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Abstract:  Optimal design of water distribution systems 

(WDS), including the sizing of components, quality control, 

reliability, renewal and rehabilitation strategies, etc., is a 

complex problem in water engineering that requires robust 

methods of optimization. Classical methods of optimization 

are not well suited for analyzing highly-dimensional, 

multimodal, non-linear problems, especially given 

inaccurate, noisy, discrete and complex data. Agent Swarm 

Optimization (ASO) is a novel paradigm that exploits 

swarm intelligence and borrows some ideas from multi-

agent based systems. It is aimed at supporting decision-

making processes by solving multi-objective optimization 

problems. ASO offers robustness through a framework 

where various population-based algorithms co-exist. The 

ASO framework is described and used to solve the optimal 

design of WDS. The approach allows engineers to work in 

parallel with the computational algorithms to force the 

recruitment of new searching elements, thus contributing to 

the solution process with expert-based proposals.  

 

 

1 INTRODUCTION 

 

In many fields of science and engineering, the 

optimization techniques employed have conditioned the 

way in which those problems have been approached over 

the years. For example, the use of linear programming 

implied the linearization of the objective function and 

constraints. Techniques based on the gradient required the 

derivability of the function to be guaranteed – or the 

division of the problem into parts so that only differentiable 

terms could be used. For years, consciously or 

unconsciously, the problem was adapted to the optimization 

techniques in use. But these techniques have been shown to 

be poorly suited for many real-world highly-dimensional, 

multimodal, strongly non-linear problems; while, at the 

same time, they must process inaccurate, noisy, discrete and 

complex data. Robust methods of optimization are often 

required to generate suitable results. 

Many researchers have embarked on the implementation 

of various evolutionary algorithms: genetic algorithms 

(GA) (Goldberg, 1989); ant colony optimization (ACO) 

(Dorigo et al., 1996); particle swarm optimization (PSO) 

(Kennedy and Eberhart, 1995); simulated annealing 

(Kirkpatrick et al., 1983; Černý, 1985); shuffled complex 

evolution (Duan et al., 1993); harmony search (Geem et al., 

2001); and memetic algorithms (Moscato, 1989), among 

many others. These derivative-free global search algorithms 

have been shown to obtain good and engineering-relevant 

solutions for large-scale real-world problems of a varied 

nature (Adeli and Kumar, 1995; Sarma and Adeli, 2000; 
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Kim and Adeli, 2001; Vrugt and Robinson, 2007; 

Arumugan and Rao, 2008; Dridi et al., 2008; Izquierdo et 

al., 2009; Herrera et al., 2009; Vitins and Axhausen, 2009; 

Zeferino et al., 2009; Plevris and Papadrakakis, 2011; 

Jafarkhani and Masri, 2011; Putha et al., 2012; Sgambi et 

al., 2012; Hsiao et al., 2012; Tao et al., 2012; Shafahi et al., 

2013; Hejazi et al., 2013; Fuggine et al., 2013; Amini et al., 

2013; Duchesne et al., 2013, to cite just a few). More 

recently, these algorithms have started to be adapted to 

multi-objective problems in various areas (Deb, 2001; 

Savic, 2002; Vamvakeridou-Lyroudia, 2005; Dandy and 

Engelhardt, 2006; Payá et al., 2008; Janson et al., 2008; 

Montalvo et al., 2010; Xie and Waller, (2012); Raich and 

Liszkai, (2012), among others). 

Some of the advantages of the growing use of 

evolutionary algorithms in optimization include (Montalvo, 

2011): 

 Evolutionary algorithms can deal with problems 

containing continuous variables as well as naturally 

discrete variables and binary variables in the yes/no 

decisions that are so frequent in many real-world 

problems. 

 Evolutionary algorithms only work with the 

information of the objective function and this prevents 

complications associated with the determination of the 

derivatives and other auxiliary information.  

 Evolutionary algorithms are generic optimization 

procedures and can directly adapt to any objective 

function, even if it is not described by closed 

expressions, and is described by complex procedures.  

 Because evolutionary algorithms work with a 

population of solutions, many solutions can be 

obtained that can be of great interest from an 

engineering point of view. 

 Because evolutionary algorithms are versatile and 

flexible, analyzing systems under various loading 

conditions, or forcing terms, can be performed within 

the optimal design process. 

 

Thus, unlike most of the classical optimization 

algorithms, evolutionary algorithms enable the use of any 

form of quantitative assessment of the desired objectives 

without conditioning the approach to the problem.  

Nevertheless, despite its benefits, each algorithm has its 

own drawbacks and is better adapted to certain problems 

than to others. The heuristics behind a certain evolutionary 

algorithm endow its elements (agents) with specific 

capabilities for efficiently solving some kinds of problems, 

while being inefficient with problems of a different nature. 

For example, the first author has found that PSO 

experienced major difficulties in a problem of container 

manipulation in a harbor and even in the design of WDS – 

the application-object of this paper – when the candidate 

diameters for the pipes were listed in an unordered way 

(unpublished results). In these cases, the main reason is 

clearly the lack of a logical order in the options, which 

makes the agents roam too abruptly. 

In fact, the individual knowledge (specific current 

information and variables states) of an agent is very limited 

and probably subjective. An effective search of optimal 

solutions is only possible as a result of interaction among 

many agents. Agent-based applications are becoming more 

frequent day by day (Gutiérrez-García and Sim, 2012; 

Rodríguez-Seda et al., 2012 ; Nejat and Damnjanovic 2012; 

Badawy et al., 2013; Fougères and Ostrosi, 2013; Pinto et 

al., 2013, to cite only a few). Agents possess individual 

behavior, and associations of interacting agents result in 

collective structures, called swarms, that represent the 

emergent behavior of groups of agents. These structures are 

also considered agents at a higher abstraction level. 

Swarms, in turn, can interact with other existing swarms. 

A particle from a PSO swarm, an ant from an ACO 

system, and a chromosome from a GA structure do exhibit 

different behavior. Yet, they all share a common feature: 

each represents a potential solution for the problem in hand. 

