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FOREWORD 

Problems of water quality management and protection have been the sub­
ject of continuous interest in IIASA research activities for many years, 
because of their importance both for science and practice. There have been 
different ways in which these problems have been explored and studied in 
the framework of various research projects conducted here, but one thing 
cannot be questioned: the need for deep understanding of phenomena and 
mathematical methods used to describe them. 

The paper by M.B. Beck, an IIASA alumnus, addresses very impor­
tant issues of uncertainty in water quality modeling . However, the issue of 
uncertainty is important not only for those who are interested in develop­
ing or using water quality models, but also for a wide audience of research­
ers involved in environmental modeling. Although Beck discusses issues 
which are not investigated in the framework of the project Decision Sup­

port Systems for Managing Large International Rivers, this does not mean 
that the problems discussed in the paper are irrelevant to the scope of the 
project . His comprehensive review provides interesting and important 
information and may stimulate a critical evaluation of the concepts and 
opinions presented. 

K.A. SALEWICZ 
Project Leader 

Large International Rivers 
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Water Quality Modeling: 

A Review of the Analysis of Uncertainty 

M . B. BECK 

Department of Civil Engineering, Imperial College, London, England 

This paper reviews the role of uncertainty in the identification of mathematical models of water quality 
and in the application of these models to problems of prediction. More specifically, four problem areas 
are examined in detail : uncertainty about model structure, uncertainty in the estimated model parameter 
values, the propagation of prediction errors, and the design of experiments in order to reduce the critical 
uncertainties associated with a model. The review is rather lengthy, and it has therefore been prepared in 
effect as two papers. There is a shorter, largely nontechnical version, which gives a quick impression of 
the current and future issues in the analysis of uncertainty in water quality modeling. Enclosed by this 
shorter discussion is the main body of the review dealing in turn with(!) identifiability and experimental 
design, (2) the generation of preliminary model hypotheses under conditions of sparse, grossly uncertain 
field data, (3) the selection and evaluation of model structure, (4) parameter estimation (model calibra­
tion), (5) checks and balances on the identified model, i.e., model "verification" and model discrimination, 
and (6) prediction error propagation. Much time is spent in discussing the algorithms of system identifi­
cation, in particular, the methods of recursive estimation, and in relating these algorithms and the subject 
of identification to the problems of prediction uncertainty and first-order error analysis. There are two 
obvious omissions from the review. It is not concerned primarily with either the development and 
solution of stochastic differential equations or the issue of decision making under uncertainty, although 
clearly some reference must be made to these topics. In brief, the review concludes (not surprisingly) that 
much work has been done on the analysis of uncertainty in the development of mathematical models of 
water quality, and much remains to be done. A lack of model identifiability has been an outstanding 
difficulty in the interpretation and explanation of past observed system behavior, and there is ample 
evidence to show that the "larger," more "comprehensive" models are easily capable of generating highly 
uncertain predictions of future behavior. For the future of the subject, it is speculated that there is the 
possibility of progress in the development of novel algorithms for model structure identification, a need 
for new questions to be posed in the problem of prediction, and a distinct challenge to the conventional 
views of this review in the new forms of knowledge representation and manipulation now emerging from 
the field of artificial intelligence. 
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1. INTRODUCTION 

Uncertainty is such a pervasive, common aspect of experi­

ence that a review of its implications for water quality mod­

eling might seem redundant or a statement of the obvious. 

The present emphasis on uncertainty and error analysis in 

water quality modeling, which first appears to have been di­

rectly addressed by O'Neill [1973] in relation to ecological 

systems more generally, must at least partly be seen as a reac­

tion to the absence of considerations of uncertainty in the 

mainstream developments of the subject during the 1960's and 

early 1970's. If there were a longer term view to be taken, 

current research activities might be interpreted as a swing of 

the pendulum away from determinism toward indeterminism. 

That indeterminism may itself become unfashionable is there­

fore to be expected. Brush [1980], for example, in discussing 

the philosophical implications of quantum mechanics and 

Heisenberg's principle of indeterminacy, postulates just such a 

cyclical oscillation in "world views," which he traces well back 

into the nineteenth century. 

Why then, more specifically, has the analysis of uncertainty 

become so important, and what are the particular problems it 
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poses? Its importance is partly a reflection of the process of 

maturation typical of any subject of research. It is partly too a 

consequence of the liberating influence of the growth in the 

speed and capacity of digital computing equipment. The diffi­

culties of mathematical modeling are not now questions of 

whether the equations can be solved and of the costs of solv­

ing them many times; nor are they essentially questions of 

whether prior theory (on transport, dispersion, growth, decay, 

predation, etc.) is potentially capable of describing the system's 

behavior. The important questions are those of whether prior 

theory adequately matches observed behavior and whether the 

predictions obtained from models are meaningful and useful. 

The scope and purpose of this review are accordingly to 

survey, classify, and evaluate the methods that have been de­

veloped and applied to analysis of the following four problem 

areas associated with uncertainty. 

Problem area 1 (P 1). Uncertainty about the relationships 

among the variables characterizing the dynamic behavior of 

systems, i.e., uncertainty about model structure. 

Problem area 2 (P2). Uncertainty about the value of the 

parameters (coefficients) appearing in the identified structure 

of the dynamic model for the system's behavior. 

Problem area 3 (P3). Uncertainty associated with predic­

tions of the future behavior of the system. 

Problem area 4 (P4). The design of experiments, or moni­

toring programs, for the specific purpose of reducing the criti­

cal uncertainties associated with a model. 

1.1. Guidance for the Reader 

When confronted with a paper of this length, the attention 

of the casual reader is not easily engaged; indeed, some may 

not even have persevered this far. But the review is composed 

of two papers. There is a shorter, largely nontechnical version 

for those who wish merely to acquire a quick impression of 

the current and future issues associated with uncertainty. This 

comprises sections 1, 8, and 9; it is a philosophical comment 

on the status quo and a speculative view of future devel­

opments of the subject. There is also the paper as a whole, 

which is therefore the longer version of the review for those 

with a determined interest in detail. Among this considerable 

detail, the reader who is most familiar with the long-standing 

problem of model calibration may wish merely to read section 

5, which is more or less self-contained for this purpose. 

The paper has a certain symmetry about it. We shall begin 

shortly in this section with questions of management and de­

cision making and then transfer quickly to questions of a 

more detailed scientific nature. When the shorter version of 

the paper is resumed in section 8, it continues with a dis­

cussion of essentially scientific issues but moves finally to mat­

ters of decision-making uncertainty. This will clearly not satis­

fy the reader whose primary concerns are the more practical 

problems of managing water quality, and that reader might 

therefore prefer to read a (equally lengthy) review of these 

topics presented recently elsewhere [Beck, 1985a]. 

The longer version of the paper is also symmetrical in that 

it reflects the cyclical nature of the problems: from experi­

mental design (in section 2) through identification, to predic­

tion, and back again to experimental design (at the end of 

section 7). Its connection with section 8 is precisely on this 

point of experimental design, and in fact, section 8 once again 

runs through the same cycle in its brief examination of the 

likely problems of the future. 

Each section of the main body of the paper (sections 2- 7) is 

organized as follows. It begins with a brief statement of the 

logic behind the position of the topic in the overall discussion. 

There is then a definition of the problem, followed by a de­

scription of the approaches and, where appropriate, the speci­

fication of certain important algorithms. The relevant case 

study results are then surveyed, and finally some critical com­

ments are made on the notable successes and outstanding 

problems. Section 8 is thus a response to many of these out­

standing problems. Some of the methods presented are rele­

vant to more than one section, and some of the sections could 

easily be overwhelmed by a concentration of methodological 

detail. To provide a better balance therefore, and a more 

easily readable style, section 4 introduces the recursive meth­

ods of state-parameter estimation {these methods also being 

relevant to sections 5 and 7), and section 5 is complementary 

in its introduction of batch methods of estimation. 

The scope of the review may be further qualified by defining 

the relevant field of water quality: the focus will be on water 

quality in surface freshwater systems, where this includes 

topics from the related but more general field of systems ecol­

ogy. Despite this, however, the reader should be aware of the 

rich literature on statistical ecology that this review will over­

look [e.g., Steinhorst, 1979; Tiwari, 1979; White and Clark, 

1979]. There will also be occasional reference to the study of 

groundwater quality {recently reviewed by Yeh [1986]), estu­

arine water quality, and the adjacent disciplines of bio­

technology {wastewater treatment) and biomedical systems 

analysis. 

Above all, the review is not about the elegance of methods 

for the solution of hypothetical problems. Its overriding con­

cern is with the application of methods that will work in the 

difficult, usually inelegant, but highly enriching area of solving 

the problems of field case studies. 

1.2. The Issues 

There has always been uncertainty, but it was not really an 

issue in water quality modeling before the late 1970's. The 

beginnings of its more systematic and explicit analysis, how­

ever, go back further than that. For instance, Bellman et al. 

[1966] appear to have been among the first to address prob­

lems of system identification, or inverse problems, in the field 

of ecology, other early contributions having been made by 

Koivo and Phillips [1971], Parker [1972], and Shastry et al. 

[1973]. O'Neill [1973], as already indicated, and Argentesi and 

Olivi [1976] were instrumental in bringing the terms error 

analysis, or uncertainty analysis, to the fore in the context of 

studying prediction error propagation. 

Few would previously have associated the word uncertainty 

with the problem of system identification, although the way in 

which a model is derived from, or evaluated by reference to, 

the in situ field data must clearly influence both its ability to 

predict future behavior and the confidence to be attached to 

that prediction. Fewer still would have previously associated 

system identification (or much more narrowly, model calibra­

tion) with the problems of decision making and management. 

An earlier view of system identification is summarized in the 

following quotation from DeLucia and McBain [1981] on a 

case study of managing water quality in the St. John River in 

the United States. 

Recognizing that a model is only an approximation of the real 
system, it appears logical to visualize that water quality modeling 
is merely curve fitting in a river system .... [The] statistical 
theory of estimation and hypothesis testing are all useful in 
model building .. . . On the other hand, failure to recognise the 

quality modeling as curve fitting has, in part, contributed to the 
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making of water quality modeling a field of ambiguity and mys­
tery. Too often the calibration/verification procedure is described 
as a distinct and creative step in water quality modeling. How­
ever, it is merely, in fact, an ad hoc procedure to fill partially the 
role of estimation and hypothesis testing. 

Misconceptions can, and do, occur. 

1.2.1. Management and science. The concern of environ­

mental management, based, we assume, on environmental sci­

ence, is the application of knowledge of the relationships be­

tween causes and effects in guiding decisions about (1) the 

restoration of an "acceptable quality" to a damaged aquatic 

environment, (2) the prevention of damage to an environment 

as a result of contemplated development, and (3) the oper­

ational maintenance of an acceptable environmental quality in 

the face of seasonal variability and the occurrence of acci­

dents, failures, and extreme events. 

Few would disagree that in the light of these objectives 

there should be as little ambiguity and uncertainty as possible 

in the relationships between causes and effects. Nevertheless, it 

is easy to challenge the usefulness of any modeling exercise to 

decision making, for there is little published evidence with 

which to support its relevance [Beck, 1985a]. What is worse, 

the problems of system identification and the analysis of un­

certainty are still further removed from the (political) decision­

making process and therefore still more easily dismissed as 

irrelevant abstractions. 

Much depends on how the "scientist" communicates with 

the "manager." (These are understood as roles assumed by the 

individual; they are not mutually exclusive.) It may not be 

necessary to burden the manager with the details of an analy­

sis of error propagation. But most certainly it is important to 

be concerned about the scientific basis underpinning the 

model and its predictions, and this is becoming acutely impor­

tant given the impressive and persuasive technology of com­

munication now within reach [Loucks et al., 1985; Fedra and 

Loucks, 1985]. At the same time, it is surprisingly difficult to 

convince the scientist, let alone the manager, that system 

identification and the analysis and interpretation of field data 

are integral to the development of scientific theories about the 

behavior of complex environmental systems [Young, 1978; 

Beck, 1982, 1985b]. They are (arguably) the "distinct and cre­

ative step" that the above quotation denies. It is essential for 

system identification to involve a critical questioning of, and 

creative speculation about, prior hypotheses; to do otherwise 

is to ignore the role of experiment in theory development. 

System identification is not "merely curve fitting," if that is the 

end in itself; it is, if anything, curve fitting as a means to an 

end, where the end is the rigorous, scientific interpretation of 

field data. This paper takes the view that there is no obli­

gatory need of system identification in the application of 

models to the resolution of management issues. But if manage­

ment calls for a model, it is better that the way in which the 

model is to be developed and evaluated is agreed generally to 

be on a sound scientific footing. And without system identifi­

cation, in its broadest sense, the process of model develpment 

and evaluation should not be accorded the label of "scientific." 

In some ways, then, this is little more than what has already 

been discussed elsewhere on the relationship between manage­

ment and science [Thomann, 1982]. 

1.2.2. Classes of models. For certain philosophical and 

methodological reasons,, it is convenient to distinguish be­

tween three classes of models, developed as follows. It is obvi­

ous that all environmental systems are inherently of a 

distributed-parameter form. If the analyst were to attempt as 

complete a conceivable description of the system as possible, 

we would have the following form of model. 

Class I 

dx(t, r)/dt = f{V 2x, Vx, x, u, 9; t, r} (1) 

Here x is the state vector, i.e. , physical, biochemical, and eco­

logical attributes of water quality, u is a vector of measured 

input disturbances, 9 a vector of model parameters (coef­

ficients), t is (continuous) time, and r is a vector representing 

the three spatial directions (a list of symbols used in the paper 

is given in the notation list). 

From the points of view of the available in situ observations 

and the applicable methods of system identification, the 

question is to what extent must simplifying assumptions be 

made to the description of(l) in order to formulate an identifi­

cation problem capable of solution. We shall assume that this 

means in practice either a finite-element or a finite-difference 

approximation where spatial variability is accounted for by an 

appropriate redefinition of the state vector, i.e., x may include 

elements for the same attribute of water quality in several 

spatial volumes. Here the finite-element approximation would 

give the model for the state variable dynamics as 

Class II 

dx(t) jdt = f{ X, U, IX; l} + l;(t) (2a) 

with (output) observations of the states given by 

{2b) 

where now IX is the vector of model parameters relating to this 

lumped form of model (IX may vary with time t), y is the vector 

of measured output response variables, I; is a vector of un­

measured, possibly random, input disturbances, and 'I is a 

vector of random output measurement errors. The argument 

tk in (2b) indicates the pragmatic restriction of the observa­

tions y to discrete instants of time (the same is in fact the case 

for u in (2a)). 

The nature of (2), which is central to the remainder of the 

paper, places the discussion of this review firmly in the con­

ceptual framework of control theory. This is perhaps an un­

familiar framework, but it should not cause undue difficulties 

in understanding the problems at hand (except possibly in 

section 7). 

A third class of commonly encountered model is the input/ 

output, transfer function model defined by the discrete-time, 

difference equation 

Class III 

y(tk) = f{y(tk - 1), . .. ' y(tk _n), u(tk-1), ... ' u(tk_n), 

ro(tk_,), ···, ro(tk - n), ~} (3) 

in which ~ is the relevant model parameter vector and all the 

sources of error (other than prior parameter estimation errors) 

are lumped under the definition of the single noise process ro. 

1.2.3. A taxonomy of uncertainty. As we have said, the 

analysis of uncertainty associated with the class II models 

introduced above will be the central concern of this review. 

It is now necessary to relate the sources of error and uncer­

tainty implied by (2) to the basic scheme of Figure 1, i.e., to 

define a "taxonomy of uncertainty" (a term borrowed from 

A/camo and Bartnicki [1985]). At least until near the end of 

the review (in section 8), uncertainty will be understood in a 

probabilistic sense, encapsulating therefore the variability in 

the outcome of a random event (including the attributes of a 
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Fig. 1. Frame of reference for the analysis of uncertainty. 

biological population) and embracing the notions of erroneous 

assumptions or the distribution of errors associated with ob­

served or estimated quantities. 

There are three perspectives from which to view Figure 1: 

(1) as providing the logical connections between the cyclical 

triplet of (prior assumptions---> identification---> prediction) and 

thus the propagation of uncertainty in the unfolding of these 

procedures, (2) as the taxonomy itself (see below), and (3) as 

distinguishing between uncertainty associated with an external 

and an internal description of the system's behavior. 

Most of the details of Figure 1 are self-explanatory and will 

be amplified fully as the review proceeds. There are two excep­

tions, however, both relating to the uncertainty of the internal 

description of the system. First, errors of aggregation, es­

pecially in the spatial and ecological senses implied by the 

lumping approximations of a class II model, will only be men­

tioned in passing. Some work on the errors of aggregation 

resulting from the approximation of a three-dimensional spa­

tial continuum by a two-dimensional model representation 

has been reported by McLaughlin [1985] for groundwater sys­

tems. Others have investigated in depth the errors arising from 

the aggregation of groups of heterogeneous biological species 

into single ecological "compartments" [O'Neill and Rust, 

1979] (see also section 7). Second, the errors of model struc­

ture, although the focus of much discussion throughout the 

review, are in fact extremely difficult to quantify in a formal 

manner. Technically, within the context of the class II model 

defined above in (2), they could be subsumed under the defini­

tion of either the parameter estimation errors or the sources of 

uncertainty lumped in the definition of !;, ostensibly the "un­

observed system disturbances." The latter is conceptually per­

haps the more satisfactory means of accounting for such un­

certainty, although it has rarely been used for this purpose 

and is in any case subject to notoriously arbitrary choice (as 

we shall see in section 4). 

To summarize the taxonomy, the sources of uncertainty 

most usually accounted for are uncertainty in the initial state 

of the system, uncertainty in the model parameter estimates, 

uncertainty in the observed input disturbances and output 

responses, and uncertainty arising from unobserved input dis­

turbances of the system. 

1.2.4. Some philosophical points: different models for differ­

ent roles. Overall, a Popperian view of the scientific method 

is assumed in this review, although hopefully not in the 

"naive" sense discussed by Chalmers [1982]. The relevant 

consequences of this are several. 

First, Popper [1968] has drawn a distinction between sci­

ence and nonscience as a matter of whether the hypotheses 

associated with any attempt at a description of nature can be 

formulated in a manner whereby they can be unambiguously 

falsified. Given the currently available field observations of the 

behavior of environmental systems, "comprehensive" models 

(of the class I type), which have become enormously complex 

assemblies of very many hypotheses, cannot be effectively 

falsified. This is partly a function of uncertainty in the field 

data, certainly a function of current limitations in the methods 

of system identification, and essentially a function, in the event 

of demonstrating a significant mismatch between the model 

and observations, of being unable to distinguish which among 

the multitude of hypotheses have been falsified. In fact the 

detailed spatial patterns of water circulation and equally de­

tailed differentiation of ecological behavior described by the 

more complex models would demand experimental observa­

tions that are simply not technically feasible. This is clearly a 

problem intrinsic to the unavoidable process of aggregation, 

especially between class I and class II models, and specifically 
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deriving from the fact that the dimensions of the input/output 

observations { u, y} are (much) smaller than those of the state 

and parameter vectors {x, a}. 

Second, this facilitates a more "comfortable" view of models 

as either formalized archives of hypotheses or as vehicles for 

the exhaustive analysis and interpretation of data. The debate 

about preferred approaches to modeling can therefore be shift­

ed away from the customary confrontations between the large 

and the small or the statistical and the mechanistic models. 

Such a view reconciles the role of the class I model, as the 

archive, with the role of the class III model, often the only 

vehicle for the analysis of data. It allows one to acknowledge 

that in seeking an understanding of the system's observed be­

havior, a class III model is not a satisfactory end point to the 

analysis. It is instinctive for the scientist to ask how and why 

certain types of behavior or anomalies are observed, not 

merely to accept that they are. For instance, a linear (regres­

sion) relationship identified between the concentrations of alu­

minium and hydrogen ions in an upland stream will prompt 

many questions, since it runs counter to the expected deduc­

tions from chemical equilibrium theory [Whitehead et al., 

1986]. The interpretation of anomalies and the revision of 

inadequate hypotheses are not therefore matters that can be 

resolved without recourse to the archive of hypotheses associ­

ated with a class I model. In fact, there is an important inter­

play between the two sides of the dichotomy. 

Third, in light of the above, it is convenient to adopt as an 

organizing principle for the procedure of system identification 

the following complementary (and iterative) questions of how 

to expose the failure (inadequacy) of the constituent hypoth­

eses of a model structure, and how to infer the form of an 

improved model structure from diagnosis of the failure of an 

inadequate structure and from the prior knowledge associated 

largely with the class I models. 

In answering these questions, the class II models play a 

central role as intermediaries between the other two classes of 

models. In spite of their aggregated form, they still embody 

the spirit of the hypotheses about those phenomena thought 

to govern system behavior and in a form for which the identi­

fication problem is capable of solution. 

1.2.5. Hydrology and water quality. It is also instructive 

to draw a distinction between hydrological system identifi­

cation and environmental (water quality) system identification. 

The essential problem of hydrological management in the 

narrow sense of having the right quantity of water in the right 

place at the right time is one that has always been present and, 

as a problem for study, unchanging. Cause and effect in hy­

drology are unambiguously related (precipitation causes 

runoff and hence streamflow), although undoubtedly the pre­

cise mathematical form of this relationship can be extremely 

difficult to identify for complex hydrological systems. Cause 

and effect are not always self-evident in managing water quali­

ty; and the essential problems of water quality have changed 

and continue to change significantly (first it was easily degrad­

able organic wastes, then eutrophication, then the nitrate 

problem, and now toxics and acid rain [Beck, 1985a]). The 

emergence of new problems causes shifts of analytical study 

from one area to another and lessens therefore the effort de­

voted to analyzing the "classical" problems in greater detail, 

including greater statistical detail. Consider, for instance, a 

model relating rainfall-runoff to observed precipitation and a 

residual noise process. Hydrology has advanced to the point 

where one would be much concerned about the assumptions 

made about the stochastic processes affecting the identifi­

cation of this model. The analyst of water quality problems 

would be content to make any convenient assumption about 

such processes providing there was available a robust esti­

mator for establishing in the first place the relationship be­

tween the relevant input and output system characteristics. 

