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ABSTRACT

Even though user generated video sharing sites are tremen-
dously popular, the experience of the user watching videos
is often unsatisfactory. Delays due to buffering before and
during a video playback at a client are quite common. In this
paper, we present a prefetching approach for user-generated
video sharing sites like YouTube. We motivate the need for
prefetching by showing that video playbacks of videos on
YouTube is often unsatisfactory and introduce a series of
prefetching schemes: the conventional caching scheme, the
search result-based prefetching scheme, and the recommen-
dation-aware prefetching scheme. We evaluate and compare
the proposed schemes using user browsing pattern data col-
lected from network measurement. We find that the recom-
mendation-aware prefetching approach can achieve an over-
all hit ratio up to 81%, while the hit ratio achieved by the
caching scheme can only reach 40%. Thus, the recommenda-
tion-aware prefetching approach demonstrates a strong po-
tential for improving the playback quality at the client. We
also explore the trade-offs and feasibility of implementing
recommendation-aware prefetching.

Categories and Subject Descriptors

C.4 [Performance of systems]: Design studies

General Terms

Design, Experimentation, Performance

1. INTRODUCTION

The advent of user-generated video sharing sites such as
YouTube, Dailymotion, Metacafe, Tudou, and Daum has
provided tremendous opportunities for Internet users to share
their personal experiences as well as to conduct business.
The astronomical amount of video content uploaded on video
sharing sites has made these sites information sources to
which Internet users often turn to be informed, entertained,
and even educated. For example, YouTube has hundreds of
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millions of viewers and delivers billions of videos each month.
Unlike the traditional video-on-demand (VoD) systems that
typically deliver professionally produced content, video shar-
ing sites typically contain short video clips produced for a
particular purpose [5]. The short duration of video clips
combined with the huge collection of videos makes it possi-
ble for users to browse around for content of interest.

Despite the tremendous popularity of user generated video
sharing sites, user experience with watching videos from
these sites can vary significantly [18]. As we show in this
paper, it is common that a user experiences a pause when
watching a video online. These interruptions during video
playback can be quite annoying and can potentially discour-
age users from watching more videos or simply turn users
off at the very beginning of a video browsing session. Even
a small number of pauses can have a very negative impact
since the majority of videos on video sharing sites are usu-
ally relatively short (on the order of a few minutes) [22,
11]. Clearly, an increase in network bandwidth and scalable
solutions on video sharing sites can solve some of these prob-
lems. However, the desire for and the increasing availability
of high quality videos (such as high quality or high definition
videos) might further exacerbate the experience of browsing
video sharing sites.

In this paper, we propose to prefetch video content in or-
der to reduce or eliminate the potential of pauses during
video playback and decrease the service delay. We intro-
duce a series of prefetching schemes: conventional caching
scheme, search result-based prefetching scheme, and recom-
mendation aware prefetching scheme. Our proposed prefetch-
ing scheme conserves bandwidth by prefetching only a prefix
of a video, since a video clip can playback smoothly if a suf-
ficiently large prefix of the video is prefetched [19]. Further-
more, the prefetching scheme can take advantage of many
“idle” periods of a video browsing session by prefetching
when the current playback does not saturate the available
bandwidth or when users read comments between watching
videos.

We evaluate our proposed prefetching schemes with user
browsing pattern data collected from a university network.
We focus on user browsing patterns on YouTube since YouTube
is the most popular video sharing web site in North America.
Our measurement results show that the recommendation-
aware prefetching approach can achieve an overall hit ratio
of up to 81%, while the hit ratio achieved by the caching
scheme and search result-based prefetching scheme can reach
only 40% and 38%, respectively. Therefore, our study demon-
strates a strong potential for improving the playback quality



at the client using recommendation-aware prefetching. Al-
though building an effective recommendation system itself
is a challenge [2], it can potentially provide sufficient clues
for predicting what users are most likely to watch next. We
also explore the trade-offs and feasibility of implementing
the recommendation-aware prefetching.

Although our evaluation is presented in the context of a
proxy cache architecture, the proposed prefetching scheme
can potentially be applied to a peer-to-peer architecture or
to the servers in content delivery networks (CDNs). Despite
the fact that prefetching has been proposed in the context
of web and multimedia delivery, demonstrating its effective-
ness has been challenging without user browsing traces. To
the best of our knowledge, our work is the first to system-
atically measure and compare the effectiveness of various
prefetching schemes based on actual user browsing activities
and demonstrate the advantage of exploiting the recommen-
dation system for video delivery.

The rest of the paper is organized as follows. In Section 2,
we investigate the user experience on YouTube regarding the
pauses users experienced in the video playout. Section 3 de-
scribes the prefetching schemes and the algorithms to select
videos to prefetch. In Section 4, we describe our datasets
and measurement of the usage of video referrers. The eval-
uation of the proposed prefetching schemes is presented in
Section 5, and in Section 6, we discuss the trade-offs and fea-
sibility of prefetching. Related work is presented in Section
7. Finally, Section 8 concludes the paper.

2. INVESTIGATING USER EXPERIENCES
WITH WATCHING YOUTUBE VIDEOS

Previous work has shown that service delay on YouTube is
longer than on other video sharing websites [18]. To further
demonstrate the need for prefetching, we perform an ex-
periment to evaluate user experience in watching YouTube
videos. In particular, we measure how likely it is that a user
experiences pauses during video playback and how long the
pauses are. We describe our data collection methodology
and how we emulate the playback. Then, we present our
results on estimating the possibility and duration of pauses
experienced by a viewer.

2.1 DataCollection

We derived the information of pause frequency automati-
cally by analyzing video download traces. A video download
trace is a trace of incoming and outgoing network traffic cap-
tured while a user is watching a video on YouTube. In our
case, we asked volunteers to use Wireshark network protocol
analyzer [3] on their computers to capture the traffic. We au-
tomated the process of detecting pauses in video playbacks
to make the process easy for the volunteers and as precise
as possible. Instead of asking the volunteers to watch videos
and record the number of pauses, the volunteers only had to
start the capturing before clicking on the link to a video and
stop the capturing after the video playback ends. We then
used the trace data from Wireshark to estimate whether
pauses in a video playback occurred.