In a combined environment, a PSO particle could help 

reinforce the pheromone on ant paths, an ant could be 

reproduced with a chromosome; a chromosome could be 

the leader of a particle swarm, and so on. This conceptual 

framework is not a fixed meta-heuristic but a dynamic 

environment where a new algorithm (agent or swarm) can 

be added in runtime to contribute to the solution of the 

given problem. In this framework, algorithms share a 

common pool of solutions. This means that all the 

algorithms share the solutions embodied by their 

populations. This sharing is very simple from a 

computational point of view. Each algorithm evolves in its 

own way, but is not restricted from sharing the solution 

information of the other algorithms. By sharing the 

information, one algorithm can benefit from what any other 

is doing. This idea makes success possible in a wider scope 

of problems. In addition, agents are endowed with sets of 

problem-dependent specific rules with two clear objectives, 

namely fine-tuning the agent behavior to specialize in the 

optimization problem being tackled, while, at the same 

time, reducing the search space, thus enabling decisions to 

be produced with increased reliability and within a 

reasonable time frame. 

The framework broadly described above has been termed 

ASO, for Agent Swarm Optimization. The main 

contribution of ASO derives from the combination of: a 

multi-agent point of view; the coexistence of different agent 

breeds (including humans); the interaction among them; 

and the fact that agents can be endowed with problem-

specific rules. ASO dynamically combines the strengths of 

multiple metaheuristics and demonstrates good 

performance, especially in the field of WDS design. ASO 

can thus be considered as an innovative computing 

application that can be efficiently used in civil and 

infrastructure engineering. 
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In the rest of the paper, the necessary details to 

completely develop ASO are provided and a real-world 

application, namely the design of such crucial 

infrastructures as water distribution systems, is addressed. 

The design optimization of a large WDS from a multi-

objective standpoint within a reasonable time frame 

remains a challenging and burdensome problem, mainly 

due to the very high level of computational complexity 

involved, since numerous, expensive hydraulic simulations 

are needed. To exemplify the algorithm, a real-world 

network is considered and various solutions provided. 

The rest of the paper, which is substantive extension of 

Izquierdo et al. (2012), is organized as follows. Firstly, the 

multi-objective framework is defined and the ASO features 

presented. The problem of the WDS design is then outlined 

and qualitative results for a case-study are presented. The 

conclusions close the paper. 

 

 

2 MULTI-OBJECTIVE OPTIMIZATION USING 

ASO 

 

Economic criteria usually condition the difference 

between a solution and a better solution. Nevertheless, 

decision-making also needs to fulfill many other technical 

and non-technical targets and constraints that are involved 

in the problem in hand. A typical scenario includes the 

consideration of multiple conflicting objectives and 

involves finding an acceptable trade-off between them. We 

spare the readers the basic definitions of multi-objective 

optimization, including the concept of dominance (Pareto, 

1896). ASO fully incorporates the concept of dominance to 

determine which solutions will be considered as dominant. 

 

2.1 ASO in multi-objective optimization 

The idea behind ASO is a PSO-based environment 

developed by the authors to mimic the judgment of an 

engineer (Montalvo et al., 2010). It was built by using 

various prior features and improvements regarding swarm 

intelligence. Multi-agent systems, and the necessary 

adaptation to multi-objective performance, including human 

interaction, are also integrated in ASO. 

The first feature derives from the philosophy behind 

PSO. It consists of a variant of the standard PSO that can 

deal with various types of variables, and includes a 

mechanism for increased diversity (Montalvo et al., 2008; 

Herrera et al., 2011). This enables self-management of the 

parameters involved so that engineers are spared the task of 

parameter selection and fine-tuning (Montalvo et al., 2009). 

Although the authors have applied this algorithm mainly to 

WDS design, it has proven very efficient in solving 

optimization problems in other fields (Izquierdo et al., 

2008a; Herrera et al., 2009). 

The emergent behavior of a PSO swarm is strongly 

reminiscent of the philosophy behind the multi-agent (MA) 

paradigm (Sycara, 1998; Wooldridge, 2002). In an MA 

system each agent has a limited capacity and/or incomplete 

information to resolve a problem – and therefore has a 

limited view of the solution. There is no overall control of 

the system; values are decentralized and the computation is 

asynchronous (Sycara, 1998). Each agent acting alone 

cannot solve the problem in its entirety, but a group of 

agents, with the coexistence of differing views, is better 

able to find a solution by interacting together. This idea can 

be clearly extrapolated to the case of multi-objective 

optimization, since the result of the many interactions 

occurring within an MA system is improved performance. 

Associations of agents interacting among themselves result 

in a collective structure, called a swarm, that represents the 

collective behavior of a group of agents. This structure can 

also be considered as an agent on a higher abstraction level. 

Each swarm has its own behavior and, in its turn, is able to 

interact with other swarms. 

Taking into account the desirability of solving real-

world, multi-objective optimization problems, and the 

benefits offered by MA systems, a departure from the 

standard behavior of particles in PSO must be performed. In 

addition to using the concept of dominance, various other 

aspects must also be re-stated. We then re-define the 

concept of leadership, adopt a normalization procedure, 

propose two mechanisms to enrich the Pareto front, 

incorporate human interaction within the framework, and 

propose endowing the agents with specific, problem-

dependent behavioral rules. As stated in the Introduction, 

these are the main contributions of this work. 