Moreover, it may well be that water quality will always be so 

concerned because it is in the nature of the subject that analy­

sis is more usually directed at the determination of new re­

lationships among new sets of variables rather than continual 

refinement of models for the same relationships among the 

same pairs of variables. 

In effect, almost all the problems of environmental system 

identification can be viewed as problems of model structure 

identification, and although they are here not treated under 

that title, many of the methods and case studies discussed in 

sections 5 and 6 are relevant to that problem. 

1.2.6. Uncertainty, ambiguity, and identifiability. Until the 

issue of uncertainty in water quality modeling had risen to 

significance in the late 1970's, it had been the paradigm to 

develop as comprehensive a "physics-based, mechanistic" rep­

resentation of the system as possible [e.g., Park et al., 1974; 

Chen and Smith, 1979]. Our concern about such models, and 

effective tests of their many associated hypotheses, have al­

ready been noted both above and elsewhere [Reckhow and 

Chapra 1983a]. That the constituent hypotheses of these 

models cannot be effectively falsified can be stated alter­

natively as a lack of identifiability, as a case of ·over­

parameterization, or that the model contains surplus content 

[Young, 1978]. The crux of the problem is that what one 

would like to know about the internal description of the 

system {x, a} is of a substantially higher order than what can 

be observed about the external description of the system { u, 

y}. The model may contain descriptions either of a type of 

behavior not actually observed in the particular sample of 

data, or of multiple types of behavior, the individual compo­

nents of which cannot be disentangled from observations of 

their collective effect. The consequences are usually apparent 

in the absence of a uniquely "best" combination of parameter 

values that fit the data (many combinations are "equally 

good") and in parameter estimates with high error variances 

and covariances. 

On philosophical grounds the problem of model identifia­

bility is clearly undesirable. It implies an uncertain and am­

biguous interpretation of past observed behavior and, equally 

so, the possibility of ambiguous (and even contradictory) pre­

dictions from a given model. Identifiability will subsequently 

emerge as the dominant problem of model parameter esti­

mation in section 5 (see also Sorooshian et al. [1983], Sor­

ooshian and Gupta [1983], and Gupta and Sorooshian [1983] 

for an exhaustive treatment of the problem in hydrological 

models). It is also the key conceptual link between the topics 

of identification and prediction that form the two halves of 

this review. 

But this now is as far as it is necessary to go in discussing 

the issues for review. The casual reader, if still with us, we shall 

rejoin in section 8. 

2. IDENTIFIABILITY AND EXPERIMENTAL DESIGN 

In Jess philosophical and more quantitative terms, what can 

be done to detect and avoid the potential problems of identifi­

ability? 

The problem lies in the "choices" of { x, a} and { u, y} or, in 
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other words, in inappropriate choices of model structure (prior 

theory) and the set of input/output variables to be (or that 

have been) observed in a planned experiment. Some of the 

difficulties arise solely from the form of the model structure, 

some are obviously difficulties with the awkward properties of 

the data, and others arise from particular combinations of the 

two. In any case, the problems of identifiability are intimately 

related to the issue of experimental design, or problem (P4) as 

defined in the introduction: the design of experiments, or 

monitoring programs, for the specific purpose of reducing 

critical uncertainties associated with a model. 

In fact, in answer to our question, very little can be done a 

priori to detect and avoid subsequent identifiability problems, 

and for three very practical reasons. 

1. Planned experiments are in general not possible for en­

vironmental systems; there is usually little freedom to choose 

u and y, to isolate a single cause-and-effect couple for experi­

mentation along the lines of laboratory science, or to design 

the experimental perturbations in u (as would normally be 

assumed in the relevant literature of control theory [e.g., Gu­

stavsson, 1975; Goodwin and Payne, 1977; Isermann, 1980]). 

There are exceptions, however, notably dye-tracer studies, 

which will be discussed below [e.g., Jakeman and Young, 1980; 

Beer and Young, 1983], the use of tubular enclosures in lakes 

[Lack and Lund, 1974], and the whole-lake experiments in 

eutrophication reported by Schindler and co-workers [Schind­

ler and Fee, 1974; Schindler et al., 1978]. 

2. A good experimental design requires good prior knowl­

edge of the system's behavior, i.e., a good model, which begs 

the original question. 

3. Formal analysis of the identifiability of a model struc­

ture [Bellman and Astrom, 1970] does not appear to have 

yielded any easily computable procedures (as noted by Cobelli 

et al. [1979]); it leads to a cumbersome computational effort 

for all but the simplest problems [Holmberg, 1981; Gentil, 

1982] and is often approached within the (unfamiliar) context 

of frequency-domain representations of system behavior [God­

frey et al., 1982]. 

Most first attempts at the design of sampling programs will 

not be addressed to the problem of system identification as 

discussed here. They will usually derive from the exclusive 

interests of management [Reckhow, 1978; Ellis and Lacey, 

1980; Ward and Loftis, 1983] and will not involve any more 

complicated prior knowledge than some elementary statistical 

models for the distribution of random variables. 

The one area of water quality modeling in which consider­

able prior knowledge is available and where deliberate experi­

mentation is possible is that of the identification of pollutant 

transport and dispersion. Experimental design in this area has 

accordingly attracted quite detailed analysis, specifically from 

the point of view of system identification, and indeed exploits 

the fact that uncertain and poorly estimated parameter values 

result from a model structure that is overparameterized [Jake­

man and Young, 1980; Beer and Young, 1983]. The analysis is, 

however, restricted to particular forms of model structure, in 

fact the single input/single output versions of the class III 

models of (3). But what it shows is of considerable practical 

relevance, for it suggests that an "optimal" injection point for 

the tracer would be located some distance upstream of the 

system (the stretch of river) under study. The intermediate 

length of river prior to the system input then has the physical 

effect of filtering out a portion of the noise processes that 

would otherwise degrade the capacity to identify a model from 
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Fig. 2. Relative sensitivities for the change in estimated biomass 
concentration (in g L - 1

) that would result from changes in the maxi­
mum specific growth rate constant (curve 1) and the saturation con­
centration (curve 2) [after Holmberg, 1981]. 

the field observations [Jakeman and Young, 1980]. Closely 

similar conclusions have also been reached from quite a differ­

ent perspective by van Straten et al. [1985]. 

It is not surprising that the conditions governing identifia­

bility are closely related to sensitivity analysis, and while not 

wishing to pre-empt the discussion of section 7, there are cer­

tain general observations that are best made here. They refer 

to the identifiability of the Monod kinetic expression for bio­

logical growth, which although quite specific, is of sufficiently 

general importance because of its widespread use in ecological, 

fermentation, and biomedical system models. Figure 2 shows 

the relative sensitivities for the change in estimated biomass 

concentration (in grams per liter) that would result from 

changes in the maximum specific growth rate constant (curve 

1) and the saturation concentration (curve 2) in a model of a 

continuous culture fermentation process [Holmberg, 1981]. 

The qualitatively identical fluctuations in these two relative 

sensitivity coefficients would cause the associated parameters 

not to be uniquely identifiable; errors in the values of the two 

parameters would tend to be mutually self-cancelling in terms 

of the net model response and therefore not detectable. Note 

that such an analysis deals only with the intrinsic properties of 

the model, i.e., the internal description of the system's behav­

ior {x, ot}, and makes no reference to any particular set of field 

data, other than that biomass concentration would need to be 

an observed variable. In fact, given a set of observations from 

an entirely deterministic simulated system (the noise processes 

I; and 11 being identically zero in (2)), Holmberg and Ranta 

[1982] have shown further that a typical least squares param­

eter estimation algorithm has great difficulty in converging to 

an optimal and unique pair of estimates for the maximum 

specific growth rate and saturation concentration constants. 

The essential problem is that the surface of the (squared-error) 

objective function has the shape of a long, narrow, steep-sided 

valley running roughly parallel to the axis of the saturation 

concentration constant in the two-dimensional parameter 

space. In other words, in the neighborhood of its minimum, 

the value of the objective function is virtually insensitive to the 

value of the saturation concentration, and hence many pairs of 

values for the two parameters constitute effectively the least 

squares estimates. 

There have been other studies on the use of sensitivity coef­

ficients to establish the identifiability of a model, for instance, 
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Gentil [1982] in a case study of Lake Aiguebelette in France 

(her paper is also of interest for its discussion of identifiability, 

observability, and controllability as concepts in linear system 

theory), and to determine an experimental sampling strategy 

for model identification [Via/as et al., 1985]. 

However, without considerable prior knowledge of model 

structure and model uncertainty, there is little of substance 

that can be said of identifiability and experimental design for 

system identification, and we shall defer further discussion of 

identifiability, in particular, until section 5. In the hydrological 

sciences more generally, the subject of identifiability has re­

ceived barely any attention until relatively recently [e.g., Sor­

ooshian and Gupta, 1985]. Should it become more relevant, 

there is much to be learned from the record of its parallel 

study in the adjacent disciplines of biotechnology and bio­

medical systems analysis [Godfrey and Distefano, 1985]. 

3. GENERATING PRELIMINARY HYPOTHESES 

We come then to the problem of model building in its pris­

tine state, with little confident, prior knowledge and few exper­

imental observations. Broadly, this is the first of our four 

problem areas as defined in the introduction (section 1), i.e., 

problem (Pl): uncertainty about the relationships among the 

variables characterizing the dynamic behavior of systems, i.e., 

uncertainty about model structure. 

The issue is one of how to get started, of how to start, in 

particular, against a background of gross uncertainties. 

We noted earlier the preferred view of system identification 

as separating into the dual procedural steps of (1) exposing the 

failure of inadequate, constituent model hypotheses, and (2) 

speculating about, generating, or inferring the form of im­

proved hypotheses. 

The exposure of failure, which is a relatively "crisp" concept, 

implies both bold, confident prior hypotheses and the avail­

ability of adequate time-series observations of the inputs (u) 

and outputs (y). But this is rarely the case. It is much more 

common that a few quantitative observations are available 

(probably sampled irregularly and infrequently) together with 

less quantitative, more qualitative, empirical evidence of the 

system's behavior. In such situations (the subject of this sec­

tion) it is apparent that the problem is one of generating some 

preliminary hypotheses about the possible mechanisms gov­

erning qualitatively observed behavior. The approach to such 

problems, as described below, is a speculative exercise. And 

although it is convenient to think of it as an implementation 

of the second of the above two procedural steps of system 

identification, in practice the approach operates on a principle 

of sifting through a set of prior hypotheses and rejecting from 

further consideration those to which observed behavior ap­

pears to be insensitive. 

The approach is due collectively to Hornberger, Spear, and 

Young [Young et al., 1978 ; Hornberger and Spear, 1980, 1981; 

Spear and Hornberger, 1980; Young, 1983] and .has variously 

been labeled a regionalized sensitivity analysis, a procedure 

for hypotheses generation, and speculative simulation mod­

eling, names that themselves are revealing of the interwoven 

concepts of this review. The approach is stated most generally 

and succinctly by Hornberger and Spear [1981]. It is placed 

properly in the context of modeling "poorly defined" systems 

by Young [1983], much the same as here, and it is best illus­

trated by a case study of cultural eutrophication in Peel Inlet, 

western Australia [Hornberger and Spear, 1980; Spear and 

Hornberger, 1980]. 

For want of a better name, we shall refer to it here under 

the rubric of the Hornberger-Spear-Young (or HSY) algo­

rithm. It is not really an algorithm, and we shall leave poster· 

ity to invent a more adequate title. 

3.1. The Hornberger-Spear-Young Algorithm 

Let us begin, perhaps paradoxically, by giving a definition 

of the familiar problem of parameter (and state) estimation, 

typically for a class II model. 

Given a set of experimental, time-series field data comprising the 
measured inputs, u(tk), and the measured outputs, y(tk), of the 
system, determine values for the model parameters, a(t), and state 
variables, x(t), such that some (error, loss, or objective) function 
of the differences between the estimated ((y)) and observed (y) 
output responses is minimized. 

For the present this is a highly restrictive problem defini­

tion. It does not capture at all the situation in which the field 

data are sparse, but it can be made to do so by making the 

following two fundamentally important substitutions, as pro­

posed by Hornberger, Spear, and Young. 

1. The trajectories of the time-series observations {(y(t0), 

y(t 1), · · ·, y(tN)}, against which the performance or the model 

is to be evaluated, are replaced by a definition of (past) behav­

ior (B) in terms of less detailed (more qualitative) constraints 

derived from the limited available observations (thresholds, 

topological constraints, and logical constraints, among others, 

are permissible). 

2. The error-loss (objective) function for locating a unique 

and best estimate ( o: ) of the parameter vector is replaced by a 

criterion that either accepts or rejects a sample vector o:* as 

giving rise to the past behavior (B) defined according to point 

1, above. 

In other words, the model is required, as it were, to pass 

through a "corridor" of constraints with "hurdles" to be over­

come (as in the most simple form of Figure 3c), and it either 

succeeds or fails. 

(a) 

Time 

(c) (d) Random realizations of parameter 
values over specified ranges 
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Fig. 3. A comparison of (a and b) the concepts of estimation and 
(c and d) the HSY algorithm : (a) fitting the model response to the 
data, (b) contours of the fitting-function surface in the parameter 
space, (c) specification of constraints on acceptable model responses, 
and (d) analysis of model parameter values (dots indicate values 
giving rise to acceptable behavior, and crosses indicate values giving 
rise to unacceptable behavior). 
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For example, to quote from the original study of Peel Inlet, 

one item of the behavior definition (B) was chosen to con­

strain the estimated yearly peak biomass of the nuisance alga 

Cladophora to be greater than 1.5 times and less than 10.0 

times its initial biomass at April I (defined as time t0 ), i.e. , 

(4) 

In addition, the ranges of permissible values from which the 

sample model parameter vectors are to be drawn were speci­

fied as rectangular distributions with upper and lower bounds, 

i.e., 

(5) 

The two types of inequalities (4) and (5) reflect the uncertainty 

of the empirical evidence and the uncertainty of the prior 

hypotheses, respectively. 

The procedure of the analysis is a form of Monte Carlo 

simulation. In the original study the pattern of input distur­

bances u(t) and the initial conditions x{t 0 ) were assumed to be 

known and not subject to uncertainty (assumptions that are 

not restrictive, as we shall see later). And since l;(t) = 0 was 

also assumed for (2a) of a class II model, it is apparent that all 

the uncertainty of the problem can be lumped under the title 

of parameter uncertainty. A sample vector ix• is drawn at 

random from its parent distribution and substituted in the 

model of (2) to obtain a sample realization of the trajectory 

x(t), which is then assessed for its satisfaction, or otherwise, of 

the set of constraints defined in the form of inequality (4). 

Repeated sampling of ex*, for a sufficiently large number of 

times, allows the derivation of an ensemble of parameter vec­

tors that gives rise to the behavior (B) and a complementary 

ensemble associated with not-the-behavior (BJ. For this analy­

sis therefore there is no meaningful interpretation of a degree 

of closeness to a uniquely best set of parameter estimates. 

Each sample vector ex* giving rise to the behavior is equally as 

"good" or as "probable" as any other. The crux of the analy­

sis, with regard to resolving the questions of our problem (Pl), 

in the introduction, is the identification of which among the 

hypotheses parameterized by ex are those that are significant 

determinants of observed past behavior. "Significance" is here 

indicated by the degree to which the central tendencies of the 

marginal and joint distributions of the (a posteriori) ensembles 

of the "behavior-giving" parameter values cx*(B) and their 

complement cx*(B) are distinctly separated. Thus, for instance, 

the distinct clustering of parameter combinations that give the 

behavior, toward high values of rx 2 and low values of rx, in 

Figure 3d, suggests that the hypotheses associated with rx 1 and 

rx
2 

are likely to be fruitful speculations in understanding the 

observed system behavior. Rank ordering of the separation of 

the distributions of rx;*(B) and Cl; *(BJ for each individual pa­

rameter i allows the rejection of some of the hypotheses as 

probably insignificant [Hornberger and Spear, 1981] ; they 

might alternatively be said to be part of the surplus content of 

the model, a point discussed earlier in the introduction (sec­

tion 1) with respect to the problem of identifiability. 

The speculative character of the analysis should be obvious. 

The objective is to generate a preliminary set of promising 

hypotheses about a system's behavior. The origins of the term 

regional sensitivity analysis, as opposed to a local sensitivity 

analysis (as in the work by Jorgensen et al. [1978], Rinaldi and 

Soncini-Sessa [1978], and van Straten and de Boer [1979]) 

should also be apparent. A local sensitivity analysis is usually 

concerned with determining the changes in the state variable 

trajectories (in the neighborhood of a set of nominal reference 

trajectories) that would result from small changes in the values 

of the parameters. The regional aspect of the approach out­

lined above is its evaluation of the sensitivity of a broad range 

of possible realizations of the state trajectories to (nonlocal) 

ranges of values for the parameters. For example, had there 

been no clustering discernible in Figure 3d, an intuitive con­

clusion would have been to say that the behavior definition is 

not sensitive to any particular values of ix
1 

and ix
2

• Finally, we 

may note that the focus on hypotheses parameterized by ix, as 

opposed to the tendencies of the specific values assumed by 

ix*(B) and ix*(BJ, concentrates the analysis on problems of type 

(Pl) and not on those, i.e., parameter estimation, of type (P2). 

3.2. Case Studies 

The significance of the work conducted by Hornberger, 

Spear, and Young is readily apparent from the number of 

other studies that have already adopted a similar approach. 

Van Straten [1981] has applied it in order to evaluate a hy­

pothesis of phosphate sorption on particulate matter and the 

association of this mechanism with the exchange of nutrients 

between sediments and water in a shallow lake (Lake Balaton, 

Hungary). Halfon and Maguire [1983] report results for a 

study of the fate of fenitrothion (a pesticide used to control 

spruce budworm) in an aquatic environment, and Whitehead 

and Hornberger [1984] have used the approach to examine 

certain aspects of algal population dynamics in the Thames 

River basin in United Kingdom (see also section 4). 

All of these case studies do not deviate significantly from 

the basic approach outlined above. Fedra, however, has been 

prominent in extending the approach in other important di­

rections. 

1. In formally adjoining bounded distributions for u(t) and 

x(t0 ) in (2) to the parameter distributions of inequality (5), i.e. , 

hypotheses about the patterns of u(t) and x(t0) and their uncer­

tainty are parameterized via ex [Fedra et al., 1981; Hornberger 

and Spear, 1981; Hornberger and Cosby, 1985a]. 

2. In deliberately associating the residual (a posteriori) un­

certainty of an "identified" model with subsequent analysis of 

prediction uncertainty [Fedra et al., 1981; Half on and Ma­

guire, 1983; Hornberger and Cosby, 1985a] (see also section 7). 

3. In using the approach to address much more explicitly 

the problem of model structure identification, as defined in 

section 4 [Fedra, 1981]. 

4. In combining the use of error (objective) functions with 

the behavior definition as a means of broadening the concept 

of determining acceptable model performance [Fedra, 1983; 

Hornberger and Cosby, 1985a; Hornberger et al., 1985]. 

Fedra's style is typically philosophical and provocative, and 

the reader will not be disappointed by the synthesis he has 

given his ideas in Fedra [1983], where he uses as case studies a 

problem of lake eutrophication in the Attersee, Austria [Fedra 

et al., 1981], a pelagic food web in the North Sea [Fedra, 

1981], and a simple rainfall-runoff model for a small moun­

tainous watershed in upper Austria. 

3.3. Commentary 

The appeal and power of the HSY algorithm are undeni­

able. Simplicity and flexibility of method, together with the 

enforced declaration of arbitrary assumptions (as Fedra has 

observed) are virtues rarely matched by most of the other 

topics of this review. Above all, the approach occupies a pre­

viously empty niche in the analysis of uncertainty, identifi­

cation, and prediction. Its applicability is essentially indepen­

dent of the complexity of the model structure, since the classi-
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fication scheme remains a simple binary system of giving, or 

not giving, rise to the behavior defined. 

There are, however, some disadvantages. First, the interpre­

tation of the derived a posteriori parameter distributions be­

comes more difficult as the dimension of the parameter vector 

increases, and for all practical purposes, it seems probable that 

any conclusions will have to be restricted to the properties of, 

at most, the univariate and bivariate marginal distributions 

associated with the multivariate joint distribution. 

Second, if the primary advantage of an approach is its sim­

plicity, then much of that advantage will be surrendered 

should it lose the attribute of being simple. Fedra's introduc­

tion of what are, in effect, sampled time series of permissible 

ranges for the state variable trajectories (as opposed to point 

observations from an associated probability distribution) and 

his use of terms such as best estimates and estimation schemes 

that "optimize" are redolent of old habits. They are suggestive 

of ways in which to use the approach that go against its two 

cardinal points. There are indeed signs elsewhere [e.g., Horn­

berger and Cosby, 1985b; Hornberger et al., 1985] of a loss of 

focus on the original motivations for the development of the 

approach, i.e., the acute need to handle situations of sparse 

data and to generate preliminary hypotheses about a system's 

behavior. These more recent developments have dealt with 

extensive (notably hydrological) data sets and the problems of 

identifiability and surplus content, and it is again the en­

croaching complication of what is supremely a simple ap­

proach that gives cause for concern. 

