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Abstract: Multivariate statistical methods including cluster analysis (CA), discriminant analysis (DA)

and component analysis/factor analysis (PCA/FA), were applied to explore the surface water quality

datasets including 14 parameters at 28 sites of the Eastern Poyang Lake Basin, Jiangxi Province

of China, from January 2012 to April 2015, characterize spatiotemporal variation in pollution and

identify potential pollution sources. The 28 sampling stations were divided into two periods (wet

season and dry season) and two regions (low pollution and high pollution), respectively, using

hierarchical CA method. Four parameters (temperature, pH, ammonia-nitrogen (NH4-N), and

total nitrogen (TN)) were identified using DA to distinguish temporal groups with close to 97.86%

correct assignations. Again using DA, five parameters (pH, chemical oxygen demand (COD), TN,

Fluoride (F), and Sulphide (S)) led to 93.75% correct assignations for distinguishing spatial groups.

Five potential pollution sources including nutrients pollution, oxygen consuming organic pollution,

fluorine chemical pollution, heavy metals pollution and natural pollution, were identified using

PCA/FA techniques for both the low pollution region and the high pollution region. Heavy metals

(Cuprum (Cu), chromium (Cr) and Zinc (Zn)), fluoride and sulfide are of particular concern in the

study region because of many open-pit copper mines such as Dexing Copper Mine. Results obtained

from this study offer a reasonable classification scheme for low-cost monitoring networks. The results

also inform understanding of spatio-temporal variation in water quality as these topics relate to water

resources management.

Keywords: water pollution; spatio-temporal variation; pollution source identification; Eastern

Poyang Lake Basin

1. Introduction

Water scarcity is a growing threat to economic and social development and widespread water

pollution in recent decades further complicates the threat, especially in developing countries [1–3].

Water pollution caused both by anthropogenic activities such as urbanization [4], industrial

accidents [5–7], dam construction [8], and natural phenomena like soil erosion [9] and climate
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change [10], is a global issue that increases pressures on freshwater resources. Declining water

quality is the result of spatio-temporal changes in sedimentation, temperature, pH, nutrients, heavy

metals, toxic organic compounds and pesticides, and so on[11]. In order to safeguard water quality

and alleviate the pressures on water resources, it is necessary to elaborate spatial-temporal changes in

regional water quality and identify the potential pollution sources.

A series of monitoring programs and protocols have been developed to enable a reliable

quantification of nutrient transport in the aquatic environment (e.g., the National Land with

Water Information in Japan [12,13], the National Monitoring and Assessment Program (NOVA) in

Denmark [14,15], the Harmonized Monitoring Scheme (HMS) in Britain [16,17], and the National

Water-Quality Assessment (NAWQA) in the United States [18,19]) to generate a more comprehensive

picture of water quality conditions and trends. Meanwhile, sophisticated data-driven analytical

approaches (e.g., the projection pursuit technique [20] and neural networks [21,22]), multivariate

statistical techniques [23] (e.g., discriminant analysis (DA), cluster analysis (CA) and principal

component analysis/factor analysis (PCA/FA)), fuzzy theory[24] and hydrological models [11,25–27]

have substantially improved water quality assessments. Among these methods, multivariate statistical

techniques including CA, PCA/FA, and DA can be applied to easily extract important information

in large water quality datasets and are therefore used widely to evaluate water quality and identify

potential pollution sources [28].

In some regions in China, water quality impairment is severe, with important consequences for

human health as well as sustainable economic and social development [29]. From 2004, the State

Ministry of Environmental Protection started to focus on surface water quality monitoring systems in

the main river basins, including the Yellow River Basin, the Yangtze River Basin, the Pearl River Basin,

the Lake Taihu Basin, the Songhua River Basin, and the Southeastern Coastal Rivers. Meanwhile, local

environmental administrations including national, provincial, prefectural (city), and local have been

established to monitor and report on local surface water quality in recent years. As a consequence,

a huge monitoring database, including nutrients, sediment, physical and chemical properties, toxic

organic compounds and pesticides, heavy metals, etc. has been built for regional water resources

management. However, lake water environment is still deteriorating. For example, Poyang Lake, the

largest freshwater lake (3050 km2) in China, is polluted and most pollutants originated from five rivers

including the Gan River, the Fu River, the Xin River, the Rao River, and the Xiu River. Therefore, it is

necessary to investigate current situation of water pollution and identify pollution sources in rivers

around the Poyang Lake. Moreover, the application of CA and PCA/FA in the Poyang Lake Basin

is rare.

