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The complex hydrodynamics of water entry by a spinning sphere are investigated
experimentally for low Froude numbers. Standard billiard balls are shot down at the
free surface with controlled spin around one horizontal axis. High-speed digital video
sequences reveal unique hydrodynamic phenomena which vary with spin rate and
impact velocity. As anticipated, the spinning motion induces a lift force on the sphere
and thus causes significant curvature in the trajectory of the object along its descent,
similar to a curveball pitch in baseball. However, the splash and cavity dynamics are
highly altered for the spinning case compared to impact of a sphere without spin. As
spin rate increases, the splash curtain and cavity form and collapse asymmetrically
with a persistent wedge of fluid emerging across the centre of the cavity. The wedge
is formed as the sphere drags fluid along the surface, due to the no-slip condition;
the wedge crosses the cavity in the same time it takes the sphere to rotate one-half
a revolution. The spin rate relaxation time plateaus to a constant for tangential
velocities above half the translational velocity of the sphere. Non-dimensional time to
pinch off scales with Froude number as does the depth of pinch-off; however, a clear
mass ratio dependence is noted in the depth to pinch off data. A force model is used
to evaluate the lift and drag forces on the sphere after impact; resulting forces follow
similar trends to those found for spinning spheres in oncoming flow, but are altered
as a result of the subsurface air cavity. Images of the cavity and splash evolution,
as well as force data, are presented for a range of spin rates and impact speeds; the
influence of sphere density and diameter are also considered.

1. Introduction
The water-entry problem, by itself, is directly relevant to many different applica-

tions: from ballistics (May 1975) and ship slamming (Faltinsen & Zhao 1997) to
skipping stones (Rosellini et al. 2005) and Basilisk lizards (Glasheen & McMahon
1996). One of the geometrically most simple objects that can be studied is the sphere.
This canonical shape impacting on the free surface does not, however, yield simple
hydrodynamic results, and the results are even more complex when spin is introduced
(Truscott & Techet 2006). An experimental study of the impact of a sphere, spinning
transverse to its velocity, on a water surface is presented herein, offering a first look
into how spin can affect water-entry behaviour.

Figure 1 shows a comparison of the non-spinning (a) and spinning (b) impact of
a standard billiard ball on the free surface. The air cavity and splash formed by the
spinning sphere vary distinctly from the axisymmetric cavity formed with no spin. The
subsurface air cavity bends along the trajectory of the spinning sphere, and the splash
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Figure 1. Images of the cavity and splash formations by (a) non-spinning and (b) spinning
sphere (d = 0.057m) after impact into water. Impact speeds are V (a) = 5.95m s−1 (Fr =7.9)
and V (b) = 5.45m s−1 (Fr =7.3). Case (b) has a spin rate at impact of 251 rad s−1, in the
clockwise direction. Both images are taken at the same time after impact (t= 102ms).

curtain grows vertically and collapses asymmetrically. For the spinning water-entry
problem, valuable insight into the physics can be drawn from both water entry and
spinning sphere research.

1.1. Water-entry problem

Numerous experiments on water entry of bodies seek to qualitatively and
quantitatively characterize the hydrodynamic phenomena generated by and forces
acting on the impacting object. Among the first to study such phenomena, von
Karman (1929) investigated the forces exerted on a sea plane float during landing.
Subsequent early impact studies typically focus on ballistics investigations in military
laboratories. The experiments of May (1975) are some of the most extensive studies
of free surface impact for naval ordinance applications. His research focuses on the
formation of the air cavity in the wake of spherical projectiles with high-impact
velocities.

High-speed imaging techniques are critical for capturing the rapidly evolving
stages of impact hydrodynamics and have been used since early water-entry tests.
Worthington & Cole (1897) present some of the earliest images of the splash cavity
created by falling objects, which were captured using single spark photography. Today,
digital high-speed cameras are widely used for imaging water-entry hydrodynamics.
Extensive experimental investigations of water entry by spheres and projectiles are
presented in Bell (1924), May & Woodhull (1948, 1950), Richardson (1948), May
(1951), May & Hoover (1963) and Abelson (1970).
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Investigations by May (1952) of the vertical entry of missiles (steel spheres)
into water indicate that Froude scaling is a good first approximation to use when
describing cavity behaviours such as deep closure. Several other researchers assert,
however, that the instantaneous Reynolds number is a better description of the cavity
hydrodynamics than the impact Froude number (e.g. Gilbarg & Anderson 1948).

The effect of before- and after-body shape on the impact is also of interest to
researchers in the area of naval ballistics. May & Woodhull (1948) conclude that
the cavity shape is not dependent on the nose shape of the projectile for a given
drag force. Shi, Itoh & Takami (2000) image bullets shot vertically into a tank at
342 m s−1, qualitatively considering the bullets’ supercavitating behaviour; they find
that for blunt leading edge projectiles, the after-body shape can significantly affect
the splash formation.

Atmospheric pressure can also be considered a factor affecting the impact problem.
Gilbarg & Anderson (1948), at the Naval Ordinance Laboratory, investigate the
dependence of the cavity formation on atmospheric pressure. They conclude that
surface closure, defined when the splash crown domes over and closes, is the most
important event in the development of the water cavity and greatly influences later
cavity growth, and note that time to surface closure is inversely proportional to
pressure. Deep closure, when the cavity pinches off below the free surface, is a
function of surface closure only for early closure times up to ∼70 m s−1 after impact
(Gilbarg & Anderson 1948).

Even biologists are fascinated by the problem of impact. A biological air–water
impact study, modelled after the Basilisk lizard, is performed by Glasheen &
McMahon (1996). Disks, representing the lizard’s feet, are shot into water at low
speeds (compared to most ballistics studies); high-speed video and load cells measure
the forces during impact. Their results also indicate that the time between impact
and cavity closure could be modelled by a single value of dimensionless time. Surface
closure and cavity pinch-off have also been numerically investigated in detail for
circular disks impacting the surface by Gaudet (1998) and Bergmann et al. (2006).

Lee, Longoria & Wilson (1997) employ a two-dimensional model, based on
experimental observations, for cavity formation and collapse taking into account
the energy transfer between projectile and cavity wall. Their work considers relatively
low impact velocities, where both a surface closure and later a deep closure, or
pinch-off, occur. Data indicate that the time to deep closure, after surface closure,
is approximately constant and not a function of the impact speed for any given
sphere diameter. The location of deep closure, however, seems to have only a weak
dependence on impact velocity, and thus Froude number was not a good scaling
parameter for the range of impact speeds that they investigated (Lee et al. 1997);
the velocities and Froude numbers in Lee et al. (1997) were considerably higher than
those considered in the present study. Gilbarg & Anderson (1948) also report, for
low Froude numbers, that surface closure dominates cavity formation, and note that
Froude number is not a useful parameter in characterizing cavity growth and collapse.

In general, research has shown that there are a few key mechanisms driving surface
closure, the most important of which are Bernoulli pressure and surface tension
(Birkhoff & Isaacs 1951; Lee et al. 1997). As the cavity grows, air flows in through the
splash curtain, and for low-speed impact, the local under-pressure inside the cavity is
approximately 1/2ρairV

2
o . After the splash curtain domes over and closes (i.e. surface

closure), the cavity continues to expand due to inertial effects of the ball moving
through the fluid. Assuming the process is isentropic (Lee et al. 1997), the pressure
inside the cavity decreases. Eventually, deep closure (i.e. pinch-off) occurs when the
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cavity stops expanding radially and the hydrostatic pressure of the surrounding fluid
is greater than the internal cavity pressure (Gilbarg & Anderson 1948; May 1952;
Lee et al. 1997).

For impact cases where the impact velocity is sufficiently high, a small axisymmetric
horizontal jet is ejected at great velocity radially outwards from the point of contact
between the sphere and the liquid surface. The jet emanates horizontally at first
and can travel radially outwards at speeds up to 30 times the impact velocity. The
initial jet forms between 10 and 100 μs after impact, for water solutions of up to
90 % glycerin (Thoroddsen et al. 2004). Thoroddsen et al. (2004) also report that
surface tension and compressibility appear to have little effect on this initial jet
formation. The introduction of spin also causes a similar horizontal jet to form, albeit
asymmetrically. The effect of spin on the initial stages of impact will be discussed in
subsequent sections of this paper.

