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Abstract—In this paper, a simple and elegant geometric water-
filling (GWF) approach is proposed to solve the unweighted
and weighted radio resource allocation problems. Unlike the
conventional water-filling (CWF) algorithm, we eliminate the
step to find the water level through solving a non-linear system
from the Karush-Kuhn-Tucker conditions of the target problem.
The proposed GWF requires less computation than the CWF
algorithm, under the same memory requirement and sorted
parameters. Furthermore, the proposed GWF avoids compli-
cated derivation, such as derivative or gradient operations in
conventional optimization methods, while provides insights to the
problems and the exact solutions to the target problems. Most
importantly, the GWF can be extended to solve a generalized
form of radio resource allocation problem with more stringent
constraints: (weighted) optimization problem with individual
peak power constraints (GWFPP), and to include (weighted)
group bounded power constraints (GWFGBP). On the other
side, the CWF cannot solve these two general forms of the RRA
problems, due to the difficulty to solve the non-linear system
with multiple non-linear equations and inequalities in multiple
dual variables. Optimality of the proposed water-filling solution is
strictly proved for each of the proposed algorithms. Furthermore,
numerical results show that the proposed approach is effective,
efficient, easy to follow and insight-seeing.

Index Terms—Water-filling, channel capacity, optimal radio
resource allocation, multi-user MIMO (MU-MIMO), cognitive
radio, optimization methods.

I. INTRODUCTION

IN many engineering problems, water-filling plays an im-
portant role in radio resource allocation (RRA). For com-

munications, it stems from a class of the problems of max-
imizing the mutual information between the input and the
output of a channel with parallel independent sub-channels.
With water-filling, more power is allocated to the channels
with higher gains to maximize the sum of data rates or the
capacity of all the channels. The solution to this class of the
problems can be interpreted by a vivid description as pouring
limited volume of water into a tank, the bottom of which has
the stair levels determined by the inverse of the sub-channel
gains. The principle can be extended to dealing with the issues
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from communication systems, such as those of a multi-carrier
channel [1], [2], a frequency-selective channel [3], a multi-user
multiple input multiple output (MIMO) channel, [4]-[7], etc.
On the one hand, as information of the channel is given, it can
obtain the optimal power distribution of the transmitted signal
[8], [9]; on the other hand, as information of the transmitted
and the corresponding received signals is given, it is equivalent
to finding an equalizer [10], [11]. In addition, water-filling has
being deepened into the case that only partial knowledge is
given [12]; and being extended to solve the problems in the
smart grid communication network systems [13]. The focus
of this paper is to solve a generic resource allocation problem
by utilizing the water-filling principle. For convenience of
statement, water-filling (WF) in this paper means two things:
a class of optimal resource allocation problems; and the
algorithms to compute the exact solution to such a class of
the problems.

The conventional water-filling (CWF) problem has a sum
power constraint under non-negative individual powers. It can
be solved by non-geometric WF approaches. Since the solution
is parameterized with a water level, the problem reduces to
obtaining the water level such that the power constraint is
satisfied with equality. This leads to a non-linear system, in
one parameter, such as the water level, that is determined by
the sum power constraint and the function max(0, x). Further,
this non-linear system consists of a non-linear equation and
another inequality to find the water level. A class of methods
to solve the non-linear system are called the conventional WF
algorithm. In order to find the exact value of the water level,
different algorithms have been proposed that can be classified
into iterative algorithms and exact algorithms. The iterative
algorithms are trivially implemented in practice and get close
to the exact value as the number of iterations goes to infinity
[11], [14], [15]. On the other hand, the exact algorithms give
the exact solution in a finite number of loops or iterations [7],
[16].

For RRA, one of the most typical problems is to solve power
allocation using the CWF. When we consider different weight
of the channels, the problem can be solved using weighted WF
algorithm. As communication system develops, the structures
of the system models and the corresponding RRA problems
evolve to more advanced and more complicated ones. In this
paper, we apply the concept of WF to solve the generalized
RRA problems, which include not only the constraints in the
CWF but also more stringent constraints, such as i). Water-
Filling with individual Peak Power constraints (WFPP); and
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ii). a kind of more general form, Group Bounded Power
constraints (WFGBP). For the WFPP, we include upper power
constraints for each channel. For the WFGBP, the channels
are categories into groups. We enforce the constraints that
the sum power for each group is lower and upper bounded.
The extended RRA problem can find its applications in the
advanced communication systems. For instance, for the WFPP,
in the uplink, the fact that the transmit power of the mobile
user is limited leads to individual peak power constraints.
Typically, in a cognitive radio (CR) network, the objective
of the design is to maximize the sum rate of the second
users (SUs) which have individual peak power constraints.
At the same time, in order to guarantee the quality of service
(QoS) of the primary users (PUs), the interference from the
SUs to the PUs is forced to be below a threshold [17],
[18]. For the WFGBP, the fact that the transmit powers of
the groups of the mobile users are bounded leads to group
bounded power constraints [19]-[20]. Another application for
the WFGBP problem is the requirement of the (proportional)
fair rate among all the groups from the SUs. This problem
can be transformed to a set of group lower bounded power
constraints.

In this paper, as the first step, a geometric water-filling
(GWF) approach is proposed to solve the conventional water-
filling problem and its weighted form. It has two advantages.
On the one side, the geometric approach can compute the exact
solution to the CWF, including the weighted case, with less
computation and easier analysis without determining the water
level through solving the non-linear system. On the other side,
machinery of the proposed geometric approach can overcome
the limitations of the CWF algorithm to include more stringent
constraints. Thus, as the second step, applying the concept
of water-filling and the proposed geometric machinery, we
extend the proposed GWF to solve more generalized WFPP
and WFGBP problems. In numerical results section, it is
shown that for the generalized WFPP and WFGBP problems,
with optimal power allocation, the water levels for different
channels can be different. Thus, the CWF method cannot
solve this kind of generalized problems through determining
a unified water level.

