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Abstract. Hyperion is a hyperspectral sensor on board NASA’s EO-1 satellite with a spatial 

resolution of approximately 30 m and a swath width of about 7 km. It was originally designed 

for land applications, but its unique spectral configuration (430 nm – 2400 nm with a ~10 nm 

spectral resolution) and high spatial resolution make it attractive for studying complex coastal 

ecosystems, which require such a sensor for accurate retrieval of environmental properties. In 

this paper, Hyperion data over an area of the Florida Keys is used to develop and test 

algorithms for atmospheric correction and for retrieval of subsurface properties. Remote-

sensing reflectance derived from Hyperion data is compared with those from in situ 

measurements. Furthermore, water’s absorption coefficients and bathymetry derived from 

Hyperion imagery are compared with sample measurements and LIDAR survey, respectively. 

For a depth range of ~ 1 – 25 m, the Hyperion bathymetry match LIDAR data very well 

(~11% average error); while the absorption coefficients differ by ~16.5% (in a range of 0.04 – 

0.7 m-1 for wavelengths of 410, 440, 490, 510, and 530 nm) on average. More importantly, in 

this top-to-bottom processing of Hyperion imagery, there is no use of any a priori or ground 

truth information. The results demonstrate the usefulness of such space-borne hyperspectral 

data and the techniques developed for effective and repetitive observation of complex coastal 

regions. 
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1 INTRODUCTION 

 
Coastal and estuarine regions are important parts of the coastal ecosystem. They are not only 

the productive water that support the fishery industry, but also are more directly related to 

human activities via recreation. However, as a result of population expansion and economic 

development as well as a variety of natural events, many coastal areas have suffered shoreline 

erosions, declines in aquatic species, losses in seagrass beds, and bleaching of coral reefs [e.g., 
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1, 2]. Eutrophication and sediment resuspension contribute to the deterioration of water 

clarity that leads to change of ecosystems, whereas shoreline erosion and redeposition alter 

coastal navigations. Such changes demand efficient and reliable updating of its status. 

The traditional bathymetry and water property monitoring technique requires frequent 

ship surveys. While this kind of observation can provide detailed information about the 

chosen sites, it cannot show what happens to the broader coastal environment, and may miss 

places of dramatic change. To document the properties of the broad coastal environment 

instead of a few chosen sites, repetitive measurements by satellite sensors offer an attractive 

alternative. However, to adequately monitor complex coastal environments [3] via ocean 

color radiometry (OCR) requires not only sophisticated sensors but also advanced data 

processing algorithms [4]. 

For shallow coastal waters, Lee and Carder [5] have demonstrated that reliable derivation 

of water and bottom properties from spectral remote sensing requires a sensor with 

hyperspectral capability. Current operational satellite sensors designed for observation of 

biogeochemical properties of the global ocean, such as SeaWiFS or MODIS, have only about 

8 spectral bands in the visible-infrared domain and a large spatial footprint (~1 km). Such 

sensors can provide valuable observations on properties of the open ocean, but they cannot 

provide the detailed spectral and spatial information needed for shallow coastal environments.  

The Hyperion sensor on board NASA’s EO-1 platform [6] has more than 200 channels 

covering ~430 nm to 2400 nm and a ground resolution of about 30 m (for nadir viewing). 

Hyperion was designed for bright land targets and it has a marginal Signal-to-Noise Ratio 

(SNR) for dark ocean targets. Its spectral and spatial characteristics, however, are 

significantly better suited for the study of coastal waters than sensors such as SeaWiFS or 

MODIS.  

The SNR of Hyperion is typically in the range of 50 – 150, whereas the SNR of SeaWiFS 

or MODIS are around or better than 500. The low SNR has a large impact on water 

observation. Water targets typically have much weaker signal than land targets. Thus 

Hyperion may not have enough sensitivity to differentiate the subtle change of water 

properties. Consequently it has been perceived that Hyperion would have little usefulness for 

water observations. On the other hand, for many shallow coastal areas, due to the increased 

turbidity of water, and in places with strong reflectance from the bottom, the signals 

emanating from the water surface can be much stronger than that from open ocean waters. An 

earlier study by Brando and Dekker [7] of Hyperion data over Moreton Bay (Australia) 

clearly demonstrated that Hyperion imagery could be very useful in mapping water properties 

of coastal areas. That study, however, was focused on the properties of the water column 