Third, Sharejkin's [1983] criticism that the approach lacks 

refinement in its crude binary classification procedure is also a 

tempting, but possibly counterproductive, step in the direction 

of complication. 

And fourth, when a technique is easy to apply, such facility 

may mask the rigor that is necessary in other less technical 

aspects of the analysis. The subtlety and difficulty of the HSY 

algorithm, and perhaps too the probability of a successful 

outcome, lie in careful assembly and composition of the hy­

potheses that go to form the model structure. It is revealing, 

for example, to contrast the relative richness of the clear-cut 

conclusions of the Peel Inlet study using a problem-specific 

model [Spear and Hornberger, 1980], with the relative incon­

clusiveness of the Attersee project [Fedra et al., 1981], which 

made use of a model developed for more general, nonspecific 

purposes (a corruption of the popular computing aphorism 

would have this : blandness in, blandness out). 

4. SELECTION AND Ev ALUA TION 

OF MODEL STRUCTURE 

A more likely conclusion from the foregoing speculative 

form of analysis is that further more specific, more intensive 

experimental study should be made of the system. Were this to 

be the case, thus yielding a set of time-series field data, the 

selection and evaluation of model structure could then pro­

ceed in a more refined fashion . The problem area of interest is 

still that of problem (Pl), though now in the sense of what we 

shall define as the problem of model structure identification: 

The unambiguous determination, by reference to the in situ field 
data { u(r.), y(r.)}, of how the measured input disturbances u are 
related to the state variables x and how these latter are in turn 
related both among themselves and to the measured output re­
sponses y of the system under study. 

This is still quite a broad problem definition and certainly 

much broader than the problem of estimation as defined pre-

viously in section 3. It amounts to identification of the func­

tional relationships f{ · } and h{ · } in (2), and this in turn 

implies distinguishing among choices for the state (x) and pa­

rameter (ex) vectors. 

In relation to the discussion of section 3, the focus of the 

problem has changed and, if anything, narrowed somewhat: 

there are more field observations, fewer gross uncertainties 

about the observed nature of the system's behavior, and in 

principle, some more confident prior hypotheses about the 

mechanisms believed to govern that behavior. The selection 

and evaluation of model structure are not equivalent to a test 

of the hypothesis that the model as a whole should be accept­

ed (or rejected). Rather, what is required is a test of the ade­

quacy of each constituent model hypothesis. Yet this test 

cannot merely be conducted on a part of the model isolated 

from the whole, any more than the experimental conditions 

can be so reduced. 

So we need a method of solution that can accommodate 

both the inherently multivariable character of the model and 

field observations as a whole, yet establish the "success" or 

failure of any of the individual, constituent hypotheses. This is 

no easy demand to satisfy. In this section we shall develop a 

conceptual picture of the problem of model structure identifi­

cation and then describe how the idea of recursive state­

parameter estimation can be used to solve the problem. This 

presupposes a familiarity with recursive estimation algorithms, 

which therefore will be introduced shortly. The details of these 

algorithms are not crucial to an appreciation either of the 

problem solution or the illustrative case study results, and 

they are therefore confined to a largely self-contained section 

(section 4.3), which may be omitted without loss of continuity. 

This detail, however, is well worth absorbing on at least three 

accounts. First, it reveals how the propagation of uncertainty 

influences the process of identification; second, it prepares 

much of the theoretical ground necessary for the subsequent 

discussion of prediction error propagation in section 7; and 

third, it explains the conceptual basis on which the history 

and origins of this review are founded [Beck and Young, 1976; 

Young, 1978; Beck, 1982]. But there should be no suspicion in 

the reader's mind that recursive estimation is a panacea. It is 

not; it is one among several perspectives on the problem of 

model structure identification. Nor will the application of such 

algorithms deliver "automatically" a solution to this problem; 

any solution requires experienced judgment on the part of the 

analyst. 

4.1. Definitions of Related Problems 

But, to begin with, model structure identification is not an 

easily understood term, or rather it is often misunderstood as 

something other than what is intended here. It is not the same 

as model-order estimation, which, given the input/output form 

of a class III model (equation (3)) would normally be defined 

as 

The determination of an appropriate integer value for n (in (3)), 
i.e., the order of the relevant polynomials in the backward shift 
(or lag) operator. 

Even for this more narrowly and more easily defined prob­

lem for which there are relatively systematic procedures of 

solution [e.g., Box and Jenkins, 1970; Soderstrom, 1977; 

Ha/fan et al., 1979; Hipel, 1981; Young et al., 1980], there is 

not necessarily any truly "objective" indicator of having iden­

tified the best model order, nor are these procedures especially 



1402 BECK: UNCERTAINTY IN WATER QUALITY MODELS 

• 
no ~~~~~~~~~~~~~~~ 

""" •-------------· Parameter estimate • corrected 

-a'J 

Fig. 4. Methods of parameter estimation (a) off-line and (b) recur­
sive. Superscript i in (a') denotes the estimate for the (i + l)th iter­
ation through the data. 

effective on the data typical of environmental systems [e.g., 

Beck, 1979a]. Since model-order estimation is usually associ­

ated with a class III model structure, it will not be a primary 

concern of this review. 

Model structure identification is not quite the same as 

model discrimination, defined as 

An analysis with the objective of discriminating among com­
peting hypotheses about a system's behavior, i.e., among models 

with different structures. 

Such a definition does not embody the notion of inferring 

the form of an improved model structure from diagnosis of the 

failure of an inadequate prior structure, and this as we shall 

see, is central to our interpretation of model structure identifi­

cation. 

4.2. Recursive and Batch Estimation Algorithms 

Although the primary concern in this section is with uncer­

tainty about the model structure, access to a resolution of this 

form of uncertainty is (once again) gained via the estimation of 

the model parameters (and states). 

Consider therefore Figure 4. It illustrates the essential differ­

ences between the recursive (on-line) and the more usual batch 

(off-line, en bloc) forms of data processing algorithms. With a 

batch procedure (as in Figure 4a), the parameter estimates are 

assumed to be constant and equal to their a priori values, 

(ex0
), while the complete block of time-series field data, from 

time t0 -+ t N of the experimental period, is processed by the 

algorithm. A loss function, typically based on the errors be­

tween the observed and model responses, is calculated at the 

end of each iteration; the algorithm searches then for suitable 

directions toward the minimum of the loss function over the 

parameter space and computes an updated set of parameter 

values (ex 1
) for substitution into the next iteration through 

the data (from t 0 -+ tN). We shall have much more to say 

about batch estimation algorithms in section 5. 

A recursive algorithm, in contrast, computes revised param­

eter estimates, (ex0(tk)), at each sampling instant tk of the field 

data (Figure 4b); the minimization of the error loss function is 

implicitly, rather than explicitly, accounted for in the algo­

rithms. At the end of the block of data the estimates (ex0(tN)) 

are substituted for the a priori parameter values (ex 1(t0)) of 

the next iteration through the data. Subsequent iterations 

through the set of field data may be required, depending upon 

the nature of the recursive algorithm chosen, or for reasons of 

short-length data records. 

The essential problem of model structure identification is 

that, given observations of the external description of the 

system { u(tk), y(tk)}, inference about the internal description of 

the system is required, i.e., information about the states and 

parameters { x, ex} and the functional relationships f{ · } and 

h{ · } in the class II model of (2). Clearly f and h cannot be 

directly identified in some automatic fashion. It is possible 

only to postulate forms for f and h, then to estimate the corre­

sponding { x, ex} , and thence to infer from these estimates the 

adequacy or otherwise of the choices for f and h. How precise­

ly this latter might be achieved will be discussed later, but it 

depends crucially upon the ability to estimate possible vari­

ations with time of the model parameter (ex) estimates; hence 

the special significance of a recursive estimation algorithm. 

4.3. Uncertainty and State-Parameter Estimation 

All problems of system identification are concerned with 

this translation of information about the external description 

of the system into information about the internal description 

of the system. What has not yet been explored is the question 

of how the (assumed) uncertainties of these two forms of de­

scription influence the process of "translation," i.e., of identifi­

cation or state-parameter estimation. In order to discuss this 

point we must now introduce a model for the propagation of 

errors associated with the state-parameter estimates. This 

error model is quite general and, together with other models 

of error propagation, has been discussed extensively by 

Schweppe [1973]. For our purposes it has particular impor­

tance in providing an explicit, quantitative connection be­

tween the subjects of identification and prediction. 

4.3.1. A model of error propagation. Since the temporal 

variability of the model parameters is also to play an impor­

tant role, it is necessary to make some assumptions about how 

to model this variability. Let us suppose therefore that the 

state vector dynamics of (2a) can be augmented by an equiva­

lent expression for the parameter dynamics, so that 

[
dx(t)/dt] = [f{x, u, ex; t}J + [~(t)J (

6
a) 

dex(t)/dt 0 ~(t) 

y(tk) = h{ x, ex ; tk} + t}(tk) (6b) 

in which the augmented state-parameter vector x. would be 

defined as 

x. T = [x, ex] 

where superscript T denotes the transpose of a vector or 

matrix. The assumed model for the variations of the parame­

ters with time is that they vary in an unknown, random-walk 

fashion (more specific models are, of course, possible). The 

random process ~ in (6a), representing the sequence of un­

known "parameter disturbances," is an additional source of 

uncertainty; it reflects the intensity of the variability to which 

any parameter is expected to be subject. Clearly if the parame­

ters of the model are thought a priori to be truly constant, 

then ~(t) = 0 for all t should be assumed, although this does 

not imply that the recursive estimates of ex will be invariant 

with time, a point of fundamental significance to solving the 

problem of model structure identification. Henceforth in this 

derivation of the error model, the states and parameters will 

be treated identically. Although the ultimate goal is the state­

ment of a particular form of recursive estimation algorithm 

(the extended Kalman filter), in this first stage we shall formu­

late simply the principles of a general, first-order error analy­

sis. 
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Let us assume that it is possible to generate a nominal 

(deterministic) reference trajectory for the states x(t) (and for 

the parameters a(t)) by assuming a set of known initial states 

x(t 0 ), known (prior) parameter values a(t0 ), and a sequence of 

input disturbances ii(t) known for all t. The x(t) and a(t) can 

now be generated as (in terms of the augmented state­

parameter vector) 

dx.(t)/dt = r. { x, ii, a; t} (7a) 

with a correspondingly generated set of "reference" output 

observations 

(7b) 

For the augmented state-parameter vector dynamics (7a), 

r.{ · } = [f{ · }IOJ, which for the simple random-walk model 

for the parameter variations implies that a is a constant for all 

t. 

The reference model of (7) is the basis for linearization of 

the original nonlinear problem. Hence if we introduce the 

small perturbations (variations) or errors x, &, ii, and y defined 

as 

X=X-X ii= u-ii &=oc-a y=y-y (8) 

and then take first-order Taylor series approximations off{ · } 

and h{ · } in (6), the nonlinear system model of (6) can be 

approximated by the combination of the reference model 

(equation (7)) and the following linear error propagation 

model (or small perturbations model): 

dx.(t)/dt = F
0
(t)x.(t) + G

0
(t)ii(t) + ;.(t) (9a) 

y(tk) = H(tk)x.(tk) + 11(tk) (9b) 

Here x. is the augmented state-parameter error vector, and ;. 

is defined as [;l~Jr. The matrices F
0

, G
0

, and Hare appropri­

ate Jacobian matrices (containing derivatives off and h with 

respect to x, oc, and u); they derive from the linearization 

procedure, are in general functions of x, ii, and a, and are 

therefore time var.ying, as indicated in (9). 

The error model can alternatively be written in a discrete­

time difference equation format by integrating (9a) over the 

sampling interval tk - i to tk, so that [e.g., Dorf, 1965] 

x.(tk) = <I>.(tk _ ,)x.(tk_ ,) + r.(tk_ ,)ii(tk_ ,) + ;.(tk _ ,) (!Oa) 

y(tk) = H(tk)x.(tk) + 'l(tk) (!Ob) 

in which ~.(tk_ 1) is the discrete-time equivalent of the 

continuous-time noise process ;.(t). 

We have therefore a model for the deterministic reference 

trajectories of the states and parameters (equation (7)) and a 

general linear model for the propagation of errors associated 

with these states and parameters (equation (9)). The reference 

trajectory can be specified by a suitable choice of x(t0 ), a(t0 ), 

and ii(t) for all t. Any errors associated with these choices, 

together with uncertainty in the unobserved input distur­

bances of the system (;.), are propagated with time according 

to (9a). All these sources of error, together with uncertainties 

in the observed responses of the system (11), can be trans­

formed via (9b) to account for the errors associated with esti­

mates of y (as opposed to x.). Such an error model is appli­

cable, irrespective of whether we are discussing identification, 

prediction, the extended Kalman filter, or any other esti­

mation scheme. 

4.3.2. The extended Kalman filter (EKF). There is a 

common structure to all recursive estimation algorithms de­

signed for the processing of discrete-time observations of the 

system's behavior. It breaks down into three components: (1) 

a prediction step across the sampling interval tk- i-> tk, (2) a 

correction step at the sampling instant tk as new observations 

y(tk) become available, and (3) a feedback gain matrix (or 

Kalman gain matrix), which provides a weighting procedure 

for taking account of the mismatch between the estimate and 

observed values of the system's response (y). 

Each component has its counterpart, roughly speaking, in 

the nature of the propagation of the various sources of uncer­

tainty. 

1. Equation (lOa) of the error model defines the uncer­

tainty associated with the predicted states and parameters at 

time tk as a function of the errors in the prior ("initial") state 

and parameter estimates and in the observed and unobserved 

input disturbances (all at time tk _ 1). 

2. Equation (!Ob) defines the uncertainty of the mismatch 

between the observed and predicted output responses to be a 

function of their respective uncertainties. 

3. The gain matrix can be chosen such that it minimizes 

the uncertainty of the corrected state and parameter estimates 

[Gelb, 1974], and in fact this choice will be seen to involve a 

"balance" between the two types of uncertainty referred to in 

point 2 above. 

Overall therefore the form of the recursive estimator is such 

that it embraces a solution to the problem of prediction and 

prediction error propagation as a part of its structure. · This 

approximate solution, as derived here, is equivalent to a first­

order error analysis; it is a general statement of the propaga­

tion with time of the mean and variance-covariance matrix of 

the state and parameter estimation errors. The additional fea­

ture of the estimator is the change made to these uncertainties 

each time a new observation of the system's behavior is pro­

cessed. Ideally the change will be a reduction in the uncer­

tainty of the state and parameter estimates, i.e., a reduction in 

the uncertainty of the internal description of the system's be­

havior. 

The most important differences among the types of recur­

sive estimator to be discussed in this review (the EKF, an 

instrumental variable (IV), and a least squares (LS) algorithm) 

lie in their assumed models of the state-parameter dynamics 

and in the assumed presence (or absence) of the various 

sources of uncertainty. 

The special significance of the EKF for the present dis­

cussion is that it refers to a class II form of model; it refers 

also to the most general formulation of the problem of model 

structure identification, and it illustrates most completely the 

way in which uncertainty influences the solution of this prob­

lem. There are several routes by which to derive the filter (as 

discussed in the general texts by J azwinski [ 1970], Gelb 

[1974], and Young [1984], some of which expose its origins in 

linear, least squares regression analysis and its relationship 

with the other recursive estimation algorithms to be discussed 

below [Young, 1984; Beck, 1979b]. The details of these deri­

vations are clearly outside the scope of this review and are not 

essential to the desired qualitative understanding of the func­

tioning of the algorithms. What we should note, however, is 

that none of the estimation algorithms was ever developed 

with the problem of model structure identification in mind. 

The estimation problem for our class II model has a high 

degree of difficulty, being nonlinear, and requiring estimates of 

quantities (principally the states) that vary with continuous 
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time (as opposed to discrete time). The model of the system's 

behavior has been partitioned into a component assumed to 

be known with certainty a priori (the nonlinear reference 

model, equation (7)) and an approximate component into 

which all the uncertainty has been lumped (the linear error 

propagation model of (9) and (10)). It would thus be possible 

to incorporate the linear error model within a linear Kalman 

filter formulation in order to obtain estimates (x.(tltk)) of the 

errors, or small perturbations in states and parameters, x.(t). 

Here the notation (tltk) indicates an estimate at time t con­

ditioned upon all the input/output observations up t-0 and 

including those available at tk. Hence approximate estimates 

of the states-parameters (x.(tltk)) could be reconstructed using 

the reference model, i.e., 

(11) 

Such a reconstruction, however, depends on a good prior 

choice of the model structure and the values for x(t0 ), ii(t 0 ), 

and ii(t) that are used to generate the reference trajectory x.(t). 

In order to overcome this obvious difficulty two quite specific 

substitutions are incorporated into the algorithms of the EKF. 

1. In the absence of better choices it is sensible to substi­

tute ii(t) = u(tk_ 1) for tk- l :::; t:::; tk, i.e., to utilize the observed 

input information to generate the reference trajectory. 

2. In order to minimize the possibility of large deviations 

of the reference trajectory from the true state trajectory it is 

prudent to "relinearize" at each sampling instant by the sub­

stitution of x.(tk) = <x.(tkltk)). 

This latter is evidently the means whereby observed infor­

mation about the system's response (y) is fed back for adap­

tation of the reference trajectory (paradoxically this might be 

seen as a disadvantage from the perspective of developing 

novel and improved algorithms for model structure identifi­

cation). 

To summarize, the qualitative structure of the EKF is as 

follows. It assumes that the proposed model can be used in a 

deterministic fashion to generate a reference state-parameter 

trajectory; all the uncertainties of the internal and external 

descriptions of the system are lumped into a first-order ap­

proximation of error propagation. The propagation of these 

uncertainties influences the way in which the states­

parameters are estimated, and these continuously revised esti­

mates are in turn used to adapt the reference trajectory. 

Quantitatively, the extended Kalman filter can thus be 

stated as (in its continuous-discrete form). 

Prediction 

(12a) 

(12b) 

Correction 

( x.(tkltk)) = ( x.(tkltk_ 1)) + K(tk)[y(tk) 

- h{(x(tkltk_ 1)), (cx(tk_ 1!tk_ 1))}] (12c) 

P.(tkltk) = [I - K(tk)H]P.(tkltk _ 1)[1 - K(tk)HY 

+ K(tk)RKT(tk) (12d) 

Gain matrix 

K(tk) = P.(tkltk - 1)HT[HP.(tkltk - 1)HT + Rr 1 (12e) 

Here the following assumptions and definitions hold: (1) P. 

is the variance-covariance matrix of state-parameter esti­

mation errors, (2) K is the Kalman gain matrix, (3) !;.(tk) is a 

zero-mean, white Gaussian sequence with variance-covariance 

Q.=[~] 

in which Q5 and QP are the variance-covariance matrices of 

the state and parameter disturbances, respectively, (4) 11(t.) is a 

zero-mean, white, Gaussian sequence with variance­

covariance R, and (5) <I>. and H refer to the linearized system 

of (10) and will in general be a function of time (their argu­

ments have been omitted for notational clarity). 

4.3.3. Some comments on the filter. There are several 

points to notice about the EKF. First, any deleterious effects 

of the first-order linearization are propagated primarily 

through the variance-covariance recursions of (12b) and (12d). 

Equation (12b), for example, is derived by setting up the prod­

uct of the errors x.x. T from the linear model of (lOa) and then 

applying the operation of expectation. The partitioned form of 

this variance-covariance equation can be likewise formulated 

from appropriate product terms in i and ii and will be dis­

cussed in section 7. 

Second, the sources of uncertainty are represented in the 

fitler as (recalling Figure 1) (1) the prior uncertainty P.(t 0 1t0 ) 

associated with the state-parameter estimates, (2) the uncer­

tainty Q. associated with !;., which conceptually covers here 

prior uncertainty of model structure (if not assumed to be part 

of P.(t 0 lt0 )), the uncertainty of the unmeasured input distur­

bances, and (in this case) the uncertainty in the measured 

inputs (u), and (3) the uncertainty R associated with the mea­

sured output responses. 

Prior assumptions about all these quantities are required, 

together with prior assumptions for the estimates (x.(t 0 lt0 )). 

Third, (12c), correction of the state-parameter estimates, is 

fundamental to the functioning of the algorithm. It comprises 

a correction term that is the product of an error, the residual, 

one-step-ahead or innovations process error, v(tkltk_ 1): 

v(tkltk-1) = y(tk)- h{ ( x(tkltk-1)), ( cx(tk-1ltk-1))} (13) 

and the gain matrix K. Thus the gain matrix weights the 

account taken of the mismatch between the model and the 

observations of past behavior. It achieves this, as some reflec­

tion on (I 2c) will show, by "balancing" the uncertainties of the 

internal description of the system, namely P., with the uncer­

tainty in the external description of the system, in part R. 

Roughly speaking, if the internal description is not well 

known, relative to the external description (i.e, relatively accu­

rate observations), relatively large account is taken of the pre­

diction errors and relatively large changes are made to the 

model parameter estimates. This is intuitively what one would 

expect, and the converse is true when the model (states, pa­

rameters) is "believed" to be accurate and subject to little 

uncertainty. Beyond this we may note that the gain matrix can 

be shown to be chosen such that the variance of the esti­

mation errors x.(tltk) is minimized [Gelb, 1974] and that the 

form of (12c) is equivalent to the gradient algorithms of the 

hill-climbing, search procedures of numerical optimization in 
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general and to stochastic approximation methods in particular 

[Young, 1984]. 