For the WFPP problem, when this paper was completed, we
found two research papers [21], [22] on water-filling published
recently where the individual peak power constraints were
applied. The former follows the typical water level searching
approach and the latter removes the traditional water level
searching. They belong to the non-geometric approach. In
contrast to these works, a novel geometric WF approach to
directly compute the solution to a family of general RRA
problems is independently proposed in this paper. The pro-
posed algorithms are more general with simple procedures
and solutions. Interesting insights of the relationship among
the physical quantities can be revealed. The optimality of the
proposed water-filling solution is provided.

In the remaining of the paper, the problem statement, the
CWF and the proposed GWF are discussed in Section II
with sum power constraint, including unweighted problem
and weighted problem. The generalized weighted water-filling
problems with additional more stringent constraints, i.e., the
WFPP and the WFGBP, are further investigated in Section

III. Numerical examples are presented and the solutions are
illustrated for the CWF and the proposed GWFPP and
GWFGBP in Section IV, followed by complexity analysis
of the discussed algorithms. Section V concludes the paper.
Appendix gives a list of used variables and abbreviations.

II. WATER-FILLING WITH SUM POWER CONSTRAINT

A. Problem Statement and Conventional Approach

The water-filling problem can be abstracted and generalized
into the following problem: given P > 0, as the total
power or volume of the water; the allocated power and the
propagation path gain for the ith channel are given as si and
ai respectively, i = 1 . . .K; and K is the total number of
channels. Let {ai}Ki=1 be a sorted sequence, which is positive
and monotonically decreasing, find that

max{si}K
i=1

∑K
i=1 log(1 + aisi)

subject to: 0 ≤ si, ∀i;∑K
i=1 si = P.

(1)

Since the constraints are that (i) the allocated power to be
nonnegative; (ii) the sum of the power equals P , the problem
(1) is called the water-filling (problem) with sum power
constraint.

To find the solution to problem (1), we usually start from
the Karush-Kuhn-Tucker (KKT) conditions of the problem, as
a group of the optimality conditions, and derive the system (2)
below from the KKT conditions,⎧⎪⎨

⎪⎩
si =

(
μ− 1

ai

)+

, for i = 1, . . . ,K,∑K
i=1 si = P,

μ ≥ 0,

(2)

where (x)
+

= max {0, x}. μ is the water level chosen to
satisfy the power sum constraints with equality (

∑K
i=1 si =

P ). The solution to (2) is referred as a solution of the CWF
problem (1).

It can be seen that the implied system (2) has been used
to find the optimal solution. The existence of its Lagrange
multipliers and the implication mentioned above determine
that enumeration can be utilized to find the water level
μ. In [16], how to solve the problems has been discussed
extensively. Complexity of the non-geometric approach to
solve the problem (1) will be discussed in Section IV. In the
sequel of the paper, when water-filling problem is mentioned,
the power sum constraint is always included.

B. Proposed Geometric Water-Filling (GWF) Approach

In this paper, we propose a novel approach to solve problem
(1) based on geometric view. The proposed Geometric Water-
Filling (GWF) approach eliminates the procedure to solve the
non-linear system for the water level, and provides explicit
solutions and helpful insights to the problem and the solution.

Figs. 1(a)-(c) give an illustration of the proposed GWF
algorithm. Suppose there are 4 steps/stairs (K = 4) with unit
width inside a water tank. For the conventional approach, the
dashed horizontal line, which is the water level μ, needs to
be determined first and then the power allocated for each stair
(water volume above the stair) is solved.
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Fig. 1. Illustration for the proposed Geometric Water-Filling (GWF)
algorithm. (a) Illustration of water level step k∗ = 3, allocated power for
the third step s∗3 , and step/stair depth di = 1/ai. (b) Illustration of P2(k)
(shadowed area, representing the total water/power above step k) when k = 2.
(c) Illustration of P2(k) when k = 3. (d) Illustration of the weighted case.

Let us use di to denote the “step depth” of the ith stair
which is the height of the ith step to the bottom of the tank,
and is given as

di =
1

ai
, for i = 1, 2, . . . ,K. (3)

Since the sequence ai is sorted as monotonically decreasing,
the step depth of the stairs indexed as {1, · · · ,K} is mono-
tonically increasing. We further define δi,j as the “step depth
difference” of the ith and the jth stairs, expressed as

δi,j = di − dj = 1/ai − 1/aj, as i ≥ j and 1 ≤ i, j ≤ K.
(4)

Instead of trying to determine the water level μ, which is
a real nonnegative number, we aim to determine water level
step, which is an integer number from 1 to K , denoted by k∗,
as the highest step under water. Based on the result of k∗, we
can write out the solutions for power allocation instantly.

Fig. 1(a) illustrates the concept of k∗. Since the third level
is the highest level under water, we have k∗ = 3. The shaded
area denotes the allocated power for the third step by s∗3.

In the following, we explain how to find the water level
step k∗ without the knowledge of the water level μ. Let P2(k)
denote the water volume above step k or zero, whichever is
greater. The value of P2(k) can be solved by subtracting the
volume of the water under step k from the total power P , as

P2(k) =
{
P −

[∑k−1
i=1

(
1
ak

− 1
ai

)]}+

=
{
P −

[∑k−1
i=1 δk,i

]}+

, for k = 1, . . . ,K.
(5)

Due to the definition of P2(k) being the power (water volume)
above step k, it cann’t be a negative number. Therefore we use
{·}+ in (5) to assign 0 to P2(k) if the result inside the bracket
is negative. The corresponding geometric meaning is that the
kth level is above water. Note a reminder of the definition of

a special case for the summation is:
n∑

i=m

bi = 0, as m > n. (6)

Fig. 1(b) and Fig. 1(c) illustrate the concept of P2(k) for k = 2
and k = 3 respectively by the shadowed area. As an example
of Fig.1(c), the water volume under step 3 can be expressed as
the sum of the two terms: (i) the step depth difference between
the 3rd and the 1st step, δ3,1, and (ii) the step depth difference
between the 3rd and the 2nd step, δ3,2. Thus, P2(k = 3) can
be written as