 

2.1.1 Leadership 

Firstly, the concept of leadership in a swarm must be re-

defined. The most natural option is to select as leader the 

closest particle to the so-called the ideal or utopia point in 

the objective space (Wierzbicki, 1998). The utopia point is 

defined as the point in the objective space whose 

components give the best values for every objective. The 

utopia point is an unknown point since the best value for 

every objective is something unknown at the start (and 

perhaps during the whole process). Accordingly, we use a 

dynamic approximation of this utopia point, termed a 

singular point (see Fig. 1), which is updated with the best 

values found so far during the evolution of the algorithm 

(Montalvo et al., 2010). To enrich the solution and 

eliminate the natural tendency of new solutions to approach 

the singular point (Vrugt et al., 2003, 2006), searches in 

certain desired regions of the Pareto front must be 

encouraged. To this purpose, in ASO new sub-swarms, 

following instructions given by the user/engineer are added 

to specialize around displaced singular points. This fits the 

methodology of reference point approaches (Wierzbicki, 

1998), in which aspiration levels and, possibly, reservation 

levels, may be provided by the user, and which will mainly 

reflect his/her intuition or understanding of the problem. 
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Objectives will be differently weighted to determine the 

location of the singular point corresponding to each sub-

swarm. 

 

2.1.2 Normalization 

Secondly, because each objective may be expressed in 

different units, it is necessary to make some regularization 

for evaluating distances in the objective space. Once a 

regularization mechanism has been enforced – to establish 

the distance between any two objective vectors the 

Euclidean distance between them is calculated. Note that 

the worst and best objective values are not usually known a 

priori; they are updated while the solution space is being 

explored. 

 

2.1.3 Pareto front enrichment 

Two-dimensional representations of the concept of a 

singular point can be seen in Fig. 1. In some problems, the 

most interesting solutions are located near the singular 

point (Vrugt et al., 2006) and not too far from the peripheral 

areas of the Pareto front. In these cases, instead of seeking a 

complete and detailed Pareto front, only precise details 

around the singular point are obtained. Nevertheless, 

situations can occur, as shown in Fig. 1 (right), when 

unbalanced Pareto fronts develop with respect to the 

singular point. Consequently, poorly detailed sections on 

the Pareto front may appear that may be worth exploring. It 

seems plausible that problem complexity is the cause of this 

asymmetry in many real-world, multi-objective 

optimization problems. 

 

 

 
Figure 1 Two examples of singular point in an approximated Pareto front 

 

It is not easy to find a general heuristic rule for deciding 

which parts of the Pareto front should be more closely 

represented and how much detail the representation of the 

Pareto front should contain. Those decisions are strongly 

dependent on the people making the decision and on the 

problem itself. 

In fact, for making final decisions in real-world problems 

where all objectives do not go in the same direction, 

additional information is always needed (Coello Coello et 

al., 2007). This additional information can be established a 

priori, for example when objectives are represented in only 

one expression by giving a specific weight to each of them. 

Additional information can also be used at the end of the 

search process for deciding, for example, which solution 

from a Pareto front should be selected. As a third 

possibility, the one used in this paper, additional 

information can be used during the search process itself. 

Users relying on their intuition or understanding of the 

problem may provide suitable reference points (Wierzbicki, 

1998) to express their aspiration levels. In our case this idea 

is implemented not only for deciding which regions of the 

Pareto front are more interesting, but also for proposing 

solutions that may lead or enrich the way other agents 

behave. The addition of new sub-swarms by the user during 

the solution search process can help solve this problem but 

may be insufficient. Therefore, we describe one possible 

approach based on dynamic population increases to raise 

the Pareto front density (Reyes-Sierra and Coello Coello, 

2006; Dupont et al., 2008), and another approach based on 

human-computer interaction to complete poorly represented 

areas of the Pareto front. This is achieved in runtime during 

the execution of the algorithm. 

 

2.1.4 Agent cloning 

Position closest to the singular point 

(leader position) 

Zone around the leader position 

Singular point 

Approximated 

Pareto front  
Approximated 

Pareto front  
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In the first approach, during the search process, swarms 

are able to increase their populations autonomously when 

needed in order to better define the Pareto front: an agent 

whose solution already belongs to the Pareto front may, on 

its evolution, find another solution belonging to the front. In 

this situation, a new clone of the particle is placed where 

the new solution is found, thus increasing the density of 

particles on the Pareto front. The cloned agent inherits the 

experience (information) of the parent-agent. As a 

consequence, the solution represented by the cloned agent 

will no longer be exploited by the original agent, since the 

latter will continue exploiting the original information that 

entitled it to be a point in the Pareto front. In this way, the 

population is increased dynamically and so represents with 

more detail the Pareto front of the problem being solved. 

Nevertheless, greater densities on the Pareto front must be 

restricted to the case where the new clone has at least one of 

its neighbors located further away than some minimal 

permissible distance in the objective space. For example, in 

Figure 2 (left), agent J, whose objective vector is located at 

position PJ , finds a new position NewPJ . The consequence 

is represented in Figure 2 (right): a new agent k is added to 

the swarm by cloning the particle with objective vector at 

position NewPJ , while particle J will continue to be active 

and considers the point PJ as its best position in the 

objective space. This happens because the new objective 

vector Pk has at least one neighbor located further away 

than the minimal permissible distance in at least one of the 

objectives. In Figure 2 (right), the particle with objective 

vector at the left of Pk is located at a distance, with respect 

to objective 2, that is greater than the minimal distance 

considered for the increase of density in the Pareto front. It 

has to be noted that two objective vectors are considered to 

be neighbors when no other objective vector is located 

between them in at least one of the objectives considered in 

the problem.  

 

 

 
Figure 2 An example of agent cloning 

 

 

The incorporation of new agents in runtime makes it 

possible for the algorithm to evolve both in its structure and 

in its capacity to find good solutions. Nevertheless, when 

more solutions are incorporated in the Pareto front, it takes 

longer to check if a new potential solution can also be part 

of the Pareto front. The approach we describe in 2.1.6 helps 

in this issue. 

