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Water: one molecule, two surfaces, one mistake

Carlos Vega∗
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(Received 4 November 2014; accepted 4 January 2015)

In order to rigorously evaluate the energy and dipole moment of a certain configuration of molecules, one needs to solve
the Schrödinger equation. Repeating this for many different configurations allows one to determine the potential energy
surface (PES) and the dipole moment surface (DMS). Since the early days of computer simulation, it has been implicitly
accepted that for empirical potentials the charges used to fit the PES should also be used to describe the DMS. This is a
mistake. Partial charges are not observable magnitudes. They should be regarded as adjustable fitting parameters. Optimal
values used to describe the PES are not necessarily the best to describe the DMS. One could use two fits: one for the PES
and the other for the DMS. This is a common practice in the quantum chemistry community, but not used so often by the
community performing computer simulations. This idea affects all types of modelling of water (with the exception of ab
initio calculations) from coarse-grained to non-polarisable and polarisable models. We anticipate that an area that will benefit
dramatically from having both, a good PES and a good DMS, is the modelling of water in the presence of electric fields.

Keywords: computer simulation; water; force fields; dielectric constant; electric field; potential energy surface

1. Introduction

Water is a simple molecule: just two hydrogens and one
oxygen. Still it has a fascinating behaviour related to the
possibility of forming tetrahedral hydrogen-bonded net-
work structures [1–7]. The hydrogen bond, a directional and
rather strong intermolecular interaction (when compared to
van der Waals forces), is responsible for the special prop-
erties of water. Moreover, the hydrogen atoms are light;
therefore, nuclear quantum effects are important. Under-
standing the properties of water from a molecular point of
view is certainly important. Computer simulations can be
useful for that purpose, and they started with the seminal
papers of Barker and Watts [8] in 1969 and of Rahman and
Stillinger [9] in 1971. Since the seminal paper of Bernal
and Fowler [10,11], water is often described by a Lennard–
Jones (LJ) centre and several charges. The model of Bernal
and Fowler was modified by Jorgensen et al. [12] to ob-
tain the popular TIP4P model. Abascal and Vega [13] have
shown that the parameters of the TIP4P can be modified to
yield a new model, TIP4P/2005. TIP4P/2005 is a rigid non-
polarisable model and one may wonder how far can one go
in the description of water with such a simple model. Re-
cently, we have calculated a number of properties for this
model and compared them to experimental results [14].
The comparison has been extended to other popular rigid
non-polarisable water models such as SPC/E [15], TIP3P
[12] and TIP5P [16]. These are also rigid non-polarisable
models and they differ from TIP4P/2005 in the way the

∗
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partial charges have been arranged [14,17]. The compari-
son revealed some useful information. Not all water mod-
els are equally successful in describing the experimental
properties. From the considered models, TIP4P/2005 pro-
vided the best results. However, since the model is rigid
and non-polarisable, it cannot describe all the experimental
properties of water. Thus, our feeling is that TIP4P/2005
represents the limit of the description of water that can be
achieved by using rigid non-polarisable models. It is a de-
cent model, but to go beyond that, new physical features
(and not simply new parameter sets) must be incorporated.

We found a property with a somewhat surprising be-
haviour: the dielectric constant. We found two puzzles while
considering the dielectric constant of water. First, certain
models were able to describe the dielectric constant of wa-
ter at room temperature and pressure. This is the case of
TIP3P [12] and TIP5P [16]. However, for some other mod-
els, the dielectric constant was low when compared to ex-
periment increasing in the order TIP4P, TIP4P/2005, SPC
[18] and SPC/E [15]. Second, Rick and co-workers [19–22]
and Lindberg and Wang [23] and ourselves [24–26] com-
puted the dielectric constant of ice Ih. The surprising result
was that, for this phase, all these water models predicted a
dielectric constant value lower than the experimental one,
sometimes by a factor of two. The first reaction to explain
these results is to assign the discrepancy to the approximate
description of the intermolecular potential. This is reason-
able, but still this hypothesis should explain why all models

C© 2015 Taylor & Francis
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1146 C. Vega

fail in describing the dielectric constant of ice Ih. Exper-
imentally, the dielectric constants of ice Ih and water at
the melting point are quite similar, that of the solid phase
being slightly higher [27]. The importance of this exper-
imental finding may not have been fully appreciated, and
may be quite relevant, since it may affect the way we ap-
proach the modelling of water. At the melting point, the
tetrahedral order of liquid water is quite high (that would
explain the maximum in density), and it is even difficult
to find order parameters (required for nucleation studies
[28,29]) that distinguish between liquid-like and solid-like
arrangements around a central molecule [30–33]. If ice Ih
and water are quite similar at the melting point, it is difficult
to explain why all models fail in describing the dielectric
constant of ice Ih. We found that, for TIP4P models, the di-
electric constant of ice Ih was similar to that of liquid water
(and this is in agreement with the experiment), whereas the
predicted value was too low for both phases when compared
to experiments [25]. At this point, we proposed in 2011 an
explanation as to why TIP4P/2005 was unable to reproduce
the dielectric constant of water related to the failure of the
model to describe the ‘real’ water dipole moment in con-
densed phases. Not surprisingly, the title of our 2011 paper
was ‘The dielectric constant of water and ices: a lesson
about water interactions’ [25]. This is probably true, but in
this paper, we will present some evidence illustrating that
maybe we did not obtain the ultimate consequences of the
‘lesson’.

2. ABCD in the modelling of water

Let us consider a system with N molecules of water. Since
each water molecule has three atoms, we need to define
the position of the 3N atoms of the system, R3N. E0(R3N)
(which defines the potential energy surface, PES) is the
energy of the system. We shall define the intermolecular
potential energy U as follows:

U (R3N ) = E0(R3N ) − NE0
H2O. (1)

where we have taken zero of energies as the energy of a
system of N isolated water molecules (NE0

H2O). The super-
script zero indicates that there is no electric field present.

It is useful for pedagogical reasons to classify the differ-
ent approaches in the modelling of water into four groups
(or teams) which we will label as A, B, C and D. They
differ in the way U is obtained. In Table 1, the main four
treatments in the modelling of water are presented.

If you solve the Schrödinger equation to obtain E0, then
your treatment is of type A or B. In group A, the motion
of the nuclei is also treated from a quantum perspective.
In group B, one uses classical statistical mechanics to de-
scribe the motion of the nuclei on the PES ( i.e. the nuclei
are regarded as classical objects). Approach B is often de-
noted as Car– Parrinello simulation [34] and approach A as

Table 1. Different approaches in the modeling of water.

A B C D

Electronic Electronic Analytical Analytical
Electrons structure structure expression expression

calculations calculations for E0(R3N) for E0(R3N)
+ + + +

Path integral Classical Path integral Classical
Nuclei simulations statistical simulations statistical

mechanics mechanics

‘full quantum’. Within classical statistical mechanics, the
positions of the nuclei are governed by

− ∇Ri
(E0(R3N )) = mi

d2Ri

dt2
, (2)

p(R3N ) ∝ e−βE0(R3N ), (3)

where the first expression (Newton’s law) is to be used
in molecular dynamics (MD) simulations and the second
one in Monte Carlo (MC) simulations, being p(R3N) the
probability of having a certain configuration of the nuclei.
The approach A is described in [35] and some examples
for water within the approach B can be found in [36,37].
Notice that in approaches A and B, the energy is obtained
‘on the fly’ for each configuration either by solving the
Schrödinger equation or by performing density functional
theory (DFT) calculations.

Teams C and D use analytical expressions for the PES.
These analytical expressions can be obtained in two com-
pletely different ways. The analytical expressions can be
obtained by fitting ab initio results obtained for water clus-
ters and/or liquid configurations. We shall denote this type
of potentials as analytical ab initio potentials. The second
possibility is to propose an analytical expression for the po-
tential with some free parameters that can be chosen to re-
produce some selected thermodynamic properties. We shall
denote this second class as empirical potentials. Thermo-
dynamic properties (i.e. enthalpy, Gibbs free energy, etc.)
are functionals of U(R3N). One could state that in analytical
ab initio potentials, the parameters of the fit are determined
to reproduce U(R3N), whereas in empirical potentials, the
parameters are determined to reproduce certain functionals
of U(R3N) (i.e. density, enthalpy, diffusion coefficients).

It is important when developing analytical potentials
that ‘representative configurations’ of the system are se-
lected for the fit. By representative we mean configurations
with a reasonable statistical occurrence (i.e. with a non-
negligible value of their Boltzmann factor). Thus, the target,
in principle, is not to reproduce the energy of any arbitrary
configuration (including, for instance, configurations of
very high energy where the water molecules overlap sig-
nificantly), but rather properly describe the energy of those
configurations of the R3N space which have a reasonable
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Molecular Physics 1147

probability of being found. Obviously, the value of the
potential parameters may depend on the configurations
used for the fit either explicitly as when using ab initio
inspired potentials, or implicitly as when using empirical
potentials, where the properties and the selected thermo-
dynamic states determine implicitly which configurations
are entering in the fit.