Yarin (2006) reviews experimental and theoretical work on droplet impact onto
thin liquid layers and dry surfaces, focusing on the splash crown formation and initial
jetting. He notes that jetting and crowning originate from the same point irrespective
of surface shape, as a result of a sharp kinematic discontinuity. Typically the velocity
of the initial horizontal jet is significantly higher than the impact velocity and the
formation time is very small. These results are verified by Thoroddsen (2002) for
liquid drops and are similar for solid spheres impacting on the surface (Thoroddsen
et al. 2004).

Moghisi & Squire (1981) measure the forces during impact using a load cell up to
a depth of one-eighth of the sphere diameter. They report that for impact velocities
between 1 and 3 m s−1, 1<Vo < 3 m s−1, a maximum force occurs very quickly after
impact, at times as short as 1.5 m s−1 or between one-tenth and one-fifth of the radius
below the surface. Moghisi & Squire (1980) conclude that the dependence of drag
coefficient on Reynolds numbers, in the range 0.05 <Re < 5 × 103, resembles that of
a sphere in a homogeneous fluid. Their work, like much of the existing theoretical
work done to determine the force at impact, only considers impact up to a maximum
penetration depth of half a sphere diameter. May & Woodhull (1948, 1950) note that
the drag coefficient declines gradually towards a value between 0.25 and 0.3 when
cavity is formed; the precise shape of the curve appears to depends on the specific
gravity of the impacting object.

Direct force measurements are not easily obtained for water-entry experiments.
Richardson (1948) and May & Woodhull (1948, 1950) derive force components using
force balance equations and position–time curves, taken from high-speed video after
the sphere is fully submerged. Kornhauser (1964) offers a review of these force models
derived from experimental data. A similar force balance model for determining forces
is developed in this study on spinning spheres, and data is presented in § 3.

1.2. Spinning sphere problem

Spin, by itself, imposed on a sphere in flow, acts to induce lift and alter the flight
path of an unconstrained sphere. Newton (1671) first remarks on the distinct change
in the flight path of spinning tennis balls, noting their tendency towards the side
that is moving the fastest. Later, Robbins (1742), interested in this problem from his
experimental observations of ballistics, shows that a spinning sphere suspended as a
pendulum experiences a lateral aerodynamic force. A similar force is seen for spinning
cylinders; this force due to rotation is widely credited as the ‘Magnus Effect’ (Barkla
& Auchterlonie 1971).
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The subject of spinning spheres is of special interest to many sports fans, especially
baseball, cricket and golf enthusiasts. Baseball pitchers can break their curveballs
at just the right time, or throw a knuckleball, without spin, to drop at the last
minute over the plate. Golfers hoping to gain loft, or fade or hook their shots, or
avoid hooking their shots, rely on small spinning balls riddled with tiny dimples. A
comprehensive review of sports ball aerodynamics is presented in Mehta (1985).

Attempts to predict the behaviour of spinning sports balls drive experimentalists to
perform lift and drag tests, as well as flow visualization experiments on spinning
spheres. Much of the experimental force data for spinning spheres is compiled
in Alaways & Hubbard (2001). Researchers studying cricket and baseball report
that, for pre-critical Reynolds numbers, asymmetric boundary layer separation, due
to tripping by the seams on the balls, results in increased lateral forces (Mehta 1985).
Spin-induced effects also lead to asymmetrical boundary-layer transition flow on one
side of the sphere, which causes large lateral forces, for example in baseball curveballs
(Mehta 1985; Alaways & Hubbard 2001) and golf-ball flight (Bearman & Harvey
1976).

Interestingly, for subcritical Reynolds numbers, experimental measurements of the
lateral forces on spinning smooth spheres in flow, by Maccoll (1928) and Davies
(1949), show that the lift coefficient CL can be negative for small values of non-
dimensional spin parameter, S = rΩ/V , where r is the radius of the sphere, Ω is the
spin rate in radians per second, and V is the flight velocity. Maccoll (1928) shows
that above spin parameter values of S = 0.35–0.50, for subcritical flow around smooth
spheres, the coefficient of lift becomes positive and increases steadily up to S =1.0,
above which the lift coefficient appears to level off. The negative lift coefficients for
low spin numbers (S < 0.4) have never been seen for roughened or dimpled spheres
or those with seams (e.g. Bearman & Harvey 1976; Watts & Ferrer 1987; Smits &
Smith 1994; Alaways & Hubbard 2001).

Davies (1949) presents a plausible explanation for the negative lift force as a result
of an asymmetric transition from laminar to turbulent flow. As the velocity of the
incoming flow approaches the limit of transition away from laminar flow, only slight
perturbations are necessary to trip the flow to turbulent. Since the sphere is spinning,
one side of the sphere experiences a higher relative velocity than the other, and could
trip before the side with a lower relative velocity thus inducing lift in the opposite
direction than anticipated. This would only be plausible for low spin parameters,
above which the force of lift from circulation is greater than the imbalance due to
asymmetric transition. Davies (1949) acknowledges that this explanation works only
for very specific critical parameters and any changes in turbulence levels or velocity
could reverse the effect. He cautions that further measurements of pressure or flows
around spinning spheres are needed in this negative lift regime.

Results from Bearman & Harvey (1976), for a dimpled sphere, show that the
lift coefficient is proportional to the spin parameter S and thus the lift force is
proportional to Ωr , the tangential velocity. Smits & Smith (1994) measure the forces
on golf balls (dimpled spheres), along with the spin decay rate, in a wind tunnel. Their
results suggest that the lift coefficient has some Reynolds number (Re) dependence
only up to Reynolds number 100 000. Above this value there appears to be little, if
any, dependence of the lift coefficient on Reynolds number. This lack of dependence
at Re > 100 000 is reinforced by data in Alaways & Hubbard (2001), who present an
extensive compilation of published data for spinning spheres.

In the current investigation, spheres with nominal roughness heights of
k/(2r) = 1.4 × 10−5 are considered. While not the main focus, nor presented herein,
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Figure 2. Schematic illustration of the experimental shooting apparatus. Spheres are released
from the loading mechanism, dropping between the two spinning wheels, which shoot the
spheres into the tank below. The speed of each wheel was independently controlled in order
to change the impact and spinning speed of the projectiles. (Figure is not to scale.)

results from our own preliminary investigations in a water tunnel show good
agreement with Maccoll (1928) data for the lift and drag spinning smooth spheres
above spin parameter S ≈ 0.35. The forces determined using the sphere trajectories
are also similar to wind and water tunnel experiments. The effect of spin rate on the
physics of the cavity dynamics, splash formation and collapse and the forces acting
on the sphere are addressed in the following sections.

2. Experimental details
Experiments on water entry of spinning spheres were performed using standard

billiard balls (diameter d =5.72 cm; mass m =0.17 kg) shot vertically into a tank
of quiescent water. The steel-reinforced clear acrylic tank was 1.5 m long, 0.9 m
wide and 1.5 m deep. A shooting apparatus, modelled after a baseball-style pitching
machine with two rotating wheels (diameter dw = 0.46 m), was mounted above the
tank. The spheres were released out of the loading tube and dropped between the two
wheels, which fired the spheres into the water (figure 2). The ball exited the launch
mechanism, with initial downwards launch velocity and spin, at a height of 1.40 m
above the surface of the water; this maximum distance above the free surface
was constrained only by the laboratory ceiling height. The wheels of the shooting
mechanism imparted spin to the sphere by rotating at different speeds. Both initial
impact velocity Vo and initial spin rate Ωo were varied by altering the spinning rate
of wheels of the shooting mechanism. The wheel speed and ball release timing were
controlled using a personal computer and a National Instruments LabView interface,
which also controlled the video recording system to ensure accurate synchronized
timing.
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High-speed video images of the sphere’s trajectory were used to calculate the
instantaneous velocity of the sphere in the x - and y-directions. Two high-speed video
systems were used: camera #1 for the top view was an IDT X-StreamVision XS-3
camera and camera #2 for the side view was a Redlake Motion Pro X3. It was not
physically possible to place a camera directly above the impact zone as the shooting
mechanism obstructed the field of view. Thus, camera #1 was positioned adjacent to
the wheels looking down at a slight oblique angle to the free surface. Camera #2 was
positioned such that it captured the motion of the sphere at least of one diameter
above the water, as well as along its descent through the water, allowing the velocity
just before and after impact to be determined.