 

2.1.5 Human computer interaction 

The second way to enrich the Pareto front is by human 

interaction. As mentioned, users are allowed to add new 

swarms for searching in the desired region of the objective 

space. It is achieved in runtime during the execution of the 

algorithm. Specialists interacting with the algorithms are 

able to decide relevant regions of the Pareto front for 

adding new swarms, and use their expertise for proposing 

new solutions to existent swarms. This interaction enables 

the incorporation of human behavior, so the humans turn 

out to be other members of the process by proposing new 

candidate solutions. This means that a new solution may be 

proposed to the algorithm at any time and the algorithm 

should be able to fit it on the Pareto front, if appropriate. If 

accepted, a new singular point is added and a new swarm is 

created with the same characteristics as the first created 

swarm. Proposed solutions can even become leaders of the 

swarm if they are good enough. 

At this point, human behavior begins to have a proactive 

role during the evolution of the algorithm; and it can be said 

that the times when experts just sat in front of their 

computers waiting for results are over. This represents the 

main difference with “classical” multi-agent systems, where 

agents are normally considered as part of a software code; 

in our case, humans are also considered as agents actively 

involved in the solution search process. 

The participation of several human agents with different 

perspectives on a problem is very close to what happens in 

the practice of engineering decision-making, where 

politicians, economists, engineers, and others are involved 

in final decisions. The idea of incorporating user experience 
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into the search process is a step forward in the development 

of computer-aided design. 

 

2.1.6 Swarm hierarchies 

When the number of solutions on the Pareto front 

increases, many comparisons are needed before concluding 

that a new solution also deserves belonging to the Pareto 

front. A time consuming task for any population-based 

algorithm used to solve multi-objective optimization 

problem is determining which solutions belong to the 

Pareto front when there are already many solutions 

belonging to the front (Deb, 2001). In ASO, various 

(probably many) swarms may coexist. Thus the various 

(probably many) new solutions they generate will pose a 

hard bottleneck for evaluation. With just one single instance 

of the Pareto Front it is impossible to aspire to any kind of 

parallelization. A hierarchy of swarms is used for fulfilling 

this task by profiting from parallel and distributed 

computing. Different swarms specialize in different subsets 

of the approximated Pareto front. To discover if a solution 

belongs to the approximated Pareto front, swarms first 

check if the solution is dominated by any of those solutions 

belonging to its own Pareto subset. If the solution is not 

dominated then the swarm asynchronously asks its superior 

to check if the solution is dominated or not. The process is 

repeated at every hierarchical level if the solution is found 

to be non-dominated; in that case all swarms involved in the 

checking process will have the information about the new 

non-dominated solution. While swarms are waiting for 

asynchronous responses from their superior, solutions are 

assumed to belong to their Pareto subsets. A swarm, when 

receiving a request to check if a solution belongs to its own 

subset of the Pareto front, uses only those solutions 

belonging to its own Pareto subset that did not come from 

the requesting swarms. Figure 3 represents a hierarchy of 

swarms. 

 

 
Figure 3 Hierarchy of swarms 

When new swarms are added to solve a problem they 

must be placed in the hierarchy of swarms already solving 

the problem. Each swarm has a maximum number of 

connected swarms in the lower level. New swarms will be 

connected to any of those existent swarms that still have 

connection capacity. 

The combination of various swarms within the same 

algorithm is efficient because it conducts a neighborhood 

search in which each of the swarms specializes, and the best 

improvement step in terms of Pareto optimality is followed 

to yield a new solution. The practice of incorporating 

different search mechanisms also reduces the probability of 

the search becoming trapped in local optima. 

The implementation was made using the capabilities of 

Microsoft.Net Framework 4.0 to run different swarm 

instances in parallel and synchronize their work. The 

distributed computing was based on the capabilities of 

Windows Communication Foundation (included in 

Microsoft.Net Framework) to communicate and 

synchronize swarm instances running on different 

processes/machines. 

 

2.1.7 Rule-driven agents 

Within the ASO framework, GA chromosomes, ACO 

ants, and PSO particles, in particular, and evolutionary 

algorithm agents in general, are genuine agents in a multi-

agent system. They can be endowed with specific, problem-

dependent behavioral rules purposely designed to 

heuristically approach the solution process. These rules try 

to mimic the judgment of a human expert when 

approaching a solution to a problem. 

Evolutionary algorithms generally have not previously 

taken advantage of this feature and, as a result, have been 

bound to analyze a larger solution space than necessary. 

Including rules may reduce the search space by several 

orders of magnitude. 

As a consequence, the solution is both efficient and 

closer to reality. Efficiency derives from the fact that just 

checking a number of usually simple rules avoids many 

expensive calculations or simulations (hydraulic 

simulations in the application we present in this paper). 

Finally, the fact that the rules have strong problem-

dependent meanings definitely brings the solution nearer to 

reality. For example, in the application dealt with in this 

paper, one rule just states that downstream pipe diameters 

should be normally equal to or smaller than upstream pipe 

diameters. In the section devoted to the application of ASO 

we present other examples of problem-specific rules. 

 

 

3 SPECIAL CHARACTERISTICS AND 

ADVANTAGES OF ASO 

 

Agent swarm optimization enables the resolution of 

problems using a multi-objective approach and integrates 

various algorithms in runtime on a single platform. The 

mixture of different algorithms and the incorporation of 

new agents in runtime within ASO are possible because 

ASO makes use of parallel and distributed computing to 

enable the incorporation of new agents, as well as the 

asynchronous behavior of agents, and the inclusion of 
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different users working on the same problem. The inclusion 

of different users is particularly interesting because 

additional information or criteria is, in general, used at 

some stage of the solution of multi-objective optimization 

problems. ASO gives the users the opportunity to 

participate as active agents, enabling them to propose 

potential solutions to the problem in runtime. Proposals 

made by users can be used by other actors to reorient or 

enhance their searches. Users benefit from the speed and 

search ability of artificial agents, while agents take 

advantage of the creativity, ideas, and experience of users. 

Depending on the needs of the project, or any 

requirements to be imposed in the near future, it may be 

necessary to take into account the different aspects and 

various ways in which the objectives can be evaluated. The 

way to evaluate and decide the goals is an evolutionary 

process, and in this sense the optimization algorithm must 

be able to adapt to new situations and conditions. The 

inclusion of additional objectives or changes in the method 

of evaluating existing objectives can be made immediately 

with the presented algorithm. 