Therefore, several multivariate statistical approaches (DA, CA and PCA/FA) are applied to (1)

illuminate temporal and spatial variations of water quality; and (2) identify the potential influencing

factors that explain changes in water quality parameters of the Eastern Poyang Lake Basin. All results

obtained from this study will can offer a reasonable classification scheme for low-cost monitoring

networks and also inform understanding of spatio-temporal variation in water quality as these topics

relate to water resources research and management.

2. Materials and Methods

2.1. Study Area

Poyang Lake, which is the largest freshwater lake (3050 km2) in China, is located on the south

bank of the middle-lower Yangtze River in Jiangxi Province (Figure 1). It is shallow and connected with

five main rivers, including the Gan River, the Fu River, the Xin River, the Rao River, and the Xiu River.

All these river tributaries form the Poyang Lake Basin, which covers an area of 162,200 km2, accounting

for nearly 97% of Jiangxi Province. The topography of the basin varies from highly mountainous

regions (maximum elev. 2200 m) to alluvial plains in the lower reaches of the primary watercourses.



Sustainability 2016, 8, 133 3 of 15

The basin lies in a subtropical wet climate zone with a distinct alternation from a wet to a dry season

(see Figure 2) with an annual mean precipitation of 1710 mm and annual mean temperature of 17.5 ˝C.             
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Figure 1. Study area and monitoring stations for the rivers in the Eastern Poyang Lake Basin.
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Figure 2. Monthly mean precipitation and temperature in the Poyang Lake Basin (1982–2006).

Water resources in the Poyang Lake Basin are rich, but water managers now face a series of

difficulties as the awareness of global climate impacts on precipitation patterns increases. Meanwhile,

with rapid economic development and the population explosion in the basin, human activities

including dam construction [30] and land-use change significantly affect the water supply and

patterns of water demand [31], while simultaneously being exacerbated by increased pollutant loading.

In addition, mining activities caused heavy metal pollution, which is a serious issue. As a result,

Poyang Lake faces a great deal of environmental problems including water quality deterioration and

eutrophication. According to the Environmental Aspect Bulletin, Poyang Lake is only slightly polluted,

underscoring the importance of investigating and assessing water quality for the protection of the

lake water environment. In this study, the East Poyang Lake Basin (Figure 1) was chosen to conduct

water quality investigations. The Eastern Poyang Lake Basin mainly contains the Xin River and Rao
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River (rising from two branches including the Chang River and Lean River. With rapid economic

development in the past decades, dozens of non-ferrous metal mines have been intensively exploited

in the East Poyang Lake Basin, and heavy metal pollution and related environmental changes have

been gradually attracted by scientific community. For example, a great deal of acidic mine drainage

(pH 2–3) and waste effluents containing copper (Cu) and Zinc (Zn) discharged from the neighboring

Dexing Copper Mine and from dozens of smelters and mining/panning activities along rivers were

poured continuously into the Lean River [32], where the aquatic environment has been contaminated.

2.2. Monitored Parameters and Analytical Methods

Twenty-eight monitoring stations were selected for taking water samples in this study; station

X1–X13 are located in the Xin River, station L1–L9 are located in the Chang River, and station P1–P5

are located in east Poyang Lake (Figure 1). Water samples were taken every two months from Jan.

2012 to Apr. 2015. Considering pollution features and traditional water quality index in China, total

14 water quality parameters including temperature (TEMP), pH, ammonia-nitrogen (NH4
+-N), 5-day

biochemical oxygen demand (BOD), chemical oxygen demand (COD), dissolved oxygen (DO), total

nitrogen (TN), total phosphorus (TP), fluoride (F), sulfide (S), copper (Cu), oil, chromium (Cr) and Zinc

(Zn) were selected to analyze water quality in the Eastern Poyang Lake Basin. The process of sampling,

preservation, transportation and analysis of the water samples were conducted strictly according to

standard methods (State Environment Protection Bureau of China 2002). Table 1 shows the specific

analytical method for each water quality parameters.

Table 1. Water quality parameters, units, analytical methods and lowest detected limit as measured

from Jan. 2012 to Apr. 2015 for the Eastern Poyang Lake Basin.