(such as concentrations of chlorophyll and suspended particles, and absorption of yellow 

substance); and utilized only Hyperion-collected spectral information at 490 nm, 670 nm, and 

the average in the range of 700 – 740 nm. Also, similar to the traditional standard strategy, the 

atmospheric correction in Brando and Dekker [7] requires that both the sensor and the 

atmosphere model provide accurate top-of-atmosphere (TOA) spectral radiance (Lt(λ). λ is the 

wavelength in air and is omitted in the remainder of the text for brevity unless needed for 

clarification.) in order to obtain reliable water-leaving radiance (Lw). Unfortunately the 

radiometric accuracy of Lt is only about ±5% for Hyperion [8], which may cause significant 

errors in Lw because Lw is generally no more than 10-20% of Lt [9].  

In this study, using Hyperion data collected over the Florida Keys as an example, we 

present a practical image-driven method for correcting the effects of atmosphere for such 

sensors. Furthermore, the corrected signal (remote-sensing reflectance of water) is fed into a 

hyperspectral optimization processing scheme [10, 11] to derive properties of the water 

column and the bottom. Hyperion derived results are then compared with in situ and LIDAR 

measurements, respectively, to evaluate the performances of the methods. The excellent 

agreement demonstrates that hyperspectral data, even from sensors such as Hyperion with 

low SNR, when used with this innovative method for atmosphere correction and the advanced 
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algorithm for retrieval of environmental properties, can provide reliable and useful 

information for effective monitoring of coastal ecosystems. 

 

2 DATA  
 

Level 1 Hyperion data over Looe Key (Florida) collected on October 26, 2002 was provided 

by the USGS. Because our focus is on water and bottom properties, only spectral information 

in the range of 428 – 925 nm was used. The image was centered at 24o42’39” (N), 81o22’15” 

(W). Figure 1 presents the full scene (before georeferencing) of this Hyperion collection. This 

image covers clear oceanic waters, shallow waters with varying bottom reflectivity, and 

complex out flows from nearby coasts. For this study, data analysis was focused on the sub-

scene (~ 140 km2, see Fig. 1, right) that overlaps most with available LIDAR bathymetry. 

 
Fig. 1. Hyperion collection (October 26, 2002) over the Florida Keys (before geo-

referencing). Left is the full scene; right is a subset that has both in situ and LIDAR 

measurements (within the dashed box). Numbers in the subset indicate the locations 

of the six stations with in situ measurements. 
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During the collection of Hyperion data, in situ measurements of remote-sensing 

reflectance (Rrs, which is defined as ratio of water-leaving radiance (Lw) to downwelling 

irradiance just above the surface (Ed)) and water optical properties were also carried out at six 

sites in the area (red dots in Fig. 1). Remote-sensing reflectance was measured using a 

custom-made hand-held spectroradiometer [12] and water absorption coefficients were 

measured with an AC-9 (Wetlabs, Inc., Philomath, OR). All measurements and data 

processing followed the NASA protocols [13]. During the measurements, the sea state was 

quite calm with a wave height ~10 cm. 

Bathymetry was also collected using the SHOALS (Scanning Hydrogrpahic Operational 

Airborne Lidar Survey, http://shoals.sam.usace.army.mil ) system (but not exactly in the same 

footprint). This system is an earlier version of CHARTS (Compact Hydrographic Airborne 

Rapid Total Survey; NAVOCEANO), which is a survey system that includes hyperspectral 

and topographic/hydrographic LIDAR. SHOALS probes the water with a 532 nm YAG laser 

and uses the time difference between the surface return and the bottom return to measure the 

bottom depth. For the Looe Key area, two surveys were collected using SHOALS but with 

slightly different ground coverage. One was obtained the same day as the Hyperion image, 

the other on December 10, 2004. To increase the area of overlapping coverage between 

Hyperion and SHOALS data, the two LIDAR bathymetry data sets were combined to form 

one image after no significant variations were found between the two. A 0.75 m subtraction 

was made to the 2004 data to account for the tidal difference and to have a smooth transition 

at the survey boundaries. To account for the tidal effects between the merged LIDAR set and 

the Hyperion data, 0.2 m was subtracted from the merged LIDAR bathymetry prior to 

comparison with that from Hyperion (see section 5). 