Both cameras had a maximum resolution of 1280(V) × 1024(H) pixels, however,
camera #1 had a maximum frame rate of 625 frames per second (fps) at maximum
resolution, whereas camera #2 could reach 1000 fps at maximum resolution. When
the resolution of camera #1 was reduced in one direction, the frame rate could be
increased, and thus both cameras could record at 1000 fps. At 1000 fps, camera #1
recorded images at 480(H) × 1108(V) pixels and camera #2 recorded at full-pixel
resolution; the exposure time was 234 μs per frame for both cameras. A 28 mm,
f/2.8 lens with a fully open aperture was used and a fixed field of view (FOV) was
maintained on both cameras for all experiments. The cameras were synched in time
with the ball release mechanism through the LabView interface.

Sufficient lighting is crucial for quality high-speed video, thus lights were placed
both in front of and behind the tank. For back-lighting, 36 standard 32 W fluorescent
bulbs were aligned vertically in a large bank that was positioned directly behind the
impact zone, outside of the tank, and projected light directly towards the cameras.
The bank of bare bulbs was 0.5 m wide × 1.6 m high. Nine separate out-of-phase
ballasting units minimized the 60 Hz flickering effect generated by the fluorescent
lights. A white sheet placed between the light bank and the impact zone diffused
the back light and created a more uniform backdrop. The front illumination used
six 400 W halogen lights positioned outside the tank and focused towards the impact
region. These six lights were used to illuminate the front side of the cavity. Three of
the halogen lights were mounted vertically near the water surface in an arc around
the region of interest, which focused the light towards the impact zone. Three more
lights, also outside the tank, were stationed approximately 1 m below the surface level,
and focused towards the lower-half of the sphere’s trajectory, again in an arc around
the impact zone. The lights in front of the tank were positioned around the camera
such that there was minimal glare off the tank wall and the sphere trajectory was
sufficiently lit for the image processing algorithm to detect the sphere consistently.

The impact velocity and spin rate were calculated by analysing the high-speed
video data. Impact speeds and initial non-zero spin rates ranged from |Vo| =1.9 to
9.9 m s−1 and |Ωo| =13–394 rad s−1, respectively. For comparison, several test cases
had zero spin; these cases were performed at impact velocities of |Vo| =1.9–7.5 m s−1.
The horizontal velocity at impact was less than 2–4 % of the vertical velocity for both
spinning and non-spinning cases.

The effect of spin is considered in terms of the non-dimensional ratio between
tangential velocity Ωr , where r = d/2, and the magnitude of the velocity of the sphere
V . The spin parameter, defined following the nomenclature of Maccoll (1928) as
S = Ωr/V is akin to a Strouhal number and used in this paper to ensure consistency
with previously reported data in the field of spinning spheres. Using the shooting
mechanism described herein, it was possible to obtain initial impact spin parameters
So =Ωor/Vo, between 0 and 2.25, using the spin rate and velocity at impact Ωo and
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Vo. Data for cases with So < 1.4 are presented herein. After impact, spin parameter
also changed, in time, as a result of the changing instantaneous velocity and spin rate,
such that S(t) = Ω(t)r/V (t).

Froude number Fr = Vo/
√

gd was used to categorize the initial impact velocity
of the ball, and is only given in terms of initial impact velocity. Froude numbers
considered range from 2 to 13; however, most of the data and images presented
herein were obtained at Fr = 7.3 ± 0.2, unless otherwise specified. After impact, once
the ball was fully submerged, Reynolds number was used as a non-dimensional
parameter to characterize cavity and sphere trajectory behaviour. Reynolds number
was defined instantaneously along the sphere trajectory as Re = Vid/ν, where Vi = V (t)
is the instantaneous velocity of the ball in time t and ν is the kinematic viscosity of
the fluid.

The sphere’s position in time was found using standard image processing cross-
correlation techniques on the whole sphere (74 pixel window size). A five-point
Gaussian peak-fit was used to find the location of the maximum correlation peak,
and thus determine the displacement of the sphere with subpixel accuracy. The peak-
fitting implementation was similar to that employed in Particle Imaging Velocimetry
processing algorithms (e.g. Raffel et al. 1998). Using cross-correlation with peak-
fitting, the position of the sphere was determined accurate to within ±0.025 pixels.
Conversion from pixels to metres yields an uncertainty of ±1.93×10−5 m (0.0193 mm)
in x- and y-positions.

Measurement error for x- and y-positions was affected predominately by image
resolution and video acquisition rate: e.g. higher resolution, or more pixels per metre,
would have given higher accuracy. The velocity and acceleration were determined
by taking the first and second derivatives of a polynomial fit to the position data.
The lowest-order curve fit to both x- and y-positions was chosen such that higher
order polynomials yielded nearly identical results for both velocity and acceleration,
minimizing the error. This corresponded to a seventh-order polynomial fit with an R2

value of 0.99. Error estimates were between 2 % and 4 % in velocity, 5 %–10 % in
acceleration and 5%–15 % in lift and drag.

The rotation of the sphere was determined using an iterative, rotating cross-
correlation routine, which determined the mean and standard deviation of the angular
position from the video sequences. Random non-uniform markings were drawn on
the sphere with indelible marker to enhance the correlation algorithm. The correlation
algorithm isolates one quadrant of the sphere in two sequential images and directly
compares these isolated regions of interest, thus eliminating the need to shift the
entire image. The quadrant from image 2 is rotated through a maximum rotation of
π/4 rad, in increments of π/1800 rad. The incremental angular displacement between
time steps corresponds to the angle where maximum correlation is found between
image 1 and the rotated image 2. The angular position data is found by summing the
incremental angular displacement over time. Spin rate Ω(t) rad s−1 was found from
the first derivative of a second-order polynomial fit to the angular position data. The
mean spin rate and standard deviation were applied to a Student’s t distribution,
which revealed error estimates of 4 %–9 % for Ω(t).

The spheres used in the bulk of this study were standard billiard balls made from
phenolic resin with a mass ratio m∗ = msphere/mfluid =1.74. The surface roughness of the
spheres was determined using model Tencor P-10 Surface Profilometer, sensitive to
roughness of ±0.01 μm. The size of the spheres was large compared to the pro-
filometer’s measurement range precluding measurement over the entire sphere surface,
so only a fraction of the sphere could be tested at any given time. The theoretical
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smooth surface location is subtracted from the profilometer curves to determine r.m.s.
values. The r.m.s. value for the phenolic resin spheres is 0.8 ± 0.4 μm; the roughness to
diameter ratio was k/d =1.4 × 10−5. The static contact angle made by a drop of fluid
with the surface of the phenolic resin spheres was 90◦ ± 10◦. The random markings
on the spheres did not locally alter the average roughness or contact angle.

Additional materials and sizes of spheres were also tested to determine the effect of
density and diameter on the splash and cavity physics. These spheres included smaller
(d = 2.54 cm) acrylic, ceramic and steel spheres. The mass ratios of the 2.54 cm spheres
were m∗ = {1.2, 3.9, 7.8}, for the acrylic, ceramic and steel spheres, respectively. The
spheres were coated with a hydrophobic coating (Cytonics Corporation’s WX2100TM)
to have uniform surface properties; the r.m.s. surface roughness for all 2.54 cm spheres
was k =2.4 μm, and the static contact angle was θc = 120◦ ± 10◦. The data from these
tests with the smaller projectiles are not the main focus of this paper, and therefore Q1

unless explicitly expressed, data and images presented in the following sections are
for the standard billiard balls.

3. Results and discussion
3.1. Overall cavity dynamics

Following the discussions of May (1975), we consider the impact problem in five
distinct stages: (1) the moment of contact, (2) the flow forming stage, (3) the open
cavity and splash growth stage, (4) the closed cavity and pinch-off stage and (5) the
collapsing cavity stage. While the details of each stage may vary with impact para-
meters, these five distinct stages persist for the case of the sphere impacting with spin.

Fundamentally, the initial stages of high-speed impact of any object on the free
surface, with or without spin, are dominated by inertial effects. Figure 3 shows a
sequence of images taken for a standard billiard ball spinning with Ωo = 199 rad s−1

(So = 1.1) and impacting the free surface with an initial velocity of Vo = 5.45 m s−1

(Fr =7.3). Each image in the sequence is separated by �t = 10 ms. The first image (a)
is taken 1 ms after impact. The sphere is already moving beyond stage 1 into stage 2
in figure 3(a).

