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Abstract: Soil erosion is an increasingly issue worldwide, due to several factors including climate
variations and humans’ activities, especially in Mediterranean ecosystems. Therefore, the aim of this
paper is: (i) to quantify and to predict soil erosion rate for the baseline period (2000–2013) and a future
period (2014–2027), using the Revised Universal Soil Loss Equation (RUSLE) and the Soil and Water
Assessment Tool (SWAT) model in the R’Dom watershed in Morocco, based on the opportunities of
Remote Sensing (RS) techniques and Geographical Information System (GIS) geospatial tools. (ii) we
based on classical statistical downscaling model (SDSM) for rainfall prediction. Due to the lack of
field data, the model results are validated by expert knowledge. As a result of this study, it is found
that both agricultural lands and bare lands are most affected by soil erosion. Moreover, it is showed
that soil erosion in the watershed was dominated by very low and low erosion. Although the area
of very low erosion and low erosion continued to decrease. Hence, we hereby envisage that our
contribution will provide a more complete understanding of the soil degradation in this study area
and the results of this research could be a crucial reference in soil erosion studies and also may serve
as a valuable guidance for watershed management strategies.

Keywords: soil erosion; RUSLE; SWAT; classical statistical downscaling model; remote sensing; GIS
tools; R’Dom watershed

1. Introduction

Soil degradation is a form of soil loss that involves the detachment, transport, sedi-
mentation and deposition of soil from one area to another by the forces of dynamics and
the actions of erosive agents (water, ice, snow, air, plants, animals and humans [1]).
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Several factors including human activities and climatic variations such as topogra-
phy, land cover and management, soil properties, and climate can contribute directly or
indirectly in increasing the amount of degraded soil at the catchment scale. It is noted
that the effects of climate change due to increased precipitation and temperature, and
land use change due to human activities can lead to an activation of erosion processes [2].
This phenomenon is a worldwide environmental problem, that seriously threatens natural
resources such as soil fertility, drainage and siltation [3]. It also contributes to the reduction
of reservoir capacity and negatively affects aquatic habitats, hydrological systems and
downstream water quality because of sediments that are generally charged with nutrients,
toxic chemicals and metals [4]. In overall, soil erosion has severe effects on soil and water
resources leading to the earth ecosystems disequilibrium.

An estimation of 33% of the world’s land area is classified as moderately to highly
degraded because of several factors including erosion, salinization, compaction, acidifica-
tion [5]. The costs of land degradation show an uncertainty in the global economic impact
(ranged from 40 to 490 billion US$) that varies across countries [6]. The United Nations’
(UN) stated that “ . . . soils constitute the foundation for agricultural development, essential
ecosystem functions and food security and hence are key to sustaining life on Earth” [7].
Moreover, the protection of the soil has received considerable interest among the 17 UN
Sustainable Development Goals (SDGs) [8].

Soil erosion is an increasingly issue worldwide, more particularly in the Mediterranean
regions, known as “hot-spot” of climate change because of water scarcity [9]. Morocco, as
one of the Mediterranean countries, is highly experienced to severe episodic drought and
characterized by extreme natural inter-annual variability, spatial and temporal heterogene-
ity of precipitation [10], seasonality of water resources and decreasing river flows [11].

The assessment of eroded areas based on field missions monitoring is a challenging
and time-consuming task because it is difficult to be applied to broad extensions [12]. To
overcome this limitation, many different models are used and developed to quantify soil
erosion. These approaches are divided into empirical and physically-based models [13].
Empirical models are easy to be used in areas where the availability of data and parameters
is limited, these include Universal Soil Loss Equation (USLE) [14] and its revised version
Revised Universal Soil Loss Equation (RUSLE) [15], Modified Universal Loss Equation
(USLE Modified) [16], Erosion Potential Method (EPM) [17], and SEdiment DElivery Dis-
tributed (SEDD) Model [18]. Physically-based models, require a good knowledge of the
physics of the hydrological processes. These include, Soil and Water Assessment Tool
(SWAT) [19], Watershed Erosion Prediction Project (WEPP) [19], Agricultural Non-Point
Source Pollution (AGNPS) model [20], Areal Non-point Source Watershed Environment
Response Simulation (ANSWERS) model [21], Limburg Soil Erosion Model (LISEM) [22],
European Soil Erosion Model (EUROSEM) [23], Soil Erosion Model for Mediterranean Re-
gions (SEMMED) [24], Simulator for Water Resources in Rural Basins (SWRRB) [25], MMF
(Morgan–Morgan–Finney) model [26], and the Hydrologic Simulation Program-FORTRAN
(HSPF) [27].

Due to its severity, gully erosion considered as the major type of water erosion, has
become a growing interest of many researchers Therefore, a large number of methods
have been used in the mapping of gully erosion susceptibility based on the study of the
relationship between a set of independents variables (conditioning factors) and target
variable (i.e., presence/absence of gully erosion), including for example, maximum entropy
model (MaxEnt) [28], Analytical Hierarchy Process (AHP) model [29], Evidential Belief
Function (EBF) [30], Frequency Ratio (FR) [31], and Classification and Regression Trees
(CART) [32].