When the description of the intermolecular energy is
done with an analytical expression and nuclear quantum
effects are used to describe the motion of the nuclei, your
approach is of type C [38–46]. Simulations of analytical
ab initio potentials should be performed within the frame-
work C, since when your PES was designed to reproduce ab
initio results, you should expect to reproduce water prop-
erties only when nuclear quantum effects are included. In
team D, an analytical expression is used to describe the
PES and the nuclear quantum effects are neglected (i.e. it
is assumed that the motion of the nuclei can be described
by classical statistical mechanics). In the case of empir-
ical potentials, you could use approach C or D. In fact,
you could determine the potential parameters to reproduce
the experimental properties when nuclear quantum effects
are included or you could determine the parameters of the
potential to reproduce the experimental properties within
classical simulations. It is important to point out that if one
has a good empirical potential model of water of type D (i.e.
one using classical statistical mechanics) and one tries to
use it within the formalism of type C (i.e. including nuclear
quantum effects), the model will not work. This is because
then, nuclear quantum effects will be counted twice, once
through the fitting to experimental properties and the other
through the use of quantum simulations [45,46]. Group D
is by far the most popular. For this reason, it is useful to
classify the types of models that are often found within this
family of potentials.

1. Ab initio potentials. For these models, analytical
expressions are used to reproduce either high-level
ab initio results for small water clusters (TTM2-
F [47], TTM3-F [48], CCpol23 [49,50]), or DFT
results of condensed matter (neural network poten-
tials [51]) or both as for the MB-pol model [52].
Certainly, quantum calculations are performed to
develop these potentials. However, instead of solv-
ing the Schrödinger equation on the fly to determine
the energy of each configuration (as you would do in
teams A and B), here you assume that the fit used to
reproduce the results of some water clusters and/or
some selected configurations, can be used for any
configuration. Obviously, assuming that a good fit
obtained for a small cluster water should also work
in condensed matter is an approximation. In the
case of neural network potentials [51,53,54], your
results are obtained for condensed matter, but it is
not clear if a neural network trained at a certain

density and phase will also work for other densities
and/or phases.

2. Empirical potentials. The family of empirical po-
tentials is large and several sub-classes could be
identified. Our classification of empirical models
is based on the way electrostatic interactions are
described.
(a) Coarse-grained models. The term coarse

grained is typically used for potential models
that do not use partial charges in the descrip-
tion of the PES [55]. Examples are the prim-
itive model of water of Kolafa and Nezbeda
[56–58] and its modifications often used in
combination with Wertheim’s statistical asso-
ciating fluid theory (SAFT) [59–65], the Mer-
cedes Benz model [66], the mW model [67] and
the ELectrostatics-BAsed (ELBA) model [68].
This last model does not have partial charges
but incorporates an ideal dipole moment on the
oxygen atom.

(b) Non-polarisable models. In these models, an
LJ centre (or similar [69]) is located on the
position of the oxygen atom. Models differ
in the number and location of the partial
charges: three charges located on the atoms
(TIP3P, SPC), three charges with one charge
out of the atom positions (TIP4P family),
four charges [16] (TIP5P) or five charges [70]
(NvDE). In these models, the magnitude of the
partial charges does not depend on the local
environment.

(c) Polarisable models. These are similar to the
non-polarisable models, but now the partial
charges (or the molecular dipole moments) de-
pend on the environment [71–76]. Typically
polarisability is introduced either by allowing
each molecule to develop an induced dipole
moment in response to the local electric field
or by using the concept of charge transfer where
part of the charge of one molecule (atom)
is transferred to the neighbouring molecules
(atoms) [77]. Strictly speaking, polarisable
models are not analytical potentials (in a math-
ematical sense) as the energy must be obtained
through an iterative process. However, they are
only one order of magnitude, more expensive
(from a computational point of view) than non-
polarisable models, in contrast to quantum cal-
culations of type A or B which are about four
orders of magnitude slower. For this reason, we
have included polarisable potentials in team D.
Notice also that some of the ab initio potentials
are polarisable.

Within each type of potentials described in group D
(i.e. analytical potentials), one could find two subsets,
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1148 C. Vega

one in which the molecules are treated as rigid entities
(rigid models) and those in which flexibility is incorporated
(flexible models).

Non-polarisable models are by far the most used in the
modelling of water. For these models, U(R3N) is usually
described as

U (R3N ) �
i=N−1∑

i=1

j=N∑
j=i+1

4εLJ[(σ/Rij )12 − (σ/Rij )6]

+
i=N−1∑

i=1

j=N∑
j=i+1

∑
α

∑
β

qiαqjβ

4πε0Riαjβ

, (4)

where the indices α, β run over the partial charges of each
molecule, and there is only one LJ centre per molecule (lo-
cated on the oxygen atom). One of the main conclusions of
the last 20 years is that empirical non-polarisable potentials
such as SPC/E, TIP4P-Ew [78] or TIP4P/2005 [13] which
overestimate the vapourisation enthalpy �Hv provide a bet-
ter description of water than those that try to reproduce
it. The vapourisation enthalpy can be estimated (when far
from the critical point) as �Hv = − 〈Ul〉 + nRT, where
〈Ul〉 is the residual internal energy of the liquid and n is the
number of moles. For this reason, models as SPC/E, TIP4P-
Ew and TIP4P/2005 underestimate 〈Ul〉 and only get closer
values to experiment for �Hv when an ‘ad hoc’ term, the
polarisation energy, is added [15,79]. Why models that do
not reproduce the vapourisation enthalpy provide a better
description of water properties? A possible explanation is
that these models try to reproduce the gradient of the inter-
molecular energy (i.e. the forces) rather than the absolute
values of the intermolecular energy, providing an overall
better description of the landscape for the liquid phase of
the intermolecular energy. A graphical summary of this idea
is presented in Figure 1. In the sketch of this figure, it is
qualitatively illustrated how a potential may describe well
U but not its gradient (as for instance TIP4P), whereas an-
other model may describe reasonably well the gradient but
not U (as, for instance, TIP4P/2005). It is now clear that for
non-polarisable models of water models, it is not possible
to simultaneously reproduce both U and the gradient of U,
and that a better water model is obtained when reproducing
the gradient rather than the energy. If your description of
the gradient of U is reasonable, then the configurations gen-
erated along the Markov chain of the MC run or along the
trajectory in the MD run, would indeed be representative
of those appearing in real water. Having values of U in the
liquid phase, shifted by a constant relative to the exact ones,
will not influence the relative probabilities between two dif-
ferent configurations in this phase since it is proportional
to the Boltzmann factor of their energy difference, and this
difference remains unchanged if the energy of both config-
urations is shifted by a constant. The drawback is that this
shift would be much smaller in the gas phase. Therefore,
liquid– vapour co-existence properties (vapour pressures,

0

R
3N

-15

-10

-5

0

U

Liquid

Gas

<U
l
>

< U
l
>

Figure 1. Sketch of the PES as obtained from first principles for
the liquid (configurations on the left-hand side, black solid line)
and vapour (configurations on the right hand side, blue solid line).
Certainly R3N is multidimensional; therefore, our presentation as
a one-dimensional object (x-axis) is only a sketch. Red dashed
lines: sketch of the PES for a model reproducing the values of
〈Ul〉 (the average residual internal energy of the liquid) and the
vapourisation enthalpy �Hv, but not the gradient of U, as TIP4P.
Black dashed–dotted lines: sketch of a model reproducing the gra-
dient of U but neither 〈Ul〉 nor �Hv as TIP4P/2005. Vertical lines
represent the value of 〈Ul〉 which is one of the main contributions
to the vapourisation enthalpy.

vapourisation enthalpies) will be affected reflecting that the
relative probabilities between configurations of these two
phases will not be described properly.

After presenting the different options (ABCD) in the
modelling of water there is an interesting question: should
one uses the approach A, or B, or C or D when modelling
water? Obviously, you should use the approach that is more
convenient for the problem you have in mind. Therefore,
there is no unique answer to this question. Depending on
the problem it may be more convenient to use the approach
A, B, C or D. For instance, it is difficult to think how em-
pirical potentials can contribute to problems where water
is involved in chemical reactions, or when computing elec-
tronic spectra. At the same time, it is difficult that approach
A or B can attack problems involving hundreds or thou-
sands of water molecules or very long times (for instance,
nucleation and supercooled water [80–82] or the confor-
mational changes in proteins). Our point of view is that the
four approaches are complementary. In fact, it is becom-
ing more common now to be at conferences about water
where scientists of the four types of modelling are present-
ing their results. These four approaches in the modelling of
water will continue in the future.

Another different question is as follows: which ap-
proach provides an overall better description of water after
ignoring chemical reactions and electronic spectra ? In prin-
ciple, results of approach A should be the only ones able
to describe all the experimental properties of water. The
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Molecular Physics 1149

Table 2. Scoring summary of the TIP4P/2005 (see Table IV of
[17] for further details) and surface (PES, DMS or both) required
to determine the property. Strictly speaking for the dielectric con-
stant, the PS is also needed. However, the contribution of this
surface to the final value of the dielectric constant is small ( of
about 1% in condensed phases of water). TMD, Tm and Tc stand
for the temperature of maximum density at room pressure, the
normal melting temperature of ice Ih and the critical temperature,
respectively. EOS refers to the equation of state.