Parameters Abbreviations Units Analytical Methods Lowest Detected Limit

Temperature TEMP ˝C Thermometer -
pH pH Glass electrode -

Dissolved oxygen DO mg/L Iodimetry 0.2
Ammonia nitrogen NH4

+-N mg/L N-reagent colorimetry 0.05
Biochemical oxygen demand BOD mg/L Dilution and inoculation test 2
Chemical oxygen demand COD mg/L Potassium permanganate method 0.5

Total nitrogen TN mg/L Ultraviolet spectrophotometry 0.05

Total phosphorus TP mg/L
Ammonium molybdate

spectrophotometry
0.01

Cuprum Cu mg/L Atomic absorption spectrometry 0.001
Zinc Zn mg/L Atomic absorption spectrometry 0.05

Fluoride F mg/L Ion chromatography 0.05
Oil Oil mg/L Infrared spectrophotometry 0.01

Sulphide S mg/L
Methylene blue

spectrophotometric
0.005

chromium Cr mg/L dpc colorimetric 0.004

2.3. Multivariate Statistical Methods

Spatio-temporal analysis of the water quality in the Eastern Poyang Lake Basin was analyzed

by using CA, DA, and PCA/FA techniques. CA is the task of grouping a set of objects based on the

characteristics they possess [33,34] and Ward's method is a criterion applied in hierarchical cluster

analysis. The Ward’s Method of hierarchical clustering with Squared Euclidean Distance was applied

to explore the grouping of the 28 sampling stations.

DA determines the variables that discriminate between two or more naturally occurring

groups/clusters on the basis of the accuracy rate of discriminant functions (DFs). It constructs a

discriminant function (DF) for each group [35]. DFs are calculated using the following equation:

f pGiq “ ki `
n

ÿ

j“1

wijPij (1)
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where i represents the number of groups pGq, ki represents the constant inherent to each group,

n represents the number of parameters, and wij represents the weight coefficient assigned by DF

analysis (DFA) to a given parameter (Pij).

DA was employed to calculate the mean of a variable to predict group membership. The standard,

forward stepwise, and backward stepwise modes of DA were used to calculate DFs in two groups

generated from CA to describe spatial variations in river water quality.

PCA is a dimensionality reduction technique that helps to simplify the data and make it easier

to visualize by finding a set of principal components (PCs) [36,37]. PCs are orthogonal variables

calculated by multiplying the original correlated variables with a list of coefficients, which can be

described as

zij “ ai1x1j ` ai2x2j ` . . . ` aimxmj (2)

where z represents the component score, a represents the component loading, x represents the measured

value of the variable, i represents the component number, j represents the sample number, and m

represents the total number of variables.

FA was used to extract a lower dimensional linear structure from a set of data and thenfore provide

a powerful means for detecting similarities among samples [38]. FA can reduce the contribution of less

significant variables obtained from PCA and the new group of variables known as varifactors (VFs) is

extracted through rotating the axis defined by PCA. The basic concept of FA is described as

zij “ a f 1 f1j ` a f 2 f21 ` . . . ` a f m fmi ` e f i (3)

where z represents the measured value of a variable, a represents the factor loading, f represents

the factor score, e represents the residual term accounting for errors or other sources of variation,

i represents the number of sample, j represents the number of variable, and m represents the total

number of factors.

Here, PCA/FA was applied to the normalized log-transformed data sets (14 variables) separately

for the two different spatial regions (low pollution region and high pollution region) as delineated by

the CA technique.

3. Results and Discussion

3.1. Temporal/Spatial Similarity and Grouping

Figure 3 shows the results of temporal cluster analysis, grouping the 6 months into two statistically

significant clusters at (Dlink/Dmax) ˆ 100 < 60. Cluster 1 (dry season), comprised of January and March,

approximately correspond to the low flow period. Cluster 2 (wet season) contains two small clusters at

(Dlink/Dmax) ˆ 100 < 40; that is, May and November reflect the mean flow periods, and the remaining

months (July and September) comprise another group, and reflect the high flow period. Notably,

temporal variation of surface water quality was significantly affected by local climate seasons (spring,

summer, autumn and winter) and hydrological conditions (low, mean, and high flow period). The

Poyang Lake Basin lies in a subtropical wet climate zone with a distinct alternation from wet to a dry

season, consistent with the temporal patterns of water quality (Figure 3).