Designing a general algorithm able to solve any present 

and future optimization problem may be an endless 

endeavor. However, such an algorithm must be flexible and 

extensible enough to attempt this task. ASO may be able to 

meet this philosophy. 

Firstly, new agents can be included at any time, and these 

may comprise agents with different behaviors that may be 

better suited to solving the optimization problem in hand. 

Thus, from the optimization point of view, ASO can be 

seen as just a method. However, secondly, and maybe more 

importantly, from the software engineering perspective, 

ASO is certainly a framework (an extensible framework) 

that can meet the requirements we encounter today, and 

may be able to meet new requirements that will appear in 

the future. 

In addition, ASO can also be considered a computer-

aided framework from the software engineering point of 

view because the core of ASO is an abstraction that 

provides general functionalities for including different 

evolutionary optimization algorithms in the solution search 

process that is executed for solving a specific optimization 

problem. These functionalities are provided by the 

implementation of the various software interfaces defined 

in ASO. The same applies to including new evolutionary 

algorithms that are intended to work within the framework 

of ASO. 

 

3.1 The algorithm 

An idea of how ASO works may be summarized in the 

following pseudo-code – presented for the case of PSO 

swarms for the sake of simplicity. Specific details about 

how the relevant operators work for WDS optimization 

have been added in italics. 

 

For each swarm in parallel: 

1. Connect to the hierarchical structure. 

2. Run the consideration of external requests in parallel. 

3. Set up parameters and initialize the number of iterations 

to zero. 

4. Generate a random population of M agents. 

Generate M instances of networks with randomly 

chosen variables (diameters, etc.). 

5. Evaluate the fitness of the agents and set the best location 

for every agent equal to its current location. 

For each network (agent) the various objectives (cost, 

reliability, etc.) are evaluated; this implies the analysis 

of the networks using a hydraulic simulator, and 

various calculations specified in Section 4. 

6. Form the Pareto front; make a list of agents belonging to 

it. 

7. Update the singular point. 

8. Find the closest agent to the singular point and establish 

it as the swarm leader. 

9. While not in termination-condition, do the following: 

a. Execute asynchronously from i = 1 to number of 

agents. 

START 

i. Ask agent i to change its position in the solution 

space. 

Modify the candidate network according to the EA 

requirements (mutation, position updating, etc.). 

ii. Calculate the new fitness function vector for agent i 

in its new position. 

For this network (agent) calculate the various 

objectives. 

iii. If the new fitness function vector for agent i 

dominates the fitness function vector that the agent 

had before moving to the new position, set the new 

position as the best position found up to now by 

agent i. 

iv. If agent i is in the list of particles belonging to the 

Pareto front then: 

if the new fitness function vector may also be a 

point on the Pareto front and this new position 

has at least one of its neighbors located further 

than the minimal permissible distance from 

any of the objectives, then add a new agent j (a 

clone of i) located at the current position of i; 

else 

try to add (if possible) the agent i (at its new 

position) to the Pareto front; if the agent is 

added, remove from the list any dominated 

solution; eliminate dominated clones from the 

swarm. This step involves the interchange of 

swarms located at different hierarchical levels. 

v. If agent i is closer to the singular point than any 

other particle in the swarm then set agent i as the 

leader of the swarm with regard to the singular 

point. 
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vi. If agent i is not currently the leader of the swarm, 

but coincides in position with the leader, then re-

generate agent i randomly. 

END 

b. Increase the iteration number. 

10. Show the Pareto front and related results. 

 

These steps may be understood also for the general case 

in which agents are different from particles in PSO. In that 

case, the main changes would happen at step (i.) where the 

agent changes its own position. Step (vi.) should only be 

used for agents that behave similarly to the particles in PSO 

for enriching the population diversity. More information 

about PSO as applied to water distribution system design 

and the advantages of enriching the search can be found in 

Montalvo et al. (2008, 2009, 2010) and Montalvo (2011). 

The combination of all these calculations and 

possibilities is clearly inaccessible from a practical point of 

view without a computer application that offers an 

appropriate user interface. In the next paragraph we present 

the problem of WDS design and provide the solution for a 

real-world case-study using a specific computer tool 

implementing ASO. 

 

 

4 APPLICATION TO WATER DISTRIBUTION 

SYSTEM DESIGN 

 

In this section we first concisely describe the problem of 

water distribution system design. We then provide details 

about a real-world water distribution system and the 

solution obtained using the ideas and the framework 

described above. 

 

4.1 The problem: water distribution system design 

Water distribution system design is a wide and open 

problem in hydraulic engineering that may involve the 

addition of new elements in a system; the rehabilitation or 

replacement of existing elements; decision-making on 

operation; reliability and protection of the system; among 

other actions. Designs are necessary in order to carry out 

new configurations, or to enlarge or improve existing 

systems to meet new conditions (Goulter and Coals, 1986; 

Goulter and Bouchart, 1990; Walski, 2003). 

Various objectives may be considered in the WDS 

optimal design problem. In this section, we describe these 

objectives, namely: cost of components; satisfaction of 

water demand quality; adherence to hydraulic constraints; 

and resilience of the system during stressed conditions. 

Although the basic variables of the problem are the 

diameters of the new pipes, additional variables that depend 

on the design characteristics of the system may also be 

required: storage volume, pump head, type of rehabilitation 

to be carried out for various parts of the network, etc. The 

various objectives will always depend on these variables. 

The correct approach to assess any objective fitness is 

important when defining the objective function, which has 

to be fully adapted to the problem under consideration in 

terms of design, enlargement, rehabilitation, operational 

design, etc. In general, for a specific network, some of the 

areas may be already built, while others must be newly 

designed. For the existing pipes several actions may be 

taken: rehabilitation (with several available alternatives 

with associated costs), replacement, simply duplication, or 

no action. In addition, it is important that the objective 

functions reflect with utmost reliability the system during 

its entire lifetime (Kleiner et al., 2001). Complete 

definitions of the objectives, which objectives to use, and 

the best way to evaluate them could be assembled in a 

separate topic that is outside the scope of this paper. 

