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Abstract: We report water-induced nanometer-thin crystalline indium praseodymium oxide (In-
Pr-O) thin-film transistors (TFTs) for the first time. This aqueous route enables the formation of
dense ultrathin (~6 nm) In-Pr-O thin films with near-atomic smoothness (~0.2 nm). The role of
Pr doping is investigated by a battery of experimental techniques. It is revealed that as the Pr
doping ratio increases from 0 to 10%, the oxygen vacancy-related defects could be greatly suppressed,
leading to the improvement of TFT device characteristics and durability. The optimized In-Pr-O TFT
demonstrates state-of-the-art electrical performance with mobility of 17.03 ± 1.19 cm2/Vs and on/off
current ratio of ~106 based on Si/SiO2 substrate. This achievement is due to the low electronegativity
and standard electrode potential of Pr, the high bond strength of Pr-O, same bixbyite structure of
Pr2O3 and In2O3, and In-Pr-O channel’s nanometer-thin and ultrasmooth nature. Therefore, the
designed In-Pr-O channel holds great promise for next-generation transistors.

Keywords: water-induced; indium-praseodymium oxide; nanometer-thick; oxide thin-film transistors

1. Introduction

Metal oxide thin-film transistors (TFTs) are gradually becoming a key technology for
applications in flat-panel displays including AMLCD and AMOLED [1–9]. Among a variety
of metal oxides, indium oxide (In2O3) stands out due to its extraordinarily high field effect
mobility (20–50 cm2/Vs) and optical transparency [10–12]. Moreover, previous studies
indicate that In2O3 thin film could be grown from a novel aqueous solution route, providing
great potential for cost-effective and high throughput green manufacturing [13,14]. Despite
these remarkable assets, however, pristine In2O3 TFTs still suffer from high leakage current,
large negative threshold voltage, as well as poor operational stability [1]. It is revealed
that the intrinsic drawbacks of In2O3 channel are attributed to the oxygen vacancy-related
defects. Consequently, metal cation is introduced to suppress oxygen vacancy defects and
yield ternary oxide with enhanced electrical performance [15–18].

Previous investigations suggested that low electronegativity, a low standard elec-
trode potential, and a strong dopant–oxygen bond strength are necessary for a viable
dopant [19]. Among the potential doping candidates, praseodymium (Pr) holds a low
standard electrode potential (−2.353 V), low electronegativity (1.1), as well as high Pr-O
bonding (740 kJ/mol) [15]. Besides, the substitution of In with Pr will not bring in addi-
tional electrons since they share the same valence [16,17]. Pr2O3 and In2O3 hold the same

Nanomaterials 2022, 12, 2880. https://doi.org/10.3390/nano12162880 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano12162880
https://doi.org/10.3390/nano12162880
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0002-8862-7224
https://orcid.org/0000-0002-4783-960X
https://doi.org/10.3390/nano12162880
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano12162880?type=check_update&version=1


Nanomaterials 2022, 12, 2880 2 of 11

bixbyite structure, meaning the incorporation of Pr will maintain low defect states [16].
Consequently, Pr is considered to be a superior candidate to suppress oxygen vacancy-
related defects and enhance the electrical performance of pristine In2O3 TFTs. However,
In-Pr-O TFTs has not been reported yet.

Here, we demonstrate, using aqueous solution processing, the synthesis of ultrathin
(~6 nm) near-atomic smoothness (RMS: ~0.2 nm) crystalline Pr-doped In2O3 (In-Pr-O) layers
for the first time. The aqueous precursors are insensitive to ambient moisture and hence
are easy to handle. In addition, the Pr doping ratio can be tuned simply by changing the
ratios between In and Pr precursors. The microstructural, chemical, and electrical analyses
confirm that the incorporation of Pr could effectively suppress the oxygen vacancy-related
defects, hence enhancing the performance and bias stress stability of the device. The
optimized In-Pr-O TFT demonstrates state-of-the-art electrical performance.

2. Experimental Section

The 0.2 M In-Pr-O precursor solutions for spin-casting were prepared by mixing
InN3O9·xH2O and PrN3O9·xH2O in DI water with Pr ratios of 0, 2, 5, and 10 mol%.
The as-prepared In-Pr-O solutions were stirred rigorously at room temperature and then
filtered before spin-casting. The In-Pr-O layers (~6 nm) were deposited by spin coating the
precursor solutions on pre-cleaned SiO2 (100 nm)/p+-Si substrates and pre-baked at 150 °C
and then annealed at 350 °C for 1 h. Finally, Al source and drain electrodes (100 nm-thick)
were deposited and patterned by shadow masks with a width of 1500 µm and a length of
100 µm to finish manufacturing the In-Pr-O devices. A simple schematic diagram of the
In-Pr-O TFTs preparation process is shown in Figure 1.
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Figure 1. Schematic showing the fabricated In-Pr-O TFTs.