12 volunteers were asked to capture video download traces
from various environments representing different locations
and network access technologies as shown in Table 1. We be-
lieve that the locations chosen for the experiment present a
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Figure 1: Example plot of r(t), sp(t) and pp(t).

good variety and represent typical places where users would
watch YouTube videos.

Environment Location | Network Technology
E1 University 1 Campus WLAN
E2 Company 1 DSL
E3 Home 1 DSL
E4 | Apartment 1 Cable Internet
E5 Dormitory 1 Campus LAN
E6 Dormitory 2 Campus LAN

Cable Internet
Wireless Network

E7 | Apartment 2
E8 | Town Library
E9 Coffee shop Wireless Network
E10 University 2 Campus WLAN
El1 Home 2 DSL
E12 Hotel Wireless Network

Table 1: Environment information.

We asked the volunteers to watch 10 videos from our se-
lection and obtained 10 video download traces from each of
them. We selected videos that have different levels of quality
(standard quality (SD), high quality (HQ), and high defini-
tion quality (HD)). The average bit rate for these videos
ranges from 162 to 2150 kbps.

2.2 Modeling a Video Player

The main requirement for a smooth video playback is that
each byte of the video arrives at the client before the time
it is required to be played. More formally, let sp(d) be the
number of bytes needed to play the first d seconds of a video,
r(t) be the number of all bytes received at the client at time
t, D be the video length in seconds, and ¢s be the time
the video starts playing. To get a smooth playback, the
following condition needs to be satisfied: r(t) >= sp(t — ts)
where t; <=t <=1ts+ D.

In the example shown in Figure 1, the video starts playing
at t = 0. During the first 15 seconds, r(t) > sp(t), thus
the video can be played smoothly. However, just after ¢ =
15 seconds, the number of bytes received is less than the
number of bytes required. At that point the video playback
cannot be continued.

To deal with the buffer depletion, video players, including
YouTube’s video player, pauses to perform buffering when-
ever there is insufficient data at the client to render the next
frame. The video playback is resumed when the player’s
buffer fills up to a certain level. Based on the data rate at
which the video is received at the client, this may lead to
one or more pauses during the playback of the video.

To model the video player, we define the function pp(t)
as the number of bytes required by a player at time t. The
value of pp(t) depends on the length of the video that has
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Figure 2: Video playback quality.

been played at time t. If the player has played up to d
seconds of the video at time ¢, then we have pp(t) = sp(d).
In Figure 1, after ¢ = 15 seconds, which is the point when the
buffer depletion starts, pp(t) remains steady for some period.
This period corresponds to a pause in the playback. pp(t)
continues to increase after ¢ = 30 seconds, corresponding
with the player resuming the playback after it has filled up
enough data in its buffer.

Based on the previous functions, the video player works
as follows. At any time ¢, the player’s state is either ‘play’
or ‘pause’. Let B be the minimum amount of data required
to be in the buffer for the playback to resume from pausing.
The player changes its state in these two cases:

e ‘play’ to ‘pause’: when there is insufficient data to play
the video or pp(t) > r(t)

e ‘pause’ to ‘play’: when the data in the buffer reaches
the resume threshold value or r(t) — pp(t) >= B, or
when the player has received the full video file

2.3 Emulating Video Playback from Video Down-

load Trace

The function sp(d) and r(t) are essential in emulating the
video player. In this section, we describe how we derive
these two functions from a video download trace.

To derive r(t), we examine the receive time and the TCP
sequence number of the packets that contain the video file
to get the number of contiguous bytes of the video file we
have at each point in time.

To derive sp(t), we analyze the video file which we re-
assembled from the payload of the packets. Video encoding
divides video data into segments. Each segment has its own
play timestamp which specifies the time that the segment
should be rendered relative to the first segment. From this
analysis, we can determine how many bytes are required to
render each frame of the video without any delay to allow
for an uninterrupted playback.

In addition to the two functions, we need to determine
the value of B, the amount of data required to resume from
pausing. Since YouTube does not disclose its video player’s
specification, we let B equal to the amount of data needed
to play 2 seconds of a video based on our observation. This
means the required buffer size varies for different videos. If
we use larger B, the number of pauses in our results will
be fewer, but each pause period will also be longer. Thus,
although the value of B used in our experiment are not ex-
actly the same as YouTube’s video player, we believe our
results can reflect the user experience on YouTube well.

2.4 User Experience on YouTube

Using the described model, we emulate video playback
from video download traces. First, we determine whether
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Figure 4: Fraction of time spent in waiting for the
videos.

the video was played at the client with a pause or not. Fig-
ure 2 shows the number of smooth playbacks and disruptive
playbacks for each dataset. Some datasets contain 9 play-
backs due to packet capture error. The results show that 10
out of 12 environments contain playbacks with pauses. In
addition, 41 of 117 playbacks (35%) contain pauses.

Next, we estimate the number of pauses in the interrupted
playbacks. Figure 3 shows the estimated number of pauses
in all 41 disruptive playbacks. We find that 31 playbacks,
which are 75.6% of disruptive playbacks, contain more than
10 pauses. (Even when we increase B to 5 seconds of videos,
57% of disruptive playbacks contain more than 10 pauses.)
Considering that the duration of the videos in our datasets
ranges between 3 to 10 minutes, pausing as much as 10 times
or more would be extremely unpleasant to users.

Finally, we compute the time that a user had to spend
waiting for the videos. We note that since the users’s down-
load rate in our datasets is relatively stable, the accumulated
pause period is not significantly affected by the size of B.
In Figure 4, we show the ratio between accumulated pause
time and accumulated video length from all the playbacks
in each environment. The user experience varies across dif-
ferent locations. In some locations, like E2, E3, E11 and
E12, the time spent waiting for the videos (when the videos
were paused), is longer than 40% of the total duration of the
videos. In E2; which is the worst sceanario, the time spent
waiting is even longer than the total video length.