Nevertheless, we present here some classical and basic 

ideas to consider and evaluate objectives in water 

distribution system design. 

 

4.1.1 Cost of components 

A general objective cost function includes several terms, 

several scenarios or working conditions, and a time horizon 

for the whole infrastructure. The function 


Opertanktankvalvvalv

pumppumppipepipewcWDS

CCa Ca

CaCaPC
k

k



 
  (1) 

includes various individual working conditions (WC), 

which depend on the values adopted by two types of 

variables: namely, demand models and roughness 

coefficient values (accounting for pipe ageing); 
k

Pwc  

represents the probability for the k-th working condition. 

Typically, independent random variables are used to model 

both types of variables. Under the assumption that design is 

made to work for Ndm demand models and Nrc sets of 

roughness coefficient values, the design is performed for 

Nwc = NdmNrc working conditions. These conditions have 

individual probabilities,
k

Pwc , k = 1, …, Nwc, given by the 

product of the corresponding probabilities regarding 

demand models and roughness values. This function also 

considers the operational costs of the network, COper, along 

a certain temporal horizon and this obliges the use of the 

amortization rates, axxx, to multiply any of the investment 

costs, namely, Cpipe, Cpump, Cvalve, and Ctank, representing 

costs for pipes, pumping systems, valves, and storage tanks, 

respectively. 

In general, CWDS is a non-linear, partially stochastic 

function dependent on continuous, discrete, and binary 

variables. 

 

4.1.2 Hydraulic constraints 

Among the several formulations available to define these 

constraints, we use the one that considers the continuity 

equations, which are linear, plus the energy equations, 
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typically non-linear.  The complete set of equations may be 

written, by using block matrix notation as 
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where A12 is the connectivity matrix describing the way 

demand nodes are connected through the lines; q is the 

vector of the flowrates through the lines; H the vector of 

unknown heads at demand nodes; A10 describes the way 

fixed head nodes, with components in vector Hf, are 

connected through the lines, and Q is the vector of 

demands. Finally, A11(q) is a diagonal matrix accounting for 

the line resistances and characterizing potential pumps. 

System (2) is a non-linear problem, whose solution is the 

state vector x = (qt, H
t)t (flowrates through the lines and 

heads at the demand nodes) of the system. 

Since most water systems involve a huge number of 

equations and unknowns, system (2) is usually solved using 

some gradient-like technique. Various tools to analyze 

water networks using gradient-like techniques have been 

developed. Among them, EPANET2 (Rossman, 2000), is 

used in a generalized way. 

To be integrated in the algorithm later described, we have 

modified the EPANET2 Toolkit to support pressure-driven 

demands as described in Xu and Goulter (1997); the idea of 

pressure-driven demands has also been considered in other 

works (Wu et al., 2006; Giustolisi et al., 2008, among many 

others).  

The integration of the extended version of EPANET2 to 

run different analyses or simulations for potential solutions 

of the problem is performed during the optimization process 

that is developed within the evolutionary algorithms 

(Montalvo et al., 2007, 2008, 2009) integrated in the ASO 

platform. 

 

4.1.3 Demand satisfaction 

WDS design is typically performed subject to several 

performance constraints in order to achieve an adequate 

service level. The most used constraint requires a certain 

minimum pressure level at each node of the system. Other 

constraints may include maximum pipe flow velocities, and 

minimum concentrations of chlorine, for example. For 

many years nodal pressure constraints were considered as 

strong constraints in the sense that they should be strictly 

satisfied. Nevertheless, the possibility of violating by a 

small degree some of these constraints opens the door to 

various strategies for adopting sub-optimal designs or soft 

solutions that may be more acceptable from other (global or 

political) perspectives. This is openly favored by multi-

objective approaches – such as the one we present in this 

paper. 

In many studies, these constraints have been included as 

penalty terms in the cost function, making up a priori 

decisions on the weights assigned to the various constraints. 

However, in this paper we consider the satisfaction of 

demand as a new objective that must be fulfilled. 

There are various ways of expressing a lack of 

compliance with conditions of pressure, velocity, 

disinfectant, etc. For example, an objective function 

considering nodal pressure given by minimum values of 

node pressures may be expressed by 

 

).()( min
1

min j

N

j
j ppppHf  


 (3) 

Here N is the number of demand nodes in the network. 

For nodes with pressures, pj, greater than this minimal 

value, pmin, the associated individual terms vanish, and the 

Heaviside step function H is used in this explicit expression 

for this purpose. Extensions of (3) may be provided to 

consider maximum and minimum bounds for other 

variables, such as limit velocities, or limiting the level of 

chlorine in each pipe in the case of water quality 

optimization. This expression is also a function of the 

selected pipe diameters through the hydraulic model 

presented in the previous subsection. 

These constraints may involve values that could be a 

topic of discussion as, for example, the most convenient 

minimum pressure for supplying water in a town. 

Considering the lack of pressure as a second objective not 

only helps the algorithm to better explore the boundaries 

defined by the constraints (where good solutions can be 

found) but also enables users to evaluate the impact of a 

small relaxation in minimum pressure constraints. In this 

sense, the multi-objective approach considered in ASO 

plays an essential role making it possible to perform an 

analysis of the consequences of different pressure values. 

The same procedure could be easily applied to other 

constraints. 

 

4.1.4 WDS resilience 

The resilience of a WDS is assessed in terms of various 

types of properties, such as reliability and tolerance. 

In this paper we consider a simple reliability formulation 

as in Xu and Goulter (1997), Tanyimboh et al. (2001), and 

Kalungi and Tanyimboh (2003), which takes into account 

only individual pipe failures, a hypothesis widely justified 

in the scientific literature (Park and Leibman, 1993; Gupta 

and Bhave, 1994; Khomsi et al., 1996; Xu and Goulter, 

1997; Xu and Goulter, 1999; Martínez-Rodríguez et al., 

2011). 