Numerous studies in the literature have used RUSLE equation and SWAT model with
successful contributions (see for e.g., [33–35]). Also, in Morocco, Boufala, M’hamed, et al. [36]
used the SWAT model in the Upper Sebou watershed to monitor and quantify the soil
losses.Their results showed that the annual soil loss can reach a maximum value (more than
12.11 t ha−1) at the upstream of the basin and a minimum value (less than 4 t ha−1) and the
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siltation rate of the retention dam was estimated at 2.12 mm/year. The same authors re-
ported that the soil degradation is due to the physical basin properties. In another research,
Boufala M’hamed, et al. [37] applied both RUSLE equation and SWAT model for the assess-
ment of soil erosion in the M’dez watershed in Morocco, reporting that the results obtained
are similar for both the approaches, with an estimation of soil degradation at 3.95 t ha−1

when considering SWAT model, and an estimation of soil degradation at 2.94 t ha−1 based
on RUSLE equation. Khalid [38] conducted a study in the Sebou watershed (Morocco)
to quantify soil degradation due to erosion using RUSLE equation. The results showed
that the erosion in this basin is influenced by topography, rainfall, soil properties, crop
management conditions, and conservation practices. In the same study, the results showed
that 78.83% of the study area has a low risk of erosion, 17.36% a medium risk, 3.04% a high
risk and 0.77% a very high risk.

Currently, there is no “best model” for erosion risk mapping as claimed by Abdelwa-
hab, et al. [12]. Moreover, the same authors highlighted that, model performance depends
on the background of the model, the required data, the equations used to formalize the
processes and the results provided.

Although RUSLE model was developed to estimate water erosion in mild climate,
it is easier to adjust for tropical climate than other models. It is prepared to apply at the
runoff plot or single hillslope scales, allows the estimation of average annual rate of soil
erosion for a specific area for identifying targeting management interventions or practices,
cropping systems and erosion control practices. The RUSLE model computes the expected
average annual soil loss on hillslopes by multiplying five factors together namely [39]:
rainfall erosivity (R), cover management (C), slope length and slope steepness (LS), soil
erodibility (K), and support practice (P).

The SWAT model is a semi-distributed, time-continuous hydrologic model generally
applied at the watershed scale to simulate surface water and groundwater quality and
quantity [40]. This model works with hydrological response units (HRUs) which are
areas with unique characteristics identified by land use, soil type, and slope, and then the
calculations at the HRU level will be channeled through stream connections to the basin
outlet. The estimation of soil loss in the SWAT model is based on the Modified Universal
Soil Loss Equation (MUSLE) [41].

When it comes to handling and processing different and large spatial data, it is
necessary to use RS and GIS tools because of their great opportunities provided [42]. These
opportunities include (and not restrict to specific operations); processing, editing, and
analysis of the required input factors for soil erosion mapping. Therefore, RS data and GIS
tools play an interesting role in soil erosion monitoring through the exploitation of different
satellite images and geospatial analyses ([43]. Therefore, for the present study, the RUSLE
and SWAT models using RS and GIS tools were applied.

To the best of authors’ knowledge, no previous research has been carried out that
explores the combination of these two approaches in this study area. Indeed, the novelty
of this paper is the exploitation of the advantages of these two models. Therefore, the
objective of this work is, (i) to map and to monitor the soil erosion degradation in the
R’Dom watershed using SWAT and RUSLE models; and (ii) to predict the annual variation
of soil losses due to the effects of climate change variations through the application of
statistical downscaling method. We hereby envisage that our contribution will provide a
more complete understanding of the soil degradation in this study area and could be a
good reference for decision planning strategies.

2. Materials and Methods
2.1. Study Area

The R’Dom river watershed is located in the northwestern part of Morocco between
longitudes 5.29◦ and 5.75◦ W and latitudes 33.47◦ and 34.01◦ N (Figure 1) covering an area
of 1970 km2. The watershed has a maximum elevation of 1778 m at the southern end and
minimum elevation of 29 m at the outlet. The current study area is characterized by a
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semi-arid climate, with an average annual precipitation of 474.4 mm, with a dry period
ranging from May to mid-September [44]. 44% of the rainiest seasons are winter, whereas
25% are spring, while the average annual temperature is 17.6 ◦C with January as the coldest
month and August as the warmest month. In terms of hydrology, the basin consists of the
main river, Oued R’Dom and its affluent rivers (Boufakrane, Ouislane, Chajara, Ishak, Sidi
Ali, Frah and Khoumane). According to [45], the hydrogeological system of the watershed
is composed of two main aquifers units, the deep aquifer and the Plio-Quaternary aquifer.
From a geological point of view, the study area is essentially filled by a deep series of
blue marls of Tortonian age followed by Pliocene fauvist sands and conglomerates and
lacustrine limestone of Plio-Quaternary era. The dominant crops in the study area are
rainfed cereals, sunflower, onion and olive trees (45% of total surface of the watershed) [46],
in addition to forest and pasture lands. The main economic activity in this study area
is agriculture, and the use of water resources has increased, leading to an unsustainable
agriculture, hence contribute to land degradation in this watershed. Therefore, it is urgently
needed to develop adaptation practices and strategies to cope with soil degradation.

