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Abstract 28 

In this review we address the relationship between stomatal behaviour, water potential regulation 29 

and hydraulic transport in plants, focusing on the implications for the iso/anisohidric classification of 30 

plant drought responses at seasonal timescales. We first revise the history of the isohydry concept 31 

and its possible definitions. Then, we use published data to answer two main questions: (1) is greater 32 

stomatal control in response to decreasing water availability associated with a tighter regulation of 33 

leaf water potential (ΨL) across species? And (2) is there an association between tighter ΨL regulation 34 

(~isohydric behaviour) and lower leaf conductance over time during a drought event? These two 35 

questions are addressed at two levels: across species growing in different sites and comparing only 36 

species coexisting at a given site. Our analyses show that, across species, a tight regulation of ΨL is 37 

not necessarily associated with greater stomatal control or with more constrained assimilation 38 

during drought. Therefore, iso/anisohydry defined in terms of ΨL regulation cannot be used as an 39 

indicator of a specific mechanism of drought-induced mortality or as a proxy for overall plant 40 

vulnerability to drought.  41 

 42 
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Introduction 54 

Plants differ tremendously in the water potentials they experience, not only when comparing species 55 

along wide gradients of water availability but also within sites (Ackerly 2004; Martínez-Vilalta et al. 56 

2014; Pivovaroff et al. 2016). The ecological implications of this variability are large, as xylem and leaf 57 

water potentials are arguably the most important variables determining the water status of plants 58 

(Kramer 1988; Bhaskar & Ackerly 2006). Low (negative) water potentials put the plant hydraulic 59 

transport system under stress, as xylem embolism and analogous processes in extraxylary tissues 60 

tend to increase hydraulic resistance along the soil-plant-atmosphere continuum (Sperry et al. 2002). 61 

If water potentials become too low water transport may cease altogether, ultimately leading to 62 

complete desiccation and plant death (Tyree & Sperry 1988; Tyree & Zimmermann 2002; Choat et al. 63 

2012). There are several mechanisms by which plants can regulate water transport to avoid hydraulic 64 

failure, including structural and physiological adjustments (Maseda & Fernández 2006). At short time 65 

scales, however, stomatal closure is the main mechanism by which plants limit transpiration losses 66 

and, thus, maintain water potentials within tolerable limits. 67 

 68 

The regulation of plant water potential is not only important because of its role in determining plant 69 

responses to drought and other stress factors but also because of its influence on metabolic 70 

processes, including plant growth through turgor-driven cell expansion (Slatyer & Taylor 1960; 71 

Lockhart 1965; Kramer 1983). This central role explains why, since the development of the pressure 72 

chamber by Scholander et al. (1965), water potential has become one of the most frequently 73 

measured variables in plant physiology and plant physiological ecology. Concurrently, there has been 74 

an effort to characterize different modes of water potential regulation (cf. next section). The 75 

iso/anisohidric classification, based on the ability to regulate leaf water potential (ΨL), has been 76 

among the most successful of these attempts (Stocker 1956; Jones 1998; Tardieu & Simonneau 77 

1998). Isohydric species are those that maintain midday ΨL relatively stable as environmental 78 

conditions change, whereas anisohydric species track environmental fluctuations in water 79 
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availability, with no discernible threshold of minimum ΨL. Because of the role of stomata in 80 

regulating leaf conductance to water vapour (gL) and, therefore, transpiration and plant water status, 81 

the iso/anisohydric classification is usually interpreted in terms of stomatal behaviour: isohydric 82 

species maintain relatively stable ΨL precisely because of their more strict stomatal control, whereas 83 

anisohydric species would show a looser regulation of transpiration (Jones 1998; Tardieu & 84 

Simonneau 1998).  85 

 86 

Interpreted in this way, the iso/anisohydric categorization has strong implications for the 87 

maintenance of assimilation under varying environmental conditions and, in general, for the carbon 88 

economy of plants. This notion was used by McDowell et al. (2008) to distinguish between two 89 

interrelated physiological mechanisms leading to plant mortality under drought. Isohydric species 90 

would close stomata earlier during drought and, therefore, would depend more heavily on 91 

carbohydrate reserves to meet continued carbon demands for respiration, osmoregulation or 92 

defense. As a result, they would be more prone to die from carbon starvation. At the other extreme, 93 

anisohydric species would close stomata later at the expense of suffering lower water potentials; 94 

which would make them more vulnerable to hydraulic failure. There is no doubt that this framework 95 

is appealing and has been hugely influential in shaping the research agenda on drought-induced 96 

mortality in the last decade (Adams et al. 2009; Mitchell et al. 2012; Hartmann et al. 2013; Sevanto et 97 

al. 2014); however, is it correct?  98 

 99 

A case in point can be found in Figures 1 and 2 of the seminal paper by Tardieu & Simonneau (1998), 100 

in which a diurnal course of stomatal conductance and ΨL is shown for sunflower (a paradigmatic 101 

anisohydric species) and maize (isohydric) under different levels of drought  stress. These figures 102 

show that the reduction in stomatal conductance under severe water deficit relative to full irrigation 103 

is even more dramatic for sunflower (~100% reduction) than for maize (~66% reduction), despite a 104 

much tighter leaf water potential regulation in the latter species. A similar pattern emerges when 105 
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comparing cultivars with isohydric and anisohydric behaviour in Vitis vinifera, one of the model 106 

systems in the study of the relationship between stomatal regulation and drought resistance in 107 

plants (Schultz 2003; Lovisolo et al. 2010). In their literature synthesis Lovisolo et al. (2010) show 108 

similar stomatal behaviour for cultivars with contrasted ΨL (cf. Figure 1 in their paper). These results 109 

seem hard to reconcile with the view that tighter water potential regulation is necessarily associated 110 

with stronger stomatal control across species or cultivars. More recent studies also challenge the 111 

existence of a direct, unambiguous association between water potential regulation and seasonal gas 112 

exchange when comparing coexisting species (Quero et al. 2011), including the piñon-juniper system 113 

in SW USA, the model system behind the hydraulic framework described in the previous paragraph 114 

(Garcia-Forner et al. 2016a; but see also Limousin et al. 2013; Woodruff et al. 2014).  115 

 116 

There are at least three issues that complicate the link between stomatal control and water potential 117 

regulation across species. The first one has to do with definitions: although the general concepts of 118 

isohydry and anisohydry are quite intuitive, how do we exactly define them in practice considering 119 

that most species are likely to lie somewhere in between these two extreme theoretical behaviours? 120 

Secondly, there is the conceptual difficulty that the changes of the water potential gradient through 121 

the plant do not depend only on stomatal responses, but on the relative sensitivity of transpiration 122 

and plant hydraulic conductance to declining water availability (Martínez-Vilalta et al. 2014). This is 123 

further complicated by the fact that gas exchange and plant hydraulics are tightly coordinated across 124 

species (Meinzer 2002; Sperry et al. 2002; Mencuccini 2003; Brodribb et al. 2014). Finally, when 125 

considering the implications of different stomatal behaviours on the carbon economy of plants what 126 

matters is for how long stomata are closed under a given drought and, thus, we need to focus on the 127 

temporal dynamics. Precisely because isohydric and anisohydric species operate at different water 128 

potentials, the fact that stomata are more sensitive to declining ΨL in isohydric species does not 129 

imply that they will close earlier during drought. The relevant question becomes whether the 130 
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stomata of isohydric species are more sensitive relative to the water potentials at which they 131 

operate, and therefore constrain assimilation further in these species. 132 

 133 

In this review we aim at disentangling the relationship between stomatal behaviour, water potential 134 

regulation and hydraulic transport in plants, focusing on seasonal timescales. We first revise the 135 

history of the isohydry concept and its possible definitions. Then, we use data retrieved from the 136 

literature to address two main questions: (1) is greater stomatal control in response to decreasing 137 

water availability associated with a tighter regulation of leaf water potential across species? (2) is 138 

there an association between tighter water potential regulation (~isohydric behaviour) and lower 139 

leaf conductance (gL) over time during a drought event? These two questions are addressed at two 140 

levels: across species growing in different sites and comparing only species coexisting at a given site. 141 