Our results lead to our conclusion that YouTube users in-
deed experience disruptive playbacks on YouTube, especially
when they watch videos with higher quality. Although a user
can choose to wait for a video to buffer before she starts
watching, it is undesirable. We expect that this problem
will become even more common as high definition videos
become increasingly popular on YouTube. The results of
this experiment motivated us to devise a video prefetching
approach that has the potential to reduce or even eliminate
pauses during video playback. The approach is described in
the next section.
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Figure 5: The architecture of prefetching proxy sys-
tem.

3. VIDEO PREFETCHING SCHEME

The main principle of prefetching is to retrieve content
from the source before it is requested by a user and store
it in a location that can be accessed by a user conveniently
and fast. This is fundamentally different from caching where
content is only stored locally if it has already been requested
by a client. Prefetching can be applied to various architec-
tures and in different ways. In this section, we describe the
settings of the proposed prefetching scheme, followed by the
algorithms used to select videos to prefetch.

3.1 Prefetching Agent

Consider a typical network as shown in Figure 5, there are
two apparent places where we can implement the prefetch
functionality, at the client and the proxy. We call the module
that performs prefetching the prefetching agent (PA). In this
paper, we consider two settings of the prefetching scheme:
in the first one, the PA is located at the client (PF-Client),
and in the second one, the PA is located at a proxy server
(PF-Proxy).

A PA is a module responsible for prefetching. It has
a storage to store prefetched prefixes of videos. It deter-
mines the videos to be prefetched, retrieves their prefixes
from YouTube, and stores them. In addition, the PA can
perform caching, i.e., it stores either a whole or a prefix
of videos that are requested by clients. Caching YouTube
videos at the network edge has been evaluated by Zink et
al. and shown to be useful in reducing network traffic and
providing faster video access [22].

Every YouTube request from a client is directed to the PA.
If the request is a video request, the PA checks if the prefix
of the video exists in its storage. If so, it serves the client
with the prefix of the video, and at the same time retrieves
the remaining part of the video from YouTube and sends it
to the client. Note that the video prefix and the remaining
part are sent to the client simultaneously. This further helps
to decrease the chance of buffer depletion at the client. If
the prefix is not in its storage, the PA retrieves the whole
video from YouTube and sends it to the client. If the PA
also performs caching, it stores the retrieved videos in its
storage. Based on the requests received, the PA selects the
videos to be prefetched (which have not been requested by
any users yet), retrieves their prefixes from YouTube, and
stores them in its local storage.

The difference between PF-Client and PF-Proxy is the
location of the PA. In PF-Client, every client is connected
to its own PA, thus each PA receives requests from only
one client. In PF-Proxy, the PA resides in a proxy which is
situated between clients and YouTube servers, close to the
clients as shown in Figure 5. For example, the proxy may be
located at the gateway of a campus network or at the local
aggregation point of an ISP network. In this setting, the PA
receives requests from all clients in the local network.

The next section describes how the PA selects the videos
to prefetch based on the requests it receives.

3.2 Video Selection for Prefetching

In order to perform prefetching, the PA needs to deter-
mine the set of videos to be prefetched. Given YouTube re-
quests from clients, the PA needs to predict a set of videos
that are likely to be requested in the future. Here, we de-
scribe two algorithms that the PA can use to select videos
to prefetch.

The first algorithm is based on users’ search results. YouTube

provides a search box in which a user can enter a query
phrase to search for videos of interest. After the search query
submission, a list of videos that match the query phrase, or
a Search Result list is shown in a search result page.

To implement this algorithm, the PA detects search re-
sult pages sent from YouTube which are the responses to
clients’ search queries. Then, it extracts the list of videos
to determine which videos to prefetch. A search result page
can contain up to 20 videos in one page. Prefetching all of
those videos may or may not be practical depending on the
available bandwidth and storage space at the PA. Therefore,
the PA may prefetch only the top N videos of the Search
Result list based on their positions on the list. We call this
algorithm SR-N.

The second algorithm is based on the YouTube recom-
mendation system. Each YouTube video has its own web
page, which we call a video page. Each video page contains
a Related Video list which is a list of videos that have simi-
lar content recommended by the YouTube recommendation
system. As shown in Section 4.2, besides Search Result lists,
a large number of video views originates from Relate Video
lists. Thus, videos in Related video lists are also good can-
didates for prefetching.

A Related Video list contains up to 25 videos. Similar
to SR-N, we may prefetch only the top N videos on the
Related Video list according to the order they are shown in
the list. We call this algorithm RV-N. The PA implements
the RV-N algorithm by detecting all the videos pages from
the responses it receives from YouTube and parsing the video
pages to obtain the Related Video lists.

The advantage of both algorithms, SR-N and RV-N, is
that they are simple and not computationally expensive.
The PA can obtain the lists of videos to prefetch without re-
questing or storing any additional data. In the next section,
we present the datasets we used to evaluate the two set-
tings of prefetching scheme and video selection algorithms
we have described.

4. DATA COLLECTION

In this section, we describe the data collection process and
datasets we use to evaluate the prefetching schemes.

4.1 Datasets

Our data collection consists of two phases. In the first
phase, we monitored and recorded data traffic between a
campus network and YouTube servers. Due to the campus
privacy policy, we only recorded fix-length headers of the
data packets, so we cannot obtain the Related Video lists
and Search Result lists which are essential for our experi-
ments from the traces. In the second phase, we retrieved
the two lists from YouTube using YouTube Data API [4].



The details of the two phrases are described in the following
subsections.

41.1 Network Traces

We obtained three network traces from monitoring You-
Tube traffic entering and leaving a campus network. The
monitoring device is a PC with a Data Acquisition and Gen-
eration (DAG) card [1], which can capture Ethernet frames.
The device is located at a campus network gateway, which
allows it to see all traffic to and from the campus network. It
was configured to capture a fixed length header of all HT'TP
packets going to and coming from YouTube domain.