Land 2022, 11, x FOR PEER REVIEW 4 of 22 
 

of 1970 km2. The watershed has a maximum elevation of 1778 m at the southern end and 
minimum elevation of 29 m at the outlet. The current study area is characterized by a 
semi-arid climate, with an average annual precipitation of 474.4 mm, with a dry period 
ranging from May to mid-September [44]. 44% of the rainiest seasons are winter, whereas 
25% are spring, while the average annual temperature is 17.6 °C with January as the 
coldest month and August as the warmest month. In terms of hydrology, the basin 
consists of the main river, Oued R’Dom and its affluent rivers (Boufakrane, Ouislane, 
Chajara, Ishak, Sidi Ali, Frah and Khoumane). According to [45], the hydrogeological 
system of the watershed is composed of two main aquifers units, the deep aquifer and the 
Plio-Quaternary aquifer. From a geological point of view, the study area is essentially 
filled by a deep series of blue marls of Tortonian age followed by Pliocene fauvist sands 
and conglomerates and lacustrine limestone of Plio-Quaternary era. The dominant crops 
in the study area are rainfed cereals, sunflower, onion and olive trees (45% of total surface 
of the watershed) [46], in addition to forest and pasture lands. The main economic activity 
in this study area is agriculture, and the use of water resources has increased, leading to 
an unsustainable agriculture, hence contribute to land degradation in this watershed. 
Therefore, it is urgently needed to develop adaptation practices and strategies to cope 
with soil degradation. 

 
Figure 1. Location of the study area. 

  

Figure 1. Location of the study area.

2.2. Data Used and Methodology

In order to carry out the current research reported in this manuscript, we used several
data given in Table 1. It should be mentioned that all data used are resampled to the
Sentinel 2A spatial resolution (10 m) based on the nearest neighbor algorithm.

More details are given below.
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Table 1. Data used in this research.

Data Spatial Resolution Coordinate System Source

Digital Elevation Model (DEM) 30 m UTM/WGS84 1, Zone 30 N [47]

Land cover Map 10 m UTM/WGS84 1, Zone 30 N [47]

Soil data 30 m UTM/WGS84 1, Zone 30 N Field collection/reports

Climate data 30 m UTM/WGS84 1, Zone 30 N Sebou Hydraulic Basin Agency (SHBA)
1 World Geodetic System (WGS84) datum and the Universal Transverse Mercator (UTM) projection system.

2.2.1. Sentinel-2 Images

In this study, one sentinel-2A image acquired on 24 June 2016, composed of 13 spectral
bands in the VNIR and SWIR with spatial resolutions ranging from 10 to 60 was used for
producing Land use/Land cove map. The image was downloaded free of charge from
website [47]. The image was acquired during the dry season due to minimal cloud coverage
(less than 10%).

The image was preprocessed in QGIS software version 3.22 using the developed
plugin Semi-Automatic Classification Plugin (SCP), developed by Luca Congedo [48].
The processing was done following various steps including: the conversion of the digital
number (DN) to top-of-atmosphere reflectance (TOA) and the subsequent atmospheric
correction by the dark object subtraction (DOS) algorithm [49]. Sentinel-2A/B images have
been successfully used for several environmental applications including land use/land
cover mapping [50].

2.2.2. Digital Elevation Model (DEM)

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global
Digital Elevation Model (GDEM) was downloaded from the U.S. Geological Survey web-
site [51]. This digital elevation model was used to extract slope length (L) and slope
steepness (S).

2.2.3. Soil Data

In order to determine the physical and chemical characteristics of the soil such as
texture, apparent density, permeability, structure and organic matter, soil sampling was
carried out in the field, and the physical and chemical analyses were performed in the
laboratory. In this study area, the most dominant soils are calcimagnesic soils with a
percentage of 24%, followed by raw mineral soils with 20%, vertisoils with 18%, poorly
developed soils with 14%, fersiallitic soils 13% and isohumic soils 11%.

2.2.4. Climatic Data

Daily, monthly and annual rainfall data for the period from 1 September 2000 to 31
August 2013 for six stations located in the study area were used in this work. Then, the
Statistical DownScaling Model (SDSM) has been used to predict future climate related to
various Representative Concentration Pathway (RCP) scenario RCP 4.5.This method allows
the downscaling of the most important climate variables, such as temperature, precipitation,
evaporation, in order to assess hydrological responses under climate change scenarios [52].