We finish by discussing the mechanisms behind the observed patterns and the ecological 142 

implications in terms of characterizing plant responses to drought. 143 

 144 

A brief history of the isohydry concept 145 

The classification of plants based on their capacity to maintain a favorable water balance is a classic 146 

theme in environmental plant physiology (e.g., Larcher 2003), which has led to a very rich, and not 147 

always consistent terminology. Terrestrial vascular plants are able to maintain their water content 148 

relatively stable despite fluctuations in water availability, thanks to a cuticle that minimizes 149 

evaporative water losses and large central vacuoles that stabilize the water content in the 150 

protoplasm (homoiohydric sensu Walter 1931). It was early realized, however, that vascular plants 151 

differ substantially in the degree to which they regulate transpiration to maintain an adequate water 152 

balance over diurnal and seasonal timescales. This variability led to the distinction between the 153 

hydrostable and hydrolabile types (Stälfelt 1939) and between the isohydric and anisohydric 154 

behaviours (Berger-Landefeldt 1936; Stocker 1956). There is a close correspondence between these 155 

two classifications, with hydrostable/isohydric species having sensitive stomata and relatively 156 
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constant water status, and hydrolabile/anisohydric plants having opposite characteristics. 157 

Importantly, these two classifications originated before the water potential concept became widely 158 

used in plant physiology (Slatyer & Taylor 1960; Scholander et al. 1965), and therefore focused more 159 

(initially) on the ability to regulate transpiration than on the capacity to maintain relatively stable ΨL 160 

per se. The iso-/anisohydry dichotomy also predated the work on xylem water transport showing 161 

that hydraulic conductivity was also a function of water potential (Milburn 1966; Zimmermann 1983; 162 

Tyree & Sperry 1989). All this might explain why a formal definition of the iso-/anisohydric 163 

behaviours has remained somewhat elusive and current definitions usually mix the cause (stomatal 164 

control) with its expected consequence (water potential regulation) (e.g., Jones 1998; Klein 2014; 165 

Meinzer et al. 2014; Skelton et al. 2015).  166 

 167 

The current use of the iso-/anisohydry dychotomy stresses the physiological responses, but it is 168 

tightly connected to a plethora of more ecological classifications of plant water use under drought 169 

(Schultz 2003). These latter classifications have also a long tradition and oppose plants that tend to 170 

reduce transpiration early on during drought development to save water (water savers, pessimistic 171 

or drought avoiders) with plants that maintain transpiration rates for longer under drought (water 172 

spenders, optimistic or drought tolerant) (Shantz 1927; Turner 1979; Jones 1980; Ludlow 1989). 173 

These classifications have obvious implications in terms of competition for limited soil water 174 

resources and the coexistence of different plant functional types in water-limited systems (Bunce et 175 

al. 1977). More broadly, they reflect the general distinction between conservative/stress tolerant 176 

and acquisitive/competitive strategies of plant resource use (Grime 1974; Díaz et al. 2016). 177 

 178 

Towards a definition of iso- and anisohydry 179 

It is our view that the iso-/anisohydry concepts will only be operational and useful in advancing our 180 

understanding of plant water relations if we are able to define them precisely in terms of measurable 181 

quantities. Despite the original focus on the regulation of transpiration (Berger-Landefeldt 1936; 182 
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Stocker 1956), it seems more consistent with the current use of the terms and their etymology to 183 

emphasize the maintenance of relatively constant leaf water potential (Tardieu & Simonneau 1998; 184 

Sperry et al. 2002). However, even in this more restrictive meaning isohydry can be defined in several 185 

ways and at different temporal scales. We focus here on seasonal patterns and advocate for a 186 

continuous measure of the degree of isohydry instead of distinguishing only between two idealized 187 

extreme behaviours, which would always be somewhat arbitrary (Klein 2014; Martínez-Vilalta et al. 188 

2014).  189 

 190 

Figure 1 presents a hydraulic framework where alternative definitions of the degree of isohydry can 191 

be mapped. Reduced soil water availability (lower, more negative Ψsoil) may affect plant conductance 192 

in two ways, by lowering its hydraulic conductance (KH) and/or its leaf conductance (gL). These 193 

reductions, however, have opposite effects on the water potential difference through the plant (�Ψ 194 

= |ΨL – Ψsoil |): whereas lower KH increases �Ψ, lower gL decreases �Ψ (everything else being equal). 195 

The net change in �Ψ will thus depend on the balance between these two processes (i.e., the relative 196 

sensitivity of transpiration vs. hydraulic transport to declining Ψsoil) (Martínez-Vilalta et al. 2014), 197 

with the complication that any change in ΨL through changes in �Ψ will feedback onto KH and gL. 198 

These feedbacks underlie the tight coordination between hydraulic and water vapor transport at the 199 

plant level (Sperry & Love 2015). The dual control of gL by Ψsoil and ΨL reflects the response of gL to 200 

both soil water availability and leaf water status (Tardieu & Simonneau 1998), albeit in a very 201 

simplified way (Damour et al. 2010; Buckley & Mott 2013). On the other hand, the response of KH to 202 

Ψsoil and ΨL reflects hydraulic losses in different parts of the plant experiencing different water 203 

potentials (e.g., rhizosphere and roots vs. stems or leaves). An important aspect here is the temporal 204 

reversibility of these relationships. No hysteresis is normally assumed for gL responses (but see 205 

Martorell et al. 2014; Tombesi et al. 2015), whereas KH recovery following increases in soil water 206 

availability (higher Ψsoil and ΨL) remains highly controversial, particularly with regards to rapid 207 
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refilling of previously embolized xylem conduits under negative water potentials (Sperry 2013; 208 

Delzon & Cochard 2014; Trifilò et al. 2014).  209 

 210 

We examine here three possible definitions of the degree of isohydry, assuming that predawn leaf 211 

water potential (ΨPD) reflects soil water availability as perceived by the plant (but see Donovan et al. 212 

2003), and that midday leaf water potential (ΨMD) measures ΨL under maximum daily water demand. 213 

Firstly, one could define isohydry simply in terms of the minimum seasonal ΨMD experienced by a 214 

given species or population, with relatively high (close to zero) values implying a more isohydric 215 

behaviour. This is the definition adopted in practice by many studies, but it has important limitations, 216 

as it is greatly affected by the severity of the drought conditions for which ΨMD values are reported. 217 

In practice, most of the variability in minimum ΨMD across species is explained by minimum ΨPD 218 

(Figure 2), and within a site (constant climate) ΨPD is largely affected by rooting extension and depth 219 

(Davis et al. 1998; West et al. 2012; Nardini et al. 2016) (see also section ‘What determines minimum 220 

operating leaf water potentials across species?’ below). A second definition that stresses more the 221 

regulation of water potential inside the plant would be the seasonal variability of ΨMD, with more 222 

isohydric species showing less variability. This variability could be measured as the range or standard 223 

deviation of seasonal ΨMD values. This definition reduces, to some extent, the effect of differences in 224 

rooting systems across species, but it is still heavily affected by the range of water availability 225 

conditions under which water potential measurements are taken. Finally, a third alternative would 226 

be to define isohydry from the relationship between ΨMD and ΨPD, with flatter slopes defining more 227 

isohydric behaviours. One such measures was proposed by Martínez-Vilalta et al. (2014) (σ 228 

parameter). Note, however, that other definitions are possible, for instance assuming more complex 229 

relationships between ΨMD and ΨPD or regressing �Ψ against ΨPD (instead of ΨMD against ΨPD), which 230 

may result in significantly different species rankings (Meinzer et al. 2016). 231 

 232 

Do isohydric species close stomata earlier than anisohydric species? 233 
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We claim here that the relationship between stomatal control and the regulation of leaf water 234 

potential, as well as its implications for plant survival under drought, have not been assessed as 235 

thoroughly as one might expect for what we feel is one of the foundations of our current 236 

understanding of plant drought responses. In order to test whether tighter water potential 237 

regulation (~isohydric behaviour) is associated with lower gL under drought, we collected two 238 

databases, one across species growing in different sites and a second one focusing on species 239 

coexisting at the same sites. These databases, as well as the results of the corresponding analyses, 240 

are presented as case studies in the following sub-sections. Note that we use the more general term 241 

leaf conductance to water vapour (gL) throughout the manuscript, but the values we take from the 242 

literature are frequently reported as stomatal conductances. These two conductances are considered 243 

equivalent unless stomata are nearly or completely closed, in which case other elements (e.g., 244 

cuticular conductance) become relevant. 245 

 246 

1. The relationship between stomatal control and water potential regulation across species 247 

For this analysis we used the global water potentials database from Martínez-Vilalta et al. (2014). 248 