The crystallinities of the In-Pr-O layers were revealed by grazing incident X-ray
diffraction. By using X-ray reflectivity, the thicknesses of the In-Pr-O thin films were
verified. The morphologies of the In-Pr-O thin films were observed by Atomic force
microscopy. X-ray photoelectron spectroscopy analysis was performed to determine the
chemical properties of In-Pr-O thin films. Ultraviolet-visible and photoluminescence
spectra of In-Pr-O thin films were also recorded. The typical device performances of In-Pr-
O TFTs were measured by a semiconductor parameter in ambient environment at room
temperature.

3. Results and Discussion

The grazing incidence X-ray diffraction data of In-Pr-O layers with indicated Pr ratios
are displayed in Figure 2. X-ray diffraction analysis reveals that the aqueous solution-
processed In-Pr-O films are polycrystalline with (222) the dominant peak as well as weaker
(400), (440), and (622) reflections, all belonging to the pristine In2O3 lattice [11]. Therefore,
the incorporation of Pr does not break the In2O3 structure. The lattice constants of the
In-Pr-O films could be extracted from the prominent peak positions of (222). Hence, the
lattice constants of 0, 2, 5, and 10 mol% Pr-doped In2O3 are calculated to be 10.098 ± 0.003,
10.111 ± 0.009, 10.124 ± 0.005, and 10.129 ± 0.002 Å, respectively [10]. Since the Pr3+ has
a lager ionic radius (0.1013 Å) than In3+ (0.0800 Å), the substitution of Pr3+ for In3+ will
expand the lattice and leads to the increase of the lattice constant. Similar phenomena also
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appeared in previous research [16,19,20]. Furthermore, the (222) peak intensity becomes
weaker after Pr incorporation, suggesting the decrease of crystallinity.
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Figure 2. Grazing incidence X-ray diffraction patterns for In-Pr-O layers with 0, 2, 5, and 10 mol% Pr
concentration.

To evaluate the thicknesses of the In-Pr-O thin films, we performed X-ray reflectivity
characterization, as shown in Figure 3. The observed thickness of the In-Pr-O films with
0, 2, 5, and 10% Pr contents were 5.74 ± 0.24, 5.78 ± 0.21, 5.83 ± 0.17, and 6.15 ± 0.19 nm,
respectively. The thickness of the In-Pr-O film gradually increases with the increase of Pr
doping, but it is well maintained at around 6 nm. The slight increase of thickness may be
due to the relatively higher viscosity of Pr precursor than that of In.
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To access the morphology information, atomic force microscopy was performed. All
of the In-Pr-O films exhibit smooth morphologies, as depicted in Figure 4. The In-Pr-
O films that were 0, 2, 5, and 10% Pr-doped had a root mean square (RMS) roughness
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of 0.175 ± 0.036, 0.172 ± 0.029, 0.161 ± 0.034, and 0.202 ± 0.059 nm, respectively. It
is an interesting observation that atomically smooth crystalline ternary oxides could be
grown from simple aqueous solution. The ultrasmooth semiconductor morphology is
indispensable for TFT, since it guarantees low interface trap states as well as good ohmic
contacts with the electrodes. Consequently, the near-atomic smoothness of In-Pr-O thin
film shows great potential for electronic devices, as will be discussed later.
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Figure 5a demonstrates the optical transmittance for In-Pr-O layers with various
Pr ratios. All the In-Pr-O films exhibit transmittance higher than 80%, indicating the
availability for transparent electronics. Besides, the absorption edge shifts to the shorter
wavelength region with the rise of Pr contents. The optical bandgap of In-Pr-O could be
deduced using the Tauc formula, as illustrated in Figure 5b. As the Pr ratio increases from
0 to 10 mol%, the optical bandgap shifts from ~3.416 to ~3.747 eV. Additionally, the optical
bandgap of pristine Pr2O3 was also measured to be ~4.615 eV. Therefore, the enlarged
optical bandgap after Pr doping is due to the lager bandgap of Pr2O3, which would lead
to the reduction of electron concentration. Figure 6 shows the photoluminescence spectra
of In-Pr-O with different Pr concentrations. According to previous studies, the dominant
broad peak centered at around 600 nm is ascribed to oxygen vacancy-related defects [10,18].
Consequently, the decrease of peak intensity after Pr incorporation suggests the reduction
of oxygen vacancy-related defects.