2.3. Methodology Adopted

The estimation of soil erosion was performed using two approaches, the first is based
on the application of the RUSLE equation and the second is based on the application of the
SWAT model which is based on the MUSLE model for estimating sediment yields [53]. The
climatic data were used to calculate the rainfall erosivity factor (R). The available geological
data and the sampled soil properties were used to estimate the erodibility factor (K) and the
map of soil classes was used in SWAT model. The two factors of slope length (L) and slope
steepness (S) were estimated from the DEM, and calculated by the LS factor tool (LS-TOOL)
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developed by [54].The sentinel satellite image was used for producing land cover/land use
and to estimate Normalized Difference Vegetation Index (NDVI) used for the elaboration
of the cover and management map served as input for both RUSLE equation and SWAT
model. All the used factors in this study were calculated using ArcGIS software with a pixel
size of 10 m and a coordinate system (WGS84 Zone 30N). The methodology developed in
this research for RUSLE equation and SWAT model is presented in Figure 2. To generate the
soil loss maps for both the studies periods, using both RUSLE equation and SWAT model,
natural break classification technique, available in ArcGIS 10.5, was used to classify the soil
losses into 5 classes, named, very low, low, moderate, high and very high. All layers were
developed in GIS environment with a spatial resolution of 10 m.
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2.3.1. RUSLE Equation

The application of the RUSLE equation requires the preparation of several maps of the
different factors involved: rainfall erosivity (R), cover and management (C), slope length
and slope steepness (LS), soil erodibility (K), and support practice (P) according to the
Equation (1):

A = R × C × L × S × K × P (1)

where:

A is the computed average soil loss over a period selected for R, usually on yearly basis
(t ha−1 y−1);
R is the rainfall-runoff erosivity factor (MJ mm ha−1 h −1 y−1);
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K is the soil erodibility factor (t ha h ha−1 MJ−1 mm−1);
LS is the slope length (L) and slope gradient (S) factor (dimensionless);
C is the cropping management factor (dimensionless, ranging between 0 and 1);
P is the supporting conservation practice factor (dimensionless, ranging between 0 and 1).

A. Rainfall and Runoff erosivity factor (R)

The R-factor represents the erosive force of a specific rainfall [55]. It is calculated from
the rainfall energy E and the maximum rainfall intensity during a 30-min period (I30) using
the Equation (2) developed by [56]:

R = E × I30 and E = 210 + 89 log10 × I (2)

where:

E: kinetic energy of rains (MJ/ha)
I30: maximum rainfall intensity in 30 min mm/h
I: rain intensity

The equation proposed by [56] is difficult to calculate, especially in areas where
rainfall data are not regular or where detailed climatic data are not available. To overcome
this limitation, many other empirical formulas are used by several authors especially for
Mediterranean countries and in semiarid areas, where large uncertainties remain due to a
lack of a high-resolution rainfall [57]. In their paper, Petroselli et al. [58] present 12 formulas,
widely applied in Mediterranean areas. Therefore, in our study, this factor has been
calculated using the Renard and Freimund equation which relates R (MJ mm ha−1 h−1 y−1)
to the average annual rainfall (P) (Equation (3)) [59].

R = 0.0483 × P1.610 If P < 850 mm (3)

where:

R is the rainfall-runoff erosivity factor (MJ mm ha−1 h −1 y−1)
P is the average annual rainfall (mm)

Table 2 shows the R factor values for the different stations used in this study.

Table 2. Monitoring and prediction annual average rainfall and R Factor of R’Dom watershed.

2000/2013 2014/2027

Station
Name

Coordinate (m) Average
Rainfall

R Average
Rainfall

R
X Y

P3401 237,745 3,772,098 395.30 732.82 497.69 1061.82

P6170 234,726 3,726,750 488.72 1031.18 543.69 1224.24

P6405 301,106 3,741,223 529.02 1171.49 695.13 1818.33

P6769 283,324 3,775,316 467.92 961.44 501.92 1076.38

P6924 285,738 3,705,901 615.66 1495.50 792.65 2246.3

P7188 242,214 3,802,127 373.58 669.09 390.67 719.06

In this work, we used the inverse distance weighting (IDW) spatial interpolation
method available in ArcGIS software version 10.4 for presenting the spatial distribution for
the rainfall data used. Then, the Statistical DownScaling Model (SDSM) was used to predict
future climate for the period 2014–2027 related to various Representative Concentration
Pathway (RCP) scenario RCP 4.5. Rainfall data were used to calculate the R-factor based on
both Equations (2) and (3).
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B. Soil erodibility factor (K)

The soil erodibility factor (K) is a factor that has an important influence in the RUSLE
equation. It is directly related to soil and/or geological characteristics, such as parent
material, texture, structure, organic matter content and porosity. This parameter was
calculated using Equation (4) [56]:

K =
[
27.66 m1.14 × 10−8 × (12 − OM)