The monitoring periods are 1 day, 3 days, and 7 days (T1,
T2 and T3 respectively). The general statistics of the traces
are shown in Table 2. Since T2 was obtained during the
winter break, it has fewer video requests than T1 although
the capture period is longer. T3 has the most video requests
because it was taken when class was in session and it has
the longest capture period.

Trace File T1 T2 T3
Duration 1 day 3 days 7 days

Start Date | 20-Oct-09 | 8-Jan-10 | 28-Jan-10

# Request 71,282 7,562 257,098

# Unique Clients 7,914 607 10,511
# Unique Videos 48,978 5,887 154,363

Table 2: Statistics from network traces collected at
the campus network gateway.

4.1.2 Search Result Lists and Related Video Lists

In addition to the network traces, to validate the prefetch-
ing approach, we need the Search Result lists for every video
search query in the traces and the Related Video lists for ev-
ery requested video. These lists are used by the prefetching
agent to determine the set of videos to be prefetched. We
retrieved the Search Result lists and the Related Video lists
via YouTube Data API.

To retrieve the Search Result lists, we started from identi-
fying all the video search queries in the traces using URI pat-
tern matching. A URI of a video search query on YouTube
starts with results?search_query=, followed by the query
phrase and other parameters. After identifying the search
queries in the network traces, we retrieved the Search Re-
sult list for each query by sending the same search query to
YouTube via YouTube Data API. We retrieved at most 25
videos for each Search result list.

Similarly, to retrieve the Related Video lists, we first ex-
tracted video page requests from the traces. A video page
request’s URI starts with watch?v=, followed by a video’s
ID, which is a 11-character string. With the set of video
requests, we then proceeded to fetch the Related Video list
for each video through YouTube Data API. We retrieved at
most 25 videos for each Related Video lists.

4.2 Usage of Search Result Lists and Related
Video Lists

In this section, we present our measurement results on the
usage of different view referrers. A referrer of a video is the
source that refers a user to the video, for example, a Related
Video list of another video, YouTube featured video page,
and links on other web sites. The result from this study
shows that the two most frequently used referrers are Search
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Figure 6: Fraction of requests from each referrer
type.

Result lists and Related Video lists, which prompted us to
use the two lists in the proposed video selection algorithms.

We perform the study by analyzing the referrer of each
video request in our traces. The HTTP referrer fields of
the video requests are not contained in our traces due to
the limited length of the captured packets. Hence, we em-
ploy another method to identify the referrers. The requests
coming from certain referrers contain the referrer types ex-
plicitly in their URIs. This includes requests generated from
users clicking on Related Video lists, which contain the tag
feature=related in their URIs. Therefore, we can extract
the referrers of these video requests from their URIs. How-
ever, there are also video requests that contain no refer-
rers information in their URIs, including the requests from
Search Results lists and most links from external websites.
We use an additional heuristic to infer the referrers of these
video requests by analyzing YouTube user sessions. A user’s
YouTube session is a series of requests sent to YouTube by a
user in one visit [14]. We consider that a session ends when
a user is idle for 40 minutes, which is the threshold time-
out used in [12]. A referrer of a video request without tags
is inferred from the previous pages visited in the same ses-
sion before the request is made. Referrers are then grouped
into 4 types: Related Video lists, Search Results lists, other
YouTube pages, and external links. The external links cat-
egory are referrers that are outside YouTube such as video
links on blogs and social network sites.

We perform the analysis on trace T2 and T3 because they
were captured with longer packet length, so we have com-
plete tags from the URIs. In Figure 6, we show the requests
from each referrer type as a percentage of all requests. The
results show that the Search Result lists and Related Video
lists are major view referrers. There are 28% and 35% of the
video requests with the Search Result lists as their referrers
(in T2 and T3, respectively), and there are 33% and 29% of
the requests with the Related Video lists as their referrers.

From the result, we decided to base the video selection
algorithms on the two lists, Search Result list and Related
Video list. We note here that although this result might
leave the impression that the prefetching approach using the
Search Result lists or Related Video lists can only achieve
a hit ratio around the same level as the usage rate of the
lists, as we show in Section 5, this is not the case since our
evaluation of the prefetching approach based on the Related
Video lists results in hit ratios up to 81%.

5. EVALUATION

In this section, we present our evaluation of the video
prefetching approaches. We compare the performance of the
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two video selection algorithms and the two settings proposed
in Section 3.

5.1 Methodology and Evaluation Metrics

Our evaluation for the prefetching schemes is based on
real user usage patterns. This is achieved by performing
a trace-driven simulation using the traces captured from a
campus network as presented in Section 4.1.1. In the simula-
tion, video requests are issued based on the network traces,
which means the videos that are requested and the order of
the requests are exactly the same as in the traces. The sim-
ulated PA determines the videos to be prefetched based on
the requests received and keeps track of the set of video pre-
fixes that are in its storage. Thus, it can determine whether
a requested video has been prefetched or not. With this
method, we can determine the proportion of video requests
from the traces that could have been served faster from the
PA if the prefetching system was implemented at the time
the traces were captured.

To study the characteristics and compare the performance
of different prefetching schemes, we first perform experi-
ments in the cases when the PA always has sufficient stor-
age space, from Section 5.2 to 5.4. Then, in Section 5.6, we
explore the case when there is limited storage space. For
simplicity, the storage space size is defined by the number
of slots, where each slot can hold a prefix of a video. Based
on the measurement result in [6], the average video size on
YouTube is 8.4 MB. Suppose the prefix size is 30% of a video,
then each slot corresponds to about 2.5 MB.

In this study, two metrics are used to evaluate the prefetch-
ing schemes. The first metric is the hit ratio, defined as
a fraction of the number of requests for a video that can
be served from the prefetching storage (called hit requests):
hit_ratio = hit_requests/all_requests. A higher hit ra-
tio means we can serve more requests from the prefetching
agent’s storage, resulting in better user experience. The sec-
ond metric is the precision, which reflects the accuracy of the
video selection algorithm. The precision is defined as a num-
ber of prefetched videos that are actually requested by users
(called the hit videos) over the total number of prefetched
videos: precision = hit_videos/all_pre fetched_videos.