Considering an average time for the duration of a pipe 

failure, reliability R is defined as: 

 
req

L

k 
k

knf
qpfqpf qR 








 

1
0 , (4) 

where L is the number of pipes, q
nf is the total flow 

delivered to the network when there are no failures; qk the 

total flow delivered to the network when pipe k fails; pf0 is 

the probability of the whole system working without 
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failure, pfk the failure probability of pipe k, and qreq is the 

total required demand by the network (the sum of all nodal 

demands). 

As WDSs should behave satisfactorily under normal 

conditions when there are no failures, it is worthwhile 

making a separate and specific analysis of their behavior 

under only failure states. Accordingly, the concept of 

tolerance to failure T has been introduced (Tanyimboh et 

al., 2001; Kalungi and Tanyimboh, 2003) using the 

expression: 

 



L

k
k

L

k
k

reqk
pfpfqqT

11

)( . (5) 

Any of these functions, R and T, may be used as 

objectives to fulfill in the optimization process. Various 

forms of economically quantifying reliability or tolerance 

problems can be found in the literature. We have used the 

one given in Martínez-Rodríguez et al. (2011).  

 

4.1.5 Specific rules 

A number of rules may be specified to approach the 

solution process to the problem. 

For the sizing of pipes in a WDS, it is a rule of thumb to 

reduce the diameter of pipes as the system progresses from 

upstream to downstream. This rule was implemented in the 

agents, thus enabling designs to be produced with 

significant reliability and within a reasonable time frame. 

Not including this rule causes additional difficulties when 

trying to size the pipes of a large network using general 

evolutionary algorithms. Applying this rule in looped 

networks is possible thanks to the way it was implemented 

in the software solution. Agents do not follow a static pipe 

order to decide which diameter to use. Agents order the 

pipes to decide which will be designed first. Depending on 

previous decisions (current diameters already assigned to 

pipes), agents select the next pipe to be designed and also 

the candidate diameter to use. In case of ‘doubt’ (this is the 

case at the beginning of the process) agents use a random 

hypothesis of what upstream and downstream should be. 

Note that the upstream and downstream nodes assumed by 

the algorithm may not be the real upstream and downstream 

points under the various work conditions of the network. In 

any case, the rule guarantees that a pipe with demand nodes 

at both ends (and thus connected to other pipes at both 

ends) will never have a larger diameter than all the pipes 

connected to it. 

Other new rules may be considered to further facilitate 

the process of finding solutions. Some of them have already 

been individually used in various works so far – for 

example: adjusting diameters if one or more consumption 

nodes experience too little or too much pressure as in 

Keedwell and Khu (2006); increasing the diameter of pipes 

joining at a certain node where the pressure is too high 

(Afshar et al., 2005); increasing or reducing diameters 

depending on the energy dissipation in certain pipes 

(Todini, 2000); increasing the diameters of pipes 

experiencing higher unitary loses or reducing the diameters 

of pipes with lower loses (Saldarriaga et al., 2008), etc. 

Different new rules may be devised, such as reducing the 

diameter of a pipe if it undergoes a large reduction of 

chlorine concentration. These are examples of rules that, 

obviously, reflect the nature of the problem in hand.  

 

4.1.6 Implementation of ASO 

ASO and its connection with EPANET2, modified with 

the pressure-driven demand feature (Wu et al., 2006), has 

been implemented in a software package called WaterIng1 

(Montalvo, 2011), which was developed for water 

distribution system design and analysis. WaterIng is in 

constant development and may be downloaded from its 

website – the installation includes a file with network data 

as an example. An introductory guide is also available to 

learn the main concepts of how to design a water 

distribution system using the software. 

The application of ASO to the most popular 

benchmarking problems in the WDS-design literature has 

produced the best solutions ever found for these problems 

(Montalvo, 2011). The authors have also used a preliminary 

version of this package that considers only PSO swarms for 

addressing other real-world complex problems such as the 

design of waste water systems (Izquierdo et al., 2007), the 

calibration of a WDS (Izquierdo et al., 2008b), the optimal 

design of a biomass supply chain at regional level 

(Izquierdo et al., 2008a), and the clustering of a water 

company database to classify pipes with the aim of 

rehabilitation (Díaz et al., 2008), among others. 

The case-study presented in the next subsection has been 

completely developed with WaterIng. The multi-objective 

model implemented by this software has shown robustness 

and good explanatory outcomes. Decision makers are 

provided with a set of informed solutions to select the best 

design with regard, for example, to available resources 

and/or other criteria. 

The platform currently integrates three of the best known 

evolutionary algorithms, namely, GA, ACO and PSO. The 

initial population size was set to 20 for the three 

evolutionary algorithms. Other parameters are the 

following. Regarding GA: mutation probability = 0.0234; 

crossover probability = 0.8; reproduction method = fixed 

intervals; crossover method = all single, mutation method = 

bit to bit. Regarding ACO: coefficient � = 1; coefficient � 

= 0.5; coefficient of phero-evaporation = 0.98, factor of 

reward = 1.1e7, initial pheromone = 26. Finally, regarding 

PSO: inertia = adaptive varying with iteration number; 

individual and collective intelligence parameters = self-

adaptive fine tuning – as described in Montalvo et al., 

(2009). 

                                                           
1 www.ingeniousware.net 



Water Distribution System Computer-aided Design by Agent Swarm Optimization 11

 

 
 

Figure 4 A Pareto design of the network under a failure scenario (with rules) 

 

 

 
 

Figure 5 Dominant solution under same failure scenario (without rules) 

 

Pipe break 

Pipe break 



Montalvo et al. 12 

As a termination condition, we ran the algorithm until 

600 iterations were completed without improvement. An 

improvement is understood as any positive change in the 

approximated Pareto front obtained by the algorithm. It 

must be noted that even if the algorithm reaches its own 

termination condition, it could still be receiving requests 

from users or other swarms running in parallel; each swarm 

can, in addition, restart the search by itself when an update 

in its Pareto front is needed after the interaction with a user 

or another swarm. 