]
+ [0.0043 × (S − 2)] + [0.0033 × (P − 3)] × 0.1317 (4)

where:
K is the soil erodibility factor ton ha hr ha−1 MJ−1 mm−1,
m is the (silt % + sand %) × (100 − clay %),
OM is the % organic matter,
S is the structure code: (1) very structured or particulate, (2) fairly structured, (3) slightly

structured, and (4) solid,
P is the profile permeability code: (1) rapid, (2) moderate to rapid, (3) moderate,

(4) moderate to slow, (5) slow and (6) very slow.
Unfortunately, there is no detailed soil map available for the study area. In our case,

we used the map generated by the Regional Institute of Agronomic Research (RIAR) to
identify homogeneous units. A total number of 25 soil samples were taken from these
units (0–25 cm deep), and the physical and chemical soil properties were carried out in the
laboratory (NF P 94-056) to determine the main soil properties influencing the K factor such
as, soil texture, organic matter, and soil structure. We computed the K factor as suggested
by [56]. soil types in this study were determined according to Commission de Pédologie
et de Cartographie des Sols (CPCS) [60]. The results of soil properties are summarized in
Table 3 and Figure 3.
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Table 3. Soil characteristics of study area.

Soil Type Sand (%)
(0.05–2 mm)

Silt (%)
(0.02–0.05 mm)

Clay (%)
(<0.02 mm)

Organic
Matter (%) K-Factor

Calcimagnesic Soils 7.3 37.7 55 2.16 0.031
Isohumic Soils 55.7 21.1 24 1.07 0.062

Raw Mineral Soils 8.8 34.5 56.1 2.62 0.025
Vertisols 53.8 19.3 27.1 1.62 0.052

Poorly developed Soils 63.7 20.8 15.5 2.51 0.062
Fersiallitic Soils 18.6 36.2 45.2 1.63 0.045

C. Slope Length and Steepness factor (LS)

The LS factor is very important, affecting sediment production and transport, com-
paction and soil disturbance. For the generation of LS factor, we used DEM to calculate flow
accumulation and slope steepness using the spatial analyst tool and ArcHydro availaible in
ArcGIS 10.4.

The LS in this study was calculated using the Equation (5) developed by [61]:

LS = ((
“FlowAcc_flow” × 30

22.1
)NN)× (0.065 + 0.045 × “Slope” × “Slope”) (5)

where NN represent dimensionless exponent that assumes the value of 0.2–0.

D. Cover management factor (C)

The cover-management factor (C) is used to describe the effect of crop management
practices on erosion rates. The C factor was determined based on the NDVI index following
the Equation (6) developed by [62]:

C = 0.431 − (0.805 × NDVI) (6)

The NDVI was developed for the first time by Rouse Jr. et al. [63], representing a
good indicator for monitoring of vegetation activity. NDVI was calculated based on the
reflectance between the infrared and red portions of the electromagnetic spectrum using
the Equation (7):

NDVI =
NIR − R
NIR + R

(7)

where NIR is the near-infrared reflectance, and R is the reflectance in the red band. NDVI
values varies between −1 and 1.

E. Support practice factor (P)

According to [64], the factor P is defined as the ratio of soil loss with a specific support
practice to the corresponding loss with up slope and down slope tillage. The value of
P factor is determined based on the types of soil conservation measures. Thus, in this
study, we determined the value of P factor based on the methodology recommended by
Wischmeier and Smith [56]. For this purpose, sentinel 2A image was used to prepare the
LULC map using the maximum likelihood classification algorithm. In total, eight LULC
classes were established including: WATER (water), RNGE (Range-Grassess), FRST (For-
est), WETN (Wetlands-non-Forsted), AGRL (agricultural Land-Generic), BARR (Barren),
URHD (Residential-High Density), and UIDU (Industrial). Next, we reclassified the land
cover/land use of the study area into two groups: “agricultural areas and other classes”.
After that, we classified the agricultural areas into 5 classes based on the slope, and then
we assigned for each class of agricultural a P value and for all other classes we assigned 1,
as can be seen in Table 4.
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Table 4. P factor for different land use /land cover based on slope gradient [38].

Land Use Class Slope (%) P Factor Values

Agricultural area

0–4 0.5

4–12 0.6

12–20 0.7

20–25 0.8

>52 0.9

Other land All 1.0

Table 5 presents the error matrix, along with the overall accuracy (OA) and the Kappa
coefficient. The OA of the classification was 80% and the Kappa coefficient was 76.8%.

Table 5. Accuracy assessment for supervised classification of Sentinel image 2016.