An initial horizontal jet of fluid forms as the sphere impacts the free surface; this
jet continues to extend radially outwards as the sphere descends into the fluid. The
jet transitions from outwards to upwards growth during stage 2 when the sphere is
submerged approximately one quarter of its diameter. A thin layer of fluid is driven
around the lower surface of the sphere until it nears the equator, where it separates
from the sphere to form the splash crown. Below a critical impact velocity and critical
wetting angle, the flow remains attached until it surrounds the sphere completely
and meets at the top, causing a jet of fluid to form upwards without the presence
of an air cavity (Duez et al. 2007). For the spinning sphere, in the range of impact
speeds considered for the standard billiard balls, the splash curtain appears to form
symmetrically below S ≈ 0.30, but above this value asymmetric growth of the splash
curtain can be seen in the high-speed video sequences.

In stage 3 of the impact sequence (figure 3c–f ) the entire ball passes below the
ambient free surface and an open air cavity begins to form in its wake. The splash
crown base, connected to the free surface, grows in diameter, with the top of the
subsurface air cavity, and grows in height forming a vertical curtain. The subsurface
air cavity both elongates vertically and grows radially outwards as the ball descends.
At this stage the cavity is conical in shape, similar to the non-spinning case, but curved
because of the spinning motion of the sphere which induces a lift force perpendicular
to the ball trajectory.
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Figure 3. A sequence of images depicting the splash and air cavity formed in the wake of
a spinning sphere impacting the water. The initial impact velocity is Vo = 5.4 m s−1 (Fr =7.3)
and the initial spin parameter is S = 1.1. The first frame (a) is 1 ms after impact; subsequent
frames are 10 ms apart. (Digital video is available online for both side and top views of this
run.)



PROOF

Water entry of spinning spheres 11

(a) (b) (c)

t = 1 ms t = 3 ms t = 5 ms

Figure 4. Splash asymmetry is already beginning to form due to spin 1 ms after impact (a);
the splash continues to grow in (b) and (c) leading to an asymmetric splash crown and dome.
Sequence of images taken �t =2ms apart, for a clockwise spinning sphere with initial impact
parameters: S =2.25 and Fr = 7.0.

During stage 3, the sphere continues along its curved trajectory, bending the air
cavity further. The subsurface air cavity is still open to the atmosphere and air flows
in through the splash curtain resulting in a reduced pressure, which acts to draw the
splash curtain inwards as it reaches its maximum height. The splash curtain continues
to collapse inwards, eventually closing to form a dome (between figures 3g and 3h).

In stage 4 the splash curtain is closed and no more air can flow into the cavity;
however, the subsurface air cavity continues to stretch and curve under the movement
of the spinning sphere. The cavity collapse for the case of the spinning sphere
is similar to that of a non-spinning projectile as described in (Lee et al. 1997).
Hydrostatic pressure of the surrounding fluid retards the outwards growth of the
cavity and initiates the cavity collapse. The inwards inertia of the cavity forces it to
neck down into a curved, yet bottle-like shape, reaching pinch-off (deep closure or
deep seal) between figures 3(j ) and 3(k ). At pinch-off the cavity splits into two distinct
closed cavities: a lower cavity still fully attached to the sphere, and an upper cavity
connected to the free surface.

After pinch-off (stage 5) the cavity begins a rapid violent collapse (figure 3j–k ).
In both the lower and upper cavities, distinct jets of fluid eject away from the point
of pinch-off in opposite directions similar to what is also seen by other researchers
(e.g. Worthington & Cole 1897; Lohse et al. 2004). The jet in the upper cavity bursts
up through the free surface with significant velocity, pulling the upper cavity almost
inside-out. The jet attached to the lower cavity is directed towards the sphere without
an immediately obvious effect on the sphere’s motion. The smaller lower cavity
remains attached to the sphere (figure 3l ). Ripples in the lower cavity are seen in
the video sequences, comparable to those reported by Grumstrup, Keller & Belmonte
(2007). Eventually vortex shedding begins and the lower cavity starts to break up into
bubbles that ascend to the surface.

3.2. Effect of spin on cavity and splash asymmetry

As spin rate increases from zero, the sphere follows an increasingly curved trajectory.
The symmetry seen in the non-spinning cases gives way to asymmetric cavity and
splash growth in the spinning cases. Asymmetry, due to spin, develops even for
relatively low spin parameters and at early stages of splash formation. For example,
the growth of the initial axial jet (at t < 1ms) is already asymmetric as it rises faster
on the left side of the sphere, which is rotating out of the water, than the jet on the
right side of the sphere. This is more evident in higher spin rate cases (figure 4).
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(a) (b)

t = 88 ms t = 95 ms

Top of fluid
wedge

Bubble line

Pinch-off

Spin direction

Figure 5. Two images taken at t = 88 ms (a) and t = 95 ms (b) after impact respectively, for
initial impact parameters: S = 0.75 and Fr = 7.5. In (a) the top of the fluid wedge can be seen
through the cavity as a grey line descending from the upper-left free surface to the lower right.
A line of bubbles is ejected out of the right side of the cavity. Image (b) is captured at the
moment of pinch-off (deep closure); after pinch-off, two separate air cavities form.

As the splash curtain develops further, the left-to-right asymmetries persist
(figure 3a–d ) and are most evident when the curtain ceases to grow radially and
starts its inwards collapse. At this point (figure 3e–h) the splash curtain appears to
collapse earlier on the left side of the crown. The asymmetry of the splash dome is
further exaggerated, as spin rate increases, and no outwards splash is formed on the
left side of the cavity for spin parameters above a critical value of S ≈ 1.0.

A line of bubbles can be seen ejecting out the right side of the cavity after surface
closure and prior to deep closure (pinch-off). These bubbles persist for several frames
and do not appear to have an effect on the overall cavity behaviour (figure 5). Upon
close investigation it becomes clear that these bubbles are generated by a thin wedge
of fluid, which has travelled from left to right inside of the cavity and has impacted
the cavity wall, thus forcing air out along the line of impact. From the side view, the
presence of a wedge is indicated by a dark diagonal line rooted near the free surface
on the left side of the cavity and extending down to the right inside of the cavity;
this line is the top of the fluid wedge (figure 5a).

The fluid wedge formation and bubble ejection are not persistent across all spin
parameters. Figure 6 shows images taken at four distinct impact spin parameters,
So = {0.3, 0.75, 1.1, 1.4}. The top two image rows are synchronized in time and
illustrate how the wedge formation varies from low to high spin parameters. Looking
into the cavity from above, the top of the sphere is moving to the right and a small
triangular wedge of fluid can be seen growing into the cavity. As the sphere spins
it carries fluid, drawn from the cavity walls, along its equator into the cavity. The
extruded fluid resembles a thin wedge, or sheet, that is anchored at the top on the
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Bird’s-eye view t = 26 ms

Close-up t = 26 ms

Side view t = 99 ms

(a) So = 0.30 (b) So = 0.75 (c) So = 1.1 (d) So = 1.4

Ω

Ω

Figure 6. Four water entry cases with increasing spin parameter (left to right). The ‘bird’s-eye’
view (off-axis viewed from above) images in the top row are captured in synch with the images
in the middle row; these images are taken at t = 26ms after impact. The bottom row captures
the cavity at t = 99ms after impact, near the moment of pinch-off, showing the extent of the
wedge formation for the four cases and pinch-off behaviour. Increased spin rate affects both
the shape of the cavity cross-section and the overall splash symmetry. The spheres are spinning
clockwise in the side views and the top of the sphere is moving left to right in the ‘bird’s-eye’
view, drawing fluid across the cavity in the same direction. Froude number is Fr = 7.3 ± 0.2
for all cases presented.

left side of the cavity and extends down the length of the cavity attached to the
sphere surface at the lower end. For the lowest spin parameter presented (So = 0.30,
figure 6a), the wedge formation is weak and does not fully extend across the cavity
as it does in higher spin cases. In cases where spin parameters are less than So ≈ 0.30,
a distinct wedge of fluid is not formed; however, for all spin rates, images taken from
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t = 10 ms t = 18 ms

t = 26 ms t = 34 ms

(a) (b)

(c) (d)

Figure 7. A ‘birds-eye’ view of a spinning sphere impacting the water surface at a downwards
speed of 5.45 m s−1 (Fr = 7.3). The top of the sphere moves to the right with spin parameter
So = 1.1. Images are taken 8ms apart. The rotation of the sphere draws fluid in from the left
wall of the cavity (a) towards the right, forming a wedge. The wedge increases in size as water
continues to be brought in from the left (18ms) (b), and thins along the equator of the sphere
forming a sheet of water (26ms) (c), which eventually impacts the right-hand side of the cavity
(34ms) in (d ).

the top reveal that the fluid is clearly drawn across the cavity in contact with the
sphere, thus satisfying the no-slip condition.