5.2 Performance of Prefetching Using Search
Result Lists (SR-N)

We first present the performance of the prefetching scheme
which prefetches based on the top IV videos on Search Result
lists (SR-NV). Figure 7 shows the hit ratio of the prefetching
scheme using the SR-N algorithm when there is always suffi-
cient space at the PA. We also show the hit ratio of the cache

proxy, which caches all videos that users have requests, as a
baseline. From the figure, the maximum hit ratio at N = 25
is equal to 20.62% in PF-Client and 36.86% in PF-Proxy.
It may be unexpected that the maximum hit ratio achieved
in the PF-Client setting is lower than the inferred percent-
age of video requests from users clicking Search Result lists.
This may be attributed to two reasons. The first reason is
that a user may click on a video contained in a playlist in
a search result, which we cannot retrieved via the API. The
second reason is that a user may click on a search result in
the position lower than 25. The result here shows that the
hit ratio we obtain using the Search Result lists cannot sur-
pass hit ratio of the caching scheme which is 39.96% despite
the fact that Search Result lists are one of the the major
sources of video views.

5.3 Performanceof Prefetching Using Related
Video Lists (RV-nN)

We now proceed to evaluate the performance of the prefetch-
ing scheme that relies on the YouTube recommendation sys-
tem, or the Related Video lists (RV-NN). The hit ratio of
the prefetching scheme using the RV-N algorithm is shown
in Figure 7. At N = 25, the RV-N algorithm results in the
maximum hit ratio of 50.38% and 75.68% in the PF-Client
and the PF-Proxy setting, respectively. These maximum
hit ratios are higher than the hit ratio achieved by the cache
proxy. In fact, the PF-Proxy setting can outperform the
cache proxy with the value of N as low as 3. As for the
PF-Client setting, we need to prefetch at least 9 videos to
surpass the cache proxy. From the results, we also observe
that as N increases, the increasing rate of the hit ratio is
smaller. This suggests that the top videos in the Related
Video lists are better predictions of users’ future views.

So far, we observe that PF-Proxy yields much higher hit
ratio than PF-Client. This suggests that users in the same
local network share similar interests, and thus videos from
a Related Video list or a Search Result list of a user are
also watched by other users in the same local network. PF-
Proxy benefits from this fact and achieves about 50% to
100% improvement in the hit ratio compared to PF-Client.

Up to this point, the RV-N algorithm, which is based
on the Related Video lists, in combination with the PF-
Proxy setting gives us the best hit ratio of up to 75.68%.
Consequently, we will focus on the particular prefetching
scheme - the combination of the RV-N algorithm and the
PF-Proxy setting.

54 Analyzing the High Hit Ratios

One interesting observation from previous results is that
the maximum hit ratio achieved with the RV-IV algorithm
is much higher than how often users click on Related Video
lists, which is around 30% as analyzed in Section 4.2. This
means that the hit requests are not only the requests that
come from users clicking on Related Video lists, but also the
requests from other referrers. To gain further insight, we
conduct an analysis to see how many requests from other
referrers are hit requests in the RV-N prefetching scheme.

In Section 4.2, we have identified the referrer of each video
request in the traces. Therefore, we can determine how
many requests from each referrer are hit when we prefetch
using Related Video lists. Figures 8 and 9 show the referrers
of the hit requests for the prefetching schemes with the PF-
Client setting and the PF-Proxy setting. In PF-Client, only
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Figure 9: Referrers of hit requests (PF-Proxy).

about 55% of the hit requests are from the users clicking
on Related Video lists. The remaining 45% are the requests
caused by users clicking on the Search Result lists and other
referrers. This means that, for many videos in the Related
video lists, a user may not click on them from the lists, but
she eventually watches them through other referrers.

For PF-Proxy, the fraction of the hit requests that are
from users clicking on the Related Video lists becomes even
smaller, while the requests that come from users clicking
the Search Result lists become a significant portion of the
hit requests. This means that the additional hit requests in
the PF-Proxy setting, which are those requests of a client
that can be served by a video prefetched based on another
client’s request, are mostly the requests that come from a
user clicking on Search Result lists.

From both figures, we learn that there is overlap between
the videos shown in the Related Video lists, which we prefetch,
and video requests that users request through other refer-
rers. This overlap contributes to the high hit ratios when
we use the RV-N algorithm. Next, we investigate how large
this overlap is for the video requests from each referrer type.

Figure 10 and 11 shows the hit ratios computed separately
for the requests from each referrer type. In PF-Client, we
can see that the requests from Search Result lists, exter-
nal links, and YouTube pages, have the hit ratio of up to
to 20-50%. Note that the hit ratio for the requests from
the Related Video lists is 90%, less than 100% due to the
small changes in the Related Video lists when we retrieved
them. In PF-Proxy, the hit ratios for these referrers are sig-
nificantly improved, which makes the aggregated hit ratio
in PF-Proxy much higher than PF-Client. Especially, the
improvement of the hit ratio of requests from the Search
Result lists, from up to 30% in PF-Client to up to 65% in
PF-Proxy, is the major contributor because a large number
of requests are from Search Result lists.

In sum, the property of the videos in the Related Video list
that they largely overlap with the video requests generated
from a user clicking on the Search Result lists, which are
the large fraction of all requests, and also from other refer-
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rers makes them very effective choices for prefetching. The
videos in the Search Result lists, on the other hand, do not
have this property, and thus the SR-N algorithm does not
give as high hit ratio as the RV-NN algorithm although the
frequency that users use the Related Video list and Search
Result list are about the same.