WATER FRST RNGE WETN AGRL BARR URHD UIDU User Accuracy
WATER 127 2 1 23 2 0 0 0 81.93

FRST 1 230 13 8 2 1 8 2 86.79
RNGE 0 35 159 3 19 2 0 8 70.35
WETN 8 0 2 56 0 0 2 82.35
AGRL 1 6 0 0 72 7 4 2 78.26
BARR 2 0 0 0 1 66 3 9 81.48
URHD 5 0 0 0 0 0 276 11 94.52
UIDU 2 7 0 3 5 18 26 54 46.95

Producer Accuracy 86.98 82.14 90.85 60.21 71.28 70.21 86.52 62.79 OA = 0.80%
Kappa index = 76.8

2.3.2. SWAT Model

The SWAT model is a semi-distributed, time-continuous hydrological model, generally
applied at the catchment scale. It allows the simulation of surface and groundwater quality
and quantity, and also allows the prediction of the effect of field management practices on
sediment, water and agricultural chemicals in large complex catchments with soils [65]. In
addition, this model also allows the calculation of the simulated daily water balance based
on the Equation (8) [65]:

SWt = SW0 + ∑t
i=1 (R − Qsur f − Ea − Wrchrg − Qlat)i (8)

where:

SWt is the final soil water content (mm),
SW0 is the initial soil water content (mm),
t is the time (days),
Rday is the amount of precipitation on day i (mm),
Qsurf is the amount of surface runoff on day i (mm),
Ea is the amount of evapotranspiration on day i (mm),
Wseep is the amount of water entering the vadose zone from the soil profile on day i (mm),
Qlat is the amount of return flow on day i (mm).

The estimation of soil erosion rate by SWAT was based on the application of MUSLE
(Equation (9)). It is a modified equation of USLE of which the rainfall energy factor is
replaced with a runoff factor and uses the soil characteristic to calculate the runoff erosive
energy variable. For the land use factor, it was performed from the processing of the
sentinel-2 image by a supervised classification approach. The DEM was use to derive the
factors relating to the morphology and the soil map was ranked according to the physical
characteristics such as soil texture, humidity or water availability capacity (AWC), soil
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depth, rock fragments, organic material (OM), hydraulic conductivity (K factor) and moist
bulk density. In our case, we used Arc-SWAT to compile the SWAT input factors.

Sed = 11.8
(

Qsurf × qpeak × areahru

)0.56
× K (usle) × P(usle) × C(usle) × LS(usle) × CFRG) (9)

where:

Sed is the sediment yield on a given day (tons),
Qsurf is the surface runof volume (mm H2O/ha),
qpeak is the peak runof rate (m3 /s),
Areahru is the area of the HRU (ha),
KUSLE is the soil erodability factor
CUSLE is the cover and management factor,
PUSLE is the support practice factor,
LSUSLE is the topographic factor and CFRG is the coarse fragment factor

2.3.3. Spatial Autocorrelation Analysis

The spatial autocorrelation represents the spatial dependence between numerical val-
ues of a spatially located variable. It is used to assesses spatial autocorrelation using both
feature locations and feature values at the same time. The most commonly autocorrelation
index used is the Global Moran’s [66]. It determines whether the pattern displayed is
clustered, scattered, or random based on a collection of characteristics and an associated
attribute. The Global Moran’s I range from −1 to 1. If the absolute value is more approach-
ing 1, it means it has a stronger autocorrelation [66]. In this study, the Global Moran’s I was
used to characterize the spatial relationships between soil erosion risks for both RUSLE
equation and SWAT model.

3. Results and Discussion
3.1. Stream Flow

To test the applicability of the SWAT model, we based on the comparison of the
monthly hydrograph and simulated flows at the Souk Elhad station. During the calibra-
tion for the period of 2002 to 2009, we used the sequential uncertainty fitting version 2
(SUFI-2) algorithm.

Our results showed that the SUFI-2 gives good results with −1.1% for the Pbais
factor and the high values of R2 and the NSE larger than 0.75 and 0.70 respectively. The
sensitivity analysis results of the model to each sub-basin delineation and HRU in this
basin are 1613 HRUs in the whole watershed. Regarding the uncertainty results, the 95%
prediction uncertainty (95PPU) was well correlated with the observed flow. Figure 4 shows
the comparison of observed and simulated monthly flows for the Souk Elhad station for
the calibration period. it is was showed that both the simulated and observed flows are
well correlated.
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3.2. Factors Maps Analysis

Figure 5a, b shows the spatial distribution of R factor covering the study area during
the two periods 2000–2013 and 2014–2027. The results show that this R-factor ranged from
673 to 1480.6 MJ·mm/(ha·hr·y) for the first period and from 729.2 to 2214.6 MJ·mm/(ha·hr·y)
for the second period.
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The results of LS factor (Figure 6a) show that the watershed is relatively flat with LS
values range between 0 and 15%. The most part of the study area has low LS factor values,
the relatively high values of the LS factor (>15%) are mostly located in the eastern and
western and the north parts of the basin. The range of elevation in the study area is from 29
to 1778 m (Figure 7a).

The spatial distribution of soil erodibility factor is given in the Figure 6b. The soil
erodibility factor was found in the range of 0.003 to 0.0081. The major soil groups in the
watershed are presented in Figure 7d.