P2(k = 3) = [P − δ3,1 − δ3,2]
+

and the above result is the shadowed area in Fig. 1(c), which
is also an expansion of the composite form of (5). Then, we
are ready to have the following proposition:

Proposition 2.1. The explicit solution to (1) is:

si =

{
sk∗ + (dk∗ − di) 1 ≤ i ≤ k∗

0, k∗ < i ≤ K,
(7)

where the water level step k∗ is given as

k∗ = max
{
k
∣∣∣P2(k) > 0, 1 ≤ k ≤ K

}
(8)

and the power level for this step is

sk∗ =
1

k∗
P2(k

∗). (9)

It is easy to interpret Proposition 2.1 from Fig. 1. The first
step of the proposed approach is to find the water level step
k∗. From Fig. 1, we can find that k = 3 is the maximal index
that makes P2(k) greater than zero. Therefore, based on (8),
k∗ = 3 can be determined. Then the power at this step sk∗ can
be determined based on (9). For those steps with index higher
than k∗, no power is assigned. For those steps with index
lower than k∗, their power levels are obtained by adding sk∗

with the corresponding level depth difference with the k∗th
step as shown in (7).

Proposition 2.1 provides an explicit constructed solution
rather than the implicit solution. The procedure eliminates
solving the nonlinear equation as shown in (2) and the real
number water level μ. The proof of the optimality of the
solution will be left to the next subsection when we discuss
the weighted case.

C. Generalize to Weighted Case

For the weighted case, the generalized problem can be stated
as: given P > 0, as the total power or volume of the water;
the allocated power and the propagation path gain for the ith
antenna are given as si and ai respectively, i = 1, . . . ,K; and
K is the total number of the transmit antenna. Furthermore, the
weighted coefficients wi > 0, i ∈ {1, . . . ,K}, and {aiwi}Ki=1

being monotonically decreasing, find that

max{si}K
i=1

∑K
i=1 wi log(1 + aisi)

subject to: 0 ≤ si, ∀i;∑K
i=1 si = P.

(10)

Using the proposed geometric approach, we can extend the
geometric relation for the weighted case as shown in Fig.1(d)
to obtain the corresponding solution to (10).
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In Fig. 1(d), the width of the ith stair/step is denoted as wi.
The value of 1/ai denotes the volume under the ith step to
the bottom of the tank. Hence, the step depth of the ith step
is given as

di = 1/(aiwi), i = 1, · · · ,K. (11)

Then, P2(k), the water volume above step k, can be ob-
tained using the similar approach as in the previous subsection
considering the step depth difference and the width of the
stairs as,

P2(k) =
[
P −∑k−1

i=1 (dk − di)wi

]+
, for

k = 1, . . . ,K.
(12)

As an example in Fig. 1(d), the water volume above step 1
and below step 3 with the width w1 can be found as: the step
depth difference, (d3 − d1) multiplying the width of the step,
w1. Therefore, the corresponding P2(k = 3) can be expressed
as,

P2(k = 3) = [P − (d3 − d1)w1 − (d3 − d2)w2]
+,

which is an expansion of (12). Then we have the following
proposition.

Proposition 2.2. The explicit solution to (10) is:⎧⎨
⎩ si =

[
sk∗

wk∗
+ (dk∗ − di)

]
wi, 1 ≤ i ≤ k∗

si = 0, k∗ < i ≤ K,

(13)

where

k∗ = max
{
k
∣∣∣P2(k) > 0, 1 ≤ k ≤ K

}
(14)

and the power level for this step is

sk∗ =
wk∗∑k∗
i=1 wi

P2(k
∗). (15)

Proof of Proposition 2.2. System (13) implies that
wk∗

1
ak∗ + sk∗

=
wi

1
ai

+ si
, as 1 ≤ i ≤ k∗. (16)

Let
λ =

wk∗
1

ak∗ + sk∗
. (17)

From a geometric view, λ is the reciprocal of water level μ.
According to the definitions of k∗ and sk∗ , for k∗ < i ≤
K, wk∗

1
ak∗ +sk∗ > wi

1
ai

+si
and si = 0.

Let σi =
wk∗

1
ak∗ +sk∗ − wi

1
ai

+si
. Then

{
σi > 0, as k∗ < i ≤ K
σi = 0, as 1 ≤ i ≤ k∗. (18)

Therefore, the following system holds:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

wi
1
ai

+si
− λ+ σi = 0, as 1 ≤ i ≤ K

si ≥ 0, ∀i
σisi = 0, ∀i
σi ≥ 0, ∀i∑K

i=1 si = P, λ ∈ R.

(19)

By observation, the equation and inequality set above is just
a set of the KKT conditions of the problem in Proposition 2.2

and the water level μ is equal to the reciprocal of the Lagrange
multiplier λ mentioned above. Note that the Lagrange function
of the problem in Proposition 2.2 is

L({si}, λ, {σi}) =∑K
i=1 wi log (1 + aisi)− λ

(∑K
i=1 si − P

)
+
∑K

i=1 σisi.

(20)
Since it is a differentiable convex optimization problem with
linear constraints, not only are the KKT conditions mentioned
above sufficient, but they are also necessary for optimality.
Note that the constraint qualification of the problem (10)
holds. Proposition 2.2 hence is proved.

Similar to the unweighted case, the first step is to calculate
P2(k), then find the water level step, k∗, from (14), which
is the maximal index making P2(k) nonnegative. The corre-
sponding power level for this step, sk∗ , can be obtained by
applying (15). Then for those steps with index higher than
k∗, the power level is assigned with zero. For those steps
below k∗, the power level is assigned as in (13). The first
term (sk∗/wk∗ ) inside the square bracket denotes the depth
of the k∗th step to the surface of the water. The second term
inside the square bracket denotes the step depth difference of
the k∗th step and the ith step. Therefore, the sum inside the
square bracket means the depth of the ith step to the surface
of the water. When this quantity is multiplied with the width
of this step, the volume of the water above this step (allocated
power) can be then readily obtained.