5.5 Combining Caching and Prefetching

Because of the difference in their underlying principals,
the prefetching scheme and caching scheme conceptually
captures different sets of videos, although there may be
some overlapping. Thus, combining these two schemes can
potentially result in a higher hit ratio. Figure 12 shows
the hit ratio improvement resulting from the combination of
caching and prefetching called the cache-and-prefetch mode.
The combination of the two schemes increases the hit ratio
by 5-20% compared to the prefetch-only mode. The maxi-
mum hit ratios we obtain at N = 25 increase from 63.47%,
59.85% and 75.68% to 72.30%, 66.83% and 80.88% for trace
T1, T2 and T3, respectively. Note that the hit ratio of the
cache-and-prefetch mode is not the sum of the cache-only
and prefetch-only mode. This is because there is an overlap
between the set of cached videos and the set of prefetched
videos. As shown in Figure 12, the improvement of the
hit ratio induced by the cache-and-prefetch mode becomes
smaller as N increases. This means that as we prefetch more
videos from the Related Video lists, the overlap between the
set of prefetched videos and the set of videos that users have
watched becomes larger. Thus, with regards to the hit ratio,
the addition of caching functionality is more helpful when
we prefetches a small number of videos. In Section 6.4.2, we
show another advantage of combining caching and prefetch-
ing when we discuss the traffic overhead introduced by the
prefetching scheme.
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5.6 Storage Requirement

So far, the prefetching scheme using the RV-N algorithm
and the PF-Proxy setting has yielded the best hit ratio of
up to 80% in cache-and-prefetch mode. The presented re-
sults are based on the assumption that there is always suffi-
cient storage space to store the prefetched and cached videos.
This gives us the highest hit ratio that can be reached. In
Figure 13, we show the storage space that is actually re-
quired for the case of sufficient storage space. The storage
size in the figure is converted from the number of slots to
gigabytes where each slot is equal to 2.5 MB, as explained in
Section 5.1. The storage space required in cache-only mode
is also shown as a baseline.

As shown in Figure 13, when N is larger, which means
more videos are prefetched, the required space increases.
The required spaces for the three traces are different because
of the difference in the number of requests in the traces.
The more requests there are, the more space we need. Al-
though prefetch-only mode requires much more space than
cache-only mode, the actual space it needs is merely 4.69
TB where it can reach 75.68% hit ratio (in T3). For cache-
and-prefetch mode, the storage requirement are very close
to prefetch-only mode, while it improves the hit ratio on the
order of 5-20%. The maximum space needed is 4.76 TB,
which results in a 80.88% hit ratio.

Although the storage requirement given here are specific
to our traces with different duration and request volumes, it
demonstrates that the storage required to achieve the high-
est hit ratio with prefetching for a campus-size network is
within a feasible range. Later, in Section 6.1, we consider
the cases when storage space is insufficient and study how
the storage size impacts the performance of the prefetching
scheme.

6. DISCUSSION

In this section, we further explore the trade-offs when us-
ing the prefetching scheme with the RV-N algorithm and
the PF-Proxy setting. We also study certain aspects of the
feasibility of prefetching.

6.1 Impact of Storage Space

In reality, the always-sufficient space is not realistic since
there are always new video requests and more prefixes to
store as the PA continues running. The storage space is
fixed, while the storage requirement continues to increase.
To investigate the impact of limited storage space on the per-
formance of the prefetching scheme, we ran the simulation
with limited storage sizes of 1k, 3k, 5k, 10k, 25k, 50k, and
400k slots. As mentioned in Section 5.1, each slot is about
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2.5 MB. Thus, the maximum slot size of 400k roughly trans-
lates to 1 TB. The Least-Recently-Used (LRU) replacement
policy is used in our simulation. Figure 14 and 15 show the
hit ratio of the prefetch-only and prefetch-and-cache modes
with different storage sizes for T3. The results for T1 and
T2 are similar but omitted due to space limitation.

The results indicate a correlation between the performance
of the prefetching scheme and the storage space size. The
hit ratio decreases with the storage space. However, even
with a smaller storage space like 125 GB (50k slots), which
is less than 3% of space required in the sufficient case, we
can still achieve high hit ratios up to 52.59%, 59.36% and
56.26% (for T1, T2 and T3, respectively) with prefetch-only
mode and 59.84%, 66.26%, and 61.62% for the cache-and-
prefetch mode. In comparison to the caching scheme, the
two prefetching schemes can achieve a much better hit ratio
using the same storage size. We believe that the hit ratios
could even be further improved by applying a smarter cache
replacement policy than the LRU policy.

6.2 How large should N be?

In the RV-N algorithm, N is the number of videos we
prefetch from each Related Video list. The value of N di-
rectly affects the performance of prefetching. To investigate
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the impact of NV, we plot the hit ratio versus N for each stor-
age size for the prefetching scheme with cache-and-prefetch
mode, shown in Figure 16. From the figure, with sufficiently
large storage space, increasing N always results in a higher
hit ratio. However, using small N like 5, we can still achieve
a hit ratio up to 65%.

On the other hand, with limited storage size, as N in-
creases, the hit ratio improves up to a certain point and
then begins to decline. This effect can also be seen in Fig-
ure 14 and 15. When the storage size is small (1k slots),
using large N like N = 25 results in a lower hit ratio than
N = 9,15. In order to explain the cause of this effect, we
show the precision of the prefetching scheme for each value
of N in Figure 17. From the figure, the precision decreases
when N is larger. This means that with larger N the frac-
tion of prefetched videos that are never requested by clients
is higher. With limited space, using a too large value of N
results in those unused videos taking up the space of the
popular videos, giving us lower hit ratios. From Figure 16,
a value of N between 5 and 11 seems to be an appropriate
range, yielding hit ratios between 65-74% using 1 TB storage
space (400k slots). We conclude that when the prefetching
scheme is implemented, the value of N should be chosen
carefully to avoid the adverse effect when there is limited
space and to balance the trade-off between the hit ratio and
the additional bandwidth requirement.

Location (Dataset)

Figure 18: Average minimum start buffer size for
smooth playout.

6.3 How much should we prefetch?

In the proposed prefetching scheme, only prefixes of videos
are prefetched to save storage space and bandwidth. First,
we would like to show that we do not need to prefetch the
whole video in order to deliver a smooth video playout, thus
prefetching only a prefix of a video is sufficient. To demon-
strate this, we compute the minimum size of video data that
should be buffered before a video starts playing to give a
smooth video playout, or minimum start buffer size bpin,
for each video playout in the datasets from Section 2.