Spatial CA also yielded a dendrogram with two statistically significant clusters at

(Dlink/Dmax) ˆ 100 < 60 (Figure 4). Group 1 included X1 and L1 to L4, and the remaining monitoring

stations comprised Group 2. The X1 station and L1 to L4 stations in Group 1 are located at the upstream

of the Xin River and the Lean River, respectively, which, due to low population density and the

absence of industrial and commercial activity, are far from major point and non-point pollution sources.

However, L1–L4 stations are located in the Dexing district, which is one of the largest copper and

gold producing districts in China and metal pollution and associated mineral pollution are always a

problem [39,40]. Despite relatively high Cu, S, and F concentrations were observed at the L4 Station in

this study, Group 1 should be considered as moderate or low pollution. Group 2 corresponds to highly
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polluted stations, with highest average concentrations of NH4-N, oil, BOD, COD and TP. Most stations

in this group were located at the middle to down-stream of the east Poyang Lake basin and received

pollution from point sources including municipal sewage and industrial wastewater and non-point

pollution sources.
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Figure 3. Dendogram showing the temporal clustering of study periods.
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Figure 4. Dendogram showing spatial clustering of study periods.

3.2. Temporal/Spatial Variations in River Water Quality

Based on the temporal groups (wet season and dry season) from CA, DA was performed on

raw data to further explore temporal changes in surface water quality. Tables 2 and 3 indicate the

discriminant functions (DFs) and classification matrices (CMs), which were calculated by the standard,

forward stepwise and backward stepwise modes of DA. Variables are included step-by-step beginning
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with the more significant until no significant changes in the forward stepwise mode, but are removed

step-by-step beginning with the less significant in the backward stepwise mode. Both the standard

and forward stepwise mode DFs using 14 and 7 discriminant variables, respectively, produced the

corresponding CMs assigning 96.43% of the cases correctly. In the backward stepwise mode, however,

DA yielded a CM with approximately 97.86% correct assignations using only four discriminant

parameters, showing that TEMP, pH, NH4-N, and TN. Thus, the temporal DA indicated that TEMP,

pH, NH4-N, and TN were the most significant parameters to discriminate differences between the wet

season and dry season, revealing that these four parameters could be used to account for the expected

temporal changes in surface water quality in the Eastern Poyang Lake Basin.

Table 2. Classification functions coefficients for DA of temporal changes.

Parameters
Standard Mode Forward Stepwise Mode Backward Stepwise Mode

Wet Season Dry Season Wet Season Dry Season Wet Season Dry Season

TEMP 1.989 3.033 3.241 2.207 2.613 1.577
pH 82.847 84.585 59.995 58.095 56.048 54.185

NH4-N 21.105 24.167 28.602 25.452 27.846 25.129
BOD 9.934 10.125
COD ´1.194 ´1.189
DO 10.981 10.727 12.409 12.687
TN ´5.506 ´7.395 ´9.417 ´7.549 ´12.533 ´10.631
TP 7.996 6.712 ´3.095 ´1.832
F 46.734 46.243
S 631.996 634.440

Cu ´255.025 ´250.116
Oil ´148.788 ´206.928 20.532 75.009
Cr 374.404 403.601
Zn 53.327 52.592

Constant ´378.134 ´403.979 ´302.864 ´276.639 ´235.610 ´206.896

Table 3. Classification matrix for DA of temporal changes.

Monitoring Periods Percent Correct
Temporal Groups

Wet Season Dry Season

Standard mode
Wet Season 95.536 321 15
Dry Season 100 0 224

Total 97.321 321 239

Forward stepwise mode
Wet Season 95.536 321 15
Dry Season 100 0 224

Total 97.321 321 239

Backward stepwise mode
Wet Season 96.429 324 12
Dry Season 100 0 224

Total 97.857 324 236

Box and whisker plots of the discriminate parameters identified by DA are indicated in Figure 5.

The average temperature (Figure 5a) in wet season was clearly higher than in dry season because of the

local climate. The same difference in pH was found in Figure 5b. In contrast, the average NH4-N and

TN were higher in dry season than in wet season due to the local hydrologic conditions. The discharge

in the wet season is much larger than in the dry season, which significantly dilutes the NH4-N and TN.