With the proposed GWF approach, the weighted prob-
lem could be solved straightforwardly, avoiding complicated
derivation and calculation. When the weighting factors are set
to ones, the corresponding unweighted case is obtained. In the
following description of algorithm implementation and proof,
we only provide weighted case.

From Proposition 2.2, when k∗ is obtained, P2(k
∗) is

given. Then it is memorized and only multiplied by a constant
to compute sk∗ . Thus, how to search k∗ is a key point for the
proposed GWF and the procedure is stated as follows:

1) Initialize Ws = 0;PM = P ∗ = P ; i = 1.
2) Compute Ws <= Ws+wi;P

∗ <= P ∗− (di+1−di)Ws.
Then i <= i+1, where the symbol “<=” represents the
assignment operation.

3) If P ∗ > 0 and i ≤ K, PM = P ∗, and repeat the step
2); else, output k∗ = i − 1,Ws = Ws − wi and sk∗ =
wk∗
Ws

PM .

We can observe that sk∗
wk∗ +dk∗ is the water level due to sk∗

wk∗ +
dk∗ = si

wi
+ di, for 1 ≤ i ≤ k∗.

As an alternative to the enumeration search in the Algorithm
GWF, a Fibonacci-like search is possibly used to speed
up finding k∗ due to (non-increasing) monotonicity of the
sequence {P2(k)}. Without loss of generality, let Fibonacci
approximation ratios be 1

3 and 2
3 for searching k∗. The method

can be described as:

1st Step. Assume that a = 1 and b = K .
2nd Step. If a = b, then k∗ = a and go to Step 3 of GWF.

Else, a1 = �a+ 1
3 (b− a)�, b1 = 	a+ 2

3 (b− a)
.
3rd Step. If P2(a1) ≤ 0, then b = a1−1 and go to the 2nd

Step;
If P2(b1) > 0, then a = b1 and go to the 2nd Step;
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If P2(a1) > 0 and P2(b1) ≤ 0, then a = a1, b =
b1 − 1 and go to the 2nd Step.

The number of loops to search k∗ is reduced into a
complexity level of log3(K).

III. SOLVING GENERALIZED RRA PROBLEMS USING

GWF APPROACH

In this section, we firstly extend the CWF problem to
include individual peak power constraints (WFPP). Then,
we extend the problem to a more generalized form, water-
filling with group bounded power constraints (WFGBP). In
the WFGBP, if the groups are regressed into singletons, the
case with the sum and bounded group power constraints is also
regressed into the case with the sum and bounded individual
power constraints. Furthermore, if the group bounded power
constraints take zero as the lower bounds, they become the
individual peak power constraints, ie., those in the form of
the WFPP. Therefore, the case with group bounded power
constraints is a more general RRA problem. As far as the
authors’ knowledge, this generalized system model and the
algorithm to solve it haven’t been reported in the open
literatures.

A. Weighted Water-Filling with Individual Peak Power Con-
straints (WFPP)

The weighted WFPP problem is stated as follows. Given
P > 0, as the total power or volume of the water; the allocated
power and the propagation path gain for the ith antenna are
given as si and ai respectively, i = 1, . . . ,K; and K is the
total number of the transmit antenna. Also, the weights wi >
0, ∀i, and without loss of generality, {ai·wi}Ki=1 being positive
and monotonically decreasing, find that

max{si}K
i=1

∑K
i=1 wi log(1 + aisi)

subject to: 0 ≤ si ≤ Pi, ∀i;∑K
i=1 si ≤ P.

(21)

Compare the problem (21) with (10), the constraint of 0 ≤ si
is extended to 0 ≤ si ≤ Pi, i.e., additional individual peak
power constraints, and

∑K
i=1 si = P to

∑K
i=1 si ≤ P . The

problem (21) is thus referred to as (weighted) water-filling
with sum and individual peak power constraints (WFPP). In
this section, we discuss the solution to the WFPP problem.

Proposition 2.2 in subsection II-C provides an explicit
solution using geometric view approach. Interestingly, the pro-
posed GWF can be applied to the WFPP problem with some
modifications. The following presents an algorithm which is
a modification of the above discussed GWF and it is termed
as the GWFPP.

For convenience, the expression (12) can be extended into
the expression:

P2(ik) =
[
P −∑|E|−1

t=1

(
1

dik
− 1

dit

)
wit

]+
,

for k = 1, . . . , |E|,
where E is a subsequence of the sequence {1, 2, . . . ,K}, |E|
is the cardinality of the set E, so E can be expressed as
{i1, i2, . . . , i|E|}. Especially, if E is taken as the sequence
{1, 2, . . . ,K}, then the extended expression is regressed into

the original expression (12). Similarly, some corresponding
changes in (13)-(15) are also done (i.e., the subscripts of
sequence are replaced with those of the subsequence). For
avoiding tediousness, these extended expressions are still
labelled as (13)-(15) in the following statement of Algorithm
GWFPP.

Algorithm GWFPP:

Input: vector {di}, {wi}, {Pi} for i = 1, 2, . . . ,K , the set
E = {1, 2, . . . ,K}, and P .

1) utilize (13)-(15) compute {si}.
2) The set Λ is defined by the set {i|si > Pi, i ∈ E}. If Λ

is the empty set, output {si}Ki=1; else, si = Pi, as i ∈ Λ.
3) Update E with E \ Λ and P with P − ∑

t∈Λ Pt. Then
return to 1) of the GWFPP.

Remark 3.1. Algorithm GWFPP is a dynamic power
distribution process. The state of this process is the difference
between the individual peak power sequence and the current
power distribution sequence obtained by the Algorithm GWF.
The control of this process is to use (13)-(15) of the Algorithm
GWF based on the state mentioned above. Thus, a new state
for next time stage appears. Therefore, an optimal dynamic
power distribution process, the GWFPP, with the state feed-
back is formed. Since the finite set E is getting smaller and
smaller until the set Λ is empty, Algorithm GWFPP carries
out K loops to compute the optimal solution, at most.