Property TIP4P/2005 Surface

Enthalpy of phase change 5.0 PES
Critical point properties 7.3 PES
Surface tension 9.0 PES
Melting properties 8.8 PES
Orthobaric densities and TMD 8.5 PES
Isothermal compressibility 9.0 PES
Gas properties 0.0 PES
Heat capacity at constant pressure 3.5 PES
Static dielectric constant 2.7 PES + DMS (+PS)
Tm–TMD–Tc ratios 8.3 PES
Densities of ice polymorphs 8.8 PES
EOS at high pressure 10 PES
Self-diffusion coefficient 8.0 PES
Shear viscosity 9.5 PES
Orientational relaxation time 9.0 PES
Structure 7.5 PES
Phase diagram 8.0 PES
Final score 7.2

approach A is, in principle, exact. However, the reader may
be surprised to learn that the results of approaches A and B
are still far from describing the experimental properties of
water. The reason is that we are not solving the Schrödinger
equation exactly. Reliable methods such as MP2 or coupled
cluster become too expensive (except for small water clus-
ters [83]) and they are not feasible right now for the system
sizes and simulation times required to obtain the thermody-
namic properties. Computationally, cheaper methods such
as DFT use approximate functionals. Typically, a set of
letters is designed to describe the approximated function-
als used in the calculations as for instance PBE0, B3LYP
[84–87].

A possible way of tracking progress in the field is to
perform an extensive comparison between calculated and
experimental values for a number of selected properties.
We recently propose such a comparison and suggested a
criterion to obtain a numerical score [17]. When agreement
with experiment is good, you obtain a high score. When
agreement with experiment is low, you obtain a low score.
Results for TIP4P/2005 are shown in Table 2. As it can be
seen that TIP4P/2005 got a score of 7.2 points out of the 10.
In our opinion obtaining a higher score in the test means
that you are describing better the PES of water.

The water test includes the comparison to experimen-
tal properties of the gas, liquid and solid phases of water.
Therefore, the water test evaluates the capacity of the model
to reproduce the PES under quite different conditions. The
PES depends formally on R3N, but for systems under pe-

riodic boundary conditions, the volume of the system V
should also be provided. When performing a simulation at a
certain value of N, V and T only configurations having a non-
negligible statistical weight will be found. Let us denote this
subset of configurations as R3N∗. Obviously, the subset of
explored configurations will be a function of the number
density of the system d = (N/V), the temperature and, in the
case of solid phases, the geometrical constraints imposed by
the lattice �. Therefore, R3N∗ is a function of d,T and �. Re-
cently, it has been shown how a polarisable model [74] was
able to obtain a higher score than a good non-polarisable one
in the water test. That makes sense and points out the exis-
tence of progress in the field. The main reason for the higher
score was an improvement in the score for those properties
that depend on the description of the PES at low values of the
density (properties of the gas, the virial coefficients, vapour
pressure, critical pressure), while keeping a good score for
condensed matter properties. Non-polarisable models are
designed to describe the condensed matter phases but are
unable to describe the properties of the gas.

In this section, we have presented different possible ap-
proaches in the modelling of water. The central idea of this
paper is related to the way the dielectric constant should be
computed, when modelling water within the approaches C
and/or D. In Section 4, we will describe how the dielectric
constant is commonly obtained in computer simulations
and in experiments. But before, and to illustrate the reasons
behind the main point of this paper, it seems pertinent to
summarise some basic ideas of quantum chemistry. In par-
ticular, how the energy of a system can be obtained from
quantum calculations, both in the absence and in the pres-
ence of an electric field.

3. A little bit of Quantum Chemistry: potential
energy and dipole moment surfaces

We shall start by presenting two of the most important
surfaces in the modelling of water, the PES and the dipole
moment surface (DMS). We shall first explain how they are
obtained from quantum calculations, and second, we will
discuss which properties are determined by the PES and
which ones by the DMS.

Within the Born–Oppenheimer approximation one
should solve the Schrödinger equation for a certain fixed
configuration of the nuclei of the system R3N = R1, R2,
. . . , R3N. The positions of the ne electrons are denoted as
τne = τ1, τ2, . . . τne (obviously, for water, ne = 10N), where
τ i stands for the coordinates of position and spin of elec-
tron i (i.e. risi) . In the absence of an electric field (Eel),
the energy of the system can be obtained by solving the
Schrödinger equation:

Ĥ 0
0(τne ; R3N ) = E0(R3N )
0(τne ; R3N ) (5)

The superscript 0 indicates the absence of an electric
field. The hat indicates an operator. Unless other thing is

D
ow

nl
oa

de
d 

by
 [

B
ib

lio
te

ca
 U

ni
ve

rs
id

ad
 C

om
pl

ut
en

se
 d

e 
M

ad
ri

d]
, [

G
eo

rg
e 

Ja
ck

so
n]

 a
t 0

4:
58

 2
1 

M
ay

 2
01

5 



1150 C. Vega

stated, we shall focus on the ground state, so that the energy
and wave function refer to that of the ground state. Notice
that Ĥ 0 includes the internuclear Coulombic repulsion en-
ergy. The total dipole moment of the system M0 is obtained
as follows [86,87]:

M0(R3N ) = e

(∑
γ

Zγ Rγ −
∫

rρ0(r)dr

)
(6)

where e is the magnitude of the electron charge, Zγ is the
atomic number of atom γ and ρ0 is the electron density
at point r, which can be easily obtained from the wave
function as [86]

ρ0(r) = ne

∫
· · ·

∫

∗(r, s1, τ2, . . . , τne

)

×
(r, s1, τ2, . . . , τne
)ds1dτ2, . . . , dτne

(7)

Notice that both the energy and the dipole moment of
the system depend on the positions of the nuclei; therefore,
they are functions of R3N. Determining E0 for different
configurations of the nuclei provides the PES, E0(R3N). De-
termining the dipole moment for different positions of the
nuclei provides the DMS, M0(R3N). The existence of two
different surfaces when describing properties of a system is
well known in the quantum chemistry community [88,89],
but probably less well known in the community performing
condensed matter simulations with empirical potentials.

The energy E0 and the dipole moment M0 are observ-
able so that in principle they can be measured. There is an
operator for each of these two magnitudes, and it is easy
to determine their values once the wave function is known.
However, the dipole moment of each individual molecule
(in a certain R3N configuration) cannot be measured ex-
perimentally and there is no operator linked to the dipole
moment of a single molecule in condensed matter. The
same is also true for the total quadrupole moment of a sys-
tem. It can also be determined experimentally by using an
inhomogeneous electric field. However, it is not possible
to determine the quadrupole moment of each individual
molecule (in a certain R3N configuration), and there is no
operator linked to the quadrupole moment of a molecule
in condensed matter. The problem when determining the
molecular dipole/quadrupole moment of a molecule in con-
densed matter is that for each point of the space r, with an
electronic density ρ0(r), one must decide somewhat arbi-
trarily to which molecule of the system this point r belongs.
There is no unique way of doing that and for this reason
there is no unique way of determining the dipole moment
of a molecule in condensed matter [87,90,91]. The dipole
moment of an individual molecule is not needed either to
compute the energy of a certain configuration or to com-
pute the total dipole moment of the system in a certain
configuration. However, it may be useful to rationalise the
obtained results. Defining the dipole moment of a molecule

in condensed matter is useful as a pedagogical concept, as it
allows one to better understand the properties of condensed
matter. In the same way, the partial charge of an atom in a
molecule cannot be measured. In fact, there is no operator
to determine partial charges. Partial charges are only useful
to obtain a graphical simple picture of the charge distribu-
tion within the molecule or eventually to obtain an initial
educated first trial in the design of empirical potentials. Al-
though partial charges cannot be determined in a unique
way, it is certainly possible to conceive that a certain pre-
scription yields partial charges that can be used with success
in the development of a force field for a given molecule.

Let us now apply a uniform static electric field Eel.
Let us assume that the electric field is applied along the
z-direction and its modulus is Eel. The energy of the system
for a certain configuration of the nuclei R3N is obtained by
solving the Schrödinger equation:

(Ĥ 0 − EelM̂z)
(τne ; Eel, R3N )

= E(R3N , Eel)
(τne ; Eel, R3N ) (8)

The total dipole moment of the system M is obtained as
follows:

M(R3N) = e

(∑
γ

Zγ Rγ −
∫

rρ(r)dr

)
(9)

where ρ (without any subscript) is the electron density in
the presence of the field, which can be obtained easily from
the wave function. It follows from Equation (8) that the
energy of the system in the presence of the external field
can be written as follows:

E(R3N , Eel) =
∫


∗Ĥ 0
dτne − Eel Mz (10)

According to this, the energy can be divided into two
contributions. The first one is the intermolecular energy,
and the second one is the contribution due to the interaction
of the system with the external field. Notice, however, that
even the first term depends on the external electric field
since the wave function 
 depends on the external field
and it is not identical to 
0. If the external field Eel is weak,
one can use quantum perturbation theory using the external
field as the coupling parameter to estimate the energy of
the system. In that case (to the second order in Eel) one
obtains

E(R3N , Eel) = E0 − Eel M0
z

+E2
el

∑
j

| ∫ (
0)∗M̂z

0
j dτne |2

(E0 − E0
j )

+ · · · (11)

where the subindex j labels the excited states of the system
in the absence of the external field. The previous equation
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Molecular Physics 1151

can be written as follows:

E(R3N, Eel) = E0 − Eel M0
z − 1

2
E2

el α0
zz + · · · (12)

where αzz is the zz-component of the polarisability tensor.
It follows that

M0
z (R3N ) = −

(
dE(R3N, Eel)

dEel

)
Eel=0

(13)

α0
zz(R

3N ) =
(

dMz(R3N, Eel)

dEel

)
Eel=0

= −
(

d2E(R3N, Eel)

dE2
el

)
Eel=0

(14)

The energy of the system in the absence of the external
field E0 defines the PES. The first derivative of the energy
with respect to the external field (at zero external field) de-
fines the DMS (M0

z ). Strictly speaking, the DMS is formed
by three different surfaces ( i.e. M0

x , M0
y , M0

z ). The sec-
ond derivative of the energy with respect to the external
field is the polarisability surface (PS) [92]. Obviously, the
PS is formed by nine components and is a tensor. Each
component represents a different second derivative (xx, xy,
. . . , zz). For this reason, the PS is formed by nine sur-
faces. Notice that the polarisability is related to the deriva-
tive of the polarisation of the system with respect to the
external field. After introducing the PES and DMS, it is
interesting to raise the following question: which proper-
ties are obtained from the PES and which one from the
DMS?