For a video playout with the function r(t) and sp(d) (as
described in Section 2), suppose we have video data of size
b in the buffer when a video playout starts at ¢ = ts. The
total data we have at time ¢ becomes r(t) +b. Thus, to get a
smooth playout, the start buffer size b must satisfy the condi-
tion V¢t : r(t)4+b >= sp(t—ts). The minimum start buffer size
bmin is then given by b = max {max;(sp(t — ts) — r(t)),0} .

Using the derived function sp(t) and r(¢) from each video
download trace in Section 2, we compute by, for every play-
out. Figure 18 shows the average value of b,,:, as a percent-
age of the full video size for each dataset collected at different
locations. The result shows that by,:n is much smaller than
the full file size; therefore, we do not need to prefetch the
whole video file to deliver a smooth playout. The average
minimum start buffer size of each location varies from close
to 0% to 42% due to the different network condition at each
location.

The remaining question is how large should the prefix be.
One simple solution is to let the prefix size be a sufficiently
large constant percentage of the full video size, but this ap-
proach is inefficient since the minimum start buffer size of
each playout is actually different. If a prefix is too large, we
unnecessarily waste storage space and bandwidth. On the
other hand, if a prefix is too small, prefetching would not be
useful. For a better solution, the prefetching proxy should
choose the prefix size dynamically for each video. The ideal
solution is to let the prefix size be equal to bmin, which is



different for each playout. This solution will give a smooth
playout, while using as least storage and bandwidth resource
for prefetching as possible. Unfortunately, the computation
of bmin can only be done after a video is played. Therefore,
we propose a mechanism to determine the size of the prefix
dynamically.

Our experiment in Section 2 shows that although a video’s
bit rate is not constant, it usually does not vary significantly.
Thus, we assume that a video’s bit rate is constant and equal
to the average bit rate. We also observe that a video’s down-
load rate is usually stable over some short period of time, so
we assume that a video download rate is constant as well.
These two assumptions greatly simplifies the computation
of bimin. Let b be a video bit rate, d be a video duration
and 7 be a video download rate. The prefix size is given by
bmin = d(b— 7).

From the equation, we still need to determine the value
of b, d and r before we actually download a video. For the
future download rate r, the PA can conservatively use the
lowest download rate it has seen in some time window as the
worst case estimate. In addition, the PA can determine the
average video bit rate, b, and video duration, d, from the
header of a video file containing video metadata. Therefore,
not long after the PA starts prefetching the video, it can
determine the value of d, b and r, so it can compute the
appropriate prefix size and stop prefetching accordingly. In
this manner, the prefix size are adapted according to the
network condition and the property of each video.

6.4 Feasbility of Prefetching

One concern about prefetching scheme may be that it will
worsen the situation because it requires additional network
bandwidth, while interrupted video playouts implies that the
network bandwidth is insufficient. Our arguments are as fol-
lows. First, users are not watching videos all the time. For
example, after watching a video, a user may read or write
comments, browse through a list of videos, or replay the
video. This provides “idle” time to perform prefetching. Sec-
ond, since each video’s bandwidth requirement is different,
we may not have enough bandwidth to accommodate higher
bit rate videos, but for lower bit rate videos, we have more
than sufficient bandwidth. As shown in our experiments in
Section 2, we found both types of playouts, with and with-
out pauses, in the same environment. Thus, we can take
advantage of the period where the bandwidth is sufficient
to prefetch the videos. Third, by combining caching and
prefetching, the bandwidth consumption reduced by caching
can compensate the additional bandwidth requirement from
prefetching. In the following subsections, we further discuss
some aspects about the feasibility of prefetching.

6.4.1 Time to prefetch

In practice, a time gap between video requests may some-
times be short, and thus we may not be able to prefetch some
prefixes in time before they are requested. Here we mea-
sure the time available to perform prefetching to estimate
how this issue will effect the performance of the prefetching
scheme. Figure 19 shows the CDF of the time gap between
the time that the PA decided to prefetch a video and the
time the video was actually requested for every hit requests
in trace T3 when NNV is 5 and 25. When N is larger, the dis-
tribution of time to prefetch shifts to a higher value. This
means we have longer time to prefetch videos in the lower

ranks of Related Video lists. Comparing the PF-Client to
PF-Proxy setting, PF-Proxy has longer time to prefetch.
This demonstrates the benefit of sharing prefetched videos
in PF-Proxy. Some videos prefetched based on one client’s
request are requested by another client some time later, and
the time gap between the two events is large, allowing more
time to prefetch.

Using the result shown in Figure 19, we can estimate the
number of hits that are not feasible in practice, i.e., videos
that may not be prefetched in time before clients request
them. For example, suppose the available bandwidth is 100
KB/s. To download 25 prefixes of video, each with the size
of 2.5 MB, we need 11 minutes. Assuming we use a naive
scheme where all the prefixes are downloaded in parallel,
then, from the CDF, 26% of the hit requests are not feasi-
ble, and the hit ratio in the prefetch-only case with N=25
will decrease from 75.68% to 56.00%, yet it is still in a satis-
factory level. In practice, the PA can download the prefixes
sequentially and employ a smarter scheme, e.g., prefetching
the top ranked videos first, to achieve higher hit ratios.

6.4.2 Network traffic overhead of prefetching

To address the concern about additional network band-
width required for prefetching, we perform a simple calcula-
tion of an example case to show how much prefetching will
increase the network load. In this example, we prefetch the
prefixes of the top 11 videos from Related Video lists using
the prefix size equal to 15% of the video size. For cache-
only and cache-and-prefetch modes, we assume that videos
are cached in full size. Using the hit ratio from T3 to com-
pute the overhead, we show the results of the calculation in
Table 3.

Scheme | Hit Ratio | Normalized load

No scheme 0% 1.00

Cache-only 40% 0.60

Prefetch-only 66% 1.44

Cache-and-Prefetch 74% 1.02
Table 3: Normalized traffic load of prefetching

schemes.