Finally, looking at the prediction step of (12a) and (12b), it 

is possible to see how the problem of analyzing prediction 

error propagation might be viewed as that of applying the 

EKF to a situation in which the next observation of the 

system's (future) behavior is to be observed at an infinite time 

horizon. Alternatively one can think of this as the case where 

at each future sampling instant the anticipated observations 

are missing. Both points of view amount to the omission of 

the correction and gain matrix functions from the algorithm. 

Given then the observations of the system's behavior, i.e., 

{ u(tk), y(tk)} for k = I, · · ·, N, we now have an algorithm that 

can compute recursive estimates (O!(tkltk)) of the model pa­

rameter values. However, for the purposes of this paper the 

real significance of being able to estimate (O!(tkltk)) is not that 

we can estimate the posterior estimates (O!(tNltN)) but that 

knowledge and interpretation of the variations in these esti­

mates over the interval t 1 ---> tN can be used for the identifi­

cation of model structure. 

4.3.4. Least squares and instrumental variable algo­

rithms. The EKF takes observed information about the ex­

ternal description of the system and reconstructs information 

about the system's internal description { x, ix} according to the 

class II model structure of (2). In order to achieve this it 

requires extensive assumptions about the types and sources of 

uncertainty affecting both such descriptions, and therein as we 

shall see, lie serious limitations of the EKF. 

The IV algorithm, in the particular form due to Young 

[1974], requires no such assumptions. In an equivalent fash­

ion it can be said to take information about { u, y} and, for an 

input/output class III model (equation (3)), generates estimates 

of {x*, p}, where x* can be thought of as the instrumental 

variable vector and p is an appropriate vector of model pa­

rameters. Caution must be exercised in referring to {x*, P} as 

part of either the internal or the external description of the 

system's behavior. In the original motivation for the devel­

opment of an IV algorithm, to overcome the problem of 

biased parameter estimates generated by an LS estimator, the 

requirements of the instrumental variables were that they 

should be strongly correlated with the hypothetical noise-free 

output of the system and entirely uncorrelated with the noise 

processes affecting the system's observed behavior, namely, ro 

in (3). In this case {x*, P} would appear to be associated with 

an (alternative ) expression of the external description of the 

system's behavior. As such they encapsulate the identified re­

lationship between u and y but make no reference to the 

physical, chemical, or biological phenomena thought to 

govern that relationship. The limitations of the IV algorithm, 

if any, stem from the objections that might be raised about 

such a seemingly superficial model of a system's behavior. It is 

often said that the parameters p of the input/output model 

have "no physical meaning." 

This distinction, however, between the use of the class II 

model representation for the EKF and a class III model repre­

sentation for the IV algorithm is important but misleading, if 

it obscures a proper appreciation of the different ways in 

which the different assumptions about the sources of uncer­

tainty influence solution of the identification problem. In ess­

ence the EKF, IV, and LS estimators achieve much the same 

objective in much the same algorithmic fashion. This is es­

pecially apparent for the not uncommon case in which the 

outputs y are simply error-corrupted observations of the states 

x, and with all states being observed. The instrumental vari­

able vector x* is then conceptually indistinguishable from a 

state estimate. Moreover, if the class II model is linear, it can 

be transformed by integration over the sampling interval 

(tk- t --> tk) to a class III model representation, and indeed the 

IV algorithm can be shown to be a self-adaptive state esti­

mator [Young, 1979]. In this case, p can be related explicitly 

to the parameter vector O! and, insofar as O! is believed to be 

physically meaningful, so too then is p. Thus for special cases, 

{x*, P} can be thought of as an internal description of the 

system's behavior, and deliberate use will be made subsequent­

ly of one of the case studies in order to emphasize this point 

(see also Beck [1985c]). 

Young's [1974] form of the IV algorithm exploits what is 

called an auxiliary model of the system in order to generate 

the instrumental variables. The instrumental variables, as with 

the state estimates in the EKF, are quantities that must be 

known in order to estimate the model parameter values. In 

this sense the IV is conceptually and computationally equiva­

lent to the EKF. The differences between the two algorithms 

are that the IV assumes that the sole source of uncertainty is 

uncertainty in the prior parameter estimates (essentially that 

all values are more or less equally probable) and that, con­

versely, the instrumental variables (states) are always known 

perfectly, i.e., with no uncertainty. Likewise, the recursive LS 

estimator assumes the same sole source of uncertainty, but in 

contradistinction to the IV estimator, it assumes that infor­

mation about the states (instrumental variables) can be substi­

tuted directly by the observed output responses y without 

explicitly accounting for the errors and uncertainties of this 

substitution. 

An exhaustive discussion of the recursive IV and LS esti­

mators is given elsewhere, by Young [1984]. For the present 

purpose it suffices to conclude with the observation that differ­

ent assumptions about the sources of uncertainty lead to dif­

ferent forms of estimators and that these assumptions are 

probably linked to the differences in the robustness of the 

performances of the different algorithms. It is certainly true 

that the EKF has conceptual appeal in its completeness and 

elegance, but it is not as robust in performance as the IV, a 

point to which we shall return in section 8. 

4.4. Model Structure Identification : 

An Organizing Principle 

The model structure to be evaluated is a more or less com­

plex assembly of several (if not many) constituent hypotheses. 

Acceptance or rejection of the hypothesis that the model as a 

whole is adequate will therefore be regarded as a by-product 

of the analysis. It is possible to formulate a test of this aggre­

gate hypothesis in more conventional statistical terms (as, for 

example, in the work by Schweppe [1973, 1978]), and this 

would most probably involve some assessment of the proper­

ties of the residual errors defined by (13). However, in this 

review such problems will only be considered insofar as they 

are part of model-order estimation or model discrimination as 

defined above (see also section 6). 

4.4.1. Exposing the failure of constituent hypotheses. To 

visualize how this process of failure might occur, let us sup­

pose that the constituent model hypotheses are parameterized 

through O!. Suppose further that the state variables x of the 

model (6) can be represented by the nodes of Figure 5b and 
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(a) 

(b) 

(c) 

Period 1 Period 2 Period 3 
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Recursive parameter 
estimates 

Time Ill 

Fig. 5. An illustrative example showing the concept of using a 

recursive parameter estimator in the context of model structure 
identification: (a) hypothetical model response with observations (de­
noted by dots) ; (b) conceptual picture of model structure; and (c) 
recursive parameter estimates. 

that the parameters a are the branches (or "elastic" con­

nections) between the state variables. The parameters in this 

simplified sense express the relationships among the system's 

variables. If now the assumption has been made that all the 

parameters have values that are constant with time (i.e., ~(t) is 

identically zero in (6a)) yet a recursive algorithm yields an 

estimate of one or more of the parameters that is significantly 

time varying, one may question as follows the correctness of 

the chosen model structure. The general tendency of an esti­

mation procedure is to provide estimates ( y) of the output 

responses that track the observations y. Hence if any persist­

ent structural discrepancy is detected between the model and 

"reality" (in other words, the innovation errors v of (13) exhib­

it a significantly nonrandom pattern), this will be revealed in 

terms of significant adaptation of the estimated parameter 

values. There may well be good reasons why the parameter 

estimates vary with time, and indeed, that is precisely what 

one is looking for. 

Over period 1 of the example in Figure 5a the model re­

sponses ( y) and output observations y are essentially in 

agreement, and there is no significant adaptation of the pa­

rameter estimates (according to Figure 5c). At the beginning of 

period 2, however, there is a persistent discrepancy between 

( y ) and y. It might be supposed, for example, that the un­

derlying cause of the discrepancy is an inadequacy in the be­

havior simulated for x 1 and x 2 , that ex 1 is sensitive to this 

discrepancy (Figure 5b), and that (persistent) adaptation of the 

estimate ( ex 1 > (Figure 5c) partly compensates for the error 

between ( y) and y. Again in the third period there is disagree­

ment between the observations and model responses, which 

leads to adaptation of the estimate (ex 2 ). 

In a qualitative, nonrigorous sense it is these changes of the 

estimates of unknown but constant parameters that are symp-

toms of the failure of individual hypotheses [Beck and Young, 

1976 ; Beck, 1979a, 1983]. By analogy with physical engineer­

ing structures, there has been a plastic deformation, or col­

lapse, of a structural member (component hypothesis). Intu­

itively, such an interpretation, and its similarities with a Pop­

perian view of the scientific method (section 1.2), has consider­

able appeal. Indeed, this has practical significance for the im­

plementation of the EKF in particular and profound impli­

cations for the assumptions made about the uncertainty 

associated with the prior model hypotheses (and therefore the 

model structure). If one seeks to expose the failure of hypoth­

eses in this way, it is arguably inconsistent to assume a priori 

that the parameters a are not only uncertain but are also 

variable with time. This would be tantamount to seeking the 

collapse of an extremely "flexible" structure, and clear-cut an­

swers to the identification of model structure would not be 

generated because, in effect, clear-cut questions are not being 

asked. So as a practical computational consequence of this 

philosophical position, the assumption that ~(t) = 0 for all t in 

the model for the parameter dynamics, and thus that QP = 0, 

is crucial to exposing the failure of hypotheses. 

The prior assumption is that da(t)/dt = 0, i.e. , the parame­

ters are truly constant, with the expectation of the posterior 

result that d( a(t) )/dt #- 0, i.e., the parameter estimates vary 

significantly, thus denying the prior assumption and revealing 

the failure of a constituent hypothesis. 

4.4.2. Further speculation. To be able to demonstrate the 

inadequacy of a model structure is one thing. To be able to 

draw inference about how to restructure the model in order to 

eliminate the cause of the inadequacy is quite another, but it 

can still in part be accommodated within the framework of 

using recursive estimation algorithms. 

Consider therefore Figure 6a, and let us suppose that the 

foregoing steps in the identification of the model structure 

have exposed the failure of the hypothesis relating state x 2 to 

x3 . The assumption that ~(t) #- 0, and hence that QP > 0, now 

becomes equally crucial in assisting and prompting specu­

lation about possible revised model structures. Given this 

prior assumption, that the parameters vary in an unknown, 

random-walk fashion, the expectation of the posterior result is 

that a more insightful model for the estimated parameter vari­

ations can be postulated, for example, in this case, 

(ex 2(t) ) = g{ x '(t), a', u(t)} (14) 

in which x' and a ' are possibly revised definitions of the 

model's state and parameter vectors. In other words, one is 

looking for a correlation between the estimated variations in 

ex 2 (when deliberately created as a random walk) and observed 

or explicable variations in another dependent variable. The 

ultimate objective would be to interpret the estimated vari­

ations in the prior model parameter estimates in some mean­

ingful manner and hence replace an inadequate model struc­

ture with essentially time-varying prior parameters a(t) by a 

structure with essentially constant posterior parameters a.'. In 

our hypothetical example the structure of Figure 6b might be 

such a posterior description of observed behavior, so that 

when subjected to the preceding test for the failure of hypoth­

eses, it survives, yielding parameter estimates with no signifi­

cant temporal variability. 

Of course, the immediate problem in this case is the need to 

specify QP so that the potential for the prior model structure 

to reveal the roots of its inadequacy can be intelligently 
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probed. Suppose therefore that a set of estimates ( tx(tN) ) has 

been obtained for this model structure under the assumption 

that QP = 0. Suppose further that the a posteriori parameter 

estimation error variance-covariance matrix PP(tN) has also 

been determined. Given (tx(tN)) and PP(tN), a final pass 

through the set of observations over t0 --> t N could then be 

made in which tx is assumed to be subject to perturbations ~ 

with a variance-covariance structure proportional in some 

way to PP(tN), e.g., 

(15) 

in which A. is a scalar [Young, 1974, 1984]. Hence those pa­

rameters that have been poorly estimated and are associated 

with the larger elements of PP(tN)--in part, possibly the prior 

assumption of truly constant parameters is invalid-would 

have a higher probability of having estimates that exhibit con­

siderable variation with time. Conversely, those parameters 

that have been well estimated are unlikely to yield signifi­

cantly varying estimates. To summarize, such an analysis is 

tantamount to an evaluation of the appropriateness of the 

identified model structure. The analysis is, as it were, a con­

trolled speculation using PP(tN) as a synopsis of the residual 

uncertainty of identification; in this it is conceptually similar 

to the HSY algorithm discussed in section 3. Any latitude 

afforded by PP(tN) will be exploited in the event of a signifi­

cantly nonrandom mismatch between the model structure and 

the observed behavior. Defining QP according to (15) has 

much to recommend it, including the fact that the only arbi­

trary assumption is the choice of a value for the scalar A.. 

However, (15) does depend upon a reliable estimate of PP(tN), 

which though possible for the IV algorithm, is dubious in the 

case of the EKF as presently formulated. 

So we see that the selection and evaluation of a model 

structure are iterative processes, alternately seeking to falsify 

confidently stated hypotheses and then attempting to specu­

late about relatively uncertain (but improved) hypotheses. The 

process might be initiated by an analysis of the form discussed 

in section 3 (generating preliminary hypotheses; see also 

Whitehead and Hornberger [1984]) and would ideally need to 

be terminated by an appropriate stopping rule. Here again, 

the definition of a quantitative measure of an "adequate" 

model structure is elusive, other than the qualitative dis­

cussion of Figure 6b and the residual error analysis discussed 

in section 6. There is, in short, no readily apparent equivalent 

of Akaike's information criterion or the other measures of 

adequacy applied to the problem of model-order estimation 

[Young et al., 1980; H ipel, 1981]. 

4.5. Case Studies 

Much of what has been said above has considerable appeal 

in principle. In practice, however, these procedural steps for 

model structure identification have many limitations. 

Perhaps as for all good problems, the interest in model 

structure identification arose unintentionally, in this instance 

from a seemingly straightforward case study in "verifying" a 

model for dissolved oxygen/ biochemical oxygen demand (DO­

BOD) interactions in the River Cam, England [Beck and 

Young, 1976; Beck, 1983]. It is only with hindsight that the 

problem of model structure identification has been defined as 

such, and the superstructure of the procedural steps using 

recursive estimation algorithms imposed. These steps, devel­

oped largely as they were from the Cam study, can be seen to 

work relatively well on that example. The argument is clearly 

circular, and there are other, more advanced case studies, for 

example, of DO-BOD-algae interactions in the Bedford Ouse 

River in England, where the approach itself fails [Beck, 1982, 

1983]. In fact in this latter the approach fails because of an 

inability to determine unambiguously where the constituent 

model hypotheses can be said to have failed and because of 

the difficulty of absorbing and interpreting the sheer volume 

of extensive evidence on how the model structure might be 

improved. 

4.5.1. Failure and speculation in the case of Lake Bala­

ton. Some of these difficulties stem from the manifest limi­

tations of the EKF. These, and the relative advantages of the 

IV algorithm, will be evident in the following discussion of a 

case study of wind-induced sediment resuspension in Lake 

Balaton, Hungary (see also Beck [1985b, c], Somlyody [1986], 

and Pinter et al. [1987]). A simple model of the relevant pro­

cesses, and one which can be derived straightforwardly from a 

class I representation [Somlyody, 1980], is given by 

dx(t)/dt = -fx(t) + gu(t) + ~(t) 

y(tk) = x(tk) + h + ri(tk) 

(16a) 

(16b) 

where x is the depth-averaged suspended solids (SS) con­

centration at a point location in the lake, u is the input wind 

velocity,! is a parameter associated with particle settling rates, 

and g is a parameter associated with particle resuspension 

mechanisms; h can be viewed as a background concentration 

of SS, i.e., that observed fraction of SS not influenced by wind 

disturbances, or possibly as a measure of the phytoplankton 

population concentration, which would also be observed as 

suspended particulate matter. Collectively, ~, t], and h can be 

thought of as representing the possible effects of all the many 

other factors that might influence the SS dynamics but are not 

represented explicitly in the model of (16). The model can be 

straightforwardly incorporated into the EKF algorithm of(12) 

and, given that we are seeking to expose the failure of the 

constituent prior hypotheses of this model, with f, g, and h 

specified as parameters that are constant but unknown. 

The observed time series comprise (among other variables) 
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Fig. 7. Recursive state and parameter estimates generated by an 
extended Kalman filter for sediment resuspension in Lake Balaton. 

hourly observations of the wind velocity u, and its direction, 

and daily observations y of the SS concentration (in fact, daily 

observations at five depths in the water column are available). 

They cover the period May 14, 1979, to October 31, 1979. The 

results of Figure 7 are derived from the EKF and are for the 

case where an estimate ( h) = 4.0 (gm - 3 SS) has been chosen 

a priori and not included in the state-parameter vector for 

estimation purposes. Figure 7a shows a comparison of the 

observed output y(tk) with the deterministic model response 

[ ( x(tklt0) ) + ( h) ]. Figures 7b and 7c show the recursive tra­

jectories of the parameter estimates ( f(tkltk) ) and ( g(tkltk) ), 

respectively. 

There are three salient features in these results. The parame­

ter estimates fluctuate in a transient manner before settling 

out by about t 25 ; the period of missing observations is a 

period of summer vacation, although the record of wind veloc­

ities is still complete, and most important of all, over the final 

45 days of the record the parameter estimates show a signili­

cant drift and the observed concentration of SS is persistently 

overestimated. This "drift" is indeed "significant," for it occurs 

at a time when the gain matrix K of the EKF is likely to be 

relatively small, with all but the largest and most persistent 

errors of mismatch between the model and observations being 

"ignored" (see the discussion of (12e)). On the basis of Figures 

7b and 7c it is difficult to distinguish which of the hypotheses 

for the two mechanisms (sedimentation or resuspension) is the 

more inadequate. Over the final 1! months (September­

October) both associated parameter estimates exhibit the non­

stationarity that is an essential indication of the failure of a 

component of the model structure. Overall, the model can be 

said to fail because during this period the sediment particles 

appear to be more difficult to resuspend. Looking back, 

Figure 5 is the conceptual ideal toward which one should be 

working ; Figure 7 is more typical of what will arise in practice 

with the presently available algorithms. 

There now has to be further speculation about why the 

prior model structure fails. One among at least two competing 

hypotheses is that the direction of the wind (and not merely its 

absolute velocity) is important : wind direction affects fetch 

length, which influences wave action, shear stresses at the 

water and bottom surfaces, and hence the turbulent vertical 

movement of water and particles. Noting therefore that the 

dimensions of Lake Balaton (70 x 10 km) give it an elongated 

shape along a northeast-southwest axis, it turns out that in 

line with (14) the term gu(t) in (16a) can be substituted by 

(17) 

to give improved performance (in terms of smaller residual 

errors). Here u1(t) is (as before) the wind velocity, and u2 is the 

angle between the direction of the wind and the principal axis 

of the lake. 

This is progress-a clue to the roots of the inadequacy­

although the importance of the transversal component of the 

wind is not consistent with the more obvious ways in which 

sediment resuspension might be expected to be a function of 

fetch length and wind direction. Further progress is possible, 

in particular, using a class III model representation and an IV 

estimator. If (16a) is integrated over the interval tk - i-> tk, 

then (by comparison with the integration of (9a) to (lOa)) 

(18) 

where u* is now the modulus of the transversal component of 

the wind velocity (thus incorporating the modified hypothesis 

of (17)). Substituting for x(tk) from (18) into (16b), we obtain 

y(tk) = <f>x(tk _ 1) + yu*(tk _ 1) + h + [Wk - I) + IJ(lk)] (19) 

which closely approximates the corresponding class III model 

(equation (3)) given by 

y(tk) = <f>'y(tk _ 1) + y'u*(tk _ 1) + h' + w(tk_ 1) (20) 

where w is a single lumped-noise process covering the two 

sources of uncertainty ~ and IJ of (19). The structural equiva­

lence between (19) and (20) would in fact be exact but for the 

presence of the bias term h in (16b). Nevertheless, notice that 

we have an input/output model whose parameters [¢>', y', h'] 

are essentially similar to parameters that themselves can be 

related back to physically meaningful quantities. 

If a random-walk model is assumed for the possible vari­

ations with time of [¢>', y', h'], where the expected variability 

(uncertainty) of these parameters is specified according to the 

discussion of (15) in section 4.4., the model of (20) can be 

usefully employed to probe the structural inadequacies of our 

prior hypotheses. Moreover, it is both feasible and desirable to 

consider not the analysis of the depth-averaged SS con­

centrations but rather an analysis of the response of the 

system at each of the five spatial points in the vertical to 

which the original time series refer. In other words, the in­

put/output model of (20) can be applied to each of five com bi-
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estimated by a recursive, dynamic least squares algorithm). 

nations of the wind input u* and observed SS concentration y 

at a particular depth in the water column. 

It emerges that the parameter representing the background 

concentration of SS, h' in (20), is apparently poorly estimated, 

varies with time, and is correlated with contemporaneous ob­

servations of temperature and chlorophyll a (phytoplankton) 

concentration [Chan, 1984]. Furthermore, the functional re­

lationship with temperature and/or chlorophyll a con­

centration is depth dependent. For instance, Figure 8 shows 

the trajectory of the recursive estimates ( h'(tkltk) ) derived from 

the analysis of the SS concentration at a depth of 1.3 m below 

the water surface. (The estimates are generated by a dynamic 

least squares algorithm but within the general framework of 

IV estimation [e.g., Young, 1984].) It is certainly tempting to 

speculate that these estimated variations of ( h') are correlated 

with the observed variations in chlorophyll a, at least for the 

first two-thirds of the record, and that this would be consistent 

with the growth of a population of phytoplankton in the 

upper layers of the water column, where access to solar radi­

ation is greater (the missing period of observations of Figure 

7a has simply been omitted from the plots of Figure 8). We 

have already alluded to the fact that the SS measurement will 

be influenced by particulate phytoplankton matter. At the 

lowest depth at which observations were taken (at 4 m, where 

the depth of the lake bed is 4.3 m), a different pattern for the 

corresponding estimates ( h') is apparent (Figure Sb). Here the 

overall trend in ( h') is correlated with seasonal variations in 

temperature, albeit rather tenuously and with obvious anoma­

lies. Such a relationship is not at all straightforward to ex­

plain. One can construct a simple argument about temper­

ature influencing the viscosity of water and hence the mov­

ment of a particle through the water. But this argument runs 

counter to what is observed, and it might equally well be that 

the seasonal variation in ( h') is a function of day length and 

its apparent influence on the diurnal pattern of wind events. 