In Table 2, a list of the properties that can be obtained
once the PES is known is presented. As can be seen, the
knowledge of the PES is enough to compute practically all
experimental properties of the system. In fact, to perform
MC simulations, one only needs to know the energy of each
configuration (and its gradient too in the case of molecular
dynamics). The only property that cannot be evaluated, even
after the PES is known, is the dielectric constant. To deter-
mine the dielectric constant, both the PES and the DMS are
needed (and also the PS, although the contribution of this
surface in the case of water is rather small). In the absence
of the electric field, all properties of water can be obtained
from the PES. In this case, you should not care at all about
the DMS and PS because without the presence of the elec-
tric field they play no role! In the physics of water (or in that
of any other substance or system), the dielectric constant
is a property that matters only when applying an electric
field to the sample. Due to this particularity, it is interesting
to discuss in some detail the procedure used to determine
the dielectric constant both in experiments and in computer
simulations.

4. The dielectric constant

In experiments, the dielectric constant is obtained from the
relation between the polarisation 〈Pz〉 and the electric field:

〈Pz〉 = 〈Mz〉
V

= χEel = ε0(εr − 1)Eel (15)

where χ is the susceptibility, ε0 is the permittivity of vac-
uum and εr = ε/ε0 ( the ratio of the permittivity of the
medium with respect to vacuum) is the dielectric constant.
In general, the electric field acting on the sample, Eel, is not
identical to the applied external field Eext, as surface charges
are formed at the interfaces of the sample, and these sur-
face charges generated an additional contribution to the
field [93,94]. However, if the sample is confined within a
conductor (i.e. the dielectric around the sample has an infi-
nite dielectric constant), then Eel becomes identical to Eext.
For simplicity, we shall assume that this is the setup used
both in experiments and in the calculations, so that Eel and
Eext are identical (i.e. we are using conducting boundary
conditions). For weak electric fields, the relation between
〈Pz〉 and Eel is linear and the slope defines the value of the
dielectric constant. Therefore,

εr = 1 + 1

ε0

(
d〈Pz〉
dEel

)
Eel=0

= 1 + 1

ε0 V

(
d〈Mz〉
dEel

)
Eel=0

(16)

Let us now assume that the motion of the nuclei can be
described using classical statistical mechanics (the formal-
ism can be easily extended to the case where one incorpo-
rates nuclear quantum effects). Then (in the NVT ensem-
ble),

〈Mz〉 =
∫

Mz(R3N , Eel)e−βE(R3N ,Eel)dR3N∫
e−βE(R3N ,Eel)dR3N

(17)

Notice that both Mz(R3N, Eel) and E(R3N, Eel) are func-
tions of the position of the nuclei and of the electric field.
If the zero of energies was chosen as the energy of N iso-
lated water molecules in the absence of the field, then this
change, of course, would not affect the value of 〈Mz〉. To
evaluate εr, all that is needed is to evaluate the derivative of
〈Mz〉 with respect to Eel at zero external field (see Equation
(16). By using the expression obtained to first order from
quantum perturbation theory for E(R3N, Eel), one obtains

εr = 1 + 1

ε0 V

〈(
dMz(R3N , Eel)

dEel

)
Eel=0

〉
0

+ β

ε0V

(〈(
M0

z

)2〉
0
− 〈

M0
z

〉2
0

)
(18)
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1152 C. Vega

where the 〈X〉 0 represents the canonical average of property
X over configurations generated in the absence of the elec-
tric field. Although the discussion can be formulated for
a general case, for simplicity, let us focus on an isotropic
phase (for instance, a liquid phase). In this case, the value
of 〈M0

z 〉0 is zero (there is no net polarisation in the absence
of the field), and the directions x, y, z are equivalent, so that
better statistics is obtained by averaging the results over the
three axes. The final expression is as follows:

εr = 1 + 1

ε0V

〈(
dMz

dE

)
Eel=0

〉
0

+ ρ

ε03kT

〈(M0)2〉0

N

= εr,∞ + ρ

ε03kT

〈(M0)2〉0

N
(19)

This is the expression in the SI system of units. To obtain
the corresponding formula in the CGS (often used in sim-
ulations), one should replace ε0 by 1/(4π ) in the previous
expression. The dielectric constant is the sum of three con-
tributions. The first one is a constant with value one. The
second contribution accounts for the average change of the
polarisation of the system for an instantaneous configura-
tion when an external field is applied. The sum of these
two terms is usually denoted as εr, ∞. The third contribu-
tion accounts for the polarisation induced in the system
by the alignment of the permanent dipole moments of the
molecules with the external electric field. Let us briefly
comment on the value of εr, ∞. It can be determined from
experiments by using an electric field of high frequency. In
fact, when the electric field has a high frequency, the per-
manent dipole moment of the molecules of water is unable
to align with the external field within the time scale of one
oscillation. For this reason, it is possible to determine εr, ∞
from experiments by using high-frequency electric fields. It
can also be determined from theoretical calculations. The
value of εr, ∞ for water is of about 1.8 both for pure wa-
ter and for ice Ih [95,96]. Since the dielectric constants
of liquid water and ice Ih at the melting point are 88 and
94, respectively, it is clear that, in condensed matter, the
largest contribution to the dielectric constant comes by far
from the last term on the right-hand side of Equation (19).
The dielectric constant of water is high, not because the
external field significantly changes the polarisation of indi-
vidual configurations, but because it significantly changes
the probability of each individual configuration in the en-
semble by increasing the probability of configurations with
large polarisation.

The way to compute εr in computer simulation is rather
straightforward. One performs simulations in the absence
of the electric field. One only needs the PES to perform
those simulations. You store in the hard disk, say, 10,000
independent configurations for later analysis. For each con-
figuration, one evaluates its dipole moment M0 (which is
obtained from the DMS) and the derivative of Mz with

respect to the external field evaluated at zero external field
(which is obtained from the PS). Obviously, expressions for
the DMS and PS are needed. After obtaining the average
over the 10,000 configurations, one obtains the value of the
dielectric constant. In summary, one only needs the PES to
generate the trajectory over the phase space, and then for
the analysis leading to the dielectric constant one also needs
the DMS and PS.

Now we will present the main point of this paper.

5. One molecule, two surfaces

The PES and the DMS are the two functions that depend on
R3N. They are two surfaces on the imaginary plane where
R3N are the independent variables. Both PES and DMS can
be obtained from the wave function.

5.1. One side of the mistake: transferring from
the PES to the DMS

Empirical potentials are simple expressions designed to
describe (although in an approximate way) the PES. They
usually contain parameters for the LJ part of the potential,
and parameters (i.e. partial charges) to describe Coulombic-
like interactions.

Now it is time to introduce the ‘dogma’ that has been
used implicitly by a number of people (including the author
of this paper) [17,97,98]. The ‘dogma’ states that ‘the partial
charges’ used to describe empirically the PES should also
be used to describe empirically the DMS. According to the
‘dogma’ , it should be done in this way, and it would not be
legal, possible or correct to do something different.

But . . . if the PES and the DMS are two surfaces, why
should we use the same set of fitting parameters to describe
two different functions? Let us assume that both the PES
and the DMS are known from ab initio calculations. In the
case we are using partial charges to describe empirically
the PES and/or DMS, one would expect that the param-
eters providing the best fit (i.e. with the minimum of the
average square deviation) for the PES would, in general,
be different from those obtained to reproduce the DMS.
Therefore, there is no conceptual reason why one could not
use a different set of partial charges to describe the PES
and the DMS (in contrast with the ‘dogma’ that states that
they should be identical). The main point of this paper is
to point out that the implicit assumption that one should
use the same partial charges to describe the PES and the
DMS is a ‘conceptual’ mistake. Let us analyse whether
leaving the ‘dogma’ presents some technical difficulties.
When performing simulations using an empirical PES, one
stores a set of configurations on the hard disk. It is clear that
now you can use whatever expression you want to obtain
the dipole moment of the stored configurations. There is
no technical difficulty in doing that. One can write a pro-
gram to generate the configurations from a certain PES,
and another one reading these configurations and obtaining
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Molecular Physics 1153

the DMS using a different set of parameters. In fact, one
does not need two programs. One could do that within one
program. It is enough to have two subroutines, one for the
PES (which enters in the Markov chain or when comput-
ing forces) and another one for the DMS (which enters to
compute the dipole moment of each configuration). In the
case the PS is also considered, then another subroutine for
the PS is needed. Of course, the current popular programs
(Gromacs [99], DLPOLY [100], Lammps [101], . . .) do not
allow one to do that because they have been written respect-
ing the ‘dogma’. However, modified versions of these codes
leaving the dogma can be easily written.