 

3 IMAGE-DRIVEN METHOD TO CORRECT ATMOSPHERIC EFFECTS  
 

To analytically derive water and/or bottom properties from any satellite ocean-color data, the 

first step is to get high-quality spectral remote-sensing reflectance (Rrs). It is Rrs that contains 

water and/or bottom information.  

In general, the radiance measured by a sensor at any altitude (Lt) can be expressed as 

 

)()()()( λλλλ wat LtLL += ,     (1) 

 

with La representing contributions from the atmosphere and sea-surface reflectance, and Lw 

for contributions from below the water surface. t is the transmittance of Lw from sea surface to 

sensor altitude. From Eq. 1 and the definition of Rrs, we obtain 
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To obtain Rrs from Lt, values of La, t, and Ed must be known. Conventionally, standard 

approaches calculate values of La, t, and Ed based on models of radiative transfer for the 

atmosphere [9, 14, 15], with the assumption that Lt is measured with high accuracy both 

spectrally and radiometrically. Since Lw in general makes up <20% of Lt, such methods 

require extremely high accuracy (within ±1% for ocean applications) in the measurement of 

Lt and high accuracy in the aerosol models. The Hyperion sensor, however, has a radiometric 

accuracy of only ±5% in the measured Lt [8]. Such an uncertainty in Lt may cause a 50% error 

in Lw by the standard approach even with a perfect atmospheric model. Such large errors in 

turn can cascade into significant uncertainties in the derived water and/or bottom properties. 

As evidenced in Brando and Dekker [7] (their Fig. 2), the derived reflectance shows 

http://shoals.sam.usace.army.mil/
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significant non-smoothness even after spatial average [7], although the relative error was not 

large and water properties were derived reasonably well in that study. 

 

Fig. 2. (a) Pixels under the Sun and in the shadow used for correction of 

atmospheric effects. (b) The TOA radiance in raw counts of the two adjacent pixels 

under the Sun and clouds. (c) Derived atmospheric contribution to the TOA radiance 

after using the Cloud-Shadow method (see text for details). (d). Averaged TOA 

radiance of selected clouds. 

 

To overcome the imperfect radiometric accuracy in Hyperion Lt, we applied a practical 

image-driven technique to correct the atmospheric contribution. This technique is an 

extension of the cloud-shadow method developed by Reinersman et al. [16]. In that method 
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[16], La is calculated from a pair of adjacent pixels that are in and out of a cloud shadow, with 

t and Ed calculated separately from a radiative transfer model after deriving aerosol properties. 

Therefore it does require the sensor to be well calibrated radiometrically and spectrally in 

order to match the calculated t and Ed.  

In our adjusted approach, we calculated La in a similar but simplified fashion to that of 

Reinersman et al. [16], but t and Ed were evaluated differently. Specifically, 1) t and Ed were 

not explicitly derived separately; and 2) the product of t and Ed was estimated using the 

reflected radiance from the top of clouds.  

Mathematically, for a pixel outside the shadow (under the Sun), its radiance (
Sun
tL ) can 

be expressed as, 

 

)()()()()( λλλλλ rsd
Sun
a

Sun
t REtLL += ,    (3) 

 

with Ed including contributions from both the Sun and sky [17]. For an adjacent pixel in the 

shadow that has the same water properties as that under the Sun, its radiance, 
Sdw
tL , is given 

by, 

 

)()()()()( λλλλλ rs
Sky
d

Sdw
a

Sdw
t REtLL += .    (4) 

 

The Rrs under the Sun and in the shadow are actually slightly (<5%) different because of 

the different illuminations [18-21] even when they have the same water and bottom properties. 

This little difference is ignored here, however.  

As an example, Figure 2a shows the locations of a pair of adjacent Sun-shadow pixels, 

while Figure 2b presents their corresponding TOA radiances (in raw counts).  