X-ray photoelectron spectroscopy was performed to analyze the electronic structure of
In-Pr-O thin films. Figure 7a plots the O 1s peaks for In-Pr-O films with indicated Pr doping
contents. The O 1s peak could be decomposed into three subpeaks centered at ~529.7 eV
for the M-O-M, ~530.7 eV for the oxygen vacancies, and ~532.1 eV for the OH groups. It
turns out that the ratio of oxygen vacancies decreases from ~26.16% to ~19.23% as the Pr
ratio increases from 0% to 10%. This result supports the PL and UV-visible transmittance
analyses’ findings that the addition of Pr could prevent the formation of oxygen vacancies
and lower the carrier concentration. The standard electrode potential of Pr (−2.353 V) is
lower than In (−0.34 V), the electronegativity of Pr (1.1) is lower than In (1.78), and bond
strength of Pr-O (740 kJ/mol) is stronger than that of In-O (320 kJ/mol). Therefore, Pr
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doping could greatly reduce the oxygen vacancies in pristine In2O3. The In 3d and Pr 3d
peaks are plotted in Figure 7b,c, confirming the presence of In-O and Pr-O bonding. As
shown in Figure 7d, the Pr doping content in the In-Pr-O thin film is similar to that of the
precursor solution.
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Figure 8 shows the typical transfer (VD = 30 V) and output curves for Pr doped In2O3
TFTs. We measured at least 10 TFT devices for each Pr doping ratio, and obtained the
corresponding statistical deviations, relevant electrical parameters were summarized in
Table 1. The undoped In2O3 device has high mobility (µ) of 28.15 ± 1.27 cm2/Vs; however,
it encounters high off-state current (Ioff) and large negative threshold voltage (VT). The
Ioff decreases from ~10−7 A to ~10−11 A as the Pr ratio rises from 0 mol% to 10 mol%,
and the VT shifts from −6.88 ± 0.27 V to 5.77 ± 0.48 V. The improvement of Ioff and VT
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is due to the reduction of carrier concentration, and originated from the suppression of
oxygen vacancy-related defects. Furthermore, the subthreshold slope (S) also improves
after Pr doping. Note that S value reflects the channel/dielectric interface trap states. The
improved performance of S indicates the lowering of interface trap states also associated
with oxygen vacancy-related defects. However, after Pr introduction, the In 5 s orbitals
overlap decreases, resulting in the reduction of device mobility. The hysteresis of the
In-Pr-O TFTs with 0, 2, 5, and 10% Pr ratios are around 1.32, 0.69, 0.44, 0.15 V, respectively.
Note that as the doping amount of Pr increases, the hysteresis of In-Pr-O TFTs gradually
weakens. Pr incorporation could suppress the oxygen vacancy-related defects and reduce
the channel/dielectric interface trap states, leading to the improvement of hysteresis. The In-
Pr-O TFTs with 5 mol% Pr demonstrate the best overall electrical characteristics, including
µ of 17.03 ± 1.19 cm2/Vs, Ion/Ioff of ~106, S of 1.32 ± 0.06 V/dec, and VT of 4.86 ± 0.32 V,
respectively.
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Figure 8. (a) Transfer and (b–e) output curves for In-Pr-O TFTs with 0, 2, 5, and 10 mol% Pr
concentrations.
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Table 1. Electrical characteristics of In-Pr-O TFTs.

Pr Ratio (%) µ
(cm2V−1s−1) Ion/Ioff

S
(V/dec)

VT
(V)

Hysteresis
(V)

VT Shift under PBS
for 30 min (V)

VT Shift under NBS
for 30 min (V)

0 28.15 ± 1.27 5.30 × 104 2.50 ± 0.13 −6.88 ± 0.27 1.32 13.96 −6.14
2 21.87 ± 1.45 7.05 × 105 1.46 ± 0.09 2.37 ± 0.41 0.96 3.31 −5.09
5 17.03 ± 1.19 2.15×106 1.32 ± 0.06 4.86 ± 0.32 0.44 1.86 −2.09
10 0.76 ± 0.14 1.26 × 107 0.51 ± 0.11 5.77 ± 0.48 0.15 1.43 −1.39

Figure 9 plots the fluctuations in the transfer curves for In-Pr-O TFTs under positive
bias stress (PBS, VG = 20 V) for 30 min with 5 min intervals. When subjected to PBS for
30 min, the 0, 2, 5, and 10 mol% Pr-doped In2O3 TFTs show VT shifts of around 13.96, 3.31,
1.86, and 1.43 V, respectively. According to previous research, the positive VT shift under
PBS is usually due to several factors [16,18,21]. First, the positive VT shift is attributed to
electrons trapping phenomena at the at the In-Pr-O channel or channel/dielectric inter-
face [16,18,21]. The undoped In2O3 has high interface trap states (as reflected by the large
subthreshold swing), which is related to the high oxygen vacancy-related defects. Under
PBS, these defects can screen applied gate bias by capturing electron carriers from the con-
duction band, necessitating a greater positive gate bias in order to turn on the devices [21].
This leads to serious positive VT shift under PBS. The Pr incorporation could suppress
the oxygen vacancy-related defects and reduce the channel/dielectric interface trap states,
leading to the improvement of PBS durability. Secondly, negatively charged species (O2