In the design of empirical potentials for water, we prob-
ably misunderstood the role of the dielectric constant. The
dielectric constant is not the property to look at to obtain a
good PES. It depends on two surfaces and when one fails
in describing εr, one does not know whether this is due
to a good PES combined with a bad DMS, to a bad PES
combined to a good DMS or to the combination of a bad
PES and a bad DMS (although in this last case there is the
possibility that one describes quite well the experimental
value if the errors in the two surfaces cancel out partially).
We suggest the following procedure. One first tries to de-
velop an empirical expression for the PES, by reproducing
as many experimental properties as possible (but eliminat-
ing the dielectric constant from the test). Once you have a
good PES, then you fit your empirical expression for the
DMS by fitting to the experimental values of the dielectric
constant.

Once one leaves the ‘dogma’, there are many possibil-
ities. For instance, one could use a model like TIP4P/2005
for the PES and use quantum chemistry, or a polarisable
model to determine M0 and the polarisability for the con-
figurations stored on the hard disk. In fact, such approach
has been used recently by Hamm to determine the two-
dimensional Raman THz spectra of water [102,103] and
make a comparison with the experimental results. Also,
Skinner and co-workers [104] found that it was possible
to describe the low-frequency region of the infra-red (IR)
spectrum of water and ice Ih by using a non-polarisable
model for the PES and a polarisable model for the DMS. In
the future, it may be very interesting to determine M0 from
first principles for the configurations obtained by using an
empirical potential. There are some lessons to be learnt
from that. Probably, we have not fully appreciated the fact
that the PES and the DMS are two different surfaces and
there is no reason why both of them should be described by
the same set of charges, parameters or methodologies.

As far as we know, the dogma was challenged in at
least three recent papers. In our previous work, we used the
‘charge scaling’ method (see discussion about this method
later) for the DMS [25,26]. The group of Skinner has
also presented recently an example of ‘departure from the
dogma’. Skinner and co-workers developed the E3B model
[105], a model that adds three body forces to a TIP4P-

like model. The addition of three body forces in principle
should improve the description of the PES. However, it was
found that the E3B model did not improve the descrip-
tion of the dielectric constant of water. Why? Because once
again the same set of charges was used to describe the
PES and the DMS. However, quite recently, Skinner and
co-workers used the E3B model for the PES and a polar-
isable model to describe the DMS with reasonable agree-
ment with the experimental results [104]. Probably, these
two works can be regarded as the first excursions away from
the ‘dogma’. The idea is also ‘in the air’ in the recent pa-
pers of Leontyev and Stuchebrukhov [106–108], where they
suggested that the charges to be used in the PES of a non-
polarisable model correspond to the scaled charges of a po-
larisable model (assuming that they mean that the charges of
the non-polarisable model are used to obtain the PES and
the charges of the polarisable model are for the DMS). We
do hope that many more examples like these (i.e. leaving
the dogma) will come.

If one solves the Schrödinger equation exactly (as na-
ture does), then from the exact wave function one obtains
both the exact PES and DMS. The power of approaches A
and B is that as one gets a better and better wave function
(or functional), one will be able to obtain from the wave
function (or from the electronic density) both an accurate
PES and DMS. The assumption that a simple empirical
potential is able to describe all features of the PES is some-
what optimistic, although one must admit that it is amazing
how much can be described by such a simple approach.
However, even admitting that an empirical potential with
partial charges can do a reasonable job in describing the
PES, assuming that the same partial charges are good to
describe the DMS, is simply ‘too much’. It is interesting to
point out that the collaboration between teams A/B and D
could be very useful to obtain accurate values for εr.

We have described above how it is possible and sim-
ple to determine εr without invoking the ‘dogma’ from the
expressions obtained from linear response theory. The di-
electric constant can also be obtained by applying a weak
electric field. Once again, for simplicity, we shall assume
that the field acts on the z-axis and shall use conducting
boundary conditions. Then, one has [26,94]

εr = 1 + 〈Mz〉
ε0EelV

= 1 + 1

ε0EelV

∫
Mze

−βE(R3N ,Eel)dR3N∫
e−βE(R3N ,Eel)dR3N

(20)

For a weak electric field, one can use the first-order
perturbation theory both for E(R3N, Eel) and for Mz:

εr = 1 + 1

ε0EelV

〈
M0

z +
(

dMz

dEel

)
Eel=0

Eel

〉
E0−Eel M0

z

(21)
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1154 C. Vega

To evaluate this expression, one needs to store on the
hard disk configurations generated according to the Boltz-
mann distribution of E0 − Eel M0

z (so that the PES and
DMS are needed). Once these configurations are saved,
you simply evaluate the average of the value in the bracket
(which requires to know both the DMS and the PS). Many
standard MD and MC programs allow one to apply an ex-
ternal electric field. The codes were written to obey the
‘dogma’; therefore, the same partial charges and/or multi-
poles are used for the PES and the DMS. It is generally
stated that for non-polarisable models, the PS is zero. In the
case of polarisable models, the PS is described by a sim-
ple electrostatic model describing how the DMS changes
with the electric field. However, these codes could be easily
modified to deviate from the ’dogma’, by simply allowing
different treatments when describing the PES, DMS and
PS. As discussed previously, the contribution of the PS to
εr for water at room temperature and pressure is small (of
about 1 %), so that the error introduced by neglecting this
contribution is small.

We shall now illustrate a very simple example where
we abandon the dogma. Although more complex treatments
could obtain much better results, the ‘λ’ scaling is probably
the simplest example to illustrate the ideas of this paper at
work.

5.2. The λ scaling

Let us assume that to describe the PES one is using, in
addition to the traditional LJ parameters, a set of partial
charges. We shall denote the partial charges used to describe
the PES as qPES. Let us now assume that to describe the
DMS one is using a set of charges that are identical to those
used to describe the PES (and located at the same position)
but scaled by a factor λ. Then, it follows that

qDMS = λqPES (22)

We shall denote with subscript λ the properties that will
follow when using the scaled charges for the DMS (while
using the original charges for the PES) and by PES the
properties that will follow when using the same charges for
the PES and DMS. It follows that

M0
DMS = λM0

PES (23)

Implementing the ideas described above (and assuming for
simplicity that the PS contribution is zero), one obtains

εr,λ = 1 + ρλ2

ε03kT

〈(M0
PES)2〉
N

(24)

εr,λ = 1 + (εr,PES − 1)λ2 (25)

250 300 350
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Figure 2. Dielectric constant of liquid water at room pressure as
a function of the temperature. Line: experimental results. Circles:
results for TIP4P/2005 from [94], and from the λ scaling (with
λ = 1.15) as obtained in this work (squares).

where we denote εr, PES as the value that will follow from
evaluating the dielectric constant in the traditional way (i.e.
using the same partial charges for the PES and DMS).
Several previous studies suggested that the dipole moment
of water in condensed matters is of about 2.66 D [22,109–
115]. In the TIP4P/2005 model, all molecules have a dipole
moment of 2.305 D. Then, the value of λ that follows from
this reasoning is λ = (2.66/2.305) = 1.15. Let us now
evaluate the dielectric constant of water using this scaling.

The results obtained are presented in Figure 2. The di-
electric constant of liquid water for TIP4P/2005 was taken
from the recent work by Kolafa and Viererblova [94]. As
can be seen, the description of the dielectric constant of
water is now much better. At 298 K, the predicted value of
εr, λ is 77.8, which should be compared to 78.5 which is the
experimental value. Also, the variation of the dielectric con-
stant with temperature is now in better agreement with the
experimental results [116]. With respect to ice Ih, the value
of λ required to bring the simulation results of TIP4P/2005
into agreement with the experiments is λ = 1.41, which
implies that the dipole moment of the molecules of water
in ice is about 3.25 D, in reasonable agreement with previ-
ous estimates [22,110–115]. It is not possible to reproduce
simultaneously the dielectric constant of liquid water and
ice Ih using an unique value of λ. The use of the λ scaling
would modify the score of TIP4P/2005 model in the block
of dielectric properties (of course, it will not affect the score
in the rest of the properties). If a unique value of λ is used
for the fluid and ice (i.e. λ = 1.15), then the score for the
three properties of the dielectric constant block would be
10 (liquid), 3 (Ih) and 3 (ratio of the dielectric constant of
ice and water);therefore, the average of this block would be
5.3. Using two different values for λ (one for ice and an-
other one for liquid) would dramatically increase the score
of this section, since basically one would now reproduce
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Molecular Physics 1155

the experimental results. Thus, the use of the λ scaling will
increase the global score of TIP4P/2005 from 7.2 to 7.4
(when using the same value of λ for all phases) and to
7.6 when using a different value of λ for the liquid water
and for ice. It is probably true that all previous discussions
[17,97,98] about the ability of water models to describe the
dielectric constant should be revised, since all the reported
values were obtained under the implicit assumption that
the charges used to describe the PES should also be used
to describe the DMS. Recently, the TIP4P model has been
modified to obtain a ‘special purpose’ model that improves
the description of the dielectric constant [117] of water
(while still using the ‘dogma’). Further work is needed to
analyse if the improvement [117] in the description of εr

is at the cost of deteriorating somewhat the PES, leading
to an overall lower score in the water test (as compared to
TIP4P/2005). Polarisable models, in principle, should im-
prove the description of the dielectric constant of water,
although further work is needed to analyse if the improve-
ment obtained for the liquid phase does also extend to the
solid phases [22]. Notice also that the use of the ‘dogma’ is
also present in polarisable models, since the charges/multi-
poles used to describe the PES are also used to describe the
DMS.