This database contains ΨPD and ΨMD data from 83 articles and includes 102 species growing under 249 

Temperate (n = 44, including one Boreal species), Mediterranean (n = 33), Tropical (n = 15) and Dry (n 250 

= 10) climates. We first asked whether using different measures of isohydry (cf. above) resulted in 251 

different rankings of species. Our results show that this is very clearly the case, particularly when 252 

comparing the σ parameter with the two definitions directly based on ΨMD (Figure 3). The correlation 253 

between the minimum ΨMD and the seasonal range of ΨMD values across species was high (r = -0.94), 254 

whereas it was very low and not even statistically significant when relating σ with minimum ΨMD 255 

values (r = -0.04) or with the ΨMD range (r = 0.18). As an example, Tamarix chinensis, the second most 256 

isohydric species in terms of σ (lowest decline in ΨMD per unit of reduction in ΨPD) reached rather low 257 

minimum ΨMD (-4.6 MPa) and showed considerable seasonal range of ΨMD values (2.9 MPa). These 258 
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results highlight how important it is to agree on a precise definition of isohydry and stick to it if we 259 

are to make any progress on that matter.  260 

 261 

In a second step, we retrieved seasonal gL data from the papers included in the Martínez-Vilalta et al. 262 

(2014) database. A total of 33 papers reported this variable as well as water potentials, including 44 263 

species (Table S1). In some species, gL measurements were very abundant at high ΨPD (well-watered 264 

conditions), effectively providing several gL values at a given ΨPD. To avoid putting excessive weight 265 

to these measurements data was previously summarized by calculating the maximum gL by 0.1 MPa 266 

intervals whenever more than one measurement was available per bin, and these values were used 267 

in all further analyses. Using average instead of maximum gL per bin provided essentially identical 268 

results. Mixed linear models were used to fit the (seasonal) relationship between log10(gL) and ΨPD 269 

within and across species. Species and the combination of study by treatment (when present) nested 270 

within species were included as random effects on the intercept (both) and slope of the model (only 271 

species). By treatment here we refer to sets of plants of a given species that were measured under 272 

different environmental conditions in a particular study, regardless of the nature of the treatment 273 

(see Martínez-Vilalta et al. (2014) for details). A logarithmic transformation of gL (exponential 274 

relationship between gL and ΨL) is commonly used (e.g., Hoffmann et al. 2011) and in our case it 275 

improved the distribution of residuals and model fit in terms of the Akaike information criterion (AIC) 276 

relative to other functional relationships between gL and ΨPD (linear, power). The resulting model 277 

provided an overall good fit to the data (conditional R
2
 = 0.95, marginal R

2
 = 0.50), and the species-278 

level random slopes (γ) were used as an estimate of stomatal sensitivity to ΨPD for each species. 279 

Similarly, the intercept of the relationship was used to calculate maximum gL at ΨPD = 0 (gL0). An 280 

exponential relationship between gL and ΨPD, as assumed here, implies that the relative change in gL 281 

per unit change in ΨPD, determined by the slope, is constant. Consequently, the γ values estimated 282 

for each species were used to calculate the water potential decline required to reduce gL by 50% 283 

(ΨgL50 = ln(0.5)/γ). These values ranged between -0.62 MPa (Vicia fava) and -8.7 MPa (Larrea 284 
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tridentata). The value of ΨgL50 could not be estimated for Tamarix ramosissima because its almost 285 

flat relationship between log10(gL) and ΨPD resulted in an unrealistically low value (~-71 MPa). 286 

 287 

Species’ estimates of stomatal sensitivity (γ values) were used to test whether stomatal behaviour is 288 

associated with different measures of isohydry in terms of water potential regulation. The results of 289 

these analyses showed that, as expected, species with less sensitive stomata experience lower 290 

minimum ΨMD values (R
2
 = 0.20, P = 0.003) and higher seasonal changes in ΨMD (R

2
 = 0.21, P = 0.002) 291 

(Figure 4a,b). However, stomatal sensitivity was unrelated to σ (R
2
 = 0.00, P = 0.94) (Figure 4c), 292 

implying that higher stomatal sensitivity did not result in stronger ΨMD regulation as ΨPD declined 293 

under drought. Very similar relationships were obtained if ΨgL50 was used instead of γ to characterize 294 

stomatal responses (excluding T. ramosissima). Maximum leaf conductance (gL0) was unrelated to the 295 

three isohydry measures we employed (P > 0.3 in all cases). Overall, these results indicate that 296 

species operating at higher (less negative) water potentials tend to close stomata faster with 297 

declining ΨPD than species experiencing lower water potentials, but this does not imply an 298 

association between stomatal control and water potential regulation inside the plant (as measured 299 

by the σ parameter) across species. 300 

 301 

We can further ask whether different degrees of water potential regulation are associated to greater 302 

constrains to gas exchange through stomatal regulation (over time). Leaf conductance (gL) values 303 

were obtained from the same studies from which water potential data had been retrieved (Table S1) 304 

and were pre-processed in exactly the same way as explained above (e.g., 0.1 MPa binning). We 305 

analyzed the relationship between our three measures of isohydry and two measures of seasonal 306 

stomatal behaviour: average gL over the whole study period covered by each study (gL,mean), as a 307 

measure of absolute gas exchange during a drought event; and the ratio of gL,mean to maximum 308 

measured gL (gL,ratio) over the same period, as a relative measure of gas exchange. Our results show 309 

that none of our three measures of isohydry was related to gL,mean across species (P > 0.36 in all cases) 310 
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(Figure 5d,e,f). Similarly, the σ parameter and gL,ratio were unrelated (P = 0.58) (Figure 5c). However, 311 

species experiencing lower minimum ΨMD or wider seasonal ranges of ΨMD presented lower values of 312 

gL,ratio (R
2
 = 0.16, P = 0.007; and R

2
 = 0.12, P = 0.022; respectively) (Figure 5a,b). This result implies that 313 

species operating at lower water potentials or experiencing wider water potential fluctuations closed 314 

stomata more strongly during the period covered by each study than those species operating at less 315 

negative water potentials, contrary to the notion that lower gL is associated with maintaining less 316 

negative water potentials across species. Interestingly, stomatal sensitivity (measured as γ or ΨgL50) 317 

was unrelated to gL,mean or gL,ratio (P > 0.25 in all cases), due to the fact that species with more 318 

sensitive stomata tended to operate at higher ΨL (Figure 4) and, thus, closed stomata to a similar 319 

extent than species with less sensitive stomata but operating at lower ΨL.  320 

  321 

2. Stomatal control vs. water potential regulation among coexisting species 322 

Assessing the relationship between stomatal control and water potential regulation across species 323 

occupying different environments, as done in the previous section, may be problematic because it 324 

mixes plants growing under very different conditions, including exposure to drought stress. To 325 

overcome this limitation we conducted a similar analysis focusing on the comparison of coexisting 326 

species measured concurrently in the same sites, and thus having similar exposure to drought. A new 327 

global database was compiled using mostly published sources. We searched the literature for studies 328 

fulfilling the following criteria: (1) they compared different species (or cultivars with contrasted 329 

stomatal behaviour in the case of Vitis vinifera) growing at the same site under the same 330 

environmental conditions; (2) focused on the study of drought effects (including experimental and 331 

naturally occurring droughts) over a period of weeks to months; (3) reported multiple measures of 332 

ΨPD, ΨMD and gL; (4) these three variables were measured concurrently and could be linked to each 333 

other (directly or through third variables such as time); and (5) the range of measured ΨPD values was 334 

> 1 MPa for at least one of the species included in the study, to ensure drought severity was 335 

substantial. We also added an unpublished dataset including measures on Phillyrea latifolia and 336 
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Quercus ilex planted on the ground in a tunnel greenhouse and subjected to a drought-simulation 337 

experiment (N. Garcia-Forner et al., unpublished). Altogether, we compiled data from 15 datasets, 338 

covering mostly Mediterranean (n = 9) and Dry climates (n = 3) (Table S2). Each study compared 339 

between two and seven species growing under the same environmental conditions (33 species in 340 

total), except two studies on Vitis vinifera that compared two different cultivars each.  341 

 342 

Using this database we calculated the species-level slopes of the relationships between ΨMD and ΨPD 343 