 

4.2 The system and the solutions provided 

This system is a real-world network (with fixed layout) 

(Fig. 4) fed by a reservoir, and made of 273 pipes and 183 

consumption nodes with distinct consumptions amounting 

to 176 l/s. The design considers the various objectives 

above described; namely, minimizing the investment cost 

(the pipe diameters, in this case); minimizing the lack of 

pressure at demand nodes; and minimizing additional costs  

 

caused by reliability or tolerance problems. We restrict 

ourselves here to presenting qualitative results that show the 

differences between designs – depending whether rules 

have been applied or not. 

Fig. 4 corresponds to one of the dominant solutions that 

showed good tolerance to pipe break failures (the specific 

design is specified by the pipe colors). Under normal 

conditions this solution satisfies the minimum required 

pressure at every demand node (no dark red nodes appear). 

However, in the failure scenario represented (marked as 

‘pipe break’), only three points (demand nodes marked in 

solid red (dark) at the bottom of the figure) had pressure 

values under the minimum. 

Fig. 5 represents (consider just pipe colors) another 

dominant solution also able to satisfy the minimum pressure 

under normal conditions (no dark red nodes appear); but 

with a cost 16% lower than the solution in Fig. 4. 

The major difference between both solutions reflects 

their tolerance to failure conditions. The network in Fig. 5 

is under the same failure condition as the network in Fig. 4; 

but in the case of Fig. 5, the pressure problems can be found 

throughout the network (solid dark red points). 

Additionally, the use of rules provides the main 

difference between both solutions related to the way the 

diameters were selected. In effect, the solution in Fig. 4 was 

obtained using the rule of decreasing diameters from 

upstream to downstream, and the result shows a ‘smart’ 

layout, one with a ‘more logical’ diameter distribution. 

However, this rule was not used to obtain the distribution of 

diameters in Fig. 5. This distribution makes no sense from 

an engineering practical perspective, since some pipes can 

be found with a diameter completely different to the 

diameter of the neighboring pipes (abrupt reductions or 

expansions in diameter for no logical reason). From the 

engineering point of view, the uniformity of diameters 

represents a clear advantage for the construction, operation, 

and maintenance of the network. 
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Figure 6 2D view of a Pareto front including cost and lack of pressure 

 

 

Finally, in Fig. 6, a view of the (dynamic) Pareto front 

obtained at a certain stage of the evolution of the algorithm 

is shown. Dominant solutions are represented in a two 

dimensional format by selecting two desired objectives of 

the problem (lack of pressure and network cost in the case 

of Fig. 6). Note that only non-dominated solutions are 
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represented. At this stage, the number of agents involved 

was around 120. This representation facilitates an 

understanding of the overall group of dominant solutions 

obtained in order to decide the final design variant. In this 

specific case, three swarms following three different 

singular points were working. In addition to the singular 

point given by the minimum values of both objectives, 

another singular point was attracting solutions close to the 

low cost branch of this Pareto front, while a third singular 

point attracted higher-cost solutions with lower values for 

lack of pressure (horizontal right branch). 

Plenty of rich information that helps the decision-making 

process is provided by this type of representation of the 

Pareto front. For example, it becomes evident, as expected, 

that after some point, the rate at which the minimum 

pressure can be increased in the network is much lower than 

the rate at which initial investment costs must be increased 

to achieve the desired pressure level. Also, the relationship 

between the initial investment cost and the minimum 

pressure in the network may help decide, among other 

factors, which pressure to use for the final solution. In this 

case (with a limited budget to implement the design) the 

decision-maker has at his or her disposal a clear guideline 

to assess how much the quality may be improved 

(impaired) if the budget is increased (shortened) by a 

certain amount. This is an added value of the multi-

objective approach when solving the problem of optimal 

design of WDS. 

 

 

5 CONCLUSIONS 

 

Evolutionary algorithms, in general, represent possible 

ways of analyzing multi-objective optimization problems. 

Each algorithm has advantages and disadvantages, and its 

performance may be better or worse depending on the 

characteristic of the problem to be solved. Agent Swarm 

Optimization (ASO), the computer-aided platform proposed 

in this paper, profits from the best of various algorithms 

when solving complex real-world WDS optimization 

problems.  

Specifically, in the design of infrastructures such as 

water distribution systems, using the philosophy of ASO 

contributes several advantages. Firstly, the problem can be 

solved with a multi-objective approach. Secondly, various 

agents with different characteristics may be added, which 

includes the possibility of making various evolutionary 

algorithms work together and also the possibility of having 

rule-based agents participating in the search process. Last 

but not least, the human interaction with the algorithm 

offers a special platform for finding solutions as a team. 

Integrating the search capacity of algorithms and the ability 

of specialists to redirect the search towards specific interest 

points – based on their experience in solving problems – 

results in a powerful collaborative system for finding 

solutions to engineering problems. Most artificial intelligent 

works try to substitute humans in some of their tasks; ASO 

is not aimed at substituting any human team but at being 

integrated with the team. Artificial agents can profit from 

the creativity and ideas of human experts to improve their 

own solutions; in turn, human experts can profit from the 

speed and search capabilities of artificial agents to explore 

broader solution spaces. 

Future work should be aimed at introducing new agents 

with possibly more efficient rules of behavior during 

solution searches. Additional examples of study designs 

should also be considered that make use of various ways to 

approach the objective function. The way in which the 

objective functions are considered is in itself an 

evolutionary process that must not stop and must be 

adapted to the requirements of time (as new requirements 

appear) and place (according to possible local needs).  

The study of the current conditions and the needs of 

WDS design must continue, and there must be a broad 

exchange with specialists to add improvements to the 

algorithm used, and the resulting software application. The 

implementation of the proposed algorithm must be updated 

using emerging technologies in parallel and distributed 

computing. 
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