Suffice it to say that a simple modification of (20) to include 

the effects of temperature variations improves marginally the 

performance of the model (accounting for chlorophyll a vari­

ations is, conversely, not a success). To summarize the case 

study, the identification of the importance of wind direction, 

temperature, and chlorophyll a were all to some extent unex­

pected, and we are still distant from a rigorous and coherent 

explanation of why this environmental system behaved as it 

did. For this part of the analysis too, Figure 6 is an ideal : we 

have merely begun to amass the diagnostic evidence with 

which to make the required step from Figure 6a to Figure 6b. 

The key point about the Balaton example is that its results 

are typical : they are not entirely crisp and clear-cut; but the 

analysis has yielded a rich source of anomalies, some of which 

can be partly explained ; and it emphasizes the role of 

models- including a class III representation- as vehicles for 

the exhaustive interpretation of field data. 

4.5.2. Other studies. If anything, there are on balance 

more difficulties in the design of algorithms that perform well 

in exposing the failure of constituent model hypotheses. Some­

what more encouraging results have been obtained for the 

second step of the procedure, i.e., speculation. For instance, 

Figure 9 shows a comparison of the trajectory of the recursive 

estimate ( oc(tkltk) ) for the net rate of addition of BOD in a 
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study of the River Cam : (a) recursive parameter estimates <a(t.lt.)). 

using an extended Kalman filter, for the net rate of addition of BOD 
to a reach of the river, and (b) estimated varia tions of a hypothetical 
state variable representing the concentration of dead algae in the 
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reach of river (the Cam) with the simulated vanat1ons of a 

hypothetical state of the system (x(t.)) defined to be the con­

centration of dead algal material in the river [from Beck, 

1983]. Here (x(t.)) has been generated as a deterministic func­

tion of the observed hours of incident sunlight (as an input, 

u(t.)). The speculation to be included in a revised posterior 

model structure, as a consequence of the analysis of the prior 

model structure, is that there is an addition of BOD in the 

reach of river whose rate is linearly proportional to the hypo­

thetical concentration of dead algal material. A second exam­

ple, also using the EKF, is illustated in Figure 10 and is taken 

from Whitehead's [1983] study of nitrification dynamics in the 

Bedford Ouse River. In this case, the estimated variations of a 

first-order rate constant (ix(t.lt.)) for the conversion of ammo­

nium N to nitrite N and ultimately to nitrate N are clearly 

inversely related to the variations of stream discharge u(t.). 

The associated speculation that the rate of conversion of am­

monium N can be modified as (in line with (14)) 

ix(t) = ix' /u(t) (21) 

leads, in a revised posterior model structure, to recursive esti­

mates (ix'(t.lt.)) that are sensibly stationary (see Figure !Ob). 

For a third example, Figure 11 has been presented by Scavia 

[1980] in a study of eutrophication in Saginaw Bay, Lake 

Huron, in the United States. It shows the recursive estimates 

from an EKF algorithm for the variations of a parameter 

characterizing the phytoplankton phosphorus-to-chlorophyll 

ratio and observed values of the ratios of phytoplankton dry 

weight to chlorophyll. Among other factors, Scavia has specu­

lated that the variable parameter estimate may reflect a se­

quence of changes in the dominant observed phytoplankton 

groups, as also shown in Figure 11. A similar speculation has 

been offered by Whitehead and Hornberger [1984] in their 

study of modeling algal population dynamics in the River 

Thames, England. 

There are several other applications of the EKF reported in 

the literature on the modeling of water quality ecological sys­

tems, although most of these, for example, Lettenmaier and 

Burges [1976] (an introductory paper), Bowles and Grenney 

[1978a, b], Constable and McBean [1979], and Whitehead et 

al. [1981], deal with the more conventional problem of pa­

rameter estimation (as opposed to model structure identifi­

cation). Among these, Bowles and Grenney's [1978a] study of 

nitrogen-cycle kinetics in the Jordan River, Utah, offers useful 

comments both on several minor extensions of the basic algo­

rithm and on practical limitations to the performance of the 

EKF. Cosby and Hornberger [1984] and Cosby et al. [1984] 

have recently reported a study on the application of the EKF 

to a problem of discriminating among competing model struc­

tures for the description of nonlinear light-photosynthesis re­

lationships in a freshwater stream. We shall, however, defer 

further discussion of this type of problem until section 6. Two 

other papers, by Koivo and Phillips [1976] and Tamura 

[1979], though they do not deal with the analysis of in situ 

field data, are notable from the point of view of problem 

formulations leading to the use of a linear Kalman filter. 

Tamura, for example, formulates the problem of parameter 

estimation as if it were a simplified problem of pure state 

estimation for a system whose state is time invariant. Indeed, 

the form of duality between state and parameter estimation 

that this suggests may have especially important implications 

for the development of novel algorithms for model structure 

identification (as discussed in section 8 and in the work by 

Beck [1985c]). 

The IV algorithm has been less widely applied than the 

EKF, most probably because of its usual association with an 

input/output class III model representation and the objections 

raised against such models with parameters said to be not 

physically meaningful. The discussion of wind-induced sedi­

ment resuspension, however, should have countered some of 
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Fig. 11. Results for model structure identification from a case 
study of Saginaw Bay, Lake Huron [after Scavia, 1980]. Recursive 
parameler estimates for a phytoplankton phosphorus to chlorophyll 
ratio (upper plot) are compared with measurements of phytoplankton 
dry weight to chlorophyll ratios from Bierman et al. [1980] (estimates 
generated by an extended Kalman filter). 
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these objections. The algorithm is well worth closer attention, 

perhaps best approached (particularly for hydrological and 

environmental systems) via the introductory text of Y oung 

[1984]. It is not restricted to multiple-input/single-output 

model forms, although these have been its most common area 

of application. A version of the IV algorithm suitable for 

multiple-input/multiple-output models has been proposed by 

Y oung and Whitehead [ 1977] for the previously discussed case 

studies of DO-BOD-algae interaction in the Rivers Cam and 

Bedford Ouse (see also Whitehead and Young [1975], Young 

[1978], and Whitehead [1979]). Another version, appropriate 

to a class II representation, has been illustrated by Whitehead 

[1980], again for the Cam example. 

The IV algorithm is by no means the only estimator suit­

able for the classical input/output models of time-series analy­

sis ; there are several others [e.g., Astrom and Bohlin, 1966; 

Box and Jenkins, 1970; Astrom and Eykhoff, 1971 ; Eykhoff, 

1974], most of which can be written in recursive form 

[Soderstrom et al., 1978]. Gentil [1984], for instance, has re­

ported an interesting example for the analysis of 

phytoplankton-zooplankton dynamics in Lake Aiguebelette, 

France, using a recursive version of a maximum likelihood 

estimator. In this case the input/output variables are in fact 

what we have referred to as the small perturbations in a model 

similar to (10) and representing perturbations about a nonlin­

ear reference class II model structure (such as (7)). In the event, 

Gentil concludes from the invariance of her recursive parame­

ter estimates that the prior model structure is adequate (al­

though it is not clear under what precise conditions these 

estimates have been generated). 

4.6. Commentary 

No analysis of real field data is ever neat, elegant, or 

straightforward in practice. There is no panacea for the prob­

lems of model structure identification and no easy substitute 

for the painstaking piecing together and sifting of evidence on 

the rejection and generation of model hypotheses. It is notable 

that few, if any, rigorous, procedural steps have been intro­

duced in this section, except for the duality of testing a prior 

model structure to the point of failure and then attempting to 

infer the form of an improved model structure from the failure 

of that inadequate prior structure. Even the superstructure of 

how to employ recursive estimation algorithms that has been 

built upon this single, simple duality is in danger of becoming 

overly complicated and convoluted. Something more straight­

forward would be highly desirable, without denying the latent 

contribution that the development of such a superstructure 

has made to the whole of this review. Recursive estimation 

algorithms provide a unique type of information (on the tem­

poral variability of the model parameters) that is useful in 

solving the problem of model structure selection and evalu­

ation. However, they are not the only means of solving this 

problem. 

Of the methods, the EKF is certainly not without either its 

critics or serious limitations. But it has to be said that there 

are few practical alternatives for the identification of multi­

variable (class II) model structures, and as an engineering 

solution to a commonly occurring problem of nonlinear state 

estimation, the EKF was never intended to satisfy the de­

mands of model structure identification. Its most important 

limitations are given below. 

1. The performance of the algorithm is determined largely 

by the evolution of the gain matrix K, which itself is deter­

mined, indeed "prejudiced," by the prior choices of Q
0

, 

P
0
(t

0
lt

0
), and R, and these choices, especially for Q

0
, are more 

or less arbitrary. 

2. It is difficult to distinguish what constitutes a significant 

variation in a parameter estimate, although one should not 

exclude the role of expert knowledge of the system from this 

process. In the particular results of Figure 7 the large initial 

variations in the parameter estimates have been assigned to 

transient fluctuations due to the algorithm, while the drifts at 

the end of the record, where the gain matrix K is relatively 

small, are supposed to be due to an important mismatch be­

tween the model structure and the data. 

3. It takes no account of the sample statistics of the inno­

vations, v(tkitk_ 1), that accrue as the algorithm sequentially 

processes the observations, a point that underlines the domi­

nant influence of prior assumptions on the performance of the 

algorithm. 

4. Because of the linearization approximation of which the 

EKF is based, it is not possible to interpret the relevant ele­

ments of the matrix P
0
(tdtJ as accurate estimates of the pa­

rameter estimation error variances. 

5. The assumption of normal distributions for all random 

variables is rarely valid, although not as seriously for the pre­

cipitation events that dominate hydrological time-series analy­

sis. 

If one were to seek to eliminate some of these limitations, 

pragmatism would set at least three ideals toward which to 

aim in the development of new algorithms : (1) a minimum 

number of prior assumptions, including those required to 

quantify the various sources of uncertainty, in order to imple­

ment the algorithm, (2) a minimum amount of computational 

effort, and (3) a maximum degree of robustness in the per­

formance of the algorithm. 

On all three accounts the IV algorithm can at present claim 

superiority over the EKF. The purist might protest that these 

ideals are too pragmatic. But the concern of this review is for 

methods that perform reliably on extremely difficult sets of 

data, and experience has shown that certain algorithms with 

impeccable statistical credentials (for example, good asymp­

totic convergence and efficiency) have been unable to deliver 

such performance. It is highly relevant that most of the devel­

opment of recursive estimation algorithms in control theory 

has taken place in an environment where model structure 

identification (as defined here) is not usually seen to be a 

problem. 

The IV algorithm does, however, suffer from two disadvan­
tages, both of which are perhaps more apparent than real. 

First, it is most usually formulated for discrete-time, 

difference-equation models, which are not the most natural 

means of describing the behavior of environmental systems. 

This alone should not be the cause of any difficulty. It is when 

the continuous-time, differential-equation model contains non­

linearities, as do most of the models of interest, that the clear 

links between the discrete-time and continuous-time structure 

become obscured (see, for example, Gentil [1979] on a study 

of lake eutrophication). Second, and more philosophical, is the 

general unease about input/output models with parameters 

that are not physically meaningful. It is hard to imagine an 

aspect of water quality modeling with seemingly better defined 

prior theories and more physically meaningful parameters 

than the conventional advection-dispersion model of pollutant 
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transport in a river. All the more reason therefore for the 

skeptical reader to join the debate opened by Young [1983], 

Beer and Young [ 1983], and Young and Wal/is [ 1986], on the 

use of input/output class III model representations of longi­

tudinal dispersion in natural streams. 

Of the approach, it is fair to conclude that its cardinal 

points of attempting to falsify confidently stated hypotheses 

and then engaging in creative speculation with relatively un­

certain hypotheses, are both satisfying and reassuringly consis­

tent with a Popperian view of the scientific method. They are 

satisfying because they illuminate the role of uncertainty in 

evaluating and selecting a model structure; and Popper's view 

of the scientific method, perhaps surprisingly, gives direction 

to the possible development of novel algorithms for model 

structure identification (about which more will be said in sec­

tion 8). There are minor caveats, however. For example, the 

inclusion of unobserved state variables in a model can render 

quite ineffective the principle of seeking to expose the failure 

of constituent model hypotheses. The distortion (or collapse) 

of the model structure, in making it fit the observed data, will 

tend to be accommodated by significant adaptation of the 

estimates of these unobserved states, whose variability may or 

may not be meaningless [Beck, 1983] (see also Fedra [1983] 

for related discussion). 

Above all, it is a variety of perspective and approach that is 

the key to the identification of model structure: a trading of 

the computational effort of solving natural formulations of 

ill-posed problems (for example, a class II model with the 

EKF) against the analytical effort of transforming these to 

better posed, if slightly distorted, problems (for example, into a 

class III model for use with the IV algorithm). The models are 

vehicles for the exhaustive interpretation of field data, and 

while they may not be satisfactory end points of this process, 

the oft-maligned class III representations have a legitimate 

role to play. Both the Balaton (as here) and Cam examples (as 

in the work by Beck [1978]) are illustrative of this role. 

5. PARAMETER ESTIMATION 

Most readers, whether or not they have thought about un­

certainty, model structure identification, and prediction error 

propagation, will be familiar with the notion of model calibra­

tion, or parameter estimation. It is this perhaps rather re­

stricted view of the subjects of this paper that lies behind the 

observations quoted earlier from DeLucia and McBain [1981] 

at the beginning of section 1.2. 

Having selected and evaluated a model structure, we come 

then to what has been defined as problem area (P2) in the 

introduction. 

Uncertainty about the values of the parameters (coefficients) ap­

pearing in the identified structure of the dynamic model for the 
system's behavior. 

The solution to this problem will be understood here to 

involve not merely the generation of accurate estimates for the 

model parameters but also some quantification of the matrix 

of a posteriori estimation error variances-covariances. The 

basic issue is can the unknown, but constant, parameter values 

of a well-identified model structure be estimated accurately, 

uniquely, and with as little uncertainty as possible? 

It is far beyond the scope of this review to cover the entire 

field of parameter estimation. The texts by Eykhoff [1974], 

Young [1984], and to a lesser extent, Jazwinski [1970], 

Schweppe [1973], and Gelb [1974] provide very good intro-

ductions to the subject; the recent books by Ljung and 

Soderstrom [1983] and Soderstrom and Stoica [1983] give a 

more advanced treatment of the theoretical underpinnings of 

the subject, especially with respect to recursive estimation al­

gorithms and the input/output class III model structures; and 

there have also been some important review and tutorial 

papers, of which those by Astrom and Eykhoff [1971], Iser­

mann [1981], and Young [1981] are most relevant to the pres­

ent discussion. This is, of course, a biased sample of the litera­

ture, for it reflects solely the control theoretic view of the 

subject and, with the possible exception of Young [1984], 

makes little reference to the undoubtedly substantial contri­

butions from statistics and econometrics. Yet unification of the 

subject and the cross fertilization of ideas among disciplinary 

compartments are becoming increasingly evident. The Inter­

national Federation of Automatic Control (IF AC) has held 

regular symposia on "Identification and System Parameter Es­

timation" since 1967. The most recent [Barker and Young, 

1985] signalled to a notable extent a reassuring departure 

from the disciplinary confines of control theory: it included 

special sessions on identification and estimation in the context 

of operations research and on statistics/ time-series analysis. 

There is too a reciprocal development: econometricians, in 

particular, have become well aware of the now ubiquitous 

Kalman filter, though possibly not for the purposes of param­

eter estimation [Durbin, 1984; Hendry, 1984; Harvey, 1984]. 

These changes are encouraging and so are other devel­

opments of interest; but some are less encouraging. For in­

stance, on the positive side there is much to be learned from 

the adjacent fields of biomedicine and pharmacokinetics, par­

ticularly in respect of the exactly parallel problems of model 

identifiability and validation [Godfrey and Distefano, 1985; A/­

Dahan et al., 1985; Flood et al., 1985]. Equally positive is the 

formal introduction of forecasting as a problem area germane 

to system identification. Somewhat neutral, but certainly of 

interest, is the maturity achieved in the conceptual and theo­

retical framework of instrumental variable estimators; as a 

class of estimators, they now stand alongside least squares, 

maximum likelihood, Bayesian, and Kalman filter estimators. 

Finally, from the point of view of identifying models of en­

vironmental systems, it is mildly discouraging to note the in­

creasing emphasis of these IF AC symposia on adaptive (real­

time) control and an absence of what can be discerned (by the 

practitioner) to be radically novel algorithms. True, the pe­

ripheral observer might not appreciate the implications of the­

oretical progress, and we shall have more to say on novel 

algorithms later in section 8. 

For water quality models the overriding difficulty of param­

eter estimation is that of a Jack of parameter identifiability. 

5.1. Types of Estimator 

There are two important classifications to be made: first, a 

classification according to the type of estimator, and this, as 

with the foregoing discussion of model structure identification, 

is defined by the different assumptions that can be made about 

the sources of uncertainty affecting the estimation problem, 

and second, a classification of the different algorithms used to 

implement a batch estimation scheme (which is essentially a 

matter of choosing a constrained opimization algorithm; see 

below). A recursive or a batch scheme could in principle be 

used for each of the four estimators that follow. But since the 

former have already been discussed in section 4 and since they 

do not reflect the vast majority of applications to the problem 

of parameter estimation, it is convenient to concentrate here 
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on batch estimation algorithms. The four estimators are dis­

tinguished in an ascending order of the degree of completeness 

in accounting for the various sources of uncertainty (as in the 

work by Eykhoff [1974]). 

5.1.1. Least squares estimator. No a priori knowledge of 

the statistical properties of any of the sources of uncertainty is 

required for LS estimation. The estimates of the augmented 

state-parameter vector x. = [x, ccY are derived by minimizing 

the sum J of the squared errors (e) between the observed and 

estimated behavior of the system, i.e., 

N 

J =I eT{( x.) }e{( x.)} (22) 

Here the summation is over the N sets of errors e(tk) for all the 

sampled observation instants tk. Equation (22) emphasizes the 

fact that e is a function of estimates of both the states and 

parameters, although in most instances the determination of 

the minimum value of J will be achieved by adjusting only the 

values of the (constant) parameters ( cc) and not the values of 

the states for all the instants tk, i.e., ( x(tk)) . The error e may be 

specified in several ways [Young, 1981], or indeed there may 

be several component error terms, as discussed below, each 

referring to errors of mismatch originating from the different 

sources of uncertainty [Eykhoff, 1974 ; Schweppe, 1973]. How­

ever, in all the cases of practical interest to this review, e will 

be assumed to contain a single-component term for the error 

between the observed (y) and estimated ((y) ) output response 

variables. Strictly speaking, for an estimator to be defined as 

an LS estimator, this error would have to be specified as the 

deterministic model response error 

(23) 

In other words, ( y(tklt0 ) ) is based upon ( x(tklt0 ) ), an estimate 

of the state of the system conditioned upon observations of 

the output response up to and including that available at the 

beginning of the experimental record, time t0 • 

5.1.2. W eighted least squares (WLS) estimator. A weight­

ed least squares estimator yields estimates ( x.) that minimize 

the modified squared-error sum J* given by 

N 

J* =I er{(x.) }w- 1e{ ( x.)} (24) 

where W, the additional prerequisite, is a weighting matrix 

chosen (in Schweppe's [1973] terms) according to "engineering 

judgement." A special case of (24) is that where the variance­

covariance matrices of, most commonly, the output measure­

ment error sequence tt (and, more rarely, the sequence of un­

known input disturbances I; and initial condition errors as­

sociated with ( x.(t0) ) as an estimate of x
0
(t0)) are assumed to 

be known. In the special case where W = R is chosen as a 

weighting matrix (R being the variance-covariance matrix of 

the output response measurement errors), the resulting esti­

mator would be called by Eykhoff [1974] a Markov estimator. 

Note that if the error e were to be specified as a function of 

the other sources of uncertainty, the variance-covariance 

matrices Qs and P5(t 0 ) would need to be used as similar 

weighting matrices for their corresponding constituent 

squared-error terms. Here Q5 reflects the errors in the state 

vector equations (the input disturbance uncertainty) and Ps(t 0 ) 

the variance-covariance matrix of errors in the estimates of the 

initial state. Clearly, the underlying assumption is that the 

sources of uncertainty can be characterized simply by their 

mean and variance-covariance statistics, and almost without 

exception the means are assumed to be zero. 

5.1.3. Maximum likelihood (ML) estimator. The a priori 

knowledge required for a maximum likelihood estimator is a 

specification of the probability density function p{y ; cc} for the 

population of observations y as a function of the unknown 

(and constant) parameter vector cc, to which may occasionally 

be adjoined elements of the unknown initial state of the 

system x(t0 ) [see Maciejowski, 1980]. This prior knowledge 

implies knowledge of the probability density functions of the 

random variable tt and, less frequently, of i;. Here cc is not 

treated as a random variable ; hence p{y; cc} is not a joint 

probability density function for y and cc, nor is it a conditional 

probability density function. The point is a subtle but impor­

tant one, for it distinguishes an ML estimator from a Bayesian 

estimator in that the former does not require an assumption 

about the prior probability density function of the parameter 

vector cc. Given a sample set of field observations, say yi, the 

likelihood function is specified (a posteriori) as L(yi ; ( cc ) ), 

where the functional relationship between ( cc) and yi in L{yi; 

( cc )} is the same as that between cc and y in p{y; cc}. The 

maximum likelihood estimates ( cc ) are those values of cc that 

maximize the value of L , these being the most likely values of 

the parameters given y;. 