Even in the case of polarisable models leaving the
‘dogma’ may result in an improved description of the dielec-
tric properties of water (so the main point of this work does
not only apply to non-polarisable models). In any case it
seems that when using polarisable models (especially those
using diffusive partial Gaussian charges [71,75] rather than
point like partial charges), the differences between the opti-
mum set of charges needed to reproduce the PES and those
needed to reproduce the DMS are smaller than when using
non-polarisable models. Thus with polarisable models, the
need to use different charges for the PES and DMS is re-
duced considerably. However, the option of using different
approaches to describe both surfaces is still possible and
the benefits of such a treatment remains to be explored. Ob-
viously, in a quantum treatment, the same electron density
should be used to compute both the DMS and PES (in fact,
in DFT, the energy is obtained once the electron density
is known). However, an empirical polarisable model is not
identical to a quantum treatment; therefore, the option of
using different approaches for the PES and DMS could still
be beneficial. Further work on this issue is needed before
establishing definite conclusions.

The failure of all non-polarisable models in describing
the dielectric constant of ice Ih was the ‘smoking gun’, an-
nouncing that something was totally wrong in our treatment
of dielectric properties. The dielectric constant of ice Ih was
not computed often for water models and that may explain
our delay in understanding the situation. TIP4P/2005 was
successful in describing many properties of water indicat-
ing that it has a reasonable PES. The fact that the dielectric
constant of both ice Ih and water was incorrect, but always

much lower than the experimental value, was a clear indi-
cation that there should be a reason for that. In our 2011
paper, we indicated that this was a failure of the model,
and that it was a consequence of the fact that the model
is non-polarisable. In this work, we go one step further.
Our point is that there was something wrong but ‘in our
mind’. LJ centres, partial charges and polarisable models
that respond to a local electric field are just approximations
aimed to describe the PES, which, of course, can only be
obtained from quantum mechanics. Forcing these entities to
reproduce simultaneously, two surfaces obtained from the
quantum treatment (PES and DMS) was in, retrospective, a
naive hope.

5.3. The other side of the mistake: transferring
from the DMS to the PES

Let us consider a diluted solution of NaCl in water in the
absence of an electric field. The dipole moment of a cer-
tain configuration is given by Equation (6). In Equation (6),
the first sum goes over all the nuclei of the problem, and
the second contribution is an integral over the electronic
cloud. This formula is exact. Let us assume, however, that
we want to provide an empirical (and simple) expression
for the dipole moment of the configuration considered. The
electronic cloud around an ion in vacuum is spherical, but
not in water, since the solvation of the ions by the water
molecules distorts the electronic cloud. As stated previ-
ously, the electronic cloud cannot be distributed exactly
among the atoms of the system. However, a scheme like
Atoms in Molecules [91] (AIM) provides a reasonable par-
titioning of the space. One may expect that integrating the
electronic cloud around the ion (in the region assigned to
the ion by a procedure such as AIM) and adding the charge
of the nucleus of the ion, one would obtain a contribution
not too far away from +1 for the Na+ and −1 for Cl−.
What about the water contribution? The water molecules in
contact with the ions will have a distorted electronic cloud,
but if the solution is highly diluted, most of the molecules
of water will not be in contact with the ions, and one ap-
proximation for the contribution of the water molecules to
the dipole moment of the entire system is to use the same
charge distribution that provided a good DMS for pure wa-
ter. Therefore, an approximate empirical approximation for
the dipole moment of a certain configuration in a diluted
solution of NaCl in water would be

M0 � M0
H2O + M0

NaCl � M0
H2O

+ e

⎛
⎝∑

Na+
RNa+ −

∑
Cl−

RCl−

⎞
⎠ (26)

In other words, we obtain the polarisation as the sum of
two contributions – one due to water and the other one due
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1156 C. Vega

to the ions. This is, of course, an approximation. The DMS
should be obtained from the electron density obtained after
solving the Schrödinger equation. However, the approxima-
tion described above can be regarded (for diluted solutions)
as reasonable.

We can now focus on the PES of the salt solution. Let
us assume that water–water interactions are described with
a certain water potential model. What to use for the ion–ion
and ion–water interactions? In the solid phase, it has been
shown [118,119] that the interactions between the ions are
well described by a short-range repulsion plus a Coulombic
interaction between the ions using the charges +1 (for Na+ )
and −1 (for Cl−). In fact, lattice energies (and densities)
are well described with this approach. Let us assume that
we use the same approach for the ion–ion interactions in the
solution. The only remaining question now is as follows:
what should we use for the ion–water interactions?

To accurately describe the property of a mixture of two
components (1 and 2) one needs to describe correctly not
only the 1–1 and 2–2 interactions, but also the 1–2 inter-
actions. To obtain the 1–2 interactions, one should use a
quantum treatment. However, quite often, the 1–2 interac-
tions are estimated by simply applying certain empirical
prescriptions denoted as combining rules that allows one
to estimate the 1–2 interactions once one knows the 1–
1 and 2–2 interactions. For instance, Lorentz– Berthelot
(LB) rules are often used to describe the LJ interactions
between different type of atoms, and when they do not
provide satisfactory results, deviations from LB rules are
introduced [120]. Concerning the Coulombic part of the
potential, we are quite rigid. For instance, for the ion–water
interaction, we will simply apply Coulomb law between the
charges of the ions and the charges of the water model. If
the reader agrees with the statement that 1–2 interactions
cannot be obtained exactly from 1–1 and 2–2 interactions,
then this idea should extend to all types of contributions to
the 1–2 energy (i.e. short-range repulsion, long-range dis-
persion and Coulombic interactions). The hydration energy
of an ion at infinite dilution is mostly due to the interaction
between the ion and the first hydration layers. One could ob-
tain the hydration free energy from a quantum calculation.
However, when water is described by an empirical model, it
may be the case that to reproduce the hydration free energy
of the ion solvated by water, the choice of +1 or −1 for
the ions may not be the best to reproduce simultaneously
the hydration free energy and the density of the solution. It
could be the case that reducing the charge of the ions im-
proves the description of the hydration energies. Moreover,
reducing the charge of the ions may improve the descrip-
tion of the ion–ion correlations at large distances in diluted
solutions, if the dielectric constant of the water model is
lower than the experimental value and one, as usual, uses
the charges of the PES of water to describe the Coulomb
interactions with the ion (instead of the probably better op-
tion of using the charges of the DMS of water since, in

the particular case of very large distances, the effect of the
ion on water is essentially identical to that of an electric
field). Reducing the charge of the ion may certainly dete-
riorate the description of the ion– ion interaction (so that
you should not use this model to describe solids or highly
concentrated solutions), but it may significantly improve the
description of the salt solution properties at low to moderate
concentrations.

The idea of using partial charges different from +1 and
−1 ( or +ze in general) for ions is not new in the literature.
It has also been suggested by other authors [106,121]. The
idea has not been very popular, probably because of the re-
sistance to use different charges in the DMS and in the PES
(i.e. the ‘dogma’). Once you leave the ‘dogma’, the flex-
ibility increases. Instead of attacking this approach from
the very beginning, we believe that this question should
be decided in the battle field. The battle field in modelling
is the description of the properties of real systems. Does
one describe better the experimental properties when using
different charges to describe the PES and DMS surfaces?
Do we describe better the properties of solutions by using
charges different from +1 or −1 for the ions? It should be
mentioned that properties of the solution as density, dif-
fusion coefficients, vapour pressure, osmotic coefficients,
chemical potentials and activity coefficients depend only
on the PES and not on the DMS.

Certainly, further work is needed to analyse this issue
in detail. In particular, there are two problems that would
be particularly useful to obtain certain conclusions. The
first is the determination by computer simulation of the
chemical potential and activity coefficients of salts in ex-
plicit water. Few studies have been presented so far dealing
with this problem [122–126] and further work is certainly
needed. Reproducing the Debye– Huckel limit (which is
valid for concentrations below 0.01 m) is nice but certainly
not enough. For instance, in the case of NaCl, we must
analyse the behaviour of the activity coefficient for con-
centrations up to 6.14 m (the solubility limit). A second
problem is that of determining the solubility limit of a salt
in water by computer simulations. Besides the technical dif-
ficulties (quite a few), it is a very hard test for force fields
as one needs to simultaneously describe the salt in the solid
phase (many salt models do not even get right the melting
point [127]), a good description of the solvent and a good
description of the water– solvent interaction. No force field
so far reproduced the experimental value of the solubility
of NaCl in water [122,128–132] (the best prediction of the
solubility deviates from the experimental value by a factor
of two). It is clear that we have a problem.

In agreement with the previous reasoning, Kann and
Skinner [121] have shown recently that using partial charges
smaller than +1 and −1 for the ions in salt solutions, it is
possible to describe the variation of the diffusion coefficient
of water with salt concentration (increasing with concen-
tration in the case of structure breakers or chaotropes, and
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Molecular Physics 1157

decreasing with concentration in the case of structure mak-
ers or kosmotropes). The key step was to leave the dogma.
Leontyev and Stuchebrukhovaa [106–108] suggested that
to describe the PES of salt solutions, the charge of the ions
should be scaled by 1/

√
ε∞ (i.e. 1√

1.8
= 0.75). This is an

interesting suggestion. In any case, the charge of the ions
to be used in the PES can be considered as an empirical
parameter to be fitted to reproduce as many properties of
the solution as possible.

That further work is needed to analyse this is even more
obvious when one takes into account that, for NaCl, no
model using charges of +1 and −1 for the ions has been
proposed so far that describes simultaneously the density,
chemical potential and melting point of the NaCl solid, the
experimental values of the chemical potential of NaCl in
solution up to high concentrations (i.e. the standard chem-
ical potential and activity coefficients), and the solubility
limit.