Similar to the proof of the Proposition 2.2, we can obtain
the following conclusion:

Proposition 3.1: Algorithm GWFPP can provide the opti-
mal solution to the problem (21).

Proof of Proposition 3.1. If the final set E in Algorithm
GWFPP is empty, it implies that

∑K
i=1 Pi ≤ P . Then it is

easy to see the optimal solution si = Pi, for any i.
If it is non-empty, it implies that

wk∗
1

ak∗ + sk∗
=

wi
1
ai

+ si
, as {i, k∗} ⊂ E and 0 < si ≤ Pi.

(22)
Let

λ =
wk∗

1
ak∗ + sk∗

, (23)

it is seen that

σi =
wk∗

1
ak∗ + sk∗

− wi

1
ai

+ si
≥ 0, (24)

and let σi = 0, as i ∈ E.
If i /∈ E, then si = Pi. According to the definitions of k∗

and sk∗ , we have the following relationship:

wk∗
1

ak∗ + sk∗
<

wi
1
ai

+ si
, as i /∈ E, i.e., si = Pi. (25)

It is seen that

σi =
wi

1
ai

+ si
− wk∗

1
ak∗ + sk∗

> 0 (26)

and let σi = 0, as i /∈ E. Then,⎧⎨
⎩

σi = 0 and σi > 0, as i /∈ E
σi > 0 and σi = 0, as i ∈ E and si = 0
σi = σi = 0, as i ∈ E and 0 < si ≤ Pi.

(27)
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Therefore, the following system holds:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

wi
1
ai

+si
− λ− σi + σi = 0, as 1 ≤ i ≤ K

si ≥ 0, σisi = 0, σi ≥ 0, ∀i
si ≤ Pi, σi(si − Pi) = 0, σi ≥ 0, ∀i∑K

i=1 si = P, λ ∈ R.
(28)

By observation, the system above is just a set of the KKT
conditions of the problem in Proposition 3.1 and the water
level μ is equal to the reciprocal of the Lagrange multiplier
λ mentioned above. Note that the Lagrange function of the
problem in Proposition 3.1 is

L({si}, λ, {σi}, {σi})
=

∑K
i=1 wi log (1 + aisi)− λ

(∑K
i=1 si − P

)
− ∑K

i=1 σi(si − Pi) +
∑K

i=1 σisi.

(29)

Since it is a differentiable convex optimization problem with
linear constraints, not only are the KKT conditions mentioned
above sufficient, but they are also necessary for optimality.
Note that the constraint qualification of the problem (21)
holds. Proposition 3.1 is hence proved.

B. Weighted Water-Filling with Group Bounded Power Con-
straints (WFGBP)

The weighted WFGBP problem is stated as follows. Con-
sidering a cognitive network, given P ≥ 0, as the total power
of the CRs or volume of the water; the allocated power, the
propagation path gain and the weight for the ith CR are given
as sk, ak and wk(≥ 0) respectively, k = 1, . . . ,K , where
K is the total number of the CRs; and let {χi}Ti=1 be a
partition of the index set: {1, . . . ,K}. For convenience, the
elements of χi can be listed, monotonically increasing, i.e.,
i1 < i2 < . . . < i|χi|. P i and P i, under the assumption of
0 ≤ P i ≤ P i, denote the lower bound and the upper bound
of the power constraints for the ith group of the CRs, ∀i.
The generalized weighted water-filling problem with group
bounded power constraints under consideration then reads

max{sk}K
k=1

∑K
k=1 wk log(1 + aksk)

subject to: 0 ≤ sk, ∀k;∑K
k=1 sk ≤ P ;

P i ≤
∑

k∈χi
sk ≤ P i, i = 1, . . . , T.

(30)

Compared the problem (30) with (21), the constraints of
0 ≤ si ≤ Pi, ∀i, are generalized to P i ≤ ∑

k∈χi
sk ≤ P k,

i.e., additional group bounded power constraints. The lower
bounds of the additional constraints can be used to guarantee
the fair transmitted rate from the ith group of CRs, whereas
the upper bounds of the additional constraints can be used to
limit interference of the group with the primary users, for
any i. The problem (30) is thus referred to as (weighted)
water-filling with group bounded power constraints (WFGBP).
In this subsection, we discuss the solution to the WFGBP
problem.

Due to the explicit solution using geometric view approach
that is provided in Proposition 2.2, interestingly, the proposed
GWF can be applied to the WFGBP problem with some
modifications. The following presents an extended algorithm,

which is a meaningful modification of the GWF and is termed
as the GWFGBP.

Note, as P ≤ ∑T
i=1 P i, it is easy to see that there does not

exist any solution to problem (30); whereas, as
∑T

i=1 P i ≤
P , problem (30) is regressed into a trivial case without the
sum power constraint. Hence,

∑T
i=1 P i ≤ P ≤ ∑T

i=1 P i is
assumed.

If P i = 0, P i >> 0, ∀i, and the weights are equal, then
problem (30) is reduced into the regular case that can be solved
by the conventional weighted water-filling problem [7]; and if
χi is regressed to a singleton and P i = 0, ∀i, then problem
(30) is reduced into the WFPP problem. Thus, (30) is a more
general form of the RRA problem.

To find the solution to (30), the generalized geometric
water-filling algorithm for the group bounded power con-
straints (GWFGBP) is presented as follows: Firstly, for in-
tegrity of this new algorithm, let us re-visit the four concepts:
(i) power (water volume) above step k, P2(k); (ii) power
allocated to the ith group tth channel, sit ; (iii) water level
step k∗; and (vi) power allocated for the water level step sik∗
as below:

P2(k) =
[
P −∑|E|−1

t=1

(
1

aik
wik

− 1
aitwit

)
wit

]+
,

for k = 1, . . . , |E|,
(31)

where E is a subsequence of the sequence {1, 2, . . . ,K},
|E| is the cardinality of the set E, so E can be written
as {i1, i2, . . . , i|E|}. Note that k in P2(k) is a subscript of

the subsequence {it}|E|
t=1 under the assumption: 1 ≤ i1 <

i2 < . . . < i|E| ≤ K in the given set E, and the sequence
{1, 2, . . . ,K} is a subsequence of itself under the definition
of subsequence.