Assume that 
Sun
aL  = 

Sdw
aL  = La, then the following is derived from Eqs. 3 and 4, 

 

)(/)(1

)()(
)()(

λλ

λλ
λλ

d
Sky
d

Sdw
t

Sun
tSun

ta
EE

LL
LL

−

−
−= .    (5) 

 

Because d
Sky
d EE /  can be estimated from Radtran [17] for a given location and at a given 

time, La is then easily calculated from Eq. 5. Figure 2c presents the calculated La of the 

selected Sun-shadow pair, which is in the same units as Lt from the sensor (either in raw 

counts or absolute radiance). The values of d
Sky
d EE /  depend on atmospheric conditions 

(such as visibility, ozone depth, etc). However, in the process of deriving La here, because 

d
Sky
d EE /  is applied on the difference between 

Sun
tL  and

Sdw
tL , and this difference is 

significantly smaller than 
Sun
tL , errors in d

Sky
d EE /  have only very limited effects on La. For 

instance, when d
Sky
d EE / were calculated separately with the visibility values of 15 km and 

30 km and resulted in ~30% difference in d
Sky
d EE / for the blue wavelengths, the maximum 

difference in derived La was ~ 1%. Because of such negligible effects, d
Sky
d EE /  of the Sun-

shadow pixels were calculated with the default atmospheric parameters in Radtran.  

In this process of deriving La, it is more important to avoid sun glint that could contribute 

to  
Sun
tL  but not to

Sdw
tL . This could be carried out by choosing pixel pairs with no, or 

negligible, sun glint as we did here where the sun zenith angle was about 45o and the sensor 

was nadir looking. One could also correct for sun glint first [22] before deriving La. To test 
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the robustness of our process, another two pairs of adjacent Sun-shadow pixels from different 

locations with different water properties were selected and La calculated. The results (not 

shown here) were nearly identical to that shown here. Such results validate the calculation 

process and the assumption that La for this study was nearly uniform spatially.   

To calculate Rrs, the product of tEd is needed. For this component, we used the radiance 

measured over the clouds to make the estimation. If we assume that the atmospheric 

contribution is nearly uniform over the study area, the TOA radiance above a cloud is 

approximated as 

 

ρλλλλ )()()()( da
Cld
t EtLL += ,    (6) 

 

where ρ is the remote-sensing reflectance of the observed clouds. The ρ value corresponds to 

the spectrum of 
Cld
tL , and is considered independent of wavelength based on measurements 

made in the visible-infrared domain [23, 24]. Figure 2d shows averaged 
Cld
tL  of a few 

selected clouds. Rrs at any pixel was then calculated from 

 

)()(

)()(
)(

λλ

λλ
ρλ

a
Cld
t

at
rs

LL

LL
R

−

−
= .    (7) 

 

The value of ρ was determined from a clear water pixel by assuming Rrs(550 nm) value of 

0.002 sr-1 [25], and a ρ value of ~0.16 sr-1 was obtained for the averaged 
Cld
tL  of this study. 

For other Hyperion images, an effective ρ value could be obtained by comparing its 
Cld
tL  to 

the 
Cld
tL  used in this study.  

To account for any residual contributions from the sky and the sea surface, a spectrally 

constant value was removed from the above calculated Rrs in order to obtain an average of 

zero for the spectral range of 810 - 840 nm, where contributions from water are considered 

null [26]. After these steps, Rrs of the entire Hyperion scene were derived.  Figure 3 compares 

spectra of Rrs derived from Hyperion to those from in situ measurements. Excellent agreement, 

in both spectral shapes and spectral values, between the Hyperion Rrs and the in situ Rrs are 

obtained in four out of the six in situ stations. Note that these spectral Rrs varied widely from 

station to station. However, for two stations (St.2 and St.5), while the spectral shapes of the 

two Rrs spectra are quite consistent, respectively, the Hyperion Rrs are significantly higher 

than in situ Rrs in values. The reason for this mismatch is not absolutely certain but the in situ 

measurements suggest that pixels had different water-bottom properties. Note that the water 

or bottom properties were not uniform in those areas.  

One obvious advantage of this image-driven approach to derive spectral Rrs is that Lt, La 

and 
Cld
tL  come from the same sensor with all Lt components collected nearly simultaneously.  