6. Discussion

We shall now discuss several issues that arise once one
leaves the ‘dogma’.

6.1. The generalised hyper-surface

We shall denote as surfaces those magnitudes that depend
on the positions of the nuclei only. The function E(R3N,
Eel) depends on both the position of the nuclei and of the
magnitude of the external field, and is a hyper-surface. As
was stated previously, the energy of a certain configuration
in the presence of an electric field in the z-direction can
be approximated (using quantum perturbation theory) as
follows:

E = E0 − M0
z Eel − 1

2
α0

zz(Eel)
2 + · · · (27)

It is now clear that the hyper-surface E (when truncated in
second order) depends on three surfaces, the PES (i.e. E0),
the DMS (i.e. M0

z ) and the PS (i.e. α0
zz). The polarisation of

the system in the presence of the external field is given as
follows:

Mz = M0
z +

(
dMz

dEel

)
Eel=0

Eel + · · · = M0
z + α0

zzEel + · · ·
(28)

From the discussion of this paper, it follows that one
could use a different empirical expression to describe E0,
M0

z and α0
zz. They are three different surfaces after all. Let

us illustrate this idea with a simple example where we use
the TIP4P/2005 for the PES, the λ scaling for the DMS and

the Clausius–Mossoti approximation for the PS:

E = ETIP4P/2005 − λ MTIP4P/2005
z Eel

− 1

2

⎛
⎝ N∑

j=1

αj,zz

⎞
⎠ E2

el + · · · (29)

where αj, zz is the component zz of the polarisability of
molecule of water j. If one assumes that α is isotropic (a
reasonable approximation for water [133]), and one takes
the value from the gas (i.e. αH2O ), one obtains an ever simpler
expression as follows:

E = ETIP4P/2005 − λ MTIP4P/2005
z Eel − N

2
αH2OE2

el + · · ·
(30)

This expression combines a good PES (i.e. TIP4P/2005)
with a much more reasonable description of the variation of
the energy of the system with the external field (both in the
linear and quadratic terms on the field). Notice that each
contribution has units of energy ( for instance, in the SI, Mz

has units of C m, α of C m2/Volt and Eel of Volt/m). The ex-
pression of the hyper-surface when one follows the ‘dogma’
is simply that of the previous expression with λ = 1 and
αH2O = 0. It is clear that when compared to experiments,
the ‘hyper-surface’ generated when following the ‘dogma’
is much worse than the expression we have just written, the
most obvious consequence being an improvement in the
description of the dielectric constant.

An interesting practical remark is that if the quadratic
term on the field is neglected then the first order term
can be written (when using the λ scaling) either as
[(λM

TIP4P/2005
z )Eel] or [ M

TIP4P/2005
z (λ Eel)]. That means

that if one uses a standard MC or MD program, where the
DMS is obtained from the charges of the PES, then the re-
sults obtained when applying an electric field E′

el in simula-
tions (obeying the ‘dogma’) corresponds to those obtained
when applying an electric field Eel = E′

el/λ in simulations
not obeying the ‘dogma’ and using the λ scaling. In general,
leaving the ‘dogma’ requires rewriting the simulation pro-
gram to implement two different subroutines, one providing
the PES and another one providing the DMS. However, in
case the λ scaling approximation is used for the DMS, then
there is no need to write the new program. Results obtained
with the standard program with E′

el correspond to those
obtained with Eel = E′

el/λ, when using the λ scaling.

6.2. Electric fields and phase transitions

Many computer simulation programs permit the incorpora-
tion of a static electric field (or even a dynamical one having
a certain frequency). No doubt many research groups will
start to apply electric fields to a number of problems and
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1158 C. Vega

there will be dozens of papers dealing with that. This means
that now we should not only care about E0, but we should
seriously consider how well we represent the changes in the
energy of the system with the external field (i.e. the hyper-
surface). The dielectric constant is related to the magnitude
of the change in energy with the field, and for this reason it
matters. Leaving the ‘dogma’ will provide a better descrip-
tion of the hyper-surface so that predictions will be more
reliable.

Another interesting issue to consider in the future is the
effect of electric fields on phase transitions. This is even
more complex and challenging. Now what matters is the
difference in the value of the dielectric constant between
the two phases. In the particular case of the fluid– solid
transition, the most common scenario in the case of molec-
ular polar systems is that of a solid with a low dielectric
constant (the constraints imposed by the lattice will not al-
low large fluctuations of the total polarisation of the solid,
so that the dielectric constant will be small) and a liquid
with a moderate dielectric constant. If the prediction of the
model for the dielectric constant of the liquid phase is good,
then the simulations will predict (correctly) a decrease in
the melting point due to the presence of the electric field.
However, there is an important exception to this common
scenario: the ice Ih– water transition. Experimentally, the
dielectric constant of ice Ih at the melting point is slightly
larger than that of water (the existence of proton disorder
in the solid [134] allows ice Ih to response efficiently to an
electric field). According to this, when applying an electric
field the melting point will increase as the polarisation of ice
Ih is larger than that of water and becomes further stabilised
by the electric field. What will happen in simulations? Al-
though the interest in the dielectric constant of ice Ih has
been rather small, recently, it has become clear that within
the formalism of the ‘dogma’, the dielectric constant of ice
Ih is lower than that of liquid water (by about 15% for TIP4P
models, and by about 50% for models such as TIP3P, SPC/E
or TIP5P). Therefore, these models, within the formalism
of the ‘dogma’, will predict (incorrectly) that the melting
point of ice Ih decreases by a small amount (TIP4P like
models) and significantly (TIP3P, SPC/E and TIP5P). For
huge electric fields (of about 1 V/nm), a ferroelectric Ih (or
Ic) phase [135,136] will be stabilised and one should expect
a huge increase in the melting point with the field, as has
been observed recently by Yan, Overduin and Patey [137].
This is interesting and probably relevant for water under
confinement, but not so important for bulk water because
the intensity of the electric field required to stabilise the
ferroelectric field is huge and is beyond the electric break-
down point of water [138] (which is of about 0.01 V/nm).
Therefore, for experimental studies of bulk water, the key
variable to understand the impact of an electric field on the
ice Ih–water phase transition is the difference between the
dielectric constant of these two phases [26]. If the λ scaling
is used for TIP4P/2005 (with the same value of λ for ice Ih

and for the liquid phase), the description of the dielectric
constant of both phases improves but the dielectric constant
of ice Ih is still slightly lower than that of water. In order
to make predictions that can be compared to experiments,
it is necessary to use different values of λ for ice Ih and
for the liquid phase as we did in the previous work [26].
A similar problem was faced by Skinner and co-workers to
describe the dielectric constants of ice Ih and water. These
authors use the E3B model as the PES for both the liquid
and the solid phases. However, to describe the DMS, they
use a polarisable model with different parameters for the
solid and liquid phases; therefore, the experimental values
of εr were reproduced for both phases. If one does that, the
predictions for the effect of the electric field on the phase
transition would make sense and could be compared to ex-
perimental results. Now that interest in the effect of electric
fields in phase transitions is growing, the issue of the dielec-
tric constant of the two phases involved matters and the idea
of using different charges ( or even empirical expressions)
to describe the PES and the DMS may be useful.

The idea of using different charges and/or methodolo-
gies in different phases to obtain the DMS is fine for de-
termining the properties of each phase, or the effect of
an electric field on a phase transitions. However, this ap-
proach cannot deal with problems like interfacial properties
or nucleation phenomena since it is not clear how to incor-
porate interfacial molecules (which are not neither fully
liquid nor fully solid) into the treatment. Polarisable mod-
els (and/or ab initio calculations), in principle, do not have
this problem as these methods provide a DMS that can be
used for both phases. Whether these treatments are able
to describe quantitatively, the dielectric constant of both
phases need to be analysed in more detail although recent
results suggest that this may indeed be the case [74,139]. In
any case, the possibility of using a non-polarisable model
for the PES and a polarisable model for the DMS is also
open.

This paper does not pretend to be a heroic defense of
non-polarisable models. These models have limitations, as
it is clear from the water test. Rather this paper advocates
that the discussion about the quality of water models to
describe the dielectric constant was probably wrong, be-
cause it was based on the assumption that the same charges
should be used to describe the PES and the DMS. This is not
necessary. Probably, it is not in the prediction of the dielec-
tric constant where polarisable models defeat clearly non-
polarisable models. It is rather for properties like the vapour
pressure, cluster properties, critical pressure, second virial
coefficient and vapourisation enthalpy, where polarisable
models show their superiority over non-polarisable ones
[73–75]. Certainly, everything suggests that models with
parameters depending on the local environment (i.e. polar-
isable) provide a better PES (especially when the model is
used to describe the properties of the gas and of condensed
phases simultaneously).
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Molecular Physics 1159

6.3. Classical electrostatics is not quantum
mechanics

The dipole moment of a configuration can be easily ob-
tained, once the positions of the nuclei are provided and the
electron density is known. The formula used in quantum
mechanics to obtain the dipole moment of a certain config-
uration is identical to the formula used in classical electro-
statics to obtain the dipole moment of a certain distribution
of point charges and a continuous charge distribution. Thus,
concerning the DMS, classical electrostatics and quantum
mechanics get along very well. What about the energy, i.e.
the PES? It is instructive to write the expression of the
energy as obtained from DFT [140] (in the absence of an
electric field):