The Figure 6c shows the spatial distribution of C factor with values ranging from
0.016 to 0.138. C factor values close to 0 indicate well-protected land cover and good
conservation efforts, while values close to 1 indicate urbanized area and barren land, as
well as agricultural fields that are exposed to heavy rainfall. Therefore, the results of this
factor show that the southern and northern parts are most affected. In this study, Land
Use/Land Cover (LULC) map produced is shown in Figure 7c.
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The P factor (Figure 6d) value ranged from 0.55 to 1 where a higher value indicates
there is no any support practice such that erosion is at its maximum due to the absence of
any practice.

3.3. Spatial Distribution of Soil Erosion Rate
3.3.1. Soil Erosion Rate Using RUSLE Method

The spatial distribution maps of soil erosion using RUSLE method during the period
2000/2013 and 2014/2027 are presented in Figure 8. The areas of soil erosion classes are
given in Table 6.
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Table 6. Soil erosion classes with area occupied using RUSLE model.

2000–2013 2014–2027

Soil Erosion Severity Class Soil Loss (t ha−1) Area (%) Soil Loss (t ha−1) Area (%)

Very low <10 71.90 <10 58.33

Low 10–20 20.20 10–20 27.71

Moderate 20–30 6.25 20–30 11.94

High 30–40 1.42 30–40 1.73

Very high >40 0.20 >40 0.27

The results obtained for the 2000/2013 period showed that 71.90% of the total area
of the watershed is exposed to a very low erosion, whereas only 0.20% of the area was
exposed to a very high-risk erosion, and the results obtained for the period of2014/2027,
showed that the study area is expected to have a very low erosion risk for a portion of
58.33% of the total area, and a very high risk for 0.27%.

It can be seen that the risk of erosion is very low in the basin, especially in the central
part, which belongs to the Saiss plain characterized by down slope, and the rate of erosion
is relatively high in the areas characterized by heterogeneity of relief, located especially in
the north parts of the study area.

3.3.2. Soil Erosion Rate Using SWAT Model

The spatial distribution maps of the soil erosion using SWAT model during the period
2000/2013 and 2014/2027 are presented in Figure 9. The areas of soil erosion classes are



Land 2022, 11, 93 15 of 21

given in Table 7, The results obtained for the period of 2000/2013 showed that 35.57% of the
total area of the watershed is exposed to a very low erosion, whereas only 9% of the area
was exposed to a very high risk erosion, and the results obtained for the period 2014/2027
showed that the study area is expected to have a very low erosion risk for a portion of
36.97% of the total area, and a very high risk for 9.24%.
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Table 7. Soil erosion classes with area occupied using SWAT model.

2000–2013 2014–2027

Soil Erosion Severity Class Soil Loss (t ha−1) Area (%) Soil Loss (t ha−1) Area (%)

Very low <10 35.57 0–10 36.97

Low 10–20 28.28 10–20 25.22

Moderate 20–30 18.45 20–30 18.35

High 30–40 8.7 30–40 10.21

Very high >40 9.00 >40 9.24

It is important to highlighted here that the affected areas by soil erosion are expected
to be affected in the future in the north and south parts of the watershed. This is strongly
linked to the morphology of the watershed and the slope factor. The lowest total soil
erosion is observed in the center parts of the watershed, characterized by down slopes.

3.4. Soil Erosion Rate in Relation to Land Use

Using the ‘Zonal Statistics’ toolset and cross-tabulate (available in ArcGIS 10.4), the
relation between soil erosion rate and LULC for both RUSLE and SWAT was established.
From the examination of Tables 8 and 9, it was verified that erosion loss was found mainly
in agricultural lands (AGRL) with an area of 48.1% and 59.58%, Followed by bare lands
(BARR) with 38.27% and 25.26% in RUSLE equation and SWAT model respectively. These
findings are in line with the results of previous studies [67].
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Table 8. Soil erosion rate in relation to land use using RUSLE equation.

Area (%) Very Low Low Moderate High Very High

Water 0.15 0.09 0.36 0.17 0.10 0.00

forest 8.01 7.66 5.53 8.58 10.74 7.53

Range-Grasses 0.1 0.19 0.14 0.13 0.06 0.00

Wetlands-Non-Forested 0.00 0.00 0.00 0.00 0.00 0.00

Agricultural Land-Generic 48.1 67.45 61.06 48.45 35.89 27.65

Barren 38.27 15.25 26.19 38.01 50.12 61.80

Residential-High Density 4.83 8.83 5.90 3.85 2.55 3.01

Industrial 0.51 0.48 0.79 0.78 0.51 0.00

Table 9. Soil erosion rate in relation to land use using SWAT model.