Moreover, in wet season (typical in summer and autumn) there are more aquatic organisms than in the

dry season, consuming more NH4-N.
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Figure 5. Temporal changes: (a) temperature; (b) pH; (c) NH4-N; and (d) TN in east Poyang Lake basin.

Table 4. Classification functions coefficients for DA of spatial changes.

Parameters
Standard Mode Forward Stepwise Mode Backward Stepwise Mode

Low
Pollution

High
Pollution

Low
Pollution

High
Pollution

Low
Pollution

High
Pollution

TEMP 1.028 1.07 1.214 1.260
pH 87.554 91.925 79.992 84.230 72.662 77.108

NH4-N 15.389 13.534 16.827 15.151
BOD 10.175 10.467
COD ´0.833 ´0.584 ´0.409 ´0.146 ´0.376 ´0.146
DO 10.645 10.246 10.144 9.730
TN ´1.196 0.484 ´0.140 1.573 3.971 5.296
TP 10.63 11.57
F 41.529 37.651 42.883 38.954 59.009 54.412
S 518.07 441.985 479.059 401.226 416.961 330.412

Cu ´244.929 ´234.766 ´205.655 ´195.490
Oil ´63.009 ´43.309 77.283 100.383
Cr 435.253 496.253 588.508 653.149
Zn 54.778 55.278

Constant ´384.511 ´413.498 ´349.255 ´376.823 ´273.306 ´303.391

Just like temporal DA, the DFs and CMs for spatial DA were obtained from the standard, forward

stepwise and backward stepwise modes on the basis of spatial groups (low pollution stations and high

pollution stations), which are shown in Tables 4 and 5. Both the standard and forward stepwise mode

DFs using 14 and 11 discriminant variables, respectively, yielded the corresponding CMs assigning

95% of the cases correctly, whereas the backward stepwise DA gave CMs with about 93.75% correct

assignations using only five discriminant parameters (Tables 4 and 5). Backward stepwise DA showed
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that pH, COD, TN, F, and S were the most significant parameters to discriminate differences between

the low pollution stations and high pollution stations.

Table 5. Classification matrix for discriminant analysis of spatial changes.

Monitoring Stations Percent Correct
Spatial Groups

Low Pollution High Pollution

Standard mode
Low pollution 72.000 72 28
High pollution 100.000 0 460

Total 95.000 72 28

Forward stepwise mode
Low pollution 72.000 72 28
High pollution 100.000 0 460

Total 95.000 72 488

Backward stepwise mode
Low pollution 69.000 69 31
High pollution 99.130 4 456

Total 93.750 73 487

Table 6. Loadings of experimental variables (14) on significant VFs for low pollution and high pollution.

Parameters
Low Pollution (Six Significant Principal Components)

High Pollution (four Significant
Principal Components)

VF1 VF2 VF3 VF4 VF5 VF6 VF1 VF2 VF3 VF4

TEMP 0.015 0.026 0.042 0.874 0.211 0.107 0.206 ´0.362 ´0.623 ´0.017
pH 0.730 0.230 0.201 ´0.068 ´0.243 ´0.169 ´0.657 ´0.149 ´0.114 ´0.081

NH4-N ´0.144 ´0.078 ´0.032 0.084 0.934 0.058 ´0.069 0.861 0.022 0.038
BOD ´0.013 ´0.834 0.036 0.167 ´0.040 0.249 0.103 ´0.054 ´0.365 0.701
COD 0.607 ´0.418 0.362 ´0.307 0.263 ´0.014 0.050 0.562 0.234 0.318
DO ´0.172 0.197 ´0.214 ´0.745 0.138 0.165 ´0.165 ´0.107 0.794 ´0.012
TN 0.721 0.283 ´0.127 0.186 0.443 ´0.124 0.219 0.651 ´0.003 0.091
TP 0.149 0.355 0.758 0.097 ´0.040 ´0.091 0.466 0.413 0.157 0.179
F ´0.597 ´0.440 ´0.121 ´0.253 0.387 0.261 0.330 0.113 0.646 0.065
S ´0.779 0.139 0.067 ´0.152 0.155 ´0.052 ´0.664 0.364 ´0.095 ´0.178