E0(R3N ) = E[ρ0(r; R3N )] = 1

2

∫ ∫
ρ0(r1)ρ0(r2)

|r1 − r2| dr1dr2

−
3N∑
γ=1

∫
Zγ

|r − Rγ |ρ
0(r)dr +

∑
γ

∑
η>γ

Zγ Zη

Rγη

−1

2

ne∑
i=1

∫

i(r)∇2
i(r)dr + EXC[ρ0(r)] (31)

where the electronic density at point r has been approxi-
mated by the sum of the contributions of different orbitals

 i, i.e. ρ0(r) = ∑ne

i=1 |
i(r)|2 and we used atomic units.
For each configuration of the nuclei, the electron density
will be obtained by minimising the energy of the system
with respect to the electron density. In the functional, the
first three terms have a simple electrostatic origin, namely
the repulsion energy between the electronic clouds, the at-
tractive energy between the nuclei and the electronic cloud,
and the repulsion energy between the nuclei. These terms
can be easily understood from pure electrostatics. Let us
now analyse the last two terms. One is the kinetic energy
of the electrons, and the last one, EXC, represents the ex-
change correlation functional. These two terms cannot be
derived from classical electrostatics. Empirical potentials
recognise that and this is the reason why LJ centres are of-
ten included to incorporate long-range dispersive forces and
short-range repulsive forces as an implicit way of includ-
ing part of the contribution of the EXC and kinetic energy
terms. One should not forget that the exact energy of a con-
figuration cannot be obtained from simple formulas from
electrostatics and/or from any treatment based on an anal-
ogous electrostatic problem. The presence of the exchange
correlation and kinetic energy terms is the reason why the
quantum world cannot be mapped into a problem of clas-
sical electrostatics. Thus, concerning the energy (and the
electron density, which will be obtained from minimisa-
tion of the functional), the classical electrostatics and the
quantum chemistry are divorced. They simply predict dif-
ferent things, because they are using different functionals.

The laws of quantum chemistry cannot be mapped exactly
into an analogous electrostatic problem. One may think that
using the same electrostatics entities (partial charges, diffu-
sive charges, fixed dipoles, induced dipoles, quadrupoles,
etc.) to describe the PES, and the DMS is a sign of con-
sistency. Using the same charges for the PES and DMS is
consistent in an imaginary world where the interaction be-
tween molecules is given by LJ centres and charges and/or
multi-poles that obey a certain simple model derived from
classical electrostatics. However, nature follows the laws
of quantum chemistry. Once one recognises that classical
electrostatics cannot describe the PES and DMS simulta-
neously, the step to use different models to describe the
PES and DMS follows naturally. In fact, we have already
mentioned that within team D (i.e. analytical potentials),
there are two groups: analytical ab initio potentials and em-
pirical potentials. Interestingly, the community developing
ab initio analytical potentials is open to the use of differ-
ent fits for the PES and DMS [51,53,54], and they regard
charges, or partial charges, as merely fitting parameters to
surfaces that were obtained from high-level ab initio cal-
culations. They simply want to reproduce the high-level
results for the two surfaces with high accuracy and they do
not attach so much physical significance to the fitting pa-
rameters. However, in the community developing empirical
potentials, we replaced the quantum problem by a simple
electrostatic problem, and then implicitly assumed that ‘for
consistency’ the same charges should be used for the PES
and DMS. Using simple classical electrostatic models for
the energy is fully inconsistent with the laws of the mi-
croscopic world. For this reason, we do not see any reason
when developing empirical potentials (with parameters ob-
tained to reproduce experimental properties) why we could
not use different models/treatments for the PES and DMS.

6.4. Coarse-grained models of water and the
dielectric constant

In 1990, Tomas Boublik, on a sabbatical leave in Madrid,
taught me (among many other things) the perturbation the-
ory proposed by Wertheim [59] for associating fluids, that
was further extended by Chapman, Jackson and Gubbins
[60], and which is nowadays known as SAFT [141]. He fig-
ured out that the theory could be very useful to implement
an equation of state for fused hard-sphere chains [142],
extending his classical work on the equation of state of
hard-convex bodies [143] and hard-sphere mixtures [144].
In Wertheim’s/SAFT theory, the molecules are described
by strong short-range associating sites (emulating the hy-
drogen bond), and the properties can be computed by us-
ing well-defined approximations. The theory is becoming
quite successful for practical applications. Quite often, no
dipoles or partial charges are used to define the interactions
between molecules. Probably, it is fair to say that it is one
of the most popular perturbation theories of liquids after
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1160 C. Vega

van der Waals [145]. In this theory, water is described as a
spherical molecule, with four short-range association sites,
two hydrogens and two ‘lone pair electron’ sites located in
a tetrahedral arrangement. A very successful model within
this framework is the Kolafa– Nezbeda model of water
[56,57,146] that is composed by just a hard sphere and four
association sites. The contribution of dispersive forces to
the properties can be obtained either using a mean field
approach, or eventually modifying the Kolafa– Nezbeda
model, so that one has an LJ centre plus four associating
sites [64,65]. This is a reasonable model of water, and has
been shown that when used in combination with SAFT,
it can describe many properties of water. Thus, SAFT pro-
vides a good description of water because the potential used
to describe water (i.e. the PES) is simple but still reasonable.
Probably, in a water test like that one presented in Table 2,
these models will obtain a score lower than TIP4P/2005 but
probably not worse than TIP3P (i.e. 2.7). The same is true
for the mW model of water of Molinero and co-workers. In
this case, the tetrahedral coordination of water is induced,
not by using associating sites as in SAFT’s approach, but
by introducing three body forces [147]. This model has
no charges. Molinero and co-workers have implemented
the water test (not for all the properties considered in our
initial test but for some of them) and showed that mW de-
scribes reasonably well water [148]. The score was lower
(6.1) than TIP4P/2005 (7.8 for the properties selected by
Molinero and co-workers) but still reasonable. Thus, mW
is a reasonable PES of water. Let us emphasise again that
both the SAFT and the mW PES do not use partial charges
and still provide a reasonable description of water. Partial
charges are certainly a possibility to induce tetrahedral or-
der in water, but it is clear that it is not the only one. It is
clear that the PES of water should indeed favour tetrahedral
coordination of the molecules.

Now let us state a common criticism received by these
models: ‘they are not real models of water since they have
no partial charges and therefore their dielectric constant
is 1’. At this point, I hope to have succeeded in convinc-
ing the reader that this statement is absolutely wrong. It is
based on the ‘dogma’, i.e. on the implicit assumption that
the charges used to describe the PES should also be used
in the description of the DMS. In this case, there are no
charges in the PES, but you could certainly use charges to
describe the DMS. I do not see any reason, why these type
of ‘coarse-grained’ models could not be used for modelling
salt solutions. In fact, some attempts to do that have been
undertaken in the past [149–151] by introducing a short-
range attraction to describe the interaction between the ions
and water, and by using a Yukawa-like potential to describe
the ion–ion interactions.

7. Conclusions

The main conclusion of this work is simple. For water, there
are two surfaces, the PES and the DMS (strictly speaking,

three if one includes in the treatment the PS). Empirical
potentials are aimed at describing the PES (i.e. the energy
of the system in the absence of the field). It is also possible to
use empirical expressions to describe the DMS. In the case
you use partial charges/multi-poles to describe the PES,
this is fine but there is no reason to use the same partial
charges/multi-poles to describe the DMS. If you do not use
partial charges/multi-poles in the description of the PES,
as in coarse-grained models, there is no reason why you
could not use partial charges/multi-poles in the description
of the DMS. The implicit assumption that the same charges
should be used in the description of the PES and of the
DMS is a ‘dogma’. This ‘dogma’ has contaminated all our
analyses about the ability of water models to describe the
dielectric constant. We need to revise our thinking about
this property. There is nothing wrong (neither physically nor
from a practical point of view) in using different charges for
the PES and for the DMS. Therefore, the charges used for
the PES are not necessarily the best to describe the DMS.
The error also goes the other way around. In cases where
the charges to be used in the description of the DMS seems
more or less obvious (as when you have ions), these charges
may not necessarily be the best to describe the PES. The
idea also extends to the PS. The charges used to describe
the PES and/or the DMS do not provide any information
about how the polarisation of the system changes with an
electric field. For this reason, it is also possible to include
an approximate empirical expression to describe the PS.

Since we are not solving the Schrödinger equation, let
us be practical when describing the PES and DMS. Empir-
ical potentials should provide a good PES, thus describing
all properties of water in the absence of an electric field.
Once you have a good PES, then you need a good DMS to
describe the dielectric constant of water. If the descriptions
of the PES and DMS are correct, then you will correctly
describe all the experimental properties of water, including
the dielectric constant. Thus, the conclusion is that water is
one molecule, with two surfaces (three when the PS is in-
cluded), and that we have been doing during years of water
simulations, one mistake.

Of course, although we used water for the discussion,
since this is the molecule we have studied in more detail
during these years (and it is probably the molecule that has
been studied by more people); the central idea of this paper
can also be extended to other molecules. The PES, DMS
and PS are the three surfaces that should be fitted using
different parameters. Now that the work aimed to study
the effect of electric fields on matter is appearing in the
literature, a good PES, a good DMS and (to lesser extent)
a good PS are needed. If we continue using the ‘dogma’ to
describe the PES, DMS and PS, then the predictions from
computer simulations on the impact of electric fields on the
properties and on the phase transitions of water (particularly
on the ice Ih– water transition) may be incorrect.

It is time to depart from the path initiated by Bernal and
Fowler [10].
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