Area (%) Very Low Low Moderate Very High High

Water 0.12 0.05 0.01 0.41 0.05 0.09

Forest 7.33 4.67 14.95 3.93 5.82 7.30

Range-Grasses 0.06 0.11 0.04 0.15 0.01 0.01

Wetlands-Non-Forested 0.00 0.00 0.00 0.00 0.00 0.00

Agricultural Land-Generic 59.58 75.47 68.26 66.08 56.03 32.05

Barren 25.26 11.01 8.43 19.18 34.35 53.32

Residential-High Density 7.30 8.39 8.01 10.09 2.90 7.03

Industrial 0.33 0.27 0.27 0.12 0.82 0.17

3.5. Spatial Autocorrelation of Soil Erosion Rate

The spatial autocorrelation analysis report for both RUSLE and SWAT methods were
obtained using the spatial autocorrelation analysis tool in the ArcGIS 10.4 toolbox. In
addition to the global Moran’s index, the analysis results in the report also include z-scores
and p-values, to determine the index’s significance. P-values are numerical estimates of the
area under the curve given a known distribution, using the test statistic as a constraint. The
results of the Moran’s I index are shown in Table 10 and Figure 10. According to the results,
the value of Moran’s I index for the RUSEL equation and SWAT model was 0.12 and 0.32,
respectively. According to these results both the models present a positive correlation at a
spatial distribution. p-value is 0.000 (it is lower than 0.01), which indicates that the random
distribution probability is less than 1%. Furthermore, z-score is higher than 2.58, which
demonstrates that the spatial aggregation trend of the erosion loss at global distribution
is significant.

Table 10. Result of Moran’s I index.

Moran’s I RUSLE Equation SWAT Model

Moran’s Index 0.12 0.32

Variance 0.00 0.00

z-score 125.37 731.57

p-value 0 0
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The phenomenon of erosion is a serious problem that requires intervention, especially
in agricultural areas, and its management is necessary for sustainable land use and overall
soil conservation management. RS techniques and GIS tools are integrative and generative
tools for prevention, warning, monitoring and modelling of environmental hazards. In
the current study, the methodology applied showed a strong capacity in estimating soil
losses in the R’Dom watershed. Our results are quantitatively and spatially quite similar
between the two methods. As we found out, high risk erosion is mainly concentrated in
the agricultural land and barren lands, where erosion is very high. These results are in line
with previously published studies [68,69].Thus, further policy interventions are therefore
very urgent.

In summary, the results of our study showed that the study area is not largely affected
by soil erosion. These is also confirmed by other authors in other areas with similar
background in Morocco, for example the results of a study conducted by [70] showed that
the rate of soil loss was 7–20 t ha−1, accounting for 75% of the basin area. Likewise, the rate
of soil loss was estimated at 3.95 t ha−1 at the M’dez Watershed when calculated by the
RUSLE model, and the results of SWAT method showed that the soil loss is estimated at
2.94 t ha−1 according to Boufala et al. [38]. Conversely, Tahiri et al. [71] indicated that the
soil loss reached 47.18% in the Oued Haricha Sub-Basin, Western Rif. Thus, in terms of the
efficacity of the used approaches and the outcomes obtained, both these methodologies
could be useful in other areas where the soil erosion is a heavy issue.

4. Conclusions

This study proposes an approach to estimate the mean annual soil erosion in the R’
Dom watershed Morocco. In this way, for the first time, the RUSLE equation and SWAT
model were used based on the use of GIS and remote sensing through the exploitations of
open source and free of charge data. The main results of our study are listed below.

- Standard calibration statistics were used to assess the performance of SWAT model.
Comparison of modeled and observed monthly streamflow datasets resulted from R2,
NSE, and PBIAS values of 0.75, 0.70, and −1.1 respectively, which indicated that the
hydrological cycle of the R’Dom watershed could be accurately simulated using the
SWAT model.

- The erosion rate values vary from 0 to 8 t ha−1 for both periods. For the 2000/2013
period, the RUSLE showed that 71.90% of the total area of the watershed is exposed
to a very low erosion, whereas only 0.02% of the area was exposed to a very high
erosion, while the SWAT showed that 35.57% is exposed to a very low erosion, whereas
only 9% of the area was exposed to a very high erosion. For the period of 2014/2027
it is expected to have a very low erosion risk for a portion of 58.33% and 36.97%
of the total area, and a very high risk for 0.27% and 9.24% for RUSLE method and
SWAT respectively.
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- It was verified that erosion loss was found mainly in agricultural lands (AGRL) with
an area of 48.1% and 59.58%, Followed by bare lands (BARR) with 38.27% and 25.26%
in RUSLE equation and SWAT model respectively.

This study demonstrates that GIS provides a flexible environment for spatial analysis
and data manipulation due to its ability to process large amounts of spatial data necessary
for erosion studies, also RS imagery is the most important data resources of GIS, providing
a spectrum of imaging capabilities, resolutions, temporal and spatial coverage. RS plays
a pivotal role in achieving these objectives. Furthermore, the results obtained from this
study can provide a valuable assistance, at very low cost, to decision-makers in simulating
evolution scenarios and then targeting priority areas that require conservation and erosion
control actions. Finally, the validation of the estimated soil erosion rates of this study area
can be further done with field sampling data, which are the main gap of this work.
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