At a later instant in time (t = 99 ms after impact) the side views of the cavity reveal
greater splash dome asymmetries with increasing spin parameter. The increase in spin
causes the wedge to form earlier and travel at a faster velocity across the cavity. The
progression of the fluid wedge from inception to the time at which the top of the wedge
impacts the far cavity wall, is illustrated in figure 7 for the case S = 1.1. The first
image in this ‘birds-eye’ sequence shows vertical striations on the left wall of the cavity,
which continue to grow into the cavity to form the wedge as the sphere descends. Even
the early splash crown and air cavity opening, at t = 10 ms, are slightly asymmetric.
The shape of the cavity cross-section eventually evolves into a cardioid as the wedge
extends across the cavity (figure 7d ). At the higher spin rates the volume of fluid
pulled from the left wall of the cavity increases, detracting from growth of the splash
crown and affecting the cross-sectional shape of the cavity (figure 8). The splash
crown growth and collapse are increasingly asymmetric at higher spin rates. For
sufficiently high spin rates, no outwards splash occurs on the left side of the cavity;
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(a) (b)

Figure 8. Side and top view for a high spin parameter case So = 2.25, for Fr = 7.0, taken
26ms after impact. The synched images show that the wedge has already crossed the cavity
impacting the opposite cavity wall ejecting a line of bubbles on the right-hand side of (a).
(a) also shows the asymmetry of the splash curtain at this early stage of impact. (b) from
above shows a distinct cardioid shaped cavity and shows the wedge bisecting the cavity into
two distinct halves. The spin parameter is sufficient enough to cause no outwards splash to
occur on the left-hand side of the splash curtain as witnessed in (b).

this behaviour is linked to the dynamic wetting angle and pinned contact line on the
sphere as it both translates and rotates, and is the subject of ongoing investigation.

Just moments after impact, as the sphere continues to descend through the fluid,
the spinning motion forces an already wetted section of the sphere to move upwards,
dragging fluid along the surface of the sphere and into the cavity. Due to the rotational
forces the fluid is drawn to the equatorial region. Assuming no-slip, the time the sphere
takes to turn one-half of a full rotation, or π radians, should be coincident with
the time at which the wedge first impacts the cavity wall such that tπ = π/Ωo. During
the time tπ, the sphere will have travelled some number of diameters αd below the
free surface. Assuming that the sphere’s forward velocity changes only minimally in
this short time, then αd =Votπ, such that

α =
Voπ

Ωod
=

π

2So

. (3.1)

If the sphere is located at some depth yw when the wedge impacts the wall then
α = yw/d .

Plotting yw/d as a function of Voπ/Ωod , reveals a linear relationship (figure 9a).
However, the slope of the data is not equal to −1 as expected from (3.1). Instead
the slope of the data is closer to −1.3, indicating that the depth of the sphere at
the moment of wedge impact, yw is over-estimated. The depth yw is determined by
looking closely at the video sequences taken from the side view (camera #2) and
choosing the frame at which the bubbles first eject from the cavity near the sphere.
There is a slight lag between the time that the leading edge of the wetted surface
reaches the far wall and the time when a sufficient mass of fluid from the wedge hits
the wall, causing air to eject from the cavity, which leads to an over estimation of yw .
For very low spin rates relative to impact velocity, it is possible that the wedge will
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Figure 9. (a) The normalized depth of the sphere at which the wedge first impacts the
opposite cavity wall as a function of the dimensionless parameter Voπ/Ωod . Symbols are for
experimental data, and solid line represents theoretical line with slope −1, from (3.1). (b) The
decay of spin rate, normalized by the impact spin rate, as a function of time for the four
spinning cases from the standard billiard balls at Fr = 7.3. The highest spin rates see the largest
reduction of spin in time. (c) The relaxation time, at which the spin rate would decay to zero,
is found by extrapolating the data from (b) down to the point at which the line crosses the
horizontal axis.

Q4

not even reach the opposite side of the cavity before pinch-off, which is the case for
data shown at Fr = 7.3 and S � 0.3.

Since the ratio of spin rate to downwards velocity strongly affects the wedge
formation, the top of the fluid wedge (see figure 5a) forms a shallower angle to the
free surface as spin rate increases. The leading, top corner of the wedge traverses
across the cavity at approximately 60 % of the tangential velocity Ωor of the sphere.
As the cavity grows radially outwards and then begins collapsing, the distance the
wedge must travel across the cavity grows and shrinks. It appears that the wedge is
traversing the cavity at a nearly constant rate; however, the oscillation of the cavity
wall makes the relative velocity between the wedge and opposing wall non-uniform.
For cases where S � 1 the wedge impacts the side of the cavity early and violently,
typically causing a line of bubbles, almost the length of the entire cavity, to eject from
the cavity at nearly the same moment in time (figure 8). For lower spin parameters
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the initial wedge impact zone is typically near the top of the sphere, at the bottom of
the cavity and progresses up the cavity wall towards the free surface.

As a result of the no-slip condition at the solid boundary, the fluid velocity at the
sphere surface must match the sphere surface normal and tangential velocities, and
thus fluid is dragged along the surface of the sphere as it rotates. Frictional viscous
forces on the surface of the sphere act to reduce the spin rate of the spheres along
the trajectory by causing a viscous torque that opposes rotation. Figure 9(b) plots the
spin rate Ω(t) as a function of time, for four cases, normalized by the spin rate at
impact. Ultimately, if allowed to travel in an infinite viscous fluid, the spheres would
cease to spin due to the viscous torque opposing the rotation of the sphere. The rate
of decay appears to have a dependency on spin parameter, increasing with increasing
initial spin parameter, So.

Based on figure 9(b), it would be expected that the time that it would take a sphere
to cease spinning, t |Ω(t) = 0, would decrease with increasing initial spin parameters.
Figure 9(c) shows t |Ω(t) = 0, given the linear decay rates extracted from figure 9(b),
as a function of initial spin parameter, So; this spin relaxation time is found by
extrapolating the lines in figure 9(b) to the zero-crossing point on the time axis.
Plotted as a function of impact spin parameter, the data reveal an asymptote beyond
So ≈ 0.5, where the relaxation time tends towards a value of t |Ω(t)= o ≈ 0.3 ± 0.1 s.

The decrease in relaxation time, or increase in spin decay rate, as a function of
increasing spin parameter is not wholly unexpected. As the spin parameter increases,
so does the relative velocity on the surface of the sphere on the side where the
tangential velocity due to rotation is additive with the sphere’s forward motion. This
acts to trip the boundary layer sooner on the side of the sphere with the highest relative
velocity, thus transitioning it to a turbulent regime with higher viscous boundary layer
drag. This increased viscous drag leads to a higher viscous torque that opposes the
rotation and acts to slow the sphere at a faster rate than the spheres with a slower
initial spin rate.

3.3. Sphere trajectory

The most obvious and anticipated change in behaviour of the spinning sphere,
compared to the non-spinning case, is the curvature in its trajectory. The lift
force induced by the rotating motion, coupled with forward velocity, moves
the sphere along a curved path. Sphere trajectories for five different spin
parameters, So = {0, 0.3, 0.75, 1.1, 1.4}, are plotted in figure 10, for one impact velocity
(V0 = 5.6 ± 0.4 m s−1); only position data after impact are presented. The x- and
y-positions are normalized by the diameter of the sphere d and the free surface
corresponds to a value of y/d = 0.

The zero spin case shows a straight descent until after pinch-off. In figure 10, below
y/d ≈ − 7, the sphere moves to the left; all non-spinning spheres tended to move
away from their vertical trajectories at some time after pinch-off. This is most likely
due to vortex-induced forces. Data in Govardhan & Williamson (2005) indicate that
tethered spheres, without spin, tend to present a sinusoidally oscillating motion in the
axial direction due to vortices being shed in the wake. Before pinch-off, the cavity
attached to the sphere retards classical vortex shedding from the sphere; thus it is
only after pinch-off that the effects of vortex shedding would become noticeable.