(parameter σ) and between log10(gL) and ΨPD (parameter γ) as explained in the previous section. We 344 

fitted a different mixed model for each study, with species as a random effect on the intercept and 345 

slope. Model fits were generally good, with conditional R
2
 = 0.3 – 0.98 for the regressions between 346 

ΨMD and ΨPD and conditional R
2
 = 0.32 – 0.93 for the regressions between log10(gL) and ΨPD. As 347 

before, species’ estimates of stomatal sensitivity (γ and ΨgL50 values) were used to test whether 348 

stomatal behaviour is associated with different measures of isohydry (minimum ΨMD, range of ΨMD 349 

values and σ) using mixed models with site as a random factor. In all cases, model fit in terms of AIC 350 

was best when random effects were included on the intercept only. The overall relationships were 351 

similar to those obtained in the previous section using the global database (compare Figure 6a,c,e 352 

with Figure 4), with γ being positively related to  minimum ΨMD (P = 0.001), negatively related to ΨMD 353 

range (P = 0.002), and unrelated to σ (P = 0.17). However, since we were interested in the 354 

comparison within sites and the previous analysis mixes the effect of stomatal sensitivity within and 355 

between sites, we also used mixed linear models to fit the relationships between the three measures 356 

of isohydry and centered γ (or ΨgL50) values. Centering was achieved by subtracting the average γ (or 357 

ΨgL50) for the corresponding site to each species’ γ (or ΨgL50) value, and ensured that fixed effects 358 

were evaluated only within sites. The relationship between centered stomatal sensitivity and the 359 

three isohydry measures was not significant (P > 0.05 in all cases) (Figure 6b,d,f), although the 360 

(negative) effect of γ on σ was close to significant (P = 0.06). Overall, these results indicate that 361 
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stomatal sensitivity and water potential regulation are largely unrelated when comparing coexisting 362 

species within a site. 363 

 364 

We used a similar approach to explore whether different degrees of water potential regulation are 365 

associated to greater constrains on gas exchange through stomatal regulation when comparing 366 

coexisting species. As before, mixed linear models with site as random factor were used to fit the 367 

relationships between gL,mean and gL,ratio (response variables) and the three measures of isohydry 368 

(centered minimum ΨMD, centered ΨMD range and centered σ). In all cases, the best fitting model in 369 

terms of AIC included the random effect of site on the intercept but no effect of the fixed 370 

explanatory variable (P > 0.35 for all model comparisons), indicating that our three measures of 371 

isohydry were unrelated to stomatal behaviour when comparing different species measured within a 372 

site (Figure 7). The corresponding plots using non-centered explanatory variables instead of centered 373 

values are provided in Figure S1. 374 

 375 

Why are water potential regulation and stomatal behaviour decoupled across species?  376 

The results reported in the previous sections have to be considered with caution, as they come from 377 

a synthesis of different data sources, each covering different time periods and using potentially 378 

different experimental protocols. However, our analyses at two different levels (across species and 379 

within sites) suggest that water potential regulation and stomatal control are largely unrelated across 380 

species. Of course, this is not to mean that these variables are not related in general. It is very well 381 

established both theoretically and empirically that, for a given plant, stomatal closure reduces 382 

transpiration and hence limits the water potential difference between the soil and the leaves and the 383 

risk of hydraulic failure (Tyree & Sperry 1988; Jones & Sutherland 1991; Sperry et al. 2002; Cochard 384 

et al. 2002). However, the situation becomes more complex when we compare different species, 385 

even if they grow at the same site. This is because water potential dynamics are affected by several 386 

plant attributes that are coordinated across species, including stomatal behaviour but also hydraulic 387 
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architecture and root properties.  At a given point in time, rooting extension and depth will 388 

determine how a certain soil water availability is translated into a plant ΨPD (Jackson et al. 2000; 389 

Sperry & Hacke 2002; Martıńez-Vilalta et al. 2002). The water potential drop in the plant (�Ψ), and 390 

hence ΨMD, depends on the ratio between transpiration rate and hydraulic transport capacity 391 

(Martínez-Vilalta et al. 2014); which are largely determined by the ratio between stomatal and 392 

hydraulic conductance. Dynamic aspects are important here, as both stomatal and hydraulic 393 

conductances are affected by ΨMD (Figure 1). At longer time scales, stomatal conductance and 394 

transpiration (including the effects of vapour pressure deficit and leaf area dynamics) will determine 395 

the rate of water extraction from the soil and, therefore, will feed back into ΨPD: species showing 396 

higher transpiration rates will deplete soil water faster and hence experience also faster reductions 397 

in ΨPD over time. In addition, once the hydraulic system of the plant is disconnected from the soil 398 

(complete loss of hydraulic conductivity somewhere in the hydraulic pathway) ΨPD will cease to track 399 

fluctuations in soil water potential. 400 

 401 

Arguably, the ultimate minimum water potential a plant can withstand is determined by the 402 

vulnerability of its hydraulic system (Brodribb & Cochard 2009; Nardini et al. 2013; Urli et al. 2013; 403 

Brodribb et al. 2014). The high degree of phylogenetic conservatism in vulnerability to xylem 404 

embolism (Maherali et al. 2004) supports the notion that hydraulic vulnerability may have driven 405 

differences in water potential regulation over evolutionary time scales. Relatively high hydraulic 406 

vulnerability (e.g., low resistance to xylem embolism) tends to be associated with tight stomatal 407 

control across species (Brodribb et al. 2003; Arango-Velez et al. 2011; Klein 2014) and also within 408 

species (e.g., when comparing Vitis vinifera cultivars with contrasted stomatal behaviour, Tombesi et 409 

al. 2014). This association is also supported by the positive relationship between the water potential 410 

causing 50% loss of hydraulic conductivity in stem xylem (ΨPLC50), obtained from the Choat et al. 411 

(2012) database, and stomatal sensitivity as obtained from our analysis (cf. ‘1. The relationship 412 

between stomatal control and water potential regulation across species’ section above) (Figure S2).  413 
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 414 

The proximal mechanism underlying the coordination between vapour and liquid phase water 415 

transport in plants is provided by the response of stomata to hydraulic signals (Meinzer 2002; Sperry 416 

et al. 2002; Buckley 2005; Meinzer et al. 2009). This response is complex and has several potentially 417 

problematic aspects, including the fact that ΨL, the obvious integrator of leaf water status to which 418 

stomata may respond through its effect on guard cell turgor (Figure 1), is also the same variable that 419 

is maintained relatively constant as a result of stomatal control. There is indeed plenty of evidence 420 

showing stomatal responses to hydraulic signals without significant changes in bulk ΨL (Sperry & 421 

Pockman 1993; Saliendra et al. 1995; Salleo et al. 2000; Hubbard et al. 2001). However, this is still 422 

consistent with a regulation of stomatal conductance through a negative feedback with ΨL if we 423 

consider that embolism itself may provide the amplification required to achieve nearly homeostatic 424 

regulation of leaf water potential (Buckley 2005) (Figure 1). Hormonal signals play also a prominent 425 

role in modulating stomatal responses, particularly through abscisic acid (ABA) synthesis in roots and 426 

leaves and its subsequent accumulation in leaves (Mittelheuser & Van Steveninck 1969; Zhang & 427 

Davies 1989; Bauer et al. 2013; Tombesi et al. 2015). Recent evidence suggests that stomatal closure 428 

under drought stress evolved from a passive, purely hydraulic process, to the more complex 429 

mechanism involving hormonal signalling and active ion exchange between guard and epidermal cells 430 

currently characterizing most angiosperms, with stomatal regulation in conifers being intermediate 431 

between these two modes (Brodribb & McAdam 2010; McAdam & Brodribb 2014, 2015).  432 

 433 

Even within conifers, stomatal closure seems to be induced by two contrasted mechanisms. Whereas 434 

some species show fast stomatal closure under drought in response to sustained high levels of ABA in 435 

leaves, a second group of species show slower stomatal responses at lower ΨL (Brodribb et al. 2014). 436 