Also, note

sit =

{
wit

((
sik∗
wik∗

+ 1
aik∗wik∗

)
− 1

aitwit

)
, as 1 ≤ t ≤ k∗

0, as k∗ < t ≤ |E|,
(32)

where the water level step k∗ is given as

k∗ = max
{
k
∣∣∣P2(k) > 0, 1 ≤ k ≤ |E|

}
(33)

and the power level for this step is

sik∗ =
wik∗∑k∗
t=1 wit

P2(k
∗). (34)

If water-filling is vividly described as pouring the water of
volume P into a tank with the bottom of |E| stairs, then
P2(k) is the water volume above the kth stair. Using these
four concepts, the steps of the GWFGBP can be described as
below.

Algorithm GWFGBP:

Input: the channel gains {ak}Kk=1, the weights {wk}Kk=1,
the group lower and upper power bounds {P i, P i}Ti=1, the
index set E = (E0 =){1, 2, . . . ,K}, the partition {χi}Ti=1,
the sum power constraint P and i = 1.

1) Initialize Wis = 0;PM = P ∗ = P i; j = 1.
2) Update Wis with Wis +wij and P ∗ with P ∗ − (dij+1 −

dij )Wis . Then increase the iteration index j to j + 1,
where the used symbols are referred to in Proposition
2.2.
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3) If P ∗ > 0 and j ≤ |χi|, PM = P ∗, and repeat the step
2); else, output k∗ = j − 1,Ws = Ws − wij , sik∗ =
wik∗
Wis

PM , increase the iteration index i to i + 1 , and
then repeat the above process from the step 1), until i =
T . Thus, {sk}Kk=1 is obtained. Let E be updated with
{1, . . . ,K}, Pt with P and 1

ak
with 1

ak
+ sk, ∀k. Finally

in this step, let n = 1 and Λ = ∅, where ∅ stands for
the empty set.

4) Then utilize (31)-(34) to compute {si}, which appear in
the left hand-side (LHS) of (32). Successively, assign �sk
with sk, ∀k.

5) The set Λn is defined by the set {i|∑j∈χi
�sj >

P i − P i, 1 ≤ i ≤ T }. If Λn is the empty set, output
the solution {sk+�sk}Kk=1 to the problem (30); else, let∑

j∈χi
�sj = P i − P i, as i ∈ Λn. Further, continuously

utilize similar expressions to (31)-(34), these similar
expressions only changing from Pt to P i−P i and from E
to χi for any i ∈ Λn, and then obtain �sj , j ∈ ∪i∈Λnχi.
Let Λ = Λ ∪ Λn.

6) Update E with E\(∪i∈Λnχi); Pt with Pt−
∑

i∈Λn
(P i−

P i). Then increase the iteration index n to n + 1, and
return to 4) of the GWFGBP.

Remark 3.2. Algorithm GWFGBP is also a dynamic power
distribution process. The state of this process is the difference
between the group bounded power sequence and current power
distribution sequence obtained by (31)-(34). The control of this
process is to use the mentioned similar expressions to (31)-
(34) based on the state mentioned above. Thus, a new state
for next time stage appears. Therefore, an optimal dynamic
power distribution process, the GWFGBP, with the state
feedback is formed. Since the finite set E is getting smaller
and smaller until there exists n such that the set Λn is empty,
Algorithm GWFGBP carries out T loops to compute the
optimal solution, at most.

For optimality of the proposed algorithm GWFGBP, we
can obtain the following conclusion:

Proposition 3.2: Algorithm GWFGBP can provide the ex-
act optimal solution to the problem (30) via finite computation.

Proof of Proposition 3.2. Without loss of generality,
assume that the final set Λ in Algorithm GWFGBP is empty.
It is easy to see the optimal solutions {�sj}j∈χi , for any
i, which only require to satisfy

∑
j∈χi

�sj ≤ P i − P i

and also satisfy the total sum power constraint for {�sk}.
Thus, appending all the groups of the solutions from the
GWFGBP, we can obtain the solution to the problem (30)
and its optimality is proven as follows.

The final set E, as a non-empty set, implies that

1
1

ak∗wk∗ + sk∗+�sk∗
wk∗

=
1

1
ajwj

+
sj+�sj

wj

, as {j, k∗} ⊂ E,

(35)
and there exists χi such that

∑
j∈χi

�sj > 0. Thus, under∑
j∈χi

�sj > 0, let

λ =
1

1
ak∗wk∗ + sk∗+�sk∗

wk∗

(36)

and then μj = 0 as �sj > 0 and j ∈ χi. Further, according to

the definitions of k∗ and sk∗ , for j ∈ E and �sj = 0, since

1
1

ak∗wk∗ + sk∗+�sk∗
wk∗

>
1

1
ajwj

+
sj+�sj

wj

, (37)

then let

μj =
1

1
ak∗wk∗ + sk∗+�sk∗

wk∗

− 1
1

ajwj
+

sj+�sj
wj

> 0 (38)

and σi = σi = 0, as χi ⊂ E. If the set χi implies∑
j∈χi

�sj = 0, then let

σi = λ− 1
1

ak∗
i
(χi)

wk∗(χi)
+

sk∗(χi)

wk∗(χi)

≥ 0, (39)

and σi = 0. Also, if sj > 0, let μj = 0; if sj = 0, let
μj = λ−σi− ajwj ≥ 0, keeping the mentioned values of σi

and σi.

On the other hand, if i ∈ Λ and j ∈ χi, then

0 <
∑
j∈χi

�sj = P i − P i, (40)

σi =
1

1
ak∗(χi)

wk∗(χi)
+

sk∗(χi)
+�sk∗(χi)

wk∗(χi)

− λ ≥ 0, (41)

let σi = 0 and μj = 0, as �sj > 0. If �sj = 0, then

μj = λ+ σi − 1
1

ajwj
+

sj
wj

> 0 (42)

and σi = 0.