The lift force significantly increases with spin in the range of spin rates investigated,
and results in greater curvature of the sphere trajectory (figure 10). Path curvature is
evident for all cases, indicating positive lifting force even at lower spin parameters
(e.g. S = 0.30). If spin parameter is held constant but Froude number increased,
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Figure 10. Five different trajectories of a billiard ball impact with the free surface. Each
trajectory is marked by its corresponding spin parameter (So = Ωor/Vo) at impact. Froude
number at impact was Fr = 7.3 ± 0.2. The diamond marks the location of the sphere when
pinch-off occurs for each case.

for a constant diameter sphere, the trajectories x/d versus y/d are very similar for
each increasing Froude number (not shown). Differences in trajectories for increasing
impact velocity are seen in the position as a function of time, as higher Froude
number spheres reach deeper depths, and further horizontal excursions, earlier in
time than cases with lower impact velocities. Since gravity plays a significant role in
the motion of the sphere, the mass of the sphere should also be considered. Lower
mass ratios should yield greater curvature assuming that the lift force results from
increased circulation around the sphere. The mass ratio of the billiard ball used here
is quite high, m∗ = 1.74, yet the curvature is still significant.

For the same impact parameters, So and Fr , lower mass ratios experience greater
lateral excursion due to lift. The force of lift is expected to be similar for a given
diameter, velocity and spin rate, but as the sphere travels along a curved trajectory
the force of gravity tends to stretch the trajectory downwards and thwarts lateral
movement; the gravitational force is greater for increasing body mass. Mass effects
are considered using three different spheres, with constant diameter but varying mass
ratios. Figure 11 shows the trajectories x/d versus y/d , at Fr =6.7 and So =0.65,
for the three different types of spheres. The lighter spheres (acrylic) tend to have
more curvature in their trajectories than the heavier spheres (ceramic and steel). For
low mass ratios m∗ inertial forces are diminished compared to hydrodynamic forces,
and added mass and lift forces become more significant. After the sphere leaves the
camera’s field of view, the acrylic sphere moves almost exclusively in a horizontal
direction until its spin rate decreases significantly or it hits a tank wall, whereas the
heaviest spheres always have some downwards motion. For m∗ near unity, e.g. acrylic
spheres, lift force has a considerable effect on the sphere’s trajectory and velocity
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Figure 11. Trajectories for three 2.54 cm spheres with increasing mass ratios: acrylic (m∗ = 1.2),
ceramic (m∗ = 3.9) and steel (m∗ = 7.8). The three spheres impact the water at the same Froude
number (Fr = 6.7) and the same spin parameter (So = 0.65). The diamond markers indicate the
depth of cavity pinch-off.

in the horizontal direction. For very high m∗, e.g. steel spheres, the inertial forces
dominate and spin has little effect on the overall trajectory of the sphere.

Video images from the ‘birds-eye’ view and the side view for the acrylic, ceramic
and steel spheres, captured at t =21 ms after impact for Fr = 6.7 and So =0.65, are
shown in figure 12. These images were obtained just prior to the time that the top
two rows of images were acquired in figure 6. The top-view images in figure 12(a–c)
show a distinct difference in cavity cross-section for the three materials despite the
identical impact parameters. No outwards splash is generated on the left side of
the cavity for the steel spheres resulting in a distinct cardioid cross-sectional cavity
shape, compared to the rounder cross-section of the acrylic and ceramic spheres.
The spheres all have the same surface roughness, k =2.4 μm, thus we should expect
a similar frictional force to drag the fluid around as the sphere rotates. However,
since wedge formation is dependent on the ratio of tangential velocity to downwards
velocity (figure 9a), the qualitative difference in wedge formation makes sense. After
impact, the acrylic spheres experience a more rapid deceleration compared to the
ceramic and steel spheres since inertial effects are not as large, and thus have
lower instantaneous velocities compared to the ceramic and steel spheres. The higher
deceleration of the acrylic spheres is seen in the side-view images in figure 12(d–f ); the
steel sphere is deeper in the water than the acrylic sphere at the same instance after
impact.

The heavier the sphere, the higher its kinetic energy is upon impact. The energy
transferred to the fluid upon impact affects the splash and cavity formation. In the
acrylic spheres a clean almost vertical splash forms and has not yet begun to collapse
at t = 21 ms (figure 12d ). The ceramic sphere splash crown is just beginning to collapse
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(a) (b) (c)

(d ) (e) ( f )

Acrylic Ceramic Steel

Figure 12. High-speed images of the cavity formation for three different 2.54 cm spheres with
increasing mass ratio: acrylic (m∗ = 1.2), ceramic (m∗ = 3.9) and steel (m∗ = 7.8). The spheres
all impact the water at the same Froude number (Fr = 6.7) and the same spin parameter
(So = 0.65). Images of the ‘birds-eye’ view in the top row (a–c) correspond to images of the
side view in the bottom row (d–f ) and are captured at the same instance in time (t = 21 ms).
In images (a–c) the equatorial line of the spheres is moving to the right and the spheres are
rotating in a clockwise direction in images (d–f ).

(figure 12e) whereas for the steel sphere the splash crown has almost fully domed
over (figure 12f ). The bubble line, resulting from the wedge impacting the far wall of
the cavity, can also be seen on the right side of the cavity only for the steel sphere
in figure 12(f ), but a faint wedge line can be seen through the cavity wall for both
acrylic and ceramic spheres.

The diamond markers in figure 11 indicate that the depth of the sphere at the
moment of pinch-off increases dramatically as mass ratio increases. The depth of
pinch-off for the steel sphere is deeper than that of the ceramic and acrylic spheres.
These trajectory plots do not reveal information about the velocity of the spheres’
descent, but qualitative velocity differences are seen in the images in figure 12. As
a result of the differences in velocities after impact, the time at which each sphere
reaches a certain depth, e.g. pinch-off, changes dramatically between materials. Further
discussion of this is found in the following section.
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Figure 13. (a) Non-dimensional time to pinch-off plotted against Froude number and
(b) normalized arclength-to-pinch-off as a function of Froude number; (c) normalized depth to
pinch-off as a function of Froude number and (d ) normalized depth to pinch-off as a function
of Froude number and mass ratio. Data includes tests from standard billiard balls (·), 2.54 cm
acrylic spheres (�), 2.54 cm ceramic spheres (�) and 2.54 cm steel spheres (	). Each material
has a different mass ratio; m∗ is indicated in the legend for (a).

3.4. Cavity pinch-off

Cavity deep seal is initiated by an imbalance in pressure inside and outside of the
subsurface cavity. After surface closure the cavity continues to expand for some time
as the sphere descends. Since air no longer flows into the cavity, the pressure inside
must decrease if cavity expansion is considered to be an adiabatic isentropic process
(Lee et al. 1997). Hydrostatic pressure outside the cavity grows with depth and the
radial expansion of the cavity slows, and eventually stops, without new energy added
to the system. The cavity starts to collapse and finally pinches off when it can no
longer resist external pressures. The moment of pinch-off is taken when the subsurface
air cavity has completely necked down; after pinch-off two distinct separated cavities
form.

To find a scaling relationship for deep seal, the non-dimensional time to deep seal
is considered. Figure 13(a) shows the relationship between non-dimensional time,
t∗ =Vot/d versus Froude number, and that data for all mass ratios, diameters and
spin rates collapse onto one line. The slope of the linear fit to the data reveals
that t∗ = 5/4 Fr , over the range of mass ratios tested herein. However, in this figure
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the initial impact velocity dominates for both the x - and y-axes, making t∗ a less
than ideal scaling parameter. Gilbarg & Anderson (1948) use a non-dimensional
time scaling for deep seal using small spherical projectiles under varied atmospheric
conditions, at Froude numbers much higher than those considered here. Glasheen
& McMahon (1996) propose a single value of dimensionless time, τ = t

√
g/r , for

which deep seal reduces to a single number for all impact speeds and disk diameters.
Data obtained herein reveals that τ =1.726 ± 0.0688 (x̄ ± σ ; n= 118 trials), over the
range of impact velocities and sphere diameters tested. This is similar to τ = 1.74
for spheres as reported by Gilbarg & Anderson (1948), and can be contrasted with
τ = 2.285 ± 0.0653 (n = 47 trials) for disks as reported by Glasheen & McMahon
(1996).

The location of the sphere at the time of pinch-off is indicated in figure 10 by
the diamond-shaped marker. The sphere’s location at pinch-off is clearly affected by
initial velocity and mass, but not spin. For constant Froude numbers, but increasing
spin parameters, the depth y/d of pinch-off increases only slightly, and the distance
travelled by the sphere along its trajectory before pinch-off remains nearly constant.
The distance travelled along the trajectory is the arclength-to-pinch-off distance,
s/d =

∑
ds/d , where ds is an elemental length along the trajectory path s.