Importantly, these two contrasting modes of stomatal regulation are associated to differences in 437 

vulnerability to xylem embolism, with the first mode of stomatal regulation described above being 438 

characteristic of species with more vulnerable xylem (Brodribb et al. 2014). This association has been 439 
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interpreted to imply that the first group of species shows a more active stomatal regulation, whereas 440 

the second group responds directly to ΨL (Brodribb et al. 2014). These results, however, are also 441 

compatible with the view that hydraulic signals are important drivers of stomatal movements in both 442 

groups, as the amplifying effect of xylem embolism on hydraulic signaling would occur at higher 443 

water potentials in more vulnerable species. Although it is unclear to what extent this framework 444 

may extend to angiosperms, it is intriguing to speculate that divergent pathways of stomatal 445 

regulation may underlie the large differences in hydraulic safety margins between angiosperms and 446 

gymnosperms (Choat et al. 2012). 447 

 448 

What determines minimum operating leaf water potentials across species? 449 

If stomatal control is largely unrelated to water potential regulation across species, what drives the 450 

large differences in minimum leaf water potential among coexisting species? Or, in other words, 451 

what plant attributes are associated with maintaining relatively high and stable (as opposed to low 452 

and declining) leaf water potentials under drought? The first one is obviously deep rooting, 453 

particularly considering the tight relationship between ΨMD (~ΨL) and ΨPD (~Ψsoil) reported in Figure 454 

2. Species with more extensive and deeper root systems are able to access more stable water 455 

sources, thus buffering changes in hydrological conditions (Jackson et al. 2000; Oliveira et al. 2005). 456 

Accordingly, deep-rooted species should be able to maintain less negative and more stable water 457 

potentials (particularly ΨPD), everything else being equal. Although there are many cases in which this 458 

is the case (Bucci et al. 2009; West et al. 2012), there appear to be also counterexamples in which 459 

species known to be relatively shallow-rooted operate at higher water potentials than coexisting 460 

deep-rooted species (West et al. 2007; Plaut et al. 2012; Aguadé et al. 2015).  461 

 462 

Minimum ΨL is also associated to the vulnerability to xylem embolism, both at the local and global 463 

scales (Pockman & Sperry 2000; Choat et al. 2012), with more resistant species being able to operate 464 

at lower ΨL. Globally, a positive relationship between resistance to xylem embolism and rooting 465 
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depth is to be expected, as these two characteristics tend to occur under similar environmental 466 

conditions (Schenk & Jackson 2002; Maherali et al. 2004; Choat et al. 2012). Within a given site, 467 

however, species that are hydraulically more vulnerable and cannot sustain very low water potentials 468 

may require deeper root systems. Accordingly, a number of studies report negative relationships 469 

between resistance to xylem embolism and rooting depth (Hacke et al. 2000; Sperry & Hacke 2002; 470 

Lopez et al. 2005), although exceptions occur (Pivovaroff et al. 2016; Nardini et al. 2016). Species 471 

that are shallow-rooted and relatively vulnerable to xylem embolism may disconnect their hydraulic 472 

system from the soil early during drought development. This disconnection may be purely hydraulic 473 

or physical, involving fine root mortality (Bauerle et al. 2008; Espeleta et al. 2009), and it is frequently 474 

associated to drought deciduousness (Kolb & Davis 1994; Miranda et al. 2010; Hoffmann et al. 2011). 475 

Dynamic aspects related to vertical water redistribution in the soil may also be important in 476 

explaining differences in ΨL dynamics between coexisting species with different root distributions 477 

(Meinzer et al. 2004; Neumann & Cardon 2012). 478 

 479 

If the hydraulic system of the plant remains connected to the soil, the rate of transpiration and water 480 

uptake will affect Ψsoil dynamics in the rooting zone and, hence, will contribute to explain differences 481 

in ΨL dynamics across species (Mitchell et al. 2012) (Figure 1). Maintenance of relatively high 482 

transpiration rates under drought (high gL) will deplete soil water resources faster and will result in 483 

steeper declines in Ψsoil and ΨPD over time. An important additional aspect is that in general this 484 

effect will be driven not only by the water uptake of the target plant but also by all individuals with 485 

roots within its belowground neighborhood (Casper & Jackson 1997; Zavala & Bravo de la Parra 486 

2005). Our results suggest that the positive relationship between stomatal sensitivity and minimum 487 

ΨMD across species (Figures 4 and 6a) may be more associated to the effect of water uptake (or to 488 

the covariation with rooting depth) than to the role of stomatal control on water potential regulation 489 

inside the plant (as measured by the σ parameter). 490 

 491 

Page 19 of 69 Plant, Cell & Environment



For R
eview

 O
nly

  

 

20 

 

Assuming steady state, the water potential gradient within the plant will be determined by the 492 

maximum transpiration rate per unit of hydraulic transport capacity, which defines the leaf water 493 

potential at Ψsoil ≈ 0; and by the relative sensitivity of transpiration and the plant hydraulic system to 494 

declining ΨPD (σ; cf. Figure 1) (Martínez-Vilalta et al. 2014). An important result of recent data 495 

syntheses is that the vulnerability of stem xylem to embolism (measured as ΨPLC50) appears to be 496 

more variable than stomatal sensitivity across species, with ΨgL50 rarely falling below -4 MPa (Klein 497 

2014; Manzoni 2014; Skelton et al. 2015; Mencuccini et al. 2015). This result is difficult to reconcile 498 

with the fact that species with lower stem ΨPLC50 (ΨPLC50  << -4 MPa) have higher σ values (σ ~ 1) 499 

(Martínez-Vilalta et al. 2014), unless we consider that hydraulic bottlenecks are more likely to be in 500 

the roots (Hacke et al. 2000; Jackson et al. 2000; Martínez-Vilalta et al. 2002) or leaves than in the 501 

stem (Tyree & Ewers 1991; Pivovaroff et al. 2014; Bouche et al. 2016; Hochberg et al. 2016). Since 502 

stomata typically close around the leaf turgor loss point (Ψtlp), the fact that stomata rarely close at 503 

very low ΨL likely reflects the limits of osmoregulation and the inability of plant leaves to maintain 504 

turgor at very low ΨL (Brodribb et al. 2003; Brodribb & Holbrook 2003; Hao et al. 2010; Bartlett et al. 505 

2012). Although a recent global synthesis shows relatively low plasticity in Ψtlp in most species 506 

(Bartlett et al. 2014), high plasticity in Ψtlp has been reported in some ‘anisohydric’ species and likely 507 

represents an adaptation for coping with low and fluctuating water potentials (Meinzer et al. 1986, 508 

2014). Substantial reductions in Ψtlp with declining ΨL (together with high hydraulic 509 

compartmentalization in the leaf, Buckley et al. 2015) may help explain the puzzling result that many 510 

species from dry habitats appear to operate largely below their Ψtlp as determined on fully 511 

rehydrated samples (Meinzer et al. 2014). 512 

 513 

In most field situations non-steady state conditions prevail, implying that the water content in the 514 

plant is not constant. Hydraulic capacitance, the water content change per unit of variation in water 515 

potential, allows the plant to (partially) uncouple the changes in transpiration from water potential 516 

dynamics, effectively dampening the temporal fluctuations in ΨL (Meinzer et al. 2003, 2009; Sperry et 517 
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al. 2007). Species differ widely in their sapwood capacitance, and this variability is associated with 518 

other hydraulic traits. In particular, higher sapwood capacitance seems to be associated with higher 519 

water potentials, lower resistance to xylem embolism and narrower hydraulic safety margins (Pratt 520 

et al. 2007; Sperry et al. 2007; Meinzer et al. 2009; Mcculloh et al. 2014). Clearly, capacitance and 521 

water storage need to be considered as additional elements, together with changes in stomatal and 522 

hydraulic conductance, determining the water potential regulation inside the plant, and hence ΨL at 523 

a given Ψsoil (Matheny et al. 2015). At very low water potentials stomata close completely and plant 524 

water losses are driven by leaf cuticular conductance. If severe embolism has not yet developed, 525 

cuticular conductance will determine the time needed to reach hydraulic failure and thus low 526 

cuticular conductance can confer substantial drought tolerance (Scoffoni et al. 2011; Blackman et al. 527 

2016). However, our knowledge on the determinants and implications of the variability of cuticular 528 

conductance across species is limited (the last review we are aware of was written 20 years ago by 529 

Kerstiens (1996)) and requires further research.  530 

 531 

Implications for drought-induced mortality mechanisms 532 

An important implication of our results is that isohydric species in terms of water potential regulation 533 

are not necessarily more carbon limited than anisohydric species. When comparing species 534 

coexisting within a given site there is no relationship between any of the three measures of isohydry 535 

used in this study and average gL (either in absolute terms or relative to the seasonal maximum gL; 536 

Figure 7). When this relationship is assessed across species growing at different sites, species 537 

experiencing lower minimum ΨMD or wider seasonal ΨMD range tend to have lower average gL 538 