Therefore, there have been the Lagrange multipliers
λ, {σi, σi}Ti=1 and {μk}Kk=1 obtained above, the Lagrange
function of which, for the problem (30), is:

L({sk}, λ, {σi}, {σi}, {μk})
=

∑K
k=1 wk log (1 + aksk)− λ

(∑K
k=1 sk − P

)
− ∑T

i=1 σi(
∑

j∈χi
sj − P i) +

∑T
i=1 σi(

∑
j∈χi

sj − P i)

+
∑K

k=1 μksk.
(43)

Further, by observation, they satisfy the KKT conditions. Since
the problem (30) is a differentiable convex optimization prob-
lem with linear constraints, not only are the KKT conditions
mentioned above sufficient, but they are also necessary for
optimality. We can observe that the constraint qualification of
the problem (30) holds. Proposition 3.2 is hence proved.

Remark 3.3. If we chose the CWF to solve the problem
(30), similarly, a non-linear system with non-linear equations
and inequalities in multiple dual variables would have had to
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Fig. 2. Illustration for Example 1, results for CWF and GWFPP. (a) CWF:
without peak power restriction check (s1 = 3, s2 = 0). (b) CWF: s1 is
clipped considering peak power constraint. (c) GWFPP: s1 = 2, s2 = 1.

be solved:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑T
i=1

∑
j∈χi

(
wj

λ+σi−σi
− 1

ai

)+

= P ;

P i ≤
∑

j∈χi

(
wj

λ+σi−σi
− 1

ai

)+

≤ P i,

as i = 1, 2, . . . , T ;

σi(
∑

j∈χi

(
wj

λ+σi−σi
− 1

ai

)+

− P i) = 0,

as i = 1, 2, . . . , T ;

σi(
∑

j∈χi

(
wj

λ+σi−σi
− 1

ai

)+

− P i) = 0,

as i = 1, 2, . . . , T ;

λ ≥ 0;σi ≥ 0, σi ≥ 0, as i = 1, 2, . . . , T.

(44)

There seems no existing result that can solve this system.

IV. NUMERICAL RESULTS AND COMPLEXITY ANALYSIS

As an illustration for the proposed algorithm, some numer-
ical examples are provided in this section.

Example 1. Instance a case of the water-filling with indi-
vidual peak power constraints (WFPP) problem:

max{si}2
i=1

∑2
i=1 log(1 + aisi)

subject to: 0 ≤ si ≤ 2, ∀i;∑2
i=1 si ≤ 3,

(45)

where a1 = 1 and a2 = 0.2. The problem given is a WFPP
problem. In Fig.2, the step depth for channel 1 and channel 2
are 1 and 5 respectively, as the reciprocal of their respective
channel gains. Using the CWF, the solution is shown in Fig.
2(a): all the power is allocated to the first channel with good
channel condition. If consider peak power constraints check,
s1 may be clipped as shown in Fig. 2(b).

Utilizing the proposed Algorithm GWFPP, the result of
the first loop is s1 = 2, as part of the solution based on the
algorithm. The remaining of the solution, s2, is allocated with
zero. The result of the second loop is s1 = 2 and s2 = 1,
as full entries of the solution. According to Proposition 3.1,
the result of the second loop is guaranteed to be the optimal
solution. With the proposed GWFPP, we can obtain the
optimal solution as shown in Fig. 2(c).

Example 2. Instance another case of the water-filling with
the WFPP problem with multiple channels:

max{si}8
i=1

∑8
i=1 log(1 + aisi)

subject to: 0 ≤ si ≤ i, ∀i;∑8
i=1 si ≤ 30,

(46)
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Fig. 3. Illustration for power allocation using CWF and the proposed GWFPP
for Example 2. (a) Results for CWF. (b) CWF, clipped s1 to s4 due to peak
power restrictions. (c) Results for GWFPP.
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Fig. 4. Optimal power allocation results for Example 2. (a) solution of CWF;
(b) 1st iteration results of GWFPP; (c) 2nd iteration results of GWFPP; (d)
3rd iteration results of GWFPP.

where ai = 1/i, ∀i. The step depth is then monotonically
increase from 1 to 8, as shown in Fig. 3. For the CWF,
without considering the peak power constraints, the water level
is solved as 8.25, and then the power allocation is shown in
Fig. 3(a) and Fig. 4(a). Considering peak power constraints,
the power levels for channels 1-4 are clipped and are set to
their peak values as shown in Fig. 3(b). The CWF doesn’t tell
us where to and how to assign the clipped power.

Utilizing the proposed Algorithm GWFPP, the result of the
first loop is si = i, as i = 1, . . . , 4, as part of the solution.
The remaining entries of the solution are allocated with zero,
as shown in Fig. 4(b). The result of the second loop is si = i,
as i = 1, . . . , 5, also as part of the solution. The remaining
entries of the solution are allocated with zero, as shown in Fig.
4(c). The results of the third loop are si = i, as i = 1, . . . , 5;
and si = 12− i, as i = 6, 7, 8, as full entries of the solution,
as shown in Fig. 4(d) and Fig. 3(c). According to Proposition
3.1, the result of the third loop is the optimal solution.

It is shown that the solution for the problem with sum
power constraint only (see for example, Fig. 3(a) and Fig. 4(a))
is different from the solution of the corresponding problem
with added peak power constraints (see for example, Fig. 3(c)
and Fig. 4(d)). From Fig. 3, we can observe that for more
complicated problems, the conventional water-fill exhibits its
limitations. The water level is no longer a unique level. Thus,
our approach using the concept of water-fill is more general
to solve the RRA problems.
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Fig. 5. Illustration for Example 3 using GWFPP (s1 = 2, s2 = 1).