For higher impact velocities and mass ratios, both the depth of pinch-off and
arclength-to-pinch-off distances increase due to larger inertial effects and greater
energy available to feed cavity growth. Both s/d and y/d are plotted as functions
of Froude number in figures 13(b) and 13(c). The data plotted in these figures
also include, in addition to the standard billiard ball data, data obtained from
three different 1 in. (d = 0.025 m) spheres: acrylic (m∗ = 1.2), ceramic (m∗ = 3.9) and
steel (m∗ = 7.8). Data plotted includes all spin rate cases for each Froude number
considered, including the non-spinning cases, revealing a minimal effect of spin on
the deep seal phenomenon. While each specific mass ratio reveals a linear trend with
Froude number, the data show that mass ratio is an important parameter affecting
the depth and arclength at which pinch-off occurs. Taking into consideration the
mass ratio effect, the normalized depth of pinch-off collapses neatly as a function of
Froude number times the square root of the mass ratio (figure 13d ).

3.5. Lift and drag forces on the spinning sphere

3.5.1. Force model

Lift and drag forces on the standard billiard balls are calculated using the position
data acquired from the video sequences. The coefficients of lift (CL) and drag (CD)
are found by normalizing the forces by 1/2ρV 2

o πr2. A force balance on the sphere
is written in vector form based on the free body diagram in figure 14(a). The
hydrodynamic forces (FH ) acting on the sphere are balanced by gravitational forces,
added mass forces and surface tension:

FH = mg + (m + ma)a − FB − Fσ , (3.2)

where m is the mass of the sphere, g is gravity, ma is the sphere added mass, a
is the acceleration of the sphere and FB is the buoyancy force. The force due to
surface tension Fσ can be neglected as it is less than 1 % of the gravitational force
for the standard billiard balls. The buoyancy force FB = ρg∀ĵ , where ∀ is the sphere
volume, and the added mass is found from ma = Cmρ∀, where Cm is the added mass
coefficient. For this study Cm was chosen to be constant over the entire run, Cm = 0.5.
The added mass coefficient Cm likely changes over the course of the run, depending
on how much of the sphere is submerged in water. Running the force model with
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Figure 14. Free body diagram of the forces affecting the sphere after water entry is drawn
in (a). The dashed curve represents the sphere’s trajectory. (b) The changing magnitude of the
lift and drag force components in time along the trajectory superimposed on one image taken
from the same video sequence, t = 141 ms after impact. The vector origins correspond to the
location of the center of the sphere along the trajectory at the same time step when the forces
were calculated. Impact parameters for this case are So = 1.4 and Fr = 7.3.

a constant drag coefficient (CD = 0.4) for the non-spinning case shows that after the
sphere is fully submerged, added mass coefficient could vary from as low as 0.2, just
after the cavity is formed, to as high as 0.5, after pinch-off. Choosing an added mass
coefficient Cm = 0.25, a 50 % reduction in added mass, reduces the results for CD and
CL by 8 %–10 %, well within the error bounds of this study. For a mass ratio closer
to unity (m∗ ≈ 1) the added mass term will play a larger role and the choice of Cm

will be more critical. Force data is presented only for the standard billiard balls and
assumes Cm = 0.5.

To determine the lift and drag components of the forces, (3.2) can be broken into
Cartesian vector components in the x- and y-directions:

FH î + FH ĵ = mgĵ + (m + ma)(ÿĵ + ẍî) − FBĵ , (3.3)

where î and ĵ are unit vectors in x and y, respectively. Rewriting (3.3) in the reference
frame of the sphere makes determining lift and drag forces along the curved trajectory
more straightforward. The unit vector tangent to the sphere trajectory ŝ is written in
terms of the x and y components of instantaneous velocity Vi:

ŝ =
V i

|V i

| =
Vx

|V | î +
Vy

|V | ĵ . (3.4)
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The unit normal vector n̂ is defined as the cross product of the unit tangent vector
with the unit vector in the z-direction k̂:

n̂ = ŝ × k̂. (3.5)

The forces of lift (transverse) FL and drag (in-line) FD can be determined from (3.2),
in terms of unit vectors from (3.4) and (3.5) as

FL = (FH · n̂)n̂, (3.6)

and

FD = (FH · ŝ)ŝ, (3.7)

respectively. Lift is considered positive in the +n̂ direction and causes curvature to the
left in the images presented herein (the sphere is spinning in a clockwise direction).

The acceleration of the sphere is necessary to determine the force of lift (FL) and
drag (FD). Directly differentiating the raw data does not result in accurate acceleration
data and presents significant scatter and error. Thus a polynomial curve is fit to both
the x and y data. A seventh-order polynomial fit was chosen for both the x - and
y-positions data; this was the lowest order to ensure convergence in acceleration for
all cases. The R2 values for the position fits are 0.99. The acceleration in the x - and
y-directions is calculated from the second derivative of the polynomial fits to position.
Similarly velocity is obtained by taking the first derivative of the polynomial fit. The
x - and y-positions, velocities and accelerations are plotted in figure 15 as a function
of time for the five cases considered here.

Forces acting on the sphere change along the sphere’s trajectory with changing
velocity and acceleration. The coefficients of lift (CL) and drag (CD) are found by
normalizing the forces by 1/2ρV 2

o πr2. Figure 14(b) shows a sphere at time t = 141 ms
after impact (So =1.4, Fr = 7.3). The sphere’s trajectory is indicated by the curved
line through the cavity. Superimposed on this line are pairs of orthogonal vectors
representing the lift (normal) and drag (inline) forces; the length of the vector arrows
indicate the relative magnitude of the forces on the sphere when it was located at
the origin of the force vector pairs. As the sphere descends through the fluid column
the forces of lift and drag decrease. Figure 14(b) also illustrates the asymmetry of the
cavity formation around the sphere trajectory, with greater growth in the negative n̂

direction than in the positive n̂ direction.

3.5.2. Forces as a function of Reynolds number

Calculated values for lift and drag coefficients are plotted in figure 16 as function of
instantaneous Reynolds number (R = Vid/ν), for the five cases presented in figure 6.
Reynolds number is greatest at the moment of impact and varies with instantaneous
velocity along the sphere’s descent. The impact region is identified by the Roman
numeral I. Surface closure is marked by a vertical grey band (region II) around
Reynolds number of R ≈ 1.6×105. The range of Reynolds numbers, at which the five
cases reach pinch-off and form two distinct cavities, is marked by the second darker
vertical band (region III) around R ≈ 1.1 × 105.

For increasing spin rates, the overall lift coefficient increases with the circulation
around the sphere. Looking at the two higher spin parameters, So = 1.1 and 1.4, it
appears that there may be a maximum possible amount of lift that can be gained
by increasing spin; a plateau in lift coefficient is seen above S ≈ 1.5 in the data for
smooth spinning spheres reported by Maccoll (1928). Over the course of the sphere’s
decent the lift coefficients rise to a maximum at or near the point of pinch-off, in
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Figure 15. Position, velocity and acceleration in the x - and y-directions as a function of time,
resulting from a seventh-order polynomial fit to the raw position data for standard billiard
balls with Fr = 7.3. Impact spin parameters are So = {0.0, 0.3, 0.75, 1.1, 1.4}; legend for ay is
valid for all plots.

similar fashion to the drag coefficient. Drag coefficients, just after impact, are on par
with the measured drag coefficient for a fully wetted sphere in flows at comparable
Reynolds numbers (see figure 18). In the absence of vortex shedding, while the cavity
is still fully intact, it might be expected that the drag coefficient would be lower than
the fully submerged sphere at similar Reynolds numbers. Choosing a lower coefficient
of added mass, e.g. Cm = 0.25, reduces the overall drag coefficient to a value lower
than published values for similarly rough, but fully submerged, spheres in the range
of Reynolds numbers considered. The choice of added mass coefficient Cm = 0.5 could
account for the drag coefficient after impact being near to that of a fully submerged
sphere.

3.5.3. Forces as a function of spin parameter

To further investigate the effect of spin on the forces incurred by the sphere, the
coefficients of lift and drag are plotted as functions of instantaneous spin parameter
S(t) in figures 17 and 18, respectively. Figure 17 presents lift coefficient as a function
of instantaneous spin parameter for five instantaneous Reynolds numbers, using
data from figure 16(a). Data from smooth spheres measured by Maccoll (1928) and
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Figure 16. Lift (a) and drag (b) coefficients determined using the force model as a function
of instantaneous Reynolds number R = V (t)d/ν. Impact conditions for the five cases are:
So = {0.0, 0.3, 0.75, 1.1, 1.4} for Fr = 7.3 ± 0.2. The legend in figure (b) also corresponds with
figure (a).

dimpled spheres (golf balls) measured by Davies (1949) and Smits & Smith (1994)
are plotted for comparison.