(relative to its maximum) (Figure 5), despite also having lower stomatal sensitivity (Figure 4). These 539 

results simply reflect that the range of minimum ΨMD across species and sites is wider than the range 540 

of stomatal sensitivities, which appears to be relatively constrained across species (Klein 2014; 541 

Manzoni 2014; Skelton et al. 2015; Mencuccini et al. 2015). Dynamic aspects may also contribute to 542 

this pattern, as relatively open stomata will result in higher rates of water use, faster declines of Ψsoil 543 
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(~ΨPD) and, possibly, lower minimum ΨL. Of course, these considerations do not invalidate the 544 

argument that species closing stomata earlier during drought are likely to be more carbon 545 

constrained (everything else being equal) (McDowell et al. 2008; McDowell 2011). However, it places 546 

the emphasis on the temporal dynamics of gas exchange and drought responses (cf. Mitchell et al. 547 

2012; McDowell et al. 2013) instead of focusing only on the responses to ΨL, which cannot be 548 

interpreted by itself precisely because isohydric and anisohydric species differ in the water potentials 549 

at which they operate (by definition). This view favours measures of stomatal control in which 550 

stomatal sensitivity is defined relative to hydraulic vulnerability (Martínez-Vilalta et al. 2014; Skelton 551 

et al. 2015). 552 

 553 

There is convincing evidence that the plant carbon economy plays a relevant role during drought-554 

induced mortality, at least in some cases (particularly for conifer species) (Galiano et al. 2011; 555 

O’Brien et al. 2014; Dickman et al. 2015; Garcia-Forner et al. 2016b). However, the carbon starvation 556 

mechanism as such remains controversial (McDowell & Sevanto 2010; Sala et al. 2010; Hartmann 557 

2015) due to the difficulty in determining the precise timing of tree death and resolving the complex 558 

interactions between water and carbon relations under extreme drought (McDowell et al. 2011; 559 

Sevanto et al. 2014; Mencuccini et al. 2015). Arguably, however, one of the most important 560 

outcomes of the recent boost in drought-induced mortality research is the realization that hydraulic 561 

deterioration is ubiquitous under lethal drought, whereas reductions in carbon reserves are not 562 

(Hartmann et al. 2013; Rowland et al. 2015; Adams et al., submitted). Although in some ways this 563 

result does not take us much further than the original hydraulic framework presented by McDowell 564 

et al. in 2008, it has important implications, as it emphasizes the importance of plant hydraulics and 565 

paves the ground for models of canopy conductance and drought responses based on relatively 566 

simple hydraulic principles (Sperry & Love 2015; Sperry et al. 2016). It also suggests hydraulic safety 567 

margins as a reasonable proxy for vulnerability to drought (Choat et al. 2012; Delzon & Cochard 568 

2014). Of course assessing hydraulic safety margins is not free of complications (see next section) 569 
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and does not give a complete account of drought resistance strategies in plants (Klein et al. 2013), 570 

but in our opinion it remains the best single predictor for drought responses we have currently at 571 

hand. 572 

 573 

Conclusions and future directions 574 

In this review we have shown that, contrary to what is usually assumed, a tight regulation of ΨL is not 575 

necessarily associated with greater stomatal control across species. Therefore, we advocate for a 576 

clear and quantitative definition of iso/anisohydry that separates these two concepts. This distinction 577 

is important, as iso/anisohydry defined in terms of ΨL regulation tells us little by itself about leaf gas 578 

exchange dynamics or the degree of hydraulic or carbon limitations under drought. Therefore, it 579 

cannot be used as an indicator of a specific mechanism of drought-induced mortality (sensu 580 

McDowell et al. 2008) or as a proxy for overall vulnerability to drought. The way we understand and 581 

define the iso/anisohydryc behaviours has important implications for the modelling of drought 582 

responses at scales that range from the individual to the ecosystem and the Biosphere (Roman et al. 583 

2015; Combe et al. 2016).  584 

 585 

Several issues remain that limit our understanding of plant water relations and our capacity to 586 

predict vegetation responses under ongoing climate change. Among other aspects, significant 587 

advances could be achieved by: 588 

•� Improving our understanding of how relevant traits scale up from the tissue to the whiole-589 

plant levels (Sperry et al. 2007; Meinzer et al. 2010; Petit & Anfodillo 2011) and, in particular, 590 

resolving where the hydraulic bottleneck is in the soil-plant-atmosphere continuum and how 591 

this bottleneck might change during drought. Candidates include the rhizosphere, the xylem 592 

of different organs and extraxylary tissues. This is a long-standing issue in plant hydraulics 593 

(Tyree & Ewers 1991; Sperry et al. 2002; Tyree & Zimmermann 2002; Sack & Holbrook 2006) 594 
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and important contributions continue to be published (e.g., Bouche et al. 2016; Hochberg et 595 

al. 2016).  596 

•� Accounting explicitly for the temporal (dynamic) dimension of drought responses, including: 597 

(i) the role of cuticular conductance, capacitance and water storage under extreme drought 598 

(Blackman et al. 2016); (ii) the temporal covariation between soil water deficit and 599 

atmospheric water demand and their interactive effects on plant water status; and (iii) the 600 

reversibility of stomatal and hydraulic conductance losses. Although there are strong 601 

arguments for hydraulic failure and repair not being routine in trees (Cochard & Delzon 2013; 602 

Delzon & Cochard 2014), evidence for novel refilling continues to accumulate (Brodersen & 603 

McElrone 2013; Trifilò et al. 2014; McCulloh & Meinzer 2015; Rolland et al. 2015). Whatever 604 

the outcome of this debate, it needs to be consistent with the evidence showing that 605 

vulnerability to xylem embolism plays a central role in plant water relations and drought 606 

responses, and therefore needs to address the limits of refilling and its associated costs. New 607 

imaging techniques (Brodersen et al. 2010; Cochard et al. 2015; Choat et al. 2016; Knipfer et 608 

al. 2016) hold promise for resolving this burning issue. 609 

•� Improving our understanding of the covariation between key water relations traits, including: 610 

rooting depth, maximum hydraulic conductance, maximum leaf conductance to water vapor, 611 

hydraulic vulnerability, stomatal sensitivity to plant water status, hydraulic capacitance, 612 

osmotic adjustment capacity and leaf habit. Community level assessments of these traits are 613 

becoming more frequent and complete (Hoffmann et al. 2011; West et al. 2012; Skelton et 614 

al. 2015; Pivovaroff et al. 2016). However, we still do not know enough about their 615 

relationships to define clear trait syndromes that would characterize general water-use and 616 

drought resistance strategies of plants. An additional important research question is 617 

establishing how these water relations traits map into the spectrum of variability defined by 618 

more standard plant functional traits (Markesteijn et al. 2011; Reich 2014; Díaz et al. 2016). 619 

The fact that the acquisitive versus conservative resource economies identified in global 620 
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assessments of plant form and function correspond well with ecological classifications of 621 

plant water-use strategies (cf. ‘A brief history of the isohydry concept’ above) is encouraging. 622 

Global functional trait databases (Kattge et al. 2011; Choat et al. 2012) will be instrumental 623 

to make progress in this area.  624 

 625 
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Figure legends 1158 

Figure 1. Diagram illustrating some of the variables and relationships controlling leaf water potential 1159 

(ΨL). Solid lines indicate positive relationships between variables, whereas broken lines indicate 1160 

negative relationships. The dotted broken line indicates an effect on a control valve. Reduced soil 1161 

water availability (higher absolute value of Ψsoil) may affect plant conductance in two ways, by 1162 

lowering its hydraulic conductance (KH) and its leaf conductance (gL). These reductions have opposite 1163 

effects on the water potential gradient through the plant (�Ψ), so that the net change in �Ψ will 1164 

depend on the balance between these two processes, with the complication that changes in leaf 1165 

water potential (ΨL) will feedback onto KH and gL. High transpiration rates (through high gL) cause 1166 

faster reductions in Ψsoil, unless the hydraulic system of the plant becomes disconnected from the 1167 

soil. Important plant attributes and processes (rooting depth, capacitance, osmoregulation) have 1168 

been omitted for simplicity. See text for further details.  1169 

 1170 

Figure 2. Relationship between seasonal minimum predawn (ΨPD) and midday leaf water potentials 1171 