5.1.4. Bayesian estimator. As its name suggests, this esti­

mator is based upon the following form of Bayes' rule, 

{ I } 
_ p{ylcc}p{cc} 

p ccy - p{y} (25) 

and it requires knowledge a priori of all the probability den­

sity functions on the right-hand side of (25). (For simplicity the 

Bayesian (and ML) estimators have been specified in terms of 

the parameter vector ix only (and not in terms of x.).) In 

particular, cc is now considered to be a random variable, and 

over and above the ML estimator, the Bayesian estimator 

requires assumptions about its prior probability density func­

tion p{cc}. In turn, given a sample set of observations yi the 

Bayesian estimator yields a complete description of the poste­

rior distribution of the parameter values, from which, how­

ever, it will usually be necessary to make some choice of the 

best set of estimates ( ix ) of cc. The making of this choice may 

require further prior assumptions for implementing the 

various decision rules discussed, for instance, by Schweppe 

[1973] and Eykhoff [1974]. 

To take stock of this brief treatment of a difficult subject, it 

may be helpful to make the following qualitative juxtaposition 

of the two extreme cases of estimators. The simple LS esti­

mator makes no assumptions about ix. It merely computes 

those values of ix that minimize an objective (fitting) function. 

The Bayesian estimator requires complete knowledge of the 

prior probability density function of ix based on knowledge of 

y as a random variable and some assumed relationship, i.e., 

the model, between y and ix. It mechanizes the translation of 

information about the external description of the system (y) 

into information about the internal description of the system 

(cc) through the particular rule of (25). It can, of course, process 

the observations y in a sequential fashion, and in this sense, 

any recursive estimation algorithm can clearly be viewed as a 

Bayesianlike estimator. 

But here we risk confusion, and there is sufficient cause for 

confusion in understanding the above classification that is 

brought about by the following. 

It is generally assumed that Gaussian probability density 

functions hold for all of the relevant random variables and 
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stochastic processes, and under this assumption the probabil­

ity density function p{ exly} in (25) is specified simply by its 

mean and variance-covariance matrix. The form of the Bayes­

ian estimator that chooses the best set of estimates ( ex) as that 

for which p{ exly} attains its maximum values becomes then 

equivalent to a Markov estimator as defined above [e.g., Sch­

weppe, 1973, pp. 394-395]. Likewise the ML estimator be­

comes equivalent to a Markov estimator [e.g., Astrom, 1980]. 

5.2. Algorithms for the Implementation 

of Batch Estimation Schemes 

It is rarely possible to implement exactly the functional re­

lationships of (25). It is at best possible to treat y and ex as 

discrete random variables, not to mention the considerable 

debate that hinges upon the question of whence derive the 

necessary prior probability density functions (in this latter re­

spect, Tiwari's [1979] discussion of the maximum-entropy 

principle for the specification of the prior functions probably 

reflects the majority of current thinking). In the following 

review of the literature there is only one example of an ap­

proximate implementation of (25) [Moore and Jones, 1978] 

and no example of an ML estimator applied without the as­

sumption of Gaussian probability density functions. 

Nearly all the case study problems amount therefore to the 

implementation of algorithms for locating the minimum of a 

loss function such as, in general, J* of (24). In general too, 

unless e{ x
0

} is a linear function of x
0

, such that 

oJ* {xa} fo xa = 0 (26) 

yields a set of algebraic equations linear in x
0

, the estimation 

problem is said to be nonlinear. The important role played by 

the discrete-time input/output models of the form of (20), say, 

where the output response variables are linear functions of the 

model parameters, should become now much more apparent; 

they yield solutions to (26) that are linear in x
0 

(or simply ex) 

and hence easy mechanizations of the solution to the esti­

mation problem. 

To this general nonlinear estimation problem there are 

three aspects: choice of the definition of the error e, the 

scheme for locating the minimum of J* , and computation of 

estimates of the a posteriori parameter estimation error co­

variance matrix. 

Clearly, it is the scheme of locating the minimum of J* that 

is usually regarded as being central to the practical numerical 

aspects of solving the estimation problem, and both Schweppe 

[1973] and Eykhoff [1974] discuss the details of several such 

optimum-seeking methods. The subject of optimization is, of 

course, an entire discipline in its own right, and we shall here 

merely outline certain features of these methods that have 

special relevance to other topics of concern to this review. 

5.2.1. Specification of the form of error. As already noted, 

our discussion is restricted to the case of a single constituent 

error term (e), i.e., that between estimated and observed 

output response variables, defined either as the deterministic 

model response error of (23) or as the one-step-ahead predic­

tion errors (or innovations process errors) introduced in sec­

tion 4 as 

where 

for comparison with (13). 

The choice of e(tx) as a deterministic model response error 

leads to a much simpler computational effort, both for the 

errors themselves and, should it be necessary, for estimating 

W as the covariance matrix of e(tk) [e.g., van Straten, 1983]. 

Fewer assumptions are needed than for the choice of e(tk) = 

v(tkltk_ 1) in (28), which in fact requires the use of a Kalman 

filtering algorithm in order to compute v(tkltk - 1 ) and its co­

variance matrix and thus implies as prerequisites all the pa­

noply of assumptions and limitations listed earlier in section 4 

(see also Astrom [1980]). 

5.2.2. Locating the minimum of the loss function. The im­

plications of the choice of error definition are best clarified by 

now considering in more detail the scheme for locating the 

minimum of J* . Among several possible forms of algorithm 

for a batch estimation scheme, the following gradient algo­

rithm is widely used (see also Eykhoff [1974]) : 

( ex; + 1 ) =(ex;) - i/t;[oJ*/oex],.= <"'> (29) 

where, as in Figure 4a, ( ex; ) is the constant vector of parame­

ter estimates for the ith iteration through the data from t0 --> 

tN ; [oJ*/oex],. =< .. '> is a vector of gradients for the loss function 

hypersurface with respect to the parameters ex, and evaluated 

at ex = ( ex' ) ; and i/t; is a gain matrix (to be determined in a 

variety of ways). For simplicity it has been assumed that the 

estimation problem is one of parameter estimation alone. If 

the prediction error form e(tk) = v(tkltk- 1) is chosen, ex = (ex;) 

is substituted into the Kalman filtering algorithms, which are 

then used to compute (x(tkltk_ 1)), (y(tkltk_ 1)), and hence 

v(tkltk _ 1) in a recursive fashion for t 0 :$ tk :$ tN. The filter in 

this instance is being used solely for the purposes of state 

estimation, and this use is subordinate to the evaluation of J* 

at the end of each iteration through the block of data. It is via 

the minimization of J* according to (29) that parameter esti­

mation takes place, not directly through the filter. 

There are two matters arising from this discussion that may 

cause confusion. First, there is the method of quasi­

linearization [Bellman and Kalaba, 1965], which has both at­

tracted considerable interest in the analysis of water quali­

ty/ecological systems [Bellman et al., 1966; Lee and Hwang, 

1971; Stehfest, 1977; Roberts and DiCesare, 1982] and has also 

(mistakenly) attracted the interpretation of being a fifth type of 

estimator uniquely different from the four types already identi­

fied. The basis of the method is to linearize the nonlinear 

system equations, such as those of our class II model (equa­

tion (6)) so that e{xJ becomes a linear function of x
0

• Then, as 

stated earlier, (26) leads to a set of (n + p) linear algebraic 

equations in the (n + p) unknowns, i.e., the elements of the 

augmented state-parameter vector x
0

• Here n is the order of 

the state vector and p the order of the parameter vector. Be­

cause therefore quasi-linearization is one particular (iterative) 

numerical method for locating the minimum of J*, it is not, 

despite the impression frequently given, yet another type of 

estimator. A lucid, concise, and instructive discussion of the 

method can be found in the work by Detchmendy and Sridhar 

[1965]. 

Second, there is the question of how the recursive esti­

mation algorithms of section 4 can be related to the notion of 

minimizing a squared-error loss function such as J* . In the 

simplest of cases the recursive (linear) least squares algorithm 

can be seen as a (recursive) formulation for the changes to the 

solution of (26), i.e., the estimates (x
0

) that would be made if 

the number of observation sets available for analysis were to 

change from, say, (k - 1) to k. (Recall that the loss function J* 
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in (24) is specified in terms of the number of observations 

available and that for convenient forms of J* the solutions 

from (26) can be specified in closed form.) In the most complex 

of cases, we may note that the Kalman filter (and hence the 

EKF) can be interpreted as a Bayesian-type estimator furnish­

ing a posterior probability density function p{o:ly(tk), y(tk_ 1), 

· · ·, y(t0 )}, after the receipt of the new observation y(tk), as a 

function of the prior probability density function p{o:ly(tk_ 1), 

y(tk _ 2 ), · ·-, y(t0 )}. For the assumption of Gaussian distri­

butions the mean (x.) and variance-covariance matrix P
0 

are 

sufficient to characterize these probability density functions . 

5.2.3. The posterior parameter estimation error covariance 

matrix. Computation of the a posteriori uncertainties of the 

estimated model parameter values is a matter that has been 

widely ignored. The required mathematical derivation is un­

fortunately difficult to summarize, and what follows may 

therefore seem somewhat opaque. The essential point to bear 

in mind is that the concept of identifiability, first introduced in 

section 1, can be related to the sensitivity coefficients of the 

model parameters (see also section 2). These coefficients 

appear explicitly in the quantification of the model parameter 

uncertainties after identification of the model; and it is this 

"residual model uncertainty" that links the problem of identifi­

ability with the subsequent analysis of prediction error propa­

gation (to be discussed in section 7). 

Briefly, if the errors ii in the parameter estimates are defined 

as 

(30) 

the objective is to derive an expression for the variance­

covariance matri~ of these errors, i.e., pP = E{iiiir}, where 

E{ · } is the expectation operator and where pP can be com­

puted from a knowledge of the observations and, as necessary, 

the values of the parameter estimates themselves. Given the 

general nonlinear relationship between J* of (24) and the pa­

rameters, a single key assumption is necessary: 

That at the minimum value of the loss function J*, as located by 
the estimation algorithm, the corresponding (best) estimates of 
the parameters ((a)) are close the "true" values of the parameters 
(a), so that by linearization of the output response variables (y), 

whereby y is made a linear function of the parameters, the errors 
e of (23) or (27) are likewise made approximately linearly depen­
dent upon a (or ii through (30)). 

Clearly, the results of the analysis facilitated by this assump­

tion are strictly applicable only to small estimation errors ii. 

The linearization is a first-order approximation and, as such, 

parallels a first-order error analysis in the context of predic­

tion. Here the errors of identification are made a linear func­

tion of the parameter errors, so that the latter can be com­

puted given the former. Later (in section 7) it will be apparent 

that the errors of prediction are assumed to be a linear func­

tion of the parameter errors, so that (there) given the latter, 

the former can be computed. 

Let us denote the approximate form of the loss function 

that results from the above assumption by ]*. Differentiation 

of]* with respect to ( o: ) and setting these derivatives to zero, 

in line with (26), yields now a set of algebraic equations linear 

in ( a ) . From this set of equations an approximate expression 

for ii follows straightforwardly. It contains a matrix of sensi· 

tivity coefficients [ay ;Jaixi] evaluated for ix = ( ix) and is a 

function of the sources of uncertainty assumed to have been 

relevant to the estimation problem. From the expression for 

( ix ) a means of approximating the variance-covariance matrix 

of these parameter estimation errors can be formulated as 

follows 

pP(tN) = E{iiiir} = £{[ ktl er (o:) w-1c(o:) JI 
. Lt, er ( o: ) w- ' <TJ*(tk)) J [ J, er ( o: ) w- '(TJ*(tk)) r 

(31) 

where, more precisely, C(o:) is the(/ x p)-dimensional matrix 

of sensitivity coefficients [ ayi(tk)/aixJ for the ith output vari­

able with respect to the jth parameter at time tk and evaluated 

for o: = ( o: ) (the output vector being of the order of /). The 

error sequence (q*(tk)) is, strictly speaking, an estimate of the 

mismatch between the observed and hypothetical error-free 

output variables. In practice, ( TJ*(tk)) can be suitably approxi­

mated as the error e(tk) between observed y(tk) and estimated 

output variables ( y(rk; ( o: ) )). 

For special cases of the errors TJ*(tk), namely, that they are 

white noise sequences, the expectation operator in (30) can be 

taken to apply merely as E{TJ*(tk)'l*r(tk)}, and thus pP(tN) can 

be seen to be directly related to the variance-covariance 

matrix of the errors of mismatch. For the case of a model that 

is linear in the parameters, (31) will obviously be much sim­

plified. In a qualitative sense one can infer from this equation 

that the more sensitive the output response variables are to 

the parameters (the elements of C are relatively large), the 

smaller are the associated estimation error variances. The pa­

rameters would be said to be "better estimated" (less uncer­

tain) in this event, although the ability of the parameters to be 

"well identified" is dependent upon the temporal pattern of the 

sensitivity coefficients over the whole period of the field obser­

vations (as already indicated in the discussion of Figure 2 in 

section 2). 

5.3. Case Studies 

The earliest contributions to parameter estimation in water 

quality/ecological systems, as would be expected, dealt with 

the theoretical promise of particular algorithms for the mini­

mization of an ordinary least squares loss function (J). They 

addressed simple process models for prey-predator dynamics 

[Bellman et al., 1966] or for the steady state relationship be­

tween DO and BOD concentrations along a reach of river 

[Lee and Hwang , 1971; Koivo and Phillips, 1971]. Parker 

[ 1972], with a seven-state variable model representing 

nutrient-phytoplankton-zooplankton dynamics in Kootenay 

Lake, British Columbia, Canada, and Shastry et al. [1973], in 

a study of DO-BOD interaction in the Sacramento River, 

California, were among the first to tackle the analysis of in 

situ field data. In fact, Shastry et al. regarded theirs as a 

problem of discriminating among alternative model structures. 

The overwhelming majority of subsequent case studies have 

used, as did Shastry et al. [1973], either a weighted least 

squares or Markov estimator for which the error term has 

been defined as a deterministic model response error accord­

ing to (23). (The use of the term Markov estimator signifies 

here a maximum likelihood estimator with the customary 

Gaussian assumptions.) Many of these applications have fo­

cussed, with varying degrees of complexity (from one to 17 
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state variables), on the development of models for phytoplank­

ton dynamics in lake ecosystems [e.g., Di Cola et al., 1976; 

Lewis and Nir, 1978; Benson, 1979; Canada Centrefor Inland 

Waters, 1979; Di Toro and van Straten, 1979; J@rgensen et al., 

1981; van Straten, 1983; Mejer and J@rgensen, 1983]. Stehfest's 

[1977] analysis of a six-state variable model for the steady 

state distribution of degradable and nondegradable organic 

pollutants along a 450-km stretch of the Rhine River, Federal 

Republic of Germany, is a notable exception to this general 

pattern (see also Rinaldi et al. [1979a]). Should such statistics 

be of interest, we may observe that Di Toro and van Straten 

[1979] and van Straten [1983] can claim to have addressed 

one of the largest scale problems of estimation. They have 

used a 12-state variable model with in all, 20 parameters to be 

estimated, in analyses of the International Field Year for the 

Great Lakes (IFYGL) 1972-1973 data and an aggregated 10-

year data set (1967-1976) for Lake Ontario. 

The considerably more onerous estimation problem associ­

ated with the (one-step-ahead prediction) error definition of 

(27) has understandably been less extensively addressed. Part 

of the analysis of model structure identification for the study 

of DO-BOD-algae interaction in the River Cam [Beck, 1975, 

1978] involved an ML (Markov) estimation problem using the 

algorithm of Astrom [1980]. Results from an identical ap­

proach to the estimation of 33 parameters (including five­

system noise 1; and measurement noise 1J covariance elements) 

in a six-state variable hydrothermal model for the inlet water 

temperature of an electricity-generating station have been re­

ported by Schrader and Moore [1977] and Moore [1978]. 

Jolankai and Szollosi-Nagy [1978] have formulated an algo­

rithm for a similar estimation problem associated with a 

model of phosphorus-cycle dynamics in the Bay of Keszthely, 

Lake Balaton. However, they acknowledge the difficulties of 

implementing such an algorithm and have proposed, but not 

applied, alternative simpler batch and recursive estimation 

schemes that exploit ideas along the lines of a quasi­

linearization approach. McLaughlin [1978a, 1979] has also 

been a strong advocate of ML (Markov) estimators for criteria 

(J*) based on one-step-ahead prediction errors. His compara­

tive account of the performance of the two forms of estimation 

schemes implied by the two different error specifications is 

especially instructive, though sadly never published in the 

open literature [McLaughlin, 1979]. 

Without doubt the most sophisticated type of estimator ap­

plied hitherto is an approximate version of the Bayesian esti­

mator proposed by Moore and Jones [1978]. In their algo­

rithm, which they call a coupled Bayesian/Kalman filter esti­

mator, they have approximated the continuous ranges of the 

parameters IX by a finite set of discrete values. For a model 

with p parameters to be estimated, each of whose range of 

possible values is represented by M discrete values, there are 

thus MP possible realizations of the model corresponding to 

all the possible combinations of the parameter values. The 

prior and posterior probability density functions p{1Xly(tk_ 1)} 

and p{1Xly(tk)} (before and after processing the observation 

y(tk)) are likewise represented by MP discrete probabilities. 

Such a formulation of the estimation pr-0blem would indeed 

be attractive if it were not for the very high computational 

cost of implementing the approach. MP Kalman filters are 

required to compute the errors v(tkltk _ 1)1 and their associated 

variance-covariance matrices for each of the MP possible reali­

zations of the model. Knowledge of the~e Gaussian error dis-

tributions is necessary for the computation of p{y(tk)llX} ap­

pearing in the right-hand side expression of the appropriate 

form of Bayes' rule as stated in (25). Intuitively, if the errors 

from a particular model are high, it is improbable that the 

actual observation y(tk) has been generated from the particular 

combination of parameter values that constitute that model. It 

is apparent too that a set of recursive estimates can be com­

puted from the sequence of "most probable" parameter value 

combinations at each instant tk over the period t0 ~ tN. Some 

of Moore and Jones's [1978] results for the River Cam data of 

Beck and Young [1976] are shown in Figure 12. They are 

indicative of the problems of parameter identifiability dis­

cussed in section 2. The flat marginal distribution of a poste­

riori probabilities (at tN) for the reaeration rate constant a2 in 

Figure 12c is little different from the prior probabilities (at t 0) 

of 1/9 for each of the nine possible discrete values for this 

parameter. The corresponding posterior estimation error vari­

ance in PP(tN) would be relatively high for a 2 . The conclusion 

is that there is little information in the field observations with 

which to identify a value for the reaeration rate constant. And 

this is not surprising, for in the Cam study and in the Bedford 

Ouse the effects of stream reaeration mechanisms on the ob­

served DO variations are negligibly small in comparison with 

the dominant effects of algal photosynthesis and respiration 

[Beck, 1983]. 

5.4. Commentary: The Problem of Identifiability 

This by no means exhausts the coverage of all the case 

studies relevant to parameter estimation. However, the al­

ready evident problems of parameter identifiability are so 

commonplace, and have so frequently been responsible for the 

disappointing performance of the various estimation algo­

rithms, that they must now be given special consideration. 

To summarize, there are many difficulties in working with 

in situ data from environmental systems: there are too few 

data and/or they are highly uncertain, the parameter space 

has too high a dimension and/or the optimal estimates of the 

parameter assume "unrealistic" _values, there is a Jack of con­

vegence to optima on the error-loss function hypersurface be­

cause of its flatness and/or unless reasonably good prior pa­

rameter estimates can be specified, and the necessary prior 

knowledge of the various error statistics is itself uncertain. 

The nub of the problem of identifiability is (as we have said 

in the introduction to this review) that what we would like to 

know about the internal description of the system { x, IX} is of 

a substantially higher order than what can be observed about 

the external description of the system { u, y}. 
Three groups of factors affect the shape of the estimation 

loss-function surface: (1) the field observations, (2) the model 

structure (and its parameters), and (3) the type of estimator, 

i.e., the prior assumptions about the statistics of the sources of 

uncertainty affecting the estimation problem. We shall cat­

egorize the various responses to the problem of identifiability 

according to these three points. 

5.4.1. Manipulating the data. A predictable response to 

the difficulties of identifiability is to transform the given data 

set before any analysis-by interpolation ("increasing" the 

number of data) and/or by smoothing ("removing"part of the 

random uncertainty). Mejer and Jorgensen's [1983] use of 

cubic-splines fitting is a typical example of this response. In 

fact transformation of the sampled data by interpolation 
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Fig. 12. Parameter estimation in a case study of the River Cam 
[after Moore and Jones, 1978]. (a) A posteriori joint probability den­
sity fonction at rN (N = 80 sampled observations) for the BOD decay 
rate constant <X 1 and reaeration rate constant a2 • (b) A posteriori 
marginal probability density function p{a

1
ly(tN)} for the BOD decay 

rate constant a 1. (c) A posteriori marginal probability density function 
p{ <X 2 ly(t N)} for the reaeration rate constant a,. 

and/or smoothing (filtering) raises a more general issue, since 

arguably it transforms the estimation problem in a fundamen­

tal way (see also Young and Jakeman [1980] and Vajda et al. 

[1985]). 