Data show that the lift coefficient increases to a local maximum value of CL ≈ 0.46
at spin parameter S(t) = 1.8 for Reynolds number R(t) ≈ 1.08 × 105; this instantaneous
Reynolds number corresponds to the speed of the sphere near the time of pinch-
off, but no obvious plateau has been reached. Data for higher instantaneous spin
parameters were not obtainable for any given case, thus an overall maximum was
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Figure 17. Coefficient of lift versus instantaneous spin parameter S(t). Data for the spinning
sphere impacting the free surface is plotted for five instantaneous Reynolds numbers between
R = 1.2 × 105 and 1.8 × 105. These Reynolds numbers are taken from cases with different
initial spin parameters but the same impact velocity, and correspond to the instantaneous and
changing Reynolds number of the sphere along the trajectory. The number at the right of
each curve is the corresponding Reynolds number divided by 105. For comparison, data for
dimpled spheres from Davies (1949) and Smits and Smith (1994) are plotted along with data
from Maccoll (1928) for smooth spheres.

not obtained. The trend in lift coefficient is similar at higher Reynolds numbers,
but the maximum coefficient is diminished with increasing Reynolds number. Higher
Reynolds number curves in figure 17 correspond to points along the trajectory where
the cavity is still intact and growing. The curvature of the trajectories increases as the
sphere continues along its path, indicating that the lift forces due to spin could be
more dominant, compared to cavity effects, as the sphere and cavity growth slows.

Lift coefficients obtained here follow similar trends, as a function of instantaneous
spin parameter, to those found by Maccoll (1928); however, it is unclear whether this
similarity continues above spin rate S ≈ 2.0. In Maccoll (1928), negative lift coefficients
were observed at very low spin parameters, below S = 0.35–0.45. Negative lift was
not witnessed in this study, nor in the golf ball studies done by other researchers, but
was verified by Davies (1949) for very smooth spheres. Gilbarg & Anderson (1948)
noted that the average measured drag coefficients of the projectiles in their study
were independent of cavity shape. Data presented here indicate that changes in cavity
shape due to spin do effect drag; however, variable-added mass forces should also be
considered in future studies.

Drag coefficients as a function of spin are plotted in figure 18, for the same five
instantaneous Reynolds numbers used in figure 17. The value for drag coefficient
in the non-spinning case CDo is calculated at each instantaneous Reynolds number
using the force model from § 3.5.1. The CDo is subtracted from each curve in figure 18,
such that each curve has zero drag at S = 0. Thus, figure 18 closely represents the
spin-induced drag forces on the sphere CDs without cavity effects. The total drag
coefficient acting on the sphere is the sum of the zero-spin drag and the spin-induced
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Figure 18. Coefficient of drag versus instananeous spin parameter at Reynolds numbers
ranging from 1.2 × 105 − 1.8 × 105. (a) shows the contribution due to spin only (CDs ); the
numbers to the right of the data curves are instantaneous Reynolds number divided by 105.
(b) plots the drag coefficient (CDo) for the zero-spin water entry case with identical impact
velocity as the spinning cases (circles). Standard drag coefficient data for smooth, roughened
and dimpled spheres taken from Blevins (1984) is plotted for comparison.

drag: CD = CDo + CDs . A negative CDs represents a reduction in drag coefficient due
to spin. The effect of spin appears to decrease the drag coefficient over the course of
a run compared to a non-spinning case, above an instantaneous Reynolds number
R ≈ 1.2 × 105 and S(t) ≈ 1.5.

Figure 18(b) presents the coefficient of drag calculated for the zero spin case CDo at
So = 0. Data are plotted along with standard drag curves for smooth and roughened
spheres taken in flow tunnels taken from Blevins (1984). The cases investigated herein
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fall in the laminar-turbulent transition region, and figure 18(b) illustrates how the
introduction of spin can easily tip the balance in favour of turbulent flow.

4. Conclusions
The effects of spin on the flight path of a sphere impacting into water are not

ultimately surprising. However, high-speed video reveals the formation of unique and
elegant splash and cavity morphologies when spin is introduced. As the spin rate of
the sphere is increased, for a constant impact speed, the sphere’s trajectory exhibits
greater curvature, in a similar fashion to curveballs in sports like golf, cricket and
baseball. The trajectories of higher mass projectiles are not as affected by spin as
their lower mass counterparts. The bent cavity for the spinning case holds a similar,
albeit curved, form compared to the non-spinning case, and the splash formation and
collapse and the cavity pinch-off behaviours are fundamentally similar.

Unique to this problem, however, is the nature of the subsurface air cavity, and
the formation of a secondary fluid feature, namely the fluid wedge, that forms in
the cavity. Since there is no-slip between the sphere surface and the fluid, fluid is
drawn along with the sphere, which is fully wetted after one-half a rotation, and the
wedge is extruded into the cavity as the sphere descends. Data show that the ratio of
spin rate to downwards velocity strongly affects the wedge formation. If allowed to
travel in an infinite viscous fluid, the spheres would cease to spin due to the viscous
torque opposing the rotation of the sphere. The rate of spin decay increases with
increasing spin parameter, up to about So ≈ 0.5, after which the spin relaxation time
appears to plateau. The effect of mass ratio on wedge formation is played out in the
instantaneous downwards speed of the sphere. Since the lighter spheres decelerate
more rapidly than the heavier spheres, the instantaneous spin parameter for the light
spheres is lower for the same impact velocity and the wedge formation is not as
obvious.

Spin appears to have minimal effect on cavity pinch-off and collapse, compared to
Froude number. The depth and arclength-to-pinch-off do not scale well with Froude
number when mass effects are considered, yet scale well with Froude number times
the square root of the mass ratio. Dimensionless time does collapse the pinch-off data
as a linear function of Froude number, for all mass ratios; data for non-spinning
cases collapse in an identical fashion to the data for spinning cases.

Several distinct regimes can be identified within the range of spin parameters
studied. First, at zero spin rates the traditional water impact behaviours are identified.
Using a force balance equation, the drag coefficient is found to increase for decreasing
instantaneous Reynolds number, along the trajectory of the sphere, up to the point
of pinch-off where the sphere separates from the large cavity. The cavity and splash
formation and collapse are symmetric in the absence of spin and the calculated lift
coefficients are zero.

For very low spin parameters (0< S < 0.35), where Maccoll (1928) notes negative
lift coefficients, the spinning spheres studied here do not show negative lift, but instead
tend to bend in the direction of positive lift, yielding the lowest calculated values for
CL. The drag coefficients calculated for the S = 0.30 case were also the lowest of all
the spin parameter cases run. Already at this low range of spin parameter, asymmetric
splash and cavity formation and collapse are notable. No distinct wedge formation
grows into the cavity, but the visible striations associated with wedge formation are
evident (figure 6a; top row). Close observations of the ‘birds-eye’ videos indicate that
there is no-slip between the fluid and the sphere at any spin rate.
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As spin parameter increases (0.35 <S < 0.7), the lift data from Maccoll (1928)
transitions to positive and the data recorded herein show a local minimum in drag
coefficients for spin parameters between 0.5 and 0.6, yet lift coefficient shows a steady
increase in this region. The asymmetry in cavity and splash formation and collapse is
exaggerated with increasing spin parameter, and a fully formed fluid wedge traverses
across the cavity. Despite the wedge formation the cavity is still relatively round in
cross-section at lower spin parameters, compared to spin parameters above So ≈ 0.7.
At the highest spin parameters So > 1.0, the splash crown formation is significantly
altered by spin. Minimal outwards splash arises from the left side of the impact region
(as seen in the ‘bird’s-eye’ images) and the cavity has a distinct and elegant cardioid
shape and a dominant wedge that fully transects the cavity from surface all the way
down to pinch-off.

Overall, the fundamental nature of water entry is not destroyed when spin is
introduced, but instead altered in a unique fashion. Splash crown and subsurface air
cavity do form and collapse in similar stages, but a new fluid wedge is formed that
can dissect the cavity in half in the presence of spin. Preliminary tests show that static
surface contact angles can affect the formation of the splash crown, as well as the
fluid wedge; these effects warrant further investigation.

Funding for this work was provided through the ONR ULI (University Laboratory
Initiative) grant number N00014-06-1-0445 by Theresa McMullen (ONR Code 333).
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