(ΨPD, both in MPa) across 102 plant species from the global database from Martínez-Vilalta et al. 1172 

(2014). The overall regression line is depicted (solid line, with grey shadow indicating 95% confidence 1173 

intervals). The 1:1 relationship is indicated by a broken line.  1174 

 1175 

Figure 3. Three different measures of isohydry measured on 102 plant species (data from Martínez-1176 

Vilalta et al. 2014): minimum midday water potential (minimum ΨMD, MPa), seasonal range of ΨMD 1177 

(MPa), and the slope of the relationship between ΨMD and ΨPD (σ, MPa MPa
-1

). Species are ordered 1178 

according to the former measure (left panel). Left and right y-axis provide species names for 1179 

alternate bars to improve readability (odd ranks in the left axis and even ones in the right axis). 1180 

 1181 

Figure 4. Relationship between stomatal sensitivity to decreasing predawn leaf water potential (γ, in  1182 

log(mmol m
-2

 s
-1

) MPa
-1

) and three different measures of isohydry: (a) minimum midday water 1183 
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potential (minimum ΨMD, MPa), (b) seasonal range of ΨMD (MPa) and (c) the slope of the relationship 1184 

between ΨMD and ΨPD (σ, MPa MPa
-1

) for 44 species (see text for details). Stomatal sensitivity was 1185 

estimated as the slope of the (seasonal) relationship between log10(gL) and ΨPD (see text for further 1186 

details). Solid and dashed lines indicate significant and non-significant relationships between 1187 

variables. Grey-vertical lines show the equivalence of γ in terms of the water potential required to 1188 

reduce leaf conductance to water vapour by 50 % (ΨgL50, in MPa). Species abbreviations are given in 1189 

Table S1. 1190 

 1191 

Figure 5. Relationship between stomatal behaviour over time and three different measures of 1192 

isohydry: minimum midday water potential (minimum ΨMD, MPa), seasonal range of ΨMD (MPa), and 1193 

the slope of the relationship between ΨMD and ΨPD (σ, MPa MPa
-1

). Stomatal behaviour over time is 1194 

characterized using two variables: the ratio of average gL to maximum measured gL (gL,ratio; panels a, 1195 

b, c) and average gL (gL,mean; panels d, e, f). Solid and dashed lines indicate significant and non-1196 

significant relationships between variables. Species abbreviations are given in Table S1. 1197 

 1198 

Figure 6. Relationship between stomatal sensitivity to decreasing predawn leaf water potential and 1199 

three different measures of isohydry for species coexisting at a given site (see text for details). 1200 

Isohydry measures include minimum midday water potential (minimum ΨMD, MPa), seasonal range 1201 

of ΨMD (MPa), and the slope of the relationship between ΨMD and ΨPD (σ, MPa MPa
-1

). Stomatal 1202 

sensitivity was estimated as the slope of the (seasonal) relationship between log10(gL) and ΨPD (see 1203 

text for further details), and it is expressed in two different ways: as absolute γ values (log(mmol m
-2

 1204 

s
-1

) MPa
-1

; panels a, c, e) and as centered γ values (log(mmol m
-2

 s
-1

) MPa
-1

; panels b, d, f). Each dot 1205 

indicates a species and colors designate studies. Species measured in the same study are linked by 1206 

colored lines, to facilitate assessing the relationships within sites. Grey-vertical lines show the 1207 

equivalence of γ in terms of the water potential required to reduce leaf conductance to water vapor 1208 

by 50 % (ΨgL50, in MPa). Study codes are given in Table S2. 1209 
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 1210 

Figure 7. Relationship between stomatal behaviour over time and three different measures of 1211 

isohydry for species coexisting at a given site (centered values; see text for details). Isohydry 1212 

measures include minimum midday water potential (minimum ΨMD, MPa), seasonal range of ΨMD 1213 

(MPa) and the slope of the relationship between ΨMD and ΨPD (σ, MPa MPa
-1

). Stomatal behaviour 1214 

over time is characterized using two variables: the ratio of average gL to maximum measured gL 1215 

(gL,ratio; panels a, b, c) and average gL (gL,mean; panels d, e, f). Each dot indicates a species and colours 1216 

designate studies. Species measured in the same study are linked by coloured lines, to facilitate 1217 

assessing the relationships within sites. Study codes are given in Table S2. 1218 

 1219 

 1220 
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Water potential regulation, stomatal behaviour and hydraulic transport under drought: 

deconstructing the iso/anisohydric concept 

 

Jordi Martínez-Vilalta & Núria Garcia-Forner
 

 

Supporting Information 

 

Figure S1. Relationship between stomatal behaviour over time and three different measures of 

isohydry for species coexisting at a given site (see text for details). Isohydry measures include 

minimum midday water potential (minimum ΨMD, MPa), seasonal range of ΨMD (MPa) and the 

slope of the relationship between ΨMD and ΨPD (σ, MPa MPa
-1

). Stomatal behaviour over time 

is characterized using two variables: the ratio of average gL to maximum measured gL (gL,ratio; 

panels a, b, c) and average gL (gL,mean; panels d, e, f). Each dot indicates a species and colours 

designate studies. Species measured in the same study are linked by coloured lines. Study 

codes are given in Table S2. 

 

Figure S2. Relationship between stomatal sensitivity to decreasing predawn leaf water 

potential (γ, in  log(mmol m
-2

 s
-1

) MPa
-1

) and the water potential at 50 % loss of hydraulic 

conductivity in the stem (Ψ50PLC) across species. Separate linear regressions are depicted for 

angiosperms and gymnosperms in red and blue, respectively. Grey shadows around lines 

indicating 95% confidence intervals. A linear model accounting for the differences between 

angiosperms and gymnosperms in the intercept of the relationship resulted in a highly 

significant ΨPLC50 effect (R
2
 = 0.33, P = 0.007). Overall model fit increased substantially if 

Tamarix ramosissima, a clear outlier of the relationship, was excluded from the analysis (R
2
 = 

0.44, P < 0.001). Species abbreviations are given in Table S1. Ψ50PLC data was obtained from 

Choat et al. (2012).  
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Water potential regulation, stomatal behaviour and hydraulic transport under drought: deconstructing the iso/anisohydric concept 

 

 

Jordi Martínez-Vilalta & Núria Garcia-Forner 
 

 

Supporting Information 

 

 

Table S1. Characteristics of the species considered in this study and list of data sources used to build the database of leaf water potentials and stomatal 

responses (cf. ‘1. The relationship between stomatal control and water potential regulation across species’ section in main text). 

Species name Abbreviation Family Group Functional Type Climate References 

Acacia tortilis At Fabaceae Angiosperm Broadleaf Tropical 
Otieno et al. 2005; Gebrekirstos 
et al. 2006 

Acacia xanthophloea Ax Fabaceae Angiosperm Broadleaf Tropical Otieno et al. 2005 

Acer saccharum As Sapindaceae Angiosperm Broadleaf Temperate 
Ellsworth & Reich 1992; 
Loewenstein & Pallardy 1998 

Annona squamosa Aq Annonaceae Angiosperm Broadleaf Tropical Endres 2007 

Arbutus unedo Au Ericaceae Angiosperm Broadleaf Mediterranean 

Castell et al. 1994; Werner et al. 
1999; Martínez-Vilalta et al. 2002; 
Martínez-Vilalta et al. 2003; 
Clemente et al. 2005; Ripullone et 

al. 2009 

Betula occidentalis Bo Betulaceae Angiosperm Broadleaf Temperate Smith et al. 1991 

Carpinus viminea Cv Betulaceae Angiosperm Broadleaf Temperate Singh et al. 2006 

Castanopsis indica Ci Fagaceae Angiosperm Broadleaf Temperate Poudyal et al. 2004 

Erica arborea Ea Ericaceae Angiosperm Shrub Mediterranean Tognetti et al. 2000 

Eucalyptus gomphocephala Eg Myrtaceae Angiosperm Broadleaf Tropical Franks et al. 2007 

Fagus sylvatica Fs Fagaceae Angiosperm Broadleaf Temperate Aranda et al. 2000, 2005 

Fraxinus micrantha Fm Oleaceae Angiosperm Broadleaf Temperate Singh et al. 2006 

Halimium halimifolium Hh Cistaceae Angiosperm Shrub Mediterranean Zunzunegui et al. 2000, 2009 
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Juniperus communis Jc Cupressaceae Gymnosperm Conifer Temperate Tognetti et al. 2000 