Consider once again the ordinary differential-equation rep­

resentation of the class II model structure, i.e., 

dx(t)/dt = f{ x, u, a; t} + ~(t) 

y(tk) = h{ x, O!; tk} + IJ(tk) 

(32a) 

(32b) 

Hitherto it has been assumed that in order to solve the prob­

lem of deriving values for a the differential equation (32a) 

must first be solved and then some function of the errors e(tk) 

minimized, taking into account sampled observations given at 

times tk, k = I, · · · , N. If we permit a manipulation of the data 

{ u(tk), y(tk)} by interpolation and smoothing, it is possible to 

formulate a modified estimation problem constructed around 

an equation of the form 

(33) 

Here ( dx(t)/dt ) is an estimate of the derivative of the state 

vector evaluated at sampling instants ti,j = I, · · ·, M, and Eis 

a lumped-error term accounting for the sources of uncertainty 

originally associated with ~ and tt in (32) but transformed 

through whatever procedure is used to obtain (dx(ti)/dt) and 

<x(tN. 
The key is that the estimation problem now refers to the 

evaluation of a, being the only unknown in the algebraic (or 

regressionlike) relationship of (33), given "observations" at 

times ti where, by interpolation, the number of samples (M) 

can be made substantially larger than for the original problem 

(i.e., N). The algebraic form of (33) is structurally equivalent to 

that of the input/output class III model (equation (3)), and as 

such, the transformed problem has access to all the corre­

sponding types of estimation algorithm (including the IV esti­

mator) that experience shows have performed well on the diffi­

cult problems of environmental time-series analysis. 

The price to be paid for this transformation is the need to 

generate estimates of the state ((x)) and, more important, 

estimates of the state derivative ((dx/dt)). The simplest such 

substitution, for the case where all the states are linearly ob­

served as the outputs (y) (as is usually assumed) is to put 

( x) = y in (33) and to difference the data (y) in order to 

obtain approximate estimates of dx/dt. If further it is assumed 

that E = 0 in (33) , then estimates of a can be derived as the 

solutions to a set of deterministic nonlinear algrebraic equa­

tions, a form of solution well known as the solution to the 

inverse problem of groundwater models (McLaughlin [1978a] ; 

see also Jorgensen et al. [1981] for the case of lake eutrophica­

tion modds). The differencing of error-corrupted data is never 

a good idea, however, since in general it amplifies the effects of 

the errors. The use of cubic splines should yield more stable 

approximations of the derivatives (together with their interpo­

lated values), but they are essentially the same form of substi­

tution given that they require (x) = y at the sampling in­

stants of the original data, i.e., at tk [Vajda et al., 1985]. Other 

means of deriving stable estimates of (x) and (dx/dt) nat­

urally suggest themselves, of which an instrumental variable 

form is one (as discussed by Young and Jakeman [1980] and 

Vajda et al. [1985]) and an estimate from a Kalman filter is 

another. 

Above all, the transformed estimation problem for the re­

lationships of (33) opens up new horizons for the estimation of 

parameters in ordinary differential-equation models by meth­

ods developed originally for discrete-time, difference-equation 

representations. The one qualification of this potential is that 

it must first be possible to obtain good approximations of the 

values of the state derivatives. 

5.4.2. Manipulating the parameter space. Imposing a re­

striction on the number of model parameters to be estimated, 

i.e., reducing the dimension of the parameter space, is comple­

mentary to increasing the number of data. The question then 

is, on what basis should one distinguish between those param­

eters that are to be estimated and those that are to be either 

assigned values a priori (from a search of the literature) or 

removed altogether from the given model structure? 

In fact the question is tantamount to asking how one identi­

fies the model structure, except that here it is being ap­

proached from a direction opposite to that already discussed 
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in section 4. The problem is one of establishing which constit­

uent model hypotheses are, in effect, either redundant or not 

falsifiable (surplus content). It follows from the discussion of 

identifiability at the end of section 2 that some form of sensi­

tivity analysis would be a suitable vehicle for determining the 

insensitive or redundant parameters, and there are several case 

studies that illustrate this approach [Whitehead and Hornber­

ger, 1984; Jaffe and Ferrara, 1984 ; Hornberger and Cosby, 

1985a, b ; Gentil and Perrier, 1985]. 

There are other strategies, and indeed other questions, of a 

more subtle and philosophical nature about the justification 

for restricting the dimension of the parameter space. Besides 

eliminating, or "fixing" those parameters to which the outputs 

of the model (y) are insensitive, it has been argued that the 

most "uncertain" parameters are equally so candidates for 

elimination [van Straten, 1983]. In other words, the estimation 

problem is first solved for the model given all the parameters 

as unknown constants ; the error variance-covariance matrix 

of the parameter estimates is then computed according to (31), 

and on this basis a revised estimation problem is devised with 

the most uncertain parameters having been eliminated. How­

ever, this is in effect the same strategy as elimination of the 

least sensitive parameters (especially as (31) explicitly incor­

porates the sensitivity coefficients), except that the procedure 

is carried out by reference to the experimental observations (as 

in the works by Whitehead and Hornberger [1984] and Horn­

berger and Cosby [1985a, b]) and not solely on the basis of the 

intrinsic properties of the given model structure [Jaffe and 

Ferrara, 1984; Gentil and Perrier, 1985]. 

The fixing of certain parameter values is equivalent to as­

suming a priori that these parts of the model structure are 

known with certainty, and such an assumption must necessari­

ly distort the posterior estimate of the variance-covariance 

structure of the parameter estimation errors, as van Straten 

[1983] has illustrated in his analysis of a model for Lake 

Ontario. It is clear that this is a rather contentious issue, not 

only from the point of view of parameter estimation, but also 

because it brings into question the role of surplus content in 

the context of prediction and prediction error propagation. As 

yet these questions have barely been addressed, let alone re­

solved, and we shall therefore postpone further discussion of 

them until section 8, where they are treated in an agenda of 

problems for the future. 

One point is apparent, nevertheless, and it is that to fix the 

most uncertain parameters seems a logical contradiction. It 

implies perfect knowledge of the least certain parameters. To 

allow such parameters to assume random values (within a 

prespecified range) is preferable and is an approach that has 

been discussed extensively by Hornberger and Cosby [1985b] 

and Hornberger et al. [1985] in a case study of surface water 

acidification. 

Probably the most exhaustive treatment of parameter-space 

delimitation thus far is presented in a recent paper by van 

Straten [1985] with reference to a case study of eutrophication 

in Lake Balaton, Hungary. He has introduced quite novel 

ways of exploiting the observed dynamic characteristics of the 

system (for instance, peak response, period average, and 

steady state responses) in order to impose constraints on the 

feasible regions of those parameters to be estimated. But what 

precisely determines a priori a "feasible" range of parameter 

values is quite another philosophical issue. Sorooshian et al. 

[1983] , in an analysis of the identifiability of hydrological 

models, have observed tha t should unrealistic values be esti­

mated for the parameters, their preference is not to impose 

such constraints on the estimator, but to challenge the ade­

quacy of the estimation criterion, i.e., the type of estimator, or 

the form of the prior statistical assumptions. The position of 

the present reveiw would be different still, seeing it as evidence 

of the failure of a constituent model hypothesis, and thus part 

of the natural duality of failure and inference that is the essen­

tial character of model structure identification. 

5.4.3. Manipulating the form of estimator. There is sub­

stantial evidence in the parallel literature on hydrological 

modeling of these same problems of parameter identifiability 

[Johnston and Pilgrim, 1976; Pickup, 1977; Sorooshian et al., 

1983], and much the same conclusions have been drawn, 

namely, that the key problems may ultimately be ones of 

model structure identification and the temporal variability of 

parameters [Sorooshian et al., 1983] (see also section 4 of this 

paper). 

In particular, considerable attention has been given by Sor­

ooshian and Gupta [1983] and Gupta and Sorooshian [1983] to 

examination of the loss-function surface. Few, if any, of the 

studies in water quality modeling have been as exhaustive an 

the analysis of these authors, although it is clearly well known 

that the loss-function surface can degenerate to a very awk­

ward, almost flat shape. For example, in a study of a 

phosphorus- and carbon-cycle model of Lake Ontario, Ha/fan 

[1979] has noted that an order-of-magnitude variation in 

some parameter values might be associated with a change of 

no more than 6% in the loss function about its minimum 

value. So changing the form of the estimator, i.e., changing the 

assumptions about the properties of the sources of uncer­

tainty, in response to a lack of model identifiability is a third 

course of action, and one advocated by Sorooshian et al. 

[1983]. In fact they discuss the autocorrelation and heterosce­

dastic properties of the output response observation errors, 

and their results with the revised estimators were favorable. 

The results of other studies have not been so successful 

[Hornberger et al. 1985], and it remains an open question as 

to how suitable this type of transformation would be in identi­

fying models of water quality. For one thing it is not obvious 

that the relative lack of water quality data would support the 

more sophisticated statistical assumptions. 

This is not to suggest, however, that the importance of 

making good assumptions about error and noise statistics (as 

required for the Markov, ML, and Bayesian estimators) has 

not been acknowledged in estimating the parameters of water 

quality models. It is obviously apparent in the preceding dis­

cussion of section 4 in respect of recursive estimation algo­

rithms, though not in as refined a fashion and not in quite the 

same context as Sorooshian's work. Moore [1978] too, for 

instance, has given some discussion of adaptive (Kalman) fil­

tering techniques, "adaptive" in the sense that the unknown 

elements of the variance-covariance matrices for the different 

sources of uncertainty are treated as parameters (themselves to 

be estimated from analysis of the field data). But again, adapt­

ive filtering is really quite a sophisticated notion, and its ro­

bustness under the difficult conditions of interest here must be 

questionable. 

Last, an alternative position on the problem of identifiabil­

ity is to accept the multiple optima as given and, instead of 

attempting to manipulate the estimator, to develop procedures 

for identifying from the multiple optimal solutions some 
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"uniquely best" combination of parameter estimates. Such 

procedures have been discussed at length by Lewis and Nir 

[1978] and Paldor el al. [1978] , although they recognize the 

objections that might be raised, and have been raised by Fedra 

[1983], over the arguably illusory assumption of uniqueness 

(see also section 3). 

5.5. Prudent Transformations of Ill-Posed Problems 

Our conclusion must be the same as that to the discussion 

of model structure identification in section 4. If the most natu­

ral and straightforward formulation of the estimation problem 

continues to defy useful solution, then it is prudent to change 

the formulation of the problem. 

There are two pairs of case studies that can be reviewed in 

this spirit. The first such pair refers to the work of van Stralen 

and Herodek [1982], on a problem of estimating algal growth 

parameters from primary production profile observations in 

Lake Balaton, and to the analysis of Rinaldi et al. [1979b] of 

steady state DO-BOD interaction in the Bormida River, Italy. 

Both studies transform and simplify the natural statement of 

their respective estimation problems. This is followed by ex­

ploiting the partly linear properties of the minimization of a 

weighted squared-error loss function (J* in (24)), which sub­

stantially reduces the subsequent computational effort of an 

iterative scheme for locating the minimum of J* . The final sets 

of parameter estimates obtained from several independent sets 

of observations are then examined for the identification of 

possible functional relationships between the parameters and 

(observations ot) the other independent variables (see also 

Cosby [1984]). This last step is clearly an expression of the 

idea of model structure identification as associated with the 

discussion of(l4) in section 4. 

A second, but rather different, pair of case studies can be 

found in Halfon's [1976] analysis of the dynamics of selenium 

in an aquatic microcosm and Roberts and DiCesare's [1982] 

work with a simple model for nutrient dynamics in Lake 

George, New York. The common theme of these studies is the 

transformation of the basic system description of a class II 

model, i.e., (32), into the discrete-time form of the multiple­

input/multiple-output class III model of (3). The importance of 

the concept of linearity in the parameters, irrespective of 

whether the system dynamics are a nonlinear function of the 

states, inputs, or outputs, is particularly well demonstrated by 

Roberts and DiCesare's analysis. Most probably it is this lin­

earity that makes their estimation problem so much better 

posed and the results of their analysis more penetrating. 

5.5.1. Dislributed-parameler (class I) models. The arche­

typal problem of identifiability, as we have already indicated 

in the introduction (section 1), is that of estimating the param­

eters in the distributed-parameter (partial-differential equa­

tion) representation of a class I model. And since all the sys­

tems considered in water quality modeling are intrinsically 

distributed, all the case studies discussed thus far have as­

sumed implicitly the prior transformation of the natural for­

mulation of the problem (identification of the distributed­

parameter model) into a "more tractable" lumped-parameter 

approximation. 

The question remains therefore whether this transformation 

is necessary and/or prudent, and the answer to this question 

must largely be positive (on both accounts). Distributed­

parameter systems are by definition of infinite dimension (in 

terms of the orders of their state x and parameter 9 vectors), 

and some form of Jumping approximation is inevitable, usu­

ally over small volumes for the state vector and over much 

larger volumes for the parameter vector. Most of the results 

have been restricted to the essentially hydraulic problems of 

the advection and dispersion of conservative pollutants in 

rivers [Yih and Davidson, 1975 ; The, 1978 ; van S1ra1en et al., 

1985 ; Bud gel/, 1982] and in groundwater systems, including 

the upper unsaturated zones [McLaughlin, 1978a, b, 1979, 

1985 ; Wheater et al., 1986; Neuman and Carrera, 1985]. The 

exceptions to this rule are the results of Koivo and Phillips 

[1976] and Koivo and Koivo [1978] for the theoretical devel­

opment of recursive least squares estimators for a first-order 

partial-differential equation representation of stream 

DO-BOD interaction. It would not be fair to observe that the 

problems of identifiability have dominated these studies, for 

there have barely been any exhaustive analyses of even rea­

sonably extensive field data sets. What meager evidence there 

is derives from a case study of conductivity time series from 

the upstream and downstream boundaries of an 84-km section 

of the River Rhine in Holland [The, 1978; Bagchi et al., 1980; 

van Straten et al., 1985] and focuses on the poor identifiability 

of the dispersion coefficient ; a consequence partly of insuffi­

cient high-frequency input excitation of the system's dynamics, 

and partly of the nonstationarity of the mean stream velocity. 

However desirable it may be to maintain that faithful repre­

sentation of the distributed nature of the system should be 

compromised as little as possible, the fact is that there are few 

practical case study results that would dissuade one from in­

voking a priori a Jumping transformation of the estimation 

problem. 

Rather the real question is therefore whether class I model 

representations can be useful as vehicles for the rigorous inter­

pretation of field data . And if they cannot, it they must be 

viewed merely as archives of hypotheses, can these hypotheses 

be translated more effectively into the more easily identifiable 

class II and III model structures (other than via finite-element 

and finite-difference approximations)? Indeed, can the results 

of identifying the latter be translated back into the context of 

the partial-differential equation model? These are, in the first 

instance, extremely difficult questions to answer on a technical 

basis. For example, the overall problem could be transformed 

into the dual (but not independent) subproblems of identifying 

purely temporal or purely spatial variability of behavior, with 

estimates of the spatial and temporal derivatives, respectively, 

being accommodated in much the same manner as discussed 

above for (33) in section 5.4.1 (see also section 8 and Beck 

[I 985b ]). But perhaps of greater and more fundamental diffi­

culty are the philosophical issues raised by these questions. 

For it may be that here we are witnessing a small dislocation 

of paradigms (in the sense of Kuhn [1970]) in the repre­

sentation of the dispersive processes affecting the distribution 

of a solute in a flowing medium. It is now amply established 

that a class III model structure is able to match accurately, 

with generality, and with parsimony of parameters the trans­

port of tracer substances in streams and channels under a 

wide variety of conditions fYoung, 1983 ; Beer and Young, 

1983; Young and Wal/is, 1986]. The difficult philosophical 

issue is that the understanding gained from interpretation of 

the field data in the terms of such (class III) models is funda­

mentally not reconcilable with the interpretation of the cus­

tomary class I model formalism. The two are based on differ­

ent premises, and it may not therefore be meaningful to seek 



1420 BECK : UNCERTAINTY IN WATER QUALITY MODELS 

the failure of the one set of hypotheses by their translation 

into the other form of representation. 

5.5.2. In conclusion: A "forensic" science. What should 

have been a straightforward problem with a straightforward 

solution has in the event turned out to be remarkably intract­

able. Indeed, the skeptic faced with such a Jong list of difficul­

ties as those enumerated in section 5.4 above might well argue 

that any form of parameter estimation is a pointless exercise. 

He would be quite wrong, and emphatically so. For at this 

point in the review it must hardly be necessary to reiterate the 

basic philosophical position of seeing the failure of an ap­

proach as the stimulus to insight and progress. This has been 

true in the development of methods for the generation of pre­

liminary hypotheses (section 3), and it promises also to be the 

case in generating novel algorithms for model structure identi­

fication (section 4). The only difference between these and the 

present discussion is that perhaps perversely it is all the more 

difficult to acknowlege the failure of a body of methods (i.e., 

constrained optimization methods) that are ostensibly so read­

ily applicable to the problem at hand. But like the preceding 

topics, the most fruitful development should err on the side of 

simplicity and independence of insight, not (as with the en­

croaching complication of the HSY approach, or the inordi­

nate superstructure built on to the use of recursive estimation 

algorithms) in the ad hoc tinkering with and sophistication of 

existing methods. 

If today the subject of parameter estimation were to be 

presented with an outstandingly best algorithm for con­

strained optimization, would all its problems be solved? It is 

doubtful, although there are those who would claim to have 

such a global optimization procedure [Pinter et al., 1987]. 

This review has indicated that the application of standard 

procedures for the minimization of a fitting-error function is 

fraught with difficulties. Moreover, it has been argued else­

where that the expense of computational time should be re­

garded as a progressively receding resource constraint on nu­

merical analysis. Why then should one use efficient algorithms 

for locating the minimum of the fitting-error function when 

inexpensive computing resources can be mobilized in order to 

evaluate the entire hypersurface of this function over given 

ranges of the parameter values ? The thinking behind the nega­

tive response that this question prompts is already apparent in 

the studies reported by Halfon [1979], Fedra [1983], Hornber­

ger and Cosby [1985b], and Hornberger et al. [1985]. Ironi­

cally too, it is this approach of complete function evaluation 

that is used for the very purpose of diagnosing the failure of 

an optimization procedure to perform adequately [e.g., Sor­

ooshian and Gupta, 1983]. Presumably the difficulty of analysis 

might shift its focus away from locating the optima to inter­

pretation of their meaning, and it is unlikely therefore that 

further sophistication of the methods of optimization will be 

especially rewarding. To summarize, either the problem must 

be changed to allow existing methods to perform better (as we 

discuss below), or some quite radical change of method will be 

required in order to open up novel ways of approaching the 

problem. 

The difficulties of parameter estimation are not primarily 

ones of inadequate method, but of a latent ill posedness of the 

problem arising from a lack of identifiability. It would thus be 

inappropriate to conclude by discriminating among good and 

bad techniques. The issue is one of developing preferred ap­

proaches to problem solving. The essential problem is that of 

identifiability, and the essence of identifiability is ambiguity in 

the interpretation of past observed behavior. The case in favor 

of a variety of perspective and approach, first put forward in 

section 4 on the discussion of model structure identification, is 

now even more compelling. The problems of estimation are 

unlikely to be solved at a single attempt from one direction. 

Formulating the model structure (without identifying it), de­

fining a least squares loss function, and putting the problem 

into a constrained optimization package does not automati­

cally produce a useful solution. It may produce part of the 

solution, but a greater ingenuity is called for. The problem 

must be approached from several different angles, and the 

diagnostic evidence from each partial, albeit ambiguous, solu­

tion then assembled to make a cogent argument for choosing 

one solution (among several) to the whole. The interpretation 

of field data should be, as it were, a kind of forensic science. 

And if there were to be a single most important guiding prin­

ciple of this approach-of continual transformation and re­

casting of the estimation problem- it would be defined as 

follows. 

The judicious use of assumptions designed to produce a model 
specified in terms that approximate the algebraic or discrete-time 
difference form of a class III representation that is linear in the 

parameters to be estimated. 

In the end, however, it may be that the ambiguity of inter­

preting past behavior, though undesirable, is not fatal to the 

purpose of predicting the future, and this would certainly 

challenge the accepted attitudes to the problem of identifiabil­

ity set out above. 

6. CHECKS AND BALANCES 

There is no automatic or entirely objective routine for the 

development of a model, not even in the restricted area of 

model-order estimation for the input/output class III repre­

sentations [Soderstrom, 1977]. The procedure is natually cyc­

lical, iterative, and "open ended" (see also Cale et al. [1983a], 

Loehle [1983], and Reckhow and Chapra [1983a]. As de­

scribed here, it alternates between the speculative generation 

of hypotheses (section 3)
1 

exposure of their failure, then further 

speculation (in section 4, model structure identification), and 

so on. The procedure is incremental, whether one begins with 

an overly simple or an overly complex model structure. To 

paraphrase the discussion of section 4, additional or more 

complex hypotheses are only incorporated into the simple 

prior model structure when they are demonstrably necessary. 

And to paraphrase what has been said in section 5, having 

included a priori in the model all the hypotheses of con­

ceivable relevance, the alternative approach is then to seek to 

eliminate those hypotheses that are clearly inadequate or re­

dundant (an approach likely to be heavily circumscribed by 

the difficulties of identifiability). 