Cu 0.094 0.741 0.156 ´0.023 ´0.109 0.334 ´0.831 ´0.079 0.224 ´0.055
Oil 0.420 0.021 0.611 0.165 ´0.253 ´0.126 0.131 0.202 0.026 0.626
Cr ´0.188 ´0.154 0.887 0.075 0.065 0.117 0.073 0.129 0.266 0.639
Zn ´0.123 ´0.011 ´0.026 ´0.017 0.061 0.931 0.835 0.098 ´0.169 0.073

Eigenvalue 3.553 2.000 1.709 1.469 1.302 1.007 3.205 2.364 1.426 1.094
%Total variance 25.382 14.287 12.208 10.491 9.303 7.190 22.890 16.883 10.189 7.817

Cumulative%
variance

25.382 39.668 51.876 62.367 71.671 78.861 22.890 39.773 49.962 57.779

Figure 6 shows the chosen discriminate parameters identified by spatial backward stepwise DA.

The pH (Figure 6a) in low pollution regions was clearly less than in high pollution regions, which was

not consistent with analyze results in Danjiangkou Reservoir Basin of China [41]. It maybe because river

segments in this region receives a great deal of acidic mine drainage and waste effluents containing

Cu and Zn discharged from the neighboring Dexing Copper Mine and from many smelters and

mining/panning activities. The average COD and TN concentration (Figure 6b,c) in the low pollution

region were also clearly less than in the high pollution region. Within high pollution regions, all

stations were located in middle to down–stream reaches or near urban areas and therefore in proximity

to municipal sewage and industrial waste water. The average F and S concentration (Figure 6d,e) in

low pollution regions were also clearly higher than in high pollution region. Obviously, these excess

acidic pollutants were main drivers that leading to lower pH. Figure 7 preferably illustrates spatial

distribution of pH, DO, TN, and F at 27 stations in the east Poyang Lake basin.
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Figure 6. Spatial changes: (a) pH; (b) COD; (c) TN; (d) F and (e) S in the east Poyang Lake basin.
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at 27 stations in the east Poyang Lake basin.
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3.3. Data Structure Determination and Source Identification

Based on the normalized log-transformed data sets, PCA/FA was used to further identify the

potential pollution sources for the low pollution and high pollution regions. Before the PCA/FA

analysis, the Kaiser–Meyer–Olkin (KMO) and Bartlett’s Sphericity tests were carried out on the

parameter correlation matrix to examine the validity of PCA/FA. The KMO results for Group 1

and Group 2 were 0.61 and 0.71, respectively, and Bartlett’s Sphericity results were 547.92 and

1611.68 (p < 0.05), suggesting that PCA/FA analysis was reasonable to offer significant reductions

in dimensionality. Six VFs were calculated for the low pollution region and four VFs for the high

pollution region with the eigenvalues great than 1, explaining proximately 78.86% and 57.78% of the

total variance in respective surface water quality data sets (Figure 8 and Table 6).
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Figure 8. Scatter plot of loadings for the four VFs for group 1 (a and b) and group 2 (c and d).

In the low pollution region, among six VFs, VF1, explaining about 25.38% of the total variance, had

strong positive loadings of pH and TN and moderate positive loadings of COD, and strong negative

loadings of S and moderate negative loadings of F. Generally, high concentrations of total nitrogen

reflect agricultural runoff and municipal effluents [42,43]; COD is an indicator of organic pollution from

industrial and domestic waste water[44]. The pH is regarded as one of the main reaction conditions for

redox reactions involving organic matter, which can regulate the concentration of COD [45]. Sulphide

and fluoride mainly originate from copper mines in this region (e.g., the Dexing Copper Mine in Dexing

City), the components of which are very complex for dressing with high sulphur and fluoride [46].

VF1 included nutrient pollution, organic pollution and mining pollution. VF2 (14.29% of the total

variance) had strong positive loadings of Cu and strong negative loadings of BOD, representing metal



Sustainability 2016, 8, 133 12 of 15

pollution. VF3, explaining 12.21% of the total variance, had strong positive loadings of Cr and TP

and moderate positive loadings of Oil. This factor can be explained as representing influences from

point sources, such as copper mines, industrial effluents and domestic wastewater. VF4, accounting for

10.49% of the total variance, had strong positive loadings of temperature and strong negative loadings

of dissolved oxygen. The concentration of DO is controlled by temperature and therefore has both

a seasonal and a daily cycle [47]. Therefore, the DO concentration is high in winter and early spring

because of low temperature, and is low in summer and fall because of high temperature. VF5 (9.30%)

had strong positive loadings on NH4-N representing non-point source pollution related to agricultural

activities. VF6 (7.19%) had strong positive loadings of Zn indicating the metal pollution.