Example 3. Instance a case of the weighted water-filling
with individual peak power constraints (WFPP) problem:

max{si}2
i=1

∑2
i=1 wi log(1 + aisi)

subject to: 0 ≤ si ≤ 2, ∀i;∑2
i=1 si ≤ 3,

(47)

where a1 = 2, a2 = 0.1, w1 = 0.2 and w2 = 0.8. Utilizing
the proposed Algorithm GWFPP, the result of the first loop is
s1 = 2, as part of the solution. The remaining of the solution,
s2, is allocated with zero. The result of the second loop is
s1 = 2 and s2 = 1, as full entries of the solution. From
Proposition 3.1, the result of the second loop is guaranteed
to be the optimal solution. The result is illustrated in Fig. 5. In
this figure, for channel 1, the stair width is 0.2, specified by its
weight factor. The level depth is 1/(a1w1) = 2.5. Similarly,
for the channel two, the stair width is 0.8 and the level depth
is 1/(a1w1) = 12.5. The power allocated for channel 1 is 2,
so the water level for channel 1 is 12.5. For channel 2, the
power is 1, the water level is 13.75. Again, water level is not
unique for different channels.

Example 4. As the last example, we instance a case of the
weighted water-filling with group bounded power constraints
(WFGBP) problem:

max{si}3
i=1

∑3
i=1 wi log(1 + aisi)

subject to: 0 ≤ si, ∀i;∑3
i=1 si ≤ 5;

1 ≤ s1 + s2 ≤ 2.5;
1 ≤ s3 ≤ 2.5,

(48)

where a1 = a2 = a3 = 1, w1 = 0.3, w2 = 0.2 and w3 = 0.5.
Utilizing the proposed Algorithm GWFGBP, the result from
1)-3) of the GWFGBP is: s1 = 0.8, s2 = 0.2 and s3 = 1.
Then continuously using 4)-6) of the GWFGBP, the optimal
solution is: s1∗ = 0.8+ 0.9 = 1.7, s2

∗ = 0.2+ 0.6 = 0.8 and
s3

∗ = 1 + 1.5 = 2.5.
The results are shown in Fig.6, where the stair width for the

three channels are 0.3, 0.2, 0.5 respectively specified by their
weighting factors. The step depth is calculated as 1/(aiwi),
leading to the step depth values as 3.33, 5, and 2 respectively
for the three channels. The water level for channel 1 and
channel 2 is the same, but different with that of channel 3. It
is interesting to observe that with the same path gain of these
three channels, the channel with the highest weight factor,
channel 3, has even lower water level due to the structure of
the constraints.
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Fig. 6. Illustration for Multi-User Power Allocation Results by the GWFGBP.

A. Complexity Analysis

As stated in [16] (Section 3), the conventional WF algorithm
had an exponential worst-case complexity of 2K , where K is
the number of the channels, even though the channel gains
had been sorted in decreasing order. Pointing to this case, [16]
proposed an improved algorithm with worst-case complexity
of K iterations. Since each iteration consists of multiple
arithmetic and logical operations, here we use total number
of operations as a measure of the complexity level (See [23],
Chapter 8).

The CWF approach has a worst-case complexity of K
iterations, i.e., total O(K2) fundamental arithmetic and logical
operations under the 2(K + 1) memory requirement and the
sorted parameters {wkak}Kk=1 (e.g. see [24], pp 137, for more
details).

The proposed GWF algorithm occupies less computational
resource. It is seen that it needs K loops at most to search k∗

and it needs 4 arithmetic operations and 2 logical operations
to complete each loop. Thus, the worst-case computational
complexity of the proposed solution is 8K + 3 (from the
operations of 6K + 3 + 2K) fundamental arithmetical and
logical operations under the 2(K + 1) memory units to store
{di}, {wi}, Ws, and PM .

For the GWFPP, it needs K loops to compute the optimal
solution, at most. The required number of operations is, at
worst,

∑K
i=1(8i + 3) = 4K2 + 7K fundamental arithmetical

and logical operations.
For the GWFGBP, it needs T loops to compute the optimal

solution, at most. The required number of operations, at worst,
is O(K2) fundamental arithmetical and logical operations.

In this complexity analysis, we didn’t take sorting procedure
into consideration. It is stated in [16] that the channel gain
sequences come from the eigenvalues of a matrix and many
of the algorithms to compute the eigenvalues and eigenvectors
already produce the eigenvalues sorted.

V. CONCLUSION

In this paper, we proposed a new geometric approach for the
well-known unweighted and weighted water-filling problems
to solve a class of radio resource allocation (RRA) problems.
The proposed GWF approach makes use of the geometric
relation among the channel gains, the allocated power and
the total power. It provides straightforward power allocation
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TABLE I
LIST OF VARIABLES AND ABBREVIATIONS

variables & representations or
abbreviations interpretations
ai propagation path gain for the ith channel
di step depth (= 1/ai) of the ith stair
k∗ water level step (highest step under water)
E a subsequence of the sequence {1, 2, · · ·K}
|E| cardinality of the set E
K total number of channels
P total power
P2(k) power (water volume) above step k
P i lower bound for power level for the ith group
P i upper bound for power level for the ith group
si power allocated for the ith channel
sk∗ power allocated to the water level step
wi weight for the ith channel
δi,j step depth difference (= di − dj)
λ reciprocal of water level μ
μ water level
CWF conventional water-filling
GWF geometry water-filling
WFPP water-filling with individual peak power constraints
WFGBP water-filling with group bounded power constraints
RRA Radio resource allocation

analysis, solutions and insights with reduced computation over
conventional approach.

The GWF is further extended to more general forms: the
GWFPP and then the GWFGBP to solve the weighted water-
filling RRA problems. The WFPP refers the problem with
individual peak power constraints; while the WFGBP refers
the problem with group bounded power constraints. This kind
of problems is more general to model a communication system
with different constraints.

Our proposed GWFPP and GWFGBP algorithms compute
the optimal solutions to the WFPP and the WFGBP with mod-
erate complexity. Its optimality has been proven in this paper.
Numerical examples are provided to illustrate the effectiveness
of the proposed algorithms. Our results also show that with the
complicated problem structure, the conventional water-filling
approach is limited due to the fact that the water levels are no
longer unique.
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