Table 3 shows the traffic load for prefetching schemes
compared with caching scheme, normalized by the case in
which no scheme is implemented. Caching has no traffic
overhead and helps reduce the traffic. On the other hand,
we gain higher hit ratio with prefetching-only mode, but
traffic load is also increased by 44%. These extra work
comes from prefetching unused prefixes. Finally, cache-and
prefetch mode yields the highest hit ratio and introduces
only 2% increase in the network load. Using the combi-
nation of caching and prefetching, the extra overhead from
prefetching is compensated by the benefit of caching, while
we can still maintain the high hit ratio we get from prefetch-
ing. In addition, the PA can employ the technique like using
TCP Nice [20] to perform prefetching without affecting the
peak bandwidth of the network.

7. RELATED WORK

The prefetching technique has its origins in the area of
computer architecture. The use of prefetching has been
widely studied for web content delivery in early days.

Padmanabhan and Mogul were among the first who ap-
plied prefetching within the context of web delivery by propos-
ing the WWW prefetching scheme to reduce latency [15]. In
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this scheme, a server makes predictions of the links that are
likely to be requested next by a client based on past ob-
servations. Clients use these predictions to prefetch web
documents. In [9], Cunha and Jaccoud proposed two mod-
els based on random walk and digital signal processing to
model user web access pattern for prefetching. In [10], Fan
et al. proposed the proxy-initiated prefetching for web doc-
uments. Their approach addresses the low-bandwidth limi-
tation between clients and a proxy by prefetching the cached
documents from the proxy to the clients. In this approach,
prefetching does not happen between the proxy and the web
servers. The use of proxies in VoD systems has been inten-
sively studied in earlier work. We mention the ones that are
closest to our approach in the following.

In [19], Sen et al. proposed a prefix proxy caching scheme
in which the proxy is used to hide latency, packet loss, and
jitter between the local network and server sites. Their
proxy caches only a prefix of a video to avoid using a large
cache space. They focused on using prefix caching to smooth
out the network bandwidth requirement from a proxy to a
client and used streaming traces of two videos to demon-
strate the benefits of the approach. However, they did not
address the issue of how to select videos to prefetch. In
[5] and [22], trace-driven simulations were performed to in-
vestigate the effectiveness of caching for YouTube videos.
Although the traces for both studies were different, the re-
sults showed that caching can reduce server and network
load significantly. Both studies did not consider prefetch-
ing. In addition, there are many existing studies on the use
of proxy to improve the quality of media streaming, e.g., [16,
13, 17, 21].

Additional studies have been performed to understand
YouTube’s characteristics. Cha et al. performed an exten-
sive study of video view statistics on Youtube [5]. Gill et
al. studied the usage patterns and video characteristics on
YouTube using data from the network edges in [11]. In [12],
they further studied user sessions on YouTube. Results from
this analysis motivated us to investigate the prefetching ap-
proach since they were the first ones who showed that users

spend extended periods of time on YouTube, often watching
more than one videos. In [18], Saxena et al. analyzed the
service delay for YouTube and other user-generated video
sharing sites. Their measurement-based analysis showed
that the service delay for YouTube is high, which can lead
to a poor playback experience. How often the playback is
actually interrupted is not the focus of their study.

Cheng et al. [8] measured the YouTube video graph cre-
ated by related video links and found that the graph has
a large clustering co-efficient and exhibits the small world
property. A simulation-based evaluation of a P2P video
sharing systems showed that if users use the Related Video
list to browse videos, the percentage of source peers that
have the requested video in their cache is high.

Cheng and Liu [7] also proposed a P2P video sharing sys-
tem to reduce YouTube server load and suggested using
prefetching based on YouTube’s Related Video list at the
clients of a P2P system to provide smooth transition be-
tween videos. Their evaluation was based on emulated user
browsing pattern. The evaluation of their approach showed
that it performs significantly better (55% hit ratio) com-
paring with a random prefetching approach (nearly 0% hit
rate).

In contrast to these previous work, we propose and com-
pare various prefix prefetching schemes. Our focus is on
user-generated video sharing sites, which are inherently dif-
ferent from VoD systems. We demonstrate the benefit of
the prefetching schemes using real user browsing patterns
collected from university network traffic. Our study demon-
strates that in addition to views from users clicking Related
Video lists benefiting from recommendation aware prefetch-
ing, other views such as clicking on search results can also
benefit from recommendation aware prefetching. Also, the
shared interests among network users leads to 50%-100% in-
crease in hit ratios when prefetching is performed at a proxy
server at the network edge. This suggests that recommen-
dation aware prefetching is a good heuristic for predicting
the interest of viewers both individually and across a com-
munity.



8. CONCLUSION

In this paper, we show that currently the user experience
in watching videos on video sharing web sites like YouTube
is often dissatisfying. In particular, our experiment indicates
that many users experience pauses during a video playout.
This motivated us to propose a prefetching technique which
improves the playback quality and the delay of videos re-
quested from YouTube.

Our proposed prefetching technique works by predicting
a set of videos that are likely to be watched in the near
future and then fetching the prefixes of those videos before
they are requested. If a video has been prefetched, a user
can access it faster and the prefetched portion in the buffer
can compensate for any insufficient bandwidth and absorb
network delay, resulting in a smooth playout of the video.

Our evaluation of the prefetching approach is based on ac-
tual network traces which capture real user access patterns.
We compare the performance of various prefetching schemes
to the traditional caching scheme. We find that applying
prefetching at a proxy while using the Related Video lists
to select videos to prefetch is the most effective prefetching
scheme. Even with limited storage space, prefetching at the
proxy results in a hit ratio twice as high as the caching proxy.
In addition, the combination of caching and prefetching can
further enhance the hit ratio up to 81%.

Finally, we discuss factors that affect the performance of
our prefetching scheme including the storage size and the
number of videos to prefetch and explore the trade-offs re-
garding those factors. We also analyze the additional over-
head in network traffic that is introduced by prefetching and
show that, in the case of caching and prefetching, it is an
almost negligible increase of 2%.
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