With respect to the data set pertaining to the high pollution region, among four VFs, VF1,

explaining about 22.89% of the total variance, had strong positive loadings on Cu and moderate

negative loadings on pH and S, basically representing metal pollution from the upstream. VF2 (16.88%

of the total variance) had strong positive loadings of NH4-N and moderate positive loading of TN

and COD. This factor can be explained as one typical kind of mixed pollution, which consists of

point source pollution (e.g., industrial and domestic waste water) and non-point source pollution

associated with agricultural activities and atmospheric deposition. VF3, explaining 10.19% of the

total variance, had strong positive loadings of DO and moderate positive loadings of F and moderate

negative loadings of TEMP. Generally, fluoride is from cement plants, fluorine chemical factories, and

copper smelters in this region. The relationship between DO and temperature is explained in the same

way as the explanation of VF4 in the low pollution region. VF4 (7.82%) had strong positive loadings

of BOD and moderate positive loadings of Oil and Cr. The high concentration of BOD and Oil could

represent organic pollution and oil pollution, and Cr is likely from cement plants and copper smelters

in this region.

Based on the above analysis, five latent pollutants including nutrients, organics, chemicals, heavy

metals and natural pollutants were identified in the study area. Firstly, nutrient pollution (ammonia

nitrogen and total nitrogen) was mainly from non-point sources related to agricultural activities

and atmospheric deposition and point sources including municipal effluents and fertilizer plant

wastewater. In addition, organic pollution (BOD and COD) was usually from point sources (e.g.,

industrial and domestic waste water). Thirdly, chemical pollution was mainly from the petroleum

industry (oil pollution) and copper mines and plating (S and F pollution). Fourthly, heavy metal

pollution (Cu, Cr and Zn) was mainly from copper mines and plating. Finally, natural pollution was

badly affected by meteorological variations such as the variation of water temperature and dissolved

oxygen. Considering the types of pollution in the two regions (Table 6 and Figure 6), heavy metals

(Cu, Cr and Zn), fluoride and sulfide stood out. Field investigations showed there are many copper

mines in the Eastern Poyang Lake Basin, such as the Dexing Copper Mine, which are associated with

mineral effluents including fluoride and sulfide.

4. Conclusions and Future Work

Different multivariate statistical techniques were applied to evaluate spatio-temporal variations

in surface water quality of the Eastern Poyang Lake Basin in this study. Hierarchical CA grouped 6

months into two periods and 28 sampling stations into two groups on the basis of their similar water

quality characteristics, which can provide a reasonable and useful classification for optimizing the

future spatial monitoring network with lower cost. Based on the results obtained from hierarchical CA,

spatial and temporal changes in surface water quality were analyzed through achieving discriminant

functions and classification matrices using DA. For temporal changes, the temporal DA used only

four discriminant parameters including TEMP, pH, NH4-N, and TN, with approximately 97.86%

correct assignations. The spatial DA gave CMs with about 93.75% correct assignations using only five

discriminant parameters (pH, COD, TN, F, and S). Thus, temporal and spatial DA analysis could be

used to optimize future water quality monitoring programs by reducing the number of monitoring

stations, monitoring parameters, and monitoring frequency. The results from PCA/FA analysis
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identified there were five latent pollutions including nutrients, organics, chemicals, heavy metals and

natural pollution. Heavy metals (Cu, Cr and Zn), fluoride and sulfide were serious problems in the

study region. In low pollution region, heavy metal and sulfide pollution were mainly from copper

mines such as the Dexing Copper Mine, but from copper mines and plating in the high pollution region.

Although all results obtained from this study illustrate the utility of multivariate statistical

techniques for extracting characteristics from large water quality data sets and identifying pollution

sources to fully understand spatiotemporal variations in water quality, further study should be carried

out in the future. First, some water quality parameters including TEMP, pH, NH4-N, COD, TN, F, and S

should be further monitored more accuracy and controlled. In addition, it is necessary to quantitatively

evaluate pollution sources to obtain contribution of different pollutants. Finally, further investigation

of heavy metal pollution should be implemented, especially for Cu pollution.
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