Juniperus osteosperma Jo Cupressaceae Gymnosperm Conifer Temperate 
Leffler et al. 2002; West et al. 
2007 

Larrea tridentata Lt Zygophyllaceae Angiosperm Shrub Tropical 
Pavlik 1980; Meinzer et al. 1988; 
Pockman & Small 2010 

Machilus duthiei Md Lauraceae Angiosperm Broadleaf Temperate Singh et al. 2006 

Myrtus communis Mc Myrtaceae Angiosperm Shrub Mediterranean 
Tognetti et al. 2000; Mendes et al. 
2001 

Olea europaea Oe Oleaceae Angiosperm Broadleaf Mediterranean Ben Ahmed et al. 2009 

Phillyrea latifolia Pl Oleaceae Angiosperm Broadleaf Mediterranean 
Martínez-Vilalta et al. 2002; 
Martínez-Vilalta et al. 2003; 
Serrano & Penuelas 2005 

Picea abies Pa Pinaceae Gymnosperm Conifer Temperate Lu et al. 1995 

Pinus edulis Pe Pinaceae Gymnosperm Conifer Temperate West et al. 2007 

Pinus nigra Pn Pinaceae Gymnosperm Conifer Mediterranean Lebourgeois et al. 1998 

Pinus ponderosa Pp Pinaceae Gymnosperm Conifer Temperate 

Lanini & Radosevich 1986; Feeney 
et al. 1998; Kolb et al. 1998; Stone 
et al. 1999; Fischer et al. 2002; 
Eggemeyer et al. 2006; Simonin et 

al. 2006; Gaylord et al. 2007 

Pinus sylvestris Ps Pinaceae Gymnosperm Conifer Temperate 
Irvine et al. 1998; Poyatos et al. 
2008, 2013 

Pistacia lentiscus Pc Anacardiaceae Angiosperm Shrub Mediterranean Vilagrosa et al. 2003 

Populus fremontii Pf Salicaceae Angiosperm Broadleaf Mediterranean 
Smith et al. 1991; Horton et al. 
2001 

Populus trichocarpa Pt Salicaceae Angiosperm Broadleaf Temperate 
Smith et al. 1991; Johnson et al. 
2002 

Quercus alba Qa Fagaceae Angiosperm Broadleaf Temperate Loewenstein & Pallardy 1998 

Quercus coccifera Qc Fagaceae Angiosperm Shrub Mediterranean 
Werner et al. 1999; Vilagrosa et 

al. 2003 

Quercus floribunda Qf Fagaceae Angiosperm Broadleaf Temperate Singh et al. 2006; Joshi et al. 2009 

Quercus ilex Qi Fagaceae Angiosperm Broadleaf Mediterranean 
Castell et al. 1994; Sala & 
Tenhunen 1994; Tognetti et al. 
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1998; Fotelli et al. 2000; 
Martínez-Vilalta et al. 2002; 
Martínez-Vilalta et al. 2003; 
Serrano & Penuelas 2005; Cubera 
& Moreno 2007a, 2007b; Poyatos 
et al. 2013 

Quercus lanata Ql Fagaceae Angiosperm Broadleaf Temperate 
Poudyal et al. 2004; Singh et al. 
2006 

Quercus leucotrichophora Qe Fagaceae Angiosperm Broadleaf Temperate Singh et al. 2006 

Quercus petraea Qp Fagaceae Angiosperm Broadleaf Temperate 
Bréda et al. 1993; Aranda et al. 
2000, 2005; Rodríguez-Calcerrada 
et al. 2006 

Quercus pubescens Qu Fagaceae Angiosperm Broadleaf Mediterranean 
Tognetti et al. 1998; Fotelli et al. 
2000; Poyatos et al. 2008 

Quercus pyrenaica Qy Fagaceae Angiosperm Broadleaf Mediterranean Rodríguez-Calcerrada et al. 2006 

Quercus semecarpifolia Qs Fagaceae Angiosperm Broadleaf Temperate Poudyal et al. 2004 

Rhododendron arboreum Ra Ericaceae Angiosperm Broadleaf Temperate 
Poudyal et al. 2004; Singh et al. 
2006 

Schima wallichii Sw Sesiidae Angiosperm Broadleaf Temperate Poudyal et al. 2004 

Tamarix ramosissima Tr Tamaricaceae Angiosperm Shrub Temperate Xu et al. 2009; Nippert et al. 2010 

Trifolium subterraneum Ts Fabaceae Angiosperm Herb Mediterranean Socias et al. 1997 

Vicia faba Vf Fabaceae Angiosperm Herb Mediterranean Sau & Inés Mıńguez 2000 

Vitis vinifera Vv Vitaceae Angiosperm Shrub Mediterranean 
Williams & Araujo 2002; Schultz 
2003; Patakas et al. 2005 
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Table S2. List of the studies, species and data sources included in the comparison of coexisting species within sites (case study 2 in main text). 

Study 

code 

Site Species Life stage Climate Study 

system 

Experimental 

treatment 

Reference 

iso5 Paracou, French 

Guiana 

Eperua falcata, Diplotropis 

purpurea, Virola surinamensis 

Juvenile Tropical  Greenhouse 

(potted) 

Yes Bonal & Guehl 2001 

iso7 Thessaloniki Forest 

Research Institute, 

Greece 

Quercus frainetto, Quercus 

macrolepis, Quercus pubescens, 

Quercus ilex 

Juvenile (2-

year-old) 

Mediterranean Greenhouse 

(potted) 

Yes Fotelli et al. 1999 

iso15 Sevilleta LTER, NM, 

USA 

Pinus edulis, Juniperus 

monosperma 

Mature Dry Field Yes Limousin et al. 2013 

iso16 Baskett Research & 

Education area, 

Missouri, USA 

Juglans nigra, Acer saccharum,  

Quercus alba 

Mature Temperate Field No Loewenstein & 

Pallardy 1998 

iso18 Prades Mountains, 

Spain 

Acer monspessulanum, Arbutus 

unedo, Cistus albidus, C. laurifolius, 

Ilex aquifolium, Juniperus 

oxycedrus, Sorbus torminalis 

Mature Mediterranean Field No Martínez-Vilalta et 

al. 2002 

iso23 Univ. Queensland, 

Australia 

Eucalyptus cloeziana, Eucalyptus 

argophloia 

Juvenile (6-

months) 

Tropical Greenhouse 

(potted) 

Yes Ngugi et al. 2004 

iso24 Kibwezi, Kenya Acacia xanthophloea, Acacia tortilis Mature Dry Field No Otieno et al. 2005 

iso26 Zaragoza, Spain Quercus coccifera, Quercus ilex ssp. 

Ballota, Quercus suber 

Juvenile (5-

years-old) 

Mediterranean Greenhouse 

(potted) 

Yes Peguero-Pina et al. 

2009 

iso27 Sierra de Cardeña y 

Montoro, Spain 

Cistus ladanifer , Daphne gnidium, 

Pistacia lentiscus, Myrtus 

Mature Mediterranean Field No Quero et al. 2010 
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communis, Quercus ilex ssp. 

Ballota, Olea europaea 

iso30 Montpellier, France Vitis vinifera ‘Semillon’, Vitis 

vinifera ‘Grenache’ 

Juvenile (8 

year-old) 

Mediterranean Field Yes Schultz 2003 

iso31 Prades Mountains,  

Spain 

Quercus ilex, Phillyrea latifolia Mature Mediterranean Field No Serrano & Peñuelas 

2005 

iso32 University of 

Perugia, Italy 

Vitis vinifera ‘Sangiovese’, Vitis 

vinifera ‘Montepulciano’ 

Mature (8 

years-old) 

Mediterranean Greenhouse 

(potted) 

Yes Tombesi et al. 2015 

iso33 Valencia, Spain Quercus coccifera, Pistacia 

lentiscus 

Juvenile (2 

years-old) 

Mediterranean  Greenhouse 

(potted) 

Yes Vilagrosa et al. 2003 

iso35 Los Alamos, NM, 

USA 

Pinus edulis, Juniperus 

monosperma 

Mature Dry Field Yes Garcia-Forner et al. 

2016a 

iso36 Caldes de Montbui,  

Spain 

Quercus ilex, Phillyrea latifolia Juvenile (7 

years-old) 

Mediterranean Greenhouse 

(not potted) 

Yes Garcia-Forner 

(unpublished data) 
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