiple packets is not new especially with regards to

opportunistic routing. [8], [15] and [9] use this idea and work

on batches of packets and so a source must first accumulate

enough packets to encode before it can begin sending them.

To avoid delays incurred by waiting for enough packets

to accumulate, Sundarajan et. al. [16] showed throughput

improvement using an online coding scheme where the source

sends out random linear combinations of packets currently

in the congestion window. Building upon online coding,

CoMP, [17] presents a combination of online coding and

multipath forwarding to improve TCP. It proposes heuristics

for estimating loss rates for forwarding rate adaptation. Much

of the work cited above works with UDP or with TCP without

any misbehavior. In this paper, we worked with TCP while

allowing packet tampering attacks in order to understand how

watchdogs and coding will interact with TCP intricacies.

As a final note, we mention that we provide watchdogs

with incentive to not send false notifications. If a watchdog

W1 sends false notifications, the packet sender, and other

watchdogs know for certain that W1 is misbehaving and

ignore future notifications from it. Also, W1 will fail to cause

damage by false notifications since good watchdogs around

it will realize that their observations conflict with that of

W1 and will promptly notify the next-hop of it. Also, while

WD-TCP incurs notification overheads, it makes up by saving

resources spent in forwarding of tampered packets towards the

destination.

VII. CONCLUSION

In this paper we have tried to focus on strengths and weak-

nesses of using watchdogs against wireless misbehavior with a

focus on TCP. We chose TCP as our traffic since the literature

so far has shied away from it because of its complex interaction

with delays, losses and errors. We show simulation results

for both controlled as well as realistic network settings to

understand the fundamental and generalizable behavior of our

schemes. While E2E encryption can detect packet tampering, it

can not localize faults and also incurs logistical overheads like



key distribution, maintenance and protection. Therefore, when

key-based logistics are expensive (in high mobility scenarios

with high frequency of nodes joining and leaving the network),

watchdogs provide a lightweight alternative. Watchdogs do not

have to be specialized devices. Another strength is the deter-

rence factor that E2E encryption lacks. By adapting overheads

and using source coding, our protocol achieved remarkable

improvement in TCP performance amidst packet tampering.

If watchdogs misbehave and accuse fault free nodes, they

lose their credibility and can no longer cause any damage.

We acknowledge weaknesses of watchdog based schemes in

terms of security guarantee and overheads, however, there is

no “one-solution-fits-all” here and we believe the problem is

still interesting and that there is potential for further research in

this direction. In future, we’ll investigate overhead tuning, trust

issues, dynamic coding rate adaptation, performance based

route adaptation and work on more advanced watchdog based

protocols to provide guaranteed-protection against misbehav-

ior.

APPENDIX

A random geometric graph (RGG) is a graph G = (n, r) =
(V,E) with n = |V | such that nodes of V are embedded in

an area with the property that e = (u, v) ∈ E if and only if

Euclidean distance between u and v, d(u, v) ≤ r [18]. In wire-
less networks, r relates directly to broadcast communication

range of nodes and so RGGs are considered a standard model

in theoretical work on ad-hoc and wireless networks [19]. The

following definition is useful:

Definition 1: Let G = (n, r) be an RGG. G is said to be

µ-geo-dense [20] for some µ ≥ 1, if every square bin of area

A ≥ r2

µ
has Θ(nA) nodes.

Since critical radius for connectivity is π(rcon)
2 =

logn
n

[19], it has been shown [20] that for constants c > 1

and µ ≥ 2, if r2 = cµ log n
n

, then w.h.p a random geometric

graph ζ(n, r) is µ-geo-dense. That is w.h.p, any bin area of

size r2/µ has Θ(logn) nodes.
Using geo-density of RGG’s just established, we come

up with conditions required on network density to ensure

availability of watchdogs. Let transmission range of nodes

be rt ≥ rcon. Geo-density ensures that at least Θ(logn)

nodes will be present in every square of area A ≥ (rcon)
2

µ
.

Then, rt =
√
8A will ensure watchdog availability w.h.p.

Since this is the same transmission range (leading to similar

interference constraints) as [21], we conclude that requirement

for availability and success of watchdogs can be satisfied with

the similar interference and transmission range constraints and

therefore order of capacity bounds is preserved asymptotically.
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