−
(s))

can be produced by the oxygen species absorbed from the ambient atmosphere capturing
electrons in the conducting channel, expressed by O2(g) + e− ←→ O2

−
(s) [22,23], where e−

denotes electrons, O2(g) and O2
−

(s) represent the neutral and charged oxygen molecules in
the back channel. As the electrons concentration increased under PBS, the reaction moved
toward the right side of the equation [22,23]. Therefore, the positive VT shift also arises
from the consequent accumulation of O2

−
(s) negative charges [18,22,23]. Considering that

all the channel layers are extremely thin (~6 nm), the surface adsorption of O2 molecules
may also seriously affect the PBS stability. The undoped In2O3 contains a large amount
of oxygen-vacancy defects, which tend to absorb more O2 molecules than the Pr-doped
samples, causing a larger positive VT shift. Additionally, we note that the shift between
0 and 5 min is large under PBS especially for the pristine In2O3 TFTs, meaning there is
a possibility that characteristic degradation has occurred at the beginning of the shift.
Therefore, the defect creation may also occur in the undoped In2O3 sample [21]. As shown
in Figure 9e, the incorporation of Pr could greatly enhance the PBS stability of the In2O3
devices, in good agreement with the hysteresis characteristics improvement shown in
Figure 8 above.

Figure 10 plots the fluctuations in the transfer curves for In-Pr-O devices under
negative bias stress (NBS, VG = −20 V) for 30 min with 5 min intervals. When subjected to
PBS for 30 min, the 0, 2, 5, and 10 mol% Pr-doped In2O3 TFTs show VT shifts of around
−6.14, −5.09, −2.09, −1.39 V, respectively. It is reported that NBS increases the number
of holes in the channel layer, causing the adsorbed H2O(g) from the atmosphere to form
positively charged H2O+

(s) [22,23]. This is described by the following chemical reaction:
H2O(g)+h+←→H2O+

(s) [22,23], where h+ is a hole. H2O(g) and H2O+
(s) represent the neutral

and positively charged water molecules in the back channel, respectively. This results in a
negative VT shift [18,22,23]. On the other hand, occupied oxygen-vacancy generates deep
trap states that are widely distributed above the VBM. Under NBS, a negative gate bias
will induce hole trapping at the deep level traps and a larger negative VG is required for
turning-on TFTs [21]. This results in the negative shift of VT. Pr incorporation could reduce
the level of oxygen-related defects and hence improve the NBS stability [21].
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We summarize the recent advances of solution-derived oxide TFTs based on conven-
tional Si/SiO2, as illustrated in Figure 11 and Table S1. Our novel In-Pr-O device presents
state-of-the-art mobility. This achievement is due to the low electronegativity and stan-
dard electrode potential of Pr, high bond strength of Pr-O, the same bixbyite structure of
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Pr2O3 and In2O3, as well as the In-Pr-O channel’s atomic smooth nature. It is suggested
that reducing the thickness of semiconductors to a few nanometers thick could improve
short-channel immunity in scaled devices [10,24]. Therefore, our ultra-thin body In-Pr-O
channel also holds great promise for next-generation scaled transistors. Moreover, reducing
the thickness is known to substantially increase the flexibility of the material; thus, the
In-Pr-O channel with nanoscale thicknesses could withstand high mechanical strain and
thus favors flexible electronics [25].
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4. Conclusions

We first report the synthesis and characterization of water-induced nanometer-thin
(~6 nm) and near atomically smooth (~0.2 nm) crystalline In-Pr-O channel layer. Through
various physical and chemical characterizations, the role of Pr doping could be summarized
as follows: (1) decrease the crystallinity; (2) enlarge the bandgap of In2O3; (3) suppress
the oxygen vacancy-related defects of In2O3. The incorporation of Pr has weakened the
mobility of In2O3 TFT s to a certain extent. However, the other electrical parameters
including on/off current ratio, subthreshold swing, threshold voltage, hysteresis, and
stabilities under PBS and NBS are greatly improved after Pr doping. The optimized In-Pr-O
TFT has state-of-the-art electrical performance with mobility of 17.03 ± 1.19 cm2/Vs and
on/off current ratio of ~106. The water-induced ultrathin In-Pr-O channel enables future
large-scale advanced electronics with green manufacturing.
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