Hence the derivation of Rrs does not depend on the absolute radiance value of Lt because the 

sensor’s response function (calibration factor) is canceled out. This can be extremely useful 

for sensors that are imperfectly calibrated or decay with time in uncontrollable and unknown 

fashions. Also, since La is in general the smaller spectrum of the image, it will be rare that Rrs 

calculated by this approach be negative in the visible domain. This method, however, does 

require a pair of adjacent Sun-shadow pixels with uniform surface properties, and this shadow 

cannot be from thin clouds. Also, it does depend on the assumption that La is nearly uniform 

for the study area. Such an assumption could be more problematic if the area under study is 

quite wide (hundreds of kilometers), as La is a function of many parameters that include 

aerosol load, solar zenith angle, and relative azimuth angle, etc. 
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Fig. 3. Derived remote-sensing reflectance from Hyperion measurements (open 

symbol) and its comparison with that from in situ measurements (solid symbol). 

Numbers in the boxes indicate total absorption coefficients at 440 nm measured by 

an AC-9 (Wetlabs, Inc.). 

 

 

4 RETRIEVAL OF BOTTOM AND WATER COLUMN PROPERTIES 
 

To derive properties of the water column and bottom from Rrs, we applied the spectral 

optimization approach developed by Lee et al. [10, 11]. Briefly, the approach analytically 

models Rrs spectrum as a function of five independent variables (representing properties of 

water column and bottom) for optically shallow waters, i.e., 
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Here aw and bbw are the absorption and backscattering coefficients of pure seawater, with 

values taken from the literature [27, 28] and considered to not vary from place to place. P, G, 

X, and B are scalar values and represent absorption coefficients of phytoplankton and 
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gelbstoff (colored dissolved organic matter plus detritus), backscattering coefficient of 

suspended particles, and bottom reflectance at a reference wavelength (normally 440 nm), 

respectively; and H is the bottom depth. Although multiple bottom types could be 

incorporated into the semi-analytical model [11, 29], it is only the spectral reflectance shape 

of a sandy type bottom [11] is considered here as it was the dominant bottom substrate. To 

derive the five unknowns, a computer module, Hyperspectral Optimization Processing 

Execution (HOPE), has been developed. By varying the values of the five unknowns, they are 

considered derived when the modeled Rrs spectrum best matches the Hyperion Rrs spectrum 

[10, 11]. Unlike traditional empirical algorithms for bathymetry [30-32] that require many 

assumptions and ground truth data before the derivation of bathymetry from Rrs, HOPE 

derives all the constituents from the imagery. 

 

5 RESULTS AND DISCUSSION 

 

As an example to show the spatial variation of water property of the study area, Figure 4 (left) 

displays the water’s total absorption coefficient at 440 nm (a(440), which is the sum of P, G 

and aw at 440 nm) derived from Hyperion imagery, presented prior to geo-referencing (the 

same for Fig. 5). Pixels of land and deep ocean are masked as white in order to emphasize the 

properties of optically shallow waters (see Fig. 5). Spatially, we see a contrast of near uniform 

distribution in the lower half, while a strongly varying distribution in the upper half that is 

closely associated with land. Lower a(440) values (~0.04 m-1) are generally found in the 

bottom portion of the image while higher values (~0.6 m-1) are found for waters closer to land. 

A systematic increase of a(440) (Note that lower a(440) indicates higher water clarity.) from 

offshore to onshore in a pattern parallel to the coastal line is revealed. Such a distribution is 

expected as the bottom portion is constantly mixing and exchanging waters with the nearby 

clear oceanic waters by tides and currents (see Fig. 1); whereas the waters with higher a(440) 

values are affected by land and river runoff. These spatial variations clearly indicate the 

different forces (tides, currents, river flows) in modulating optical properties of coastal 

ecosystem.  

 
Fig. 4. Left: Distribution (before geo-referencing) of water absorption at 440 nm 

(a(440)) derived from Hyperion data (after 3x3 spatial average). Right: Comparison 

between absorption coefficients from Hyperion and those from AC-9 measurements. 
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To evaluate the accuracy of optical properties derived from Hyperion imagery, Figure 4 

(right) compares Hyperion-derived absorption coefficients at the five blue-green wavelengths 

(with center wavelengths at the vicinity of 410, 440, 490, 510, and 530 nm) with those 

measured with an AC-9 instrument (Wetlabs, Inc.). Before matching data from in situ 

measurements, a 3x3 spatial average was carried out to the Hyperion results. For four stations 

(Sts.2, 4, 5, and 6) that have high-quality in situ absorption measurements (in a range of 0.036 

– 0.73 m-1), Hyperion results matched in situ values very well (average difference is ~ 16.5%). 

The AC-9 values at St.3 were noisy and therefore excluded in this comparison. Most of the 

errors (~40% underestimate at 410 nm) happened at St.5 where apparently the water was 

quite dynamic due to runoff waters. Realizing that absorption coefficients from AC-9 were 

not error free [33] and the study area was quite complex optically, the relatively small error 

suggests very successful retrieval of water’s total absorption coefficients from Hyperion. No 

comparisons were made regarding the derived absorption coefficients of phytoplankton 

pigments or colored dissolved organic matter because there were no in situ measurements 

regarding these properties. It is generally understood, however, that less accurate results are 

expected from ocean-color remote sensing for the individual components [34]. 

It is necessary to point out that both Hyperion data and in situ measurements showed 

wide varying (by an order of magnitude) optical properties for such a small area (~ 7 km in 

width and 20 km in length). If a method to retrieve bottom properties relies on the assumption 

of homogeneous spatial distribution of water’s optical properties, then it will have difficulties 

for such an area.  

 

 
Fig. 5. Distribution (before geo-referencing) of bottom depth (left) and bottom 

reflectance at 550 nm (right) derived from Hyperion data (after 3x3 spatial average).  
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In contrast to the spatial patterns of the a(440) image, the images of bottom depth and 

bottom reflectance (at 550 nm) from Hyperion show significantly different patterns (Fig. 5). 

For the lower half of the image where a(440) is nearly uniform, the bathymetry and bottom 

reflectance images show distinctive patchiness with wide variations in values. The Hyperion 

bathymetry shows a variation between ~1 and 25 m, with shallow bottoms and a deeper 

channels clearly revealed (and the ship channel - known as the Hawk channel - parallel to the 

coast). The bottom reflectance derived from Hyperion image is generally in a range of 0.05 – 

0.4, which are reasonable and consistent with mud to quartz sand bottoms (unfortunately we 

do not have sample measurements to make detailed evaluation). Also, in the middle of the 

bottom reflectance image, the deposit and accumulation of land runoff is evident. These 

distinctive patterns and results indicate that properties of bottom and the water column are 

successfully separated. 

To get both qualitative and quantitative evaluations of the bathymetry data derived from 

the hyperspectral imagery, Hyperion bathymetry is compared with that obtained from the 

SHOALS system (Fig. 6) after geo-referencing the Hyperion data and binning the LIDAR 

data (which originally has a spatial resolution of ~1 m). Figure 6 shows the spatial 

distributions of the two bathymetry data sets. Further, using the data in Figure 6, a scatter plot 

comparing the depths obtained with the LIDAR and Hyperion is presented in Figure 7a; while 

Figure 7b shows the distribution of relative errors. Clearly, from Figure 6, both bathymetry 

images show spatial patterns that mimic each other, except for a small portion in the upper 

middle section (the oval circle) where Hyperion bathymetry is frequently shallower than 

LIDAR bathymetry. This mismatch may be caused by land runoff that likely produced a two-

layer stratified water system. This may result in shallower bathymetry derived from the 

HOPE processed Hyperion data than is actually present. Combining hyperspectral 

observation with hydrodynamic models could improve retrievals for such environments, or at 

least to flag it as an area with likely larger uncertainties. 

 

 
Fig. 6. Left: Bathymetry from LIDAR measurements. Right: Bathymetry from 

Hyperion data after geo-referencing. Pixels without LIDAR data, and those of land 

and deep ocean, are masked as white. 
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Quantitatively, for over 50,000 points that have measurements of bathymetry from both 

systems and cover a range of ~1 – 25 meters, the two data sets show very good agreement 

(average percentage difference is ~11%, Figure 7a). Overall 58% of the Hyperion bathymetry 

are within ±10% of LIDAR bathymetry (Figure 7b). This percentage becomes 76% if the 

difference is expanded to ±15% and 84% for ±20%. All these results indicate excellent 

bathymetry retrieval from this Hyperion imagery using the HOPE scheme. 

The reason for larger (~20%) overestimation at the locations where the Hyperion 

bathymetry is greater than 20 m (~2% of data points, Figure 7a) is as yet unknown. It is 

noticed, however, that 90% of such data points (Hyperion-derived bathymetry deeper than 20 

m) occur at the lower boundary between shallow coastal water and deeper oceanic water 

where bathymetry increases dramatically. Because the spatial resolution of Hyperion is ~30 m, 

the Hyperion signals of pixels in the boundary area are a mixture of shallow and deep water, 

and therefore result in a deeper depth retrieval than is actually present. Fortunately such 

pixels can be easily identified in an image and can be flagged. 

 

Fig. 7. (a) Quantitative comparison between Hyperion bathymetry and LIDAR 

bathymetry. (b) Distribution of relative error when Hyperion bathymetry is 

compared with LIDAR bathymetry. 

 

To compare the two bathymetry data in detail, Figure 8 presents the bathymetry tracks 

for the two transects (black lines) in Figure 6, respectively. These two transects cover wide 

variations of bathymetry in the horizontal and vertical directions. Though we do observe 

some mismatches in bathymetry values, overall there is excellent agreement both in patterns 

and in actual values between the two independently determined bathymetry data sets. All 

these results, both water column and bottom properties, indicate successful derivation of 

environmental properties from hyperspectral imagery with the approaches used in this study. 

These results echo the findings of Brando and Dekker [7] that Hyperion imagery is very 

useful to observe environmental properties of complex coastal ecosystems. 

 

6 SUMMARY AND CONCLUSIONS 
 

In this study, using Hyperion data over Looe Key as an example, we demonstrate an 

innovative approach to derive high-quality spectral Rrs of the water from Hyperion imagery. 

This new method uses differences in scene brightness to avoid the rigid requirement of 

accurate radiometric calibration of the sensor, and overcomes the commonly encountered 

problem of negative Rrs in the blue wavelengths when using the standard atmosphere 

correction scheme. The limitation of this new method is that it requires distinctive cloud 

shadow in a near uniform water area. 
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The Rrs derived from Hyperion imagery was applied to a previously developed 

hyperspectral retrieval scheme to obtain properties of the water column, bottom reflectance, 

and bottom depth. The derived absorption coefficients differ on average by ~ 16.5% when 

compared with that measured in situ (over a range of 0.036 – 0.73 m-1 for wavelengths of 410, 

440, 490, 510, and 530 nm); while the derived bathymetry differs on average by just  ~11% 

when compared with that from LIDAR measurements (over a range of ~1 – 25 m). 

Comparisons show that 76% of the Hyperion bathymetry values are within ±15% of the 

LIDAR bathymetry; and 84% are within ±20%. These results suggest excellent retrieval of 

bathymetry from a space-borne hyperspectral imager (Hyperion). A key feature of this study 

is that the entire top-down process of the image did not use (or need) a priori or in situ 

information. The derived results of water column and bottom demonstrate further that, despite 

its limited SNR and radiometric accuracy, Hyperion imagery is quite adequate for observation 

and monitoring of bright coastal environments providing that sophisticated and robust 

algorithms are implemented. 

Given the importance of the coastal ecosystems for life quality and the global climate, 

efficient and adequate information about the biogeochemical contents, water clarity, 

bathymetry, and distribution of benthic habitats of coastal ecosystems is important for 

government agencies and the public. There is an important but unmet need for regularly 

updating our knowledge about the coastal environment and identifying locations of dramatic 

change. The results of this study, and the many others, show the capability and usefulness of 

hyperspectral sensors in monitoring coastal ecosystems [4]. Unfortunately, no such space-

borne sensors are in operational status yet, even though Hyperion is presently in orbit. The 

MERIS satellite sensor of ESA, though not ideal in spatial and spectral configurations desired 

for coastal remote sensing, does have 15 spectral bands covering the visible to infrared 

domain and capable to collect data with a 300 m spatial resolution. Before an operational 

satellite sensor with ideal spatial and spectral configurations is available, MERIS data, as 

recently shown in Lee et al. [35], could be used as a surrogate for routine, though relatively 

coarse, observations of many coastal environments. 

Fig. 8. Detailed bathymetry comparison between Hyperion data and LIDAR data for 

the two transects (Ln_X and Ln_Y) in Fig. 6. 
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