The question that we must now answer is at what point 

should the analysis terminate? How can it be established that 

we have developed a good, useful, valid, credible, realistic, or 

desirable model? The answer depends to a large extent on the 

purpose for which the model has been developed, and equally 

so on a large measure of common sense ; it is also subjective 

[Young, 1983]. The question can be made retrospective: does 

the model adequately match observed past behavior? Or it 

can be made prospective : is the risk acceptable that the model 

can be used to guide decisions that will influence future behav­

ior ? A satisfactory answer to the former, though perhaps 
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easier to obtain, clearly does not imply a satisfactory answer 

to the latter. Neither is it apparent that one could examine the 

objectives of decision making, specify an acceptable tolerance 

on the requisite prediction accuracy, and hence specify as a 

terminating point for identification some acceptable level of 

identified model uncertainty. 

So we are obliged to accept some Jess crisply defined dis­

trinction between an acceptable and an unacceptable model, 

some less precise notion of the end point of system identifi­

cation. And we shall consider in this section the simpler, strict­

ly "retrospective" aspects of this problem. 

The purpose of the whole of the review thus far has been the 

use of models for the development of scientific theories about 

the behavior of complex environmental systems. Given this 

purpose, a pragmatic prescription for the end point of the 

analysis would require the following. 

1. The parameters of the identified model structure should 

be demonstrably invariant with time (from section 4). 

2. The estimation error variances and covariances of these 

parameters should be low, as evidence of good identifiability 

(from section 5). 

3. The residual errors of mismatch between the per­

formance of the model and observed behavior should be small 

in magnitude and not attributable to any causal mechanisms 

of a significantly nonrandom character. 

Items 1 and 2 have already been discussed earlier. In this 

section the primary concerns will be analysis of the residual 

errors of mismatch and, because it is frequently based on such 

an analysis, model discrimination. 

6.1. Analysis of the Residual Errors of Mismatch 

In line with (23) and (27) in section 5 the residual errors of 

mismatch can be generated as either the deterministic model 

response errors or the one-step-ahead prediction errors, re­

spectively (the posterior parameter estimates being substituted 

for the parameter values). The former are usually a more strin­

gent test of model adequacy; the latter can only be generated 

via some form of filtering or recursive estimation algorithm. 

Analysis of the statistical properties of the residual errors 

can take several forms, from more to less aggregated. Tho­

mann [1982], for example, has proposed a number of "ver­

ification measures" covering regression coefficients (derived 

from regressing the observed response (y) on the estimated 

output y) and aggregate statistics such as a relative error and 

a root-mean-square error (see also Thomann and Winfield 

[1976] and Thomann et al. [1979]). These are aggregated in 

the sense that such statistics refer neither to the temporal 

sequence of the errors nor to the adequacy of the constituent 

model hypotheses (a pitfall that Thomann also notes when he 

cautions that " ... model error statistics may be excellent but 

the wrong mechanisms are included in the model" [Thomann, 

1982]). Reckhow and Chapra [1983a] have suggested a some­

what broader range of "confirmation measures" and have 

given particular attention to the role of temporal correlation 

among the residual errors in distorting the evaluation of some 

of these aggregate statistics. 

The analysis can, of course, be more detailed, especially 

when adequate time-series data are available and when ex­

plicit assumptions have been made about the statistical 

properties of the various sources of uncertainty assumed to 

influence the identification process (as discussed in section 4). 

For example, if we suppose that the one-step-ahead prediction 

errors (or innovations process errors) v(tkltk _ 1) can be gener-

ated from a filtering algorithm, in which the posterior model 

structure is embedded, then to be consistent with all the prior 

assumptions that implementation of the filter necessitates, the 

following conditions would be required of v(tk/lk _ 1) : (1) their 

mean values are zero (for each element of the vector sequence), 

(2) they are not significantly correlated with themselves in 

time, (3) they are not significantly correlated with any of the 

observed input sequences u, and (4) their actual sample (poste­

rior) variance-covariance properties are consistent with those 

expected (prior) estimates implied by the prior assumptions 

about the sources of uncertainty affecting the identification 

process (see, for example, Cosby and Hornberger [1984]). 

If the posterior model satisfies these conditions, it is at least 

self-consistent, i.e., not in disagreement with those assump­

tions required for its identification. If it does not satisfy these 

conditions, especially in respect of conditions 2 and 3 above, 

then such results can be used to good effect for the purposes of 

model structure identification (as in the work by Beck [1978]). 

6.2. Mode/ Discrimination 

The burden of the preceding discussion of residual error 

analysis essentially reduces to a problem of hypothesis testing, 

of accepting or rejecting the hypothesis that the actual statis­

tical properties of the residuals are consistent with certain 

expected statistical properties. Hence a single posterior model 

structure resulting from the process of model structure identi­

fication and parameter estimation may be accepted or rejected 

as adequate. The same basic idea can be extended and reori­

ented for consideration of the problem of model discrimi­

nation, i.e., to compute summary statistics of the residual 

errors from several candidate model structures, then to rank 

these statistics and hence discriminate the best among several 

competing prior hypotheses about the behavior of the system. 

This latter is understood here as model discrimination. It has 

not been widely reported in the literature on water quality 

modeling, although it was in fact the objective of one of the 

first practical studies in parameter estimation to discriminate 

among various structures of steady state DO-BOD interaction 

models of the Sacramento River, California [Shastry et al., 

1973]. A more recent, and much more comprehensive, analysis 

of model discrimination has been discussed by Cosby and 

Hornberger [1984], Cosby et al. [1984], and Cosby [1984]. 

They examine the problem of discriminating among eight (or 

five) possible expressions for the relationship between photo­

synthetic oxygen production and light intensity in the Gryde 

River, a macrophyte-dominated stream in Denmark. In a 

sense their results are not all that successful, because the com­

peting model structures (except one, which incorporates an 

intuitively improbable linear expression) are capable of repli­

cating more or less the same photosynthesis-light behavior by 

an appropriate adjustment of parameter estimates [Cosby et 

al. , 1984]. It is difficult to discriminate among minor vari­

ations on the same theme. In another sense, better expressed 

as model structure identification, their results are highly pro­

ductive. They observed that " ... the proper structure must 

allow for temporary changes in the parameter values . .. " 

[Cosby et al., 1984] and were subsequently able to identify 

both a long-term and a short-term adaptivity of macrophyte 

photosynthetic behavior [Cosby, 1984]. 

6.3. Commentary 

Interpretation of the past observed behavior of a system is 

never constant, and no analysis of field data is ever complete. 
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There is an evolutionary nature to both. In the end it may not 

be the satisfaction of certain statistical measures that deter­

mines termination of the process of identification. Decisions 

are not delayed indefinitely; it is more than likely that the 

analysis will have to be terminated prematurely. Ideally then it 

ought to be the case that all the residual inadequacies of 

model structure, or lack of identifiable parameters, are proper­

ly accounted for in the application of the model for predictive 

purposes. 

7. PREDICTION ERROR PROPAGATION 

The objectives for the analysis of uncertainty must now be 

considered in a broader context, that is, in light of what has 

been defined in the introduction as problem (P3): uncertainty 

associated with predictions of the future behavior of the 

system. 

The emphasis here will be different from that of sections 

3-6, where the focus was exclusively on the use of models for 

the development of scientific theories about the behavior of 

complex environmental systems. Our discussion must now be 

increasingly concerned with the role of uncertainty in applying 

a model for the purposes of management, although this will 

not divorce it from the scientific issues already raised. 

The essential questions for the analysis of prediction error 

propagation are those of (1) looking prospectively to the ap­

plication of the model to management: how significant the 

prediction and its associated error are to the decisions that 

have to be made and if the options (for decision) can be mean­

ingfully ranked against a background of inescapable uncer­

tainty, and (2) looking in retrospect at the development of the 

model by reference to the historical observations : what the 

consequences are for prediction of a model that suffers from a 

lack of identifiability and, conversely, what can be concluded 

from the propagation of prediction errors about the different 

strategies of model development? 

These, however, are general, perhaps philosophical, 

questions. The specific issues of concern are not as obvious as 

they might seem. 

To begin with, inspection of the literature would suggest a 

great variety of methods for the quantitative analysis of pre­

diction uncertainty. This is unnecessarily confusing. Insofar as 

can be established, there are just two basic methods, although 

one could argue about points of detail (see section 7.3). 

Second, the potential confusion may have been fueled by the 

broad and overlapping usage of terms such as sensitivity 

analysis, error analysis, and validation. Indeed, some of these 

difficulties, especially with the term validation, have already 

surfaced in the preceding section (section 6). Our working 

definitions of the relevant terms are therefore as follows. 

Validation: given the model structure and parameter esti­

mates, determine behavior under different observed input con­

ditions for comparison of the output response with different 

observed behavior. 

Conventional sensitivity analysis: given the model structure 

and parameter estimates, determine changes in the output 

model response that would result from changes in the esti­

mated values of the parameters. 

Prediction error propagation : given the model structure 

and parameter estimates, subject to uncertainty, determine 

future behavior under different (assumed) uncertain input con­

ditions. 

Reducing uncertainty : determine which sources of error 

(uncertainty) contribute most to the uncertainty of the predic­

ted response and design experiments in order to reduce this 

uncertainty. 

All of these issues are apparent in the early original contri­

butions of the 1970's [Goodall, 1972; O'Neill, 1973; Miller, 

1974; Burges and Lettenmaier, 1975; Miller et al., 1976; Argen­

tesi and Olivi, 1976]. 

There is much that could be said on each issue. However, 

on validation we shall be brief. It can be regarded in the 

narrow formal sense defined above, as a quantitative method 

of evaluating an identified model. There have been few such 

analyses [Thomann et al., 1974; Jorgensen et al., 1978; Collins, 

1980; Najarian et al., 1984], and they can largely be subsumed 

under what has been discussed here as the checks and bal­

ances of section 6. Validation might otherwise be regarded in 

a much broader philosophical vein, almost as a vague concept 

(albeit intuitively understandable) that in practice is most 

useful in specifying procedures and protocols for model build­

ing [Cale et al., 1983a; Caswell, 1976; Holling, 1978; Mankin 

et al., 1977; Lewandowski, 1982; Loehle, 1983]. In this case it is 

conceivable that the whole of this review is about validation. 

On conventional sensitivity analysis we shall be equally 

brief, narrowing its definition still further to analyses depen­

dent only on the solution of what will be denoted in section 

7.3 as the sensitivity equations (see, for example, the case stud­

ies of Halfon [1977], Rinaldi and Soncini-Sessa [1978], van 

Straten and de Boer [1979], and Najarian and Taft [1981]; see 

also the substantial literature of chemical engineering 

[McCrae, 1987]). In this restricted sense the difference be­

tween conventional sensitivity analysis and a first-order error 

analysis (see section 7.3) is that the former makes no reference 

to the sources of uncertainty that might affect the outcome of 

the predicted state of the system; it involves no concept of the 

uncertainty of a prediction. 

It is thus specifically the questions of, How confident is the 

prediction?, What are the principal sources of the uncertainty 

of the prediction?, and How can these uncertainties be re­

duced?, that are of greatest interest. 

7 .1. Prediction After Identification 

Irrespective of the strategy adopted in developing a model, 

it is essentially the knowledge and uncertainty of the internal 

description of the system's behavior that is changed by the 

process of identification. In other words, referring to Figure 1, 

the knowledge of the states (x) and parameters (or:), the struc­

ture of their interrelationships, estimates of their values, and 

estimates of their uncertainty (error variance-covariance 

properties) have been modified. The (prior) assumptions about 

the uncertainty in the external description of the system, 

namely, the uncertainty associated with the measured and un­

measured input disturbances (I;) and the output response ob­

servations (11), do not necessarily have to be changed in so 

significant a manner. The same assumptions about these latter 

might also be made for the purpose of prediction, although it 

is quite possible that the process of identification may es­

tablish their inadequacy and prompt improved (posterior) as­

sumptions. 

In this review, the a posteriori residual errors of mismatch 

between the observed and estimated output responses, i.e., 

(y - (y)) (sometimes referred to as the "model errors") are not 
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considered to be carried forward from identification to the 

analysis of prediction error propagation. They are regarded as 

a by-product of identification, as Figure 1 suggests. It is quite 
possible, of course, that prediction errors can be quantified in 

like terms, but this is achieved simply by transforming the 

future state (x), parameter (ex), and other errors (~, and where 

appropriate TJ) into an error in the output response variable 

(y). There are clearly cases in which it might be appropriate to 

quantify the error of predicted future behavior directly as a 

function of these residual errors of mismatch, one example 

being the application of Vollenweider's phosphorus-loading 

models reported by Reckhow and Chapra [1983b]. However, 

interpretation of the residual errors in this manner leads to 

certain conceptual difficulties, for they are an amalgam of 

both the various (prior) assumptions about the sources of un­

certainty and the consequences of the process of identification. 

For the purpose of analyzing prediction error propagation our 

preference here is to maintain a procedure of accounting 

strictly for the individual sources of uncertainty, for assessing 

the effects of identification on these uncertainties, and ulti­

mately assessing the effects of the individual uncertainties on 

predictions of the future. So it is the a posteriori parameter 

(and state) estimation errors that provide the crucial logical 

link that we wish to establish between identification and pre­

diction. 

In simple terms the results of the whole process of identifi­

cation and the consequences of a lack of identifiability are 

crystallized in the a posteriori parameter estimation error 

variance-covariance matrix, PP(tN). Qualitatively, well (or 

poorly) estimated parameters will have relatively low (or high) 

error variances ; parameters associated with redundant hy­

potheses should be highly uncertain; and parameters associ­

ated with multiple hypotheses, the collective effects of which 

cannot be disentangled, should yield significant off-diagonal 

covariances in the matrix PP(tN) [e.g., Di Toro and van Straten, 

1979 ; van Straten, 1983; Young et al., 1980]. It is intuitively 

obvious in this last case that many combinations of parameter 

values will give equally good matches between the model and 

past field observations ; there is ambiguity in the identified 

model. Questions must then be resolved as to which combi­

nations of parameter values should be used for prediction and 

whether, in the face of prediction uncertainty, there is any 

significant difference between alternative statements about 

future behavior. The argument has its parallel in the context 

of the HSY algorithm discussed in section 3 [Fedra et al., 

1981]. The ensemble of behavior-generating parameter values 

cx*(B) represents an ensemble of equally probable models for 

the description of past behavior. In turn therefore each such 

set of values for the parameter vector is an equally likely 

candidate for making a prediction of future behavior and, 

providing there is a sufficiently large sample for cx*(B), corre­

sponding distributions of the predictions can be generated and 

analyzed. 

7.2. Alternative Conceptual Frameworks 

The conceptual framework of control theory, upon which 

the preceding arguments have been constructed, does not nec­

essarily accommodate most readers' views of the analysis of 

prediction error propagation. It is not altogether in accord 

with the statistical view of uncertainty, identification, and pre­

diction, as illustrated, for example, by Reckhow and Chapra 

[1983a, b] and Reckhow [1983]. And it is different again from 

the perspective of systems ecology that underpins the work of 

O'Neill and Gardner and their colleagues. The two frame­

works (of control theory and systems ecology) are not incom­

patible, but some translation is necessary. 

O'Neil/'s [1973] original paper on the subject of error 

analysis noted that the error in the predictions from a model 

should decrease with a decreasing degree of model aggrega­

tion (in an ecological, as opposed to spatial or temporal, sense 

in this particular case). However, he noted also that precisely 

this increasing refinement of detail-more complex kinetic ex­

pressions, more state variables-would tend to increase the 

prediction errors resulting from the necessarily increasing 

number of model parameters with uncertain values. For in­

stance, errors of 10% (expressed as a coefficient of variation) 

in the parameter values were found to yield errors of predic­

tion of greater than 100%. The exploration of such problems 

naturally bears upon the theoretical foundations of the analy­

sis of uncertainty, and this form of enquiry has been a distinc­

tive feature of the work of O'Neill and Gardner and their 

associates. Many of their results are reviewed in the work by 

O'Neill and Gardner [1979], where they classify the sources of 

uncertainty into the following categories (for comparison with 

Figure 1). 

1. Uncertainty resulting from model construction, com­

posed of model aggregation (see also O'Neill and Rust [1979], 

Cale and Odell [ 1979], Gardner et al. [ 1982], Cale . et al. 

[1983b], and Ha/fan and Maguire [1983]), alternative models, 

and model structure, all of which would be covered by the 

definition of the errors of the a priori assumptions about the 

internal description of the system in Figure 1. 

2. Uncertainty resulting from parameter estimation errors 

(see also O 'Neill et al. [1980], Gardner et al. [1980a, b, 1981a], 

and Gardner and O'Neill [1983]). 

3. Uncertainty resulting from natural variability, com­

prising (1) environmental variability, which can be equated 

with uncertainty in the system input disturbances (see also 

Somlyody [1983]), (2) spatial heterogeneity (see also O 'Neill et 

al. [1979] and Gardner et al. [1981b]), which according to 

Figure 1 would be defined under aggregation or lumping 

errors, and (3) genetic variability (see also O'Neill [1979]), 

which in practice would be indistinguishable from the errors 

of parameter estimation (see also, for further discussion, Gard­

ner and O'Neill [1983]). 

The group's principal analytical results refer to the analysis 

of (spatial and ecological) aggregation error and to the errors 

deriving from genetic variability as it affects simple kinetic 

expressions for growth rate and other functional aspects of 

ecological systems. These, however, since they require a de­

tailed knowledge of ecological interactions, will be considered 

to be outside the scope of the review. Nevertheless, many of 

the group's conclusions are of central importance to the subse­

quent discussion, especially those relating to the effects of pa­

rameter uncertainty on prediction error propagation and to 

the comparative advantages and disadvantages of Monte 

Carlo simulation and first-order error analysis. One observa­

tion, in particular, will set the scene for what follows. 

Although interesting analytical results have been achieved with 
linear and simple nonlinear models, the real challenge lies with 
complex ecosystem models that have been developed over the 
past decade .... Investigation of error propagation in these large 
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nonlinear models will have to be inductive, with numerous indi­
vidual applications required before general patterns begin to 
emerge. 

[O 'Neill and Gardner, 1979]. 

7.3. Approaches and Methods 

In its most complete form, an analysis of the propagation of 

state and parameter prediction uncertainty (or error) would 

require computation of the evolution with time of the entire 

probability density function of <x.(tlt 1)) for t ~ t 1 , where t 1 is 

the time at the beginning of the prediction period. Here the 

notation <x.(tlt 1) ) indicates that in principle the predictions 

are conditional upon field observations available up to time 

t 1 , although from here on this conditional nature of the pre­

diction will be taken as implicit to simplify notation, i.e., 

(x.(t)) = <x.(tlt 1)) . To be complete in the computation of 

error propagation would require solution of a Fokker-Plank 

or Kolmogorov forward equation [e.g., Jazwinski, 1970]. Oc­

casional reference to this requirement has been made in stud­

ies of the application of stochastic differential equations in 

stream water quality modeling [Finney et al., 1982] and 

wastewater treatment plant modeling [Harris, 1977]. But just 

as with the Bayesian estimation problem of section 5, for 

which the same kinds of detailed knowledge are also required, 

the computational effort and complication of deriving such 

solutions for the general nonlinear (class II) model of (32) are 

formidable. Again therefore the specific assumption of Gaus­

sian probability density functions, or simply the pragmatic 

restriction of interest to the first and second moments of any 

more general probability density function (i.e., the mean and 

variance-covariance statistics, respectively) can lead to more 

tractable solutions. 

Of the two dominant approaches to the analysis of predic­

tion error propagation, the above restrictions refer primarily 

to what is known as a first-order (or, more rarely, second­

order) error/sensitivity analysis. They may, of course, be perti­

nent to the other principal approach, that of the ubiquitous 

Monte Carlo simulation, but in this second case they ate not 

crucial to its application. We may note in passing that Benja­

min and Cornell [1970] have discussed Monte Carlo simula­

tion as an approximate numerical technique for solving the 

problem of derived distributions, which is essentially the same 

problem as that introduced here, i.e., deriving (analytically) the 

entire probability density function of the predicted variables. 

A definition of the approach of Monte Carlo simulation 

follows from (32a), i.e., 

dx(t)/dt = f{ x, u, ex; t} + !;(t) (34) 

The procedure is simply to generate a sample set of realiza­

tions xi(t) over the prediction period t 
1 

::;; t ::;; tP, where each 

such realization, denoted by superscript i, is computed from 

(34) with the specific choices of values for the initial state xi(t 
1

), 

the parameters exi(t), the measured input disturbances ui(t), and 

the sequence of errors !;i(t) drawn at random from (estimates 

of) their respective parent probability density functions. The 

specific procedure of drawing samples from the population 

can be implemented in a number of ways. There are nonran­

dom procedures, classified under the title of stratified end pat­

tern search methods [McCrae, 1986], and the Latin Hyper­

cube sampling strategy, in particular, has already been illus­

trated by Jaffe and Ferrara [1984] and Jaffe and Parker 

[1984]. Though the vast literature on experimental design to 

which this alludes must clearly be acknowledged, in this paper 

no such distinctions will be made in referring generally to the 

approach of Monte Carlo simulation. The number of sample 

realizations (i) required to approximate the population statis­

tics to a sufficient degree of accuracy can either be determined 

by using the Kolmogorov-Smirnov and Renyi statistics 

[Spear, 1970; Spear and Hornberger, 1980] or, more arbi­

trarily, by experience (Gardner et al. [1980a] quote a figure of 

500 samples as being usually adequate). The evolution of the 

entire distribution for the state vector x(t) is thus computed, 

and in this sense, Monte Carlo simulation is, as Dettinger and 

Wilson [1981] have referred to it, a full distribution technique. 

First- and higher-order error (sensitivity) analyses of the 

predictions generated by the model of (34) depend essentially 

on the conceptual separation of the problem into the two 

subproblems of computing a nominal (mean) reference trajec­

tory for the future state of the system and of assessing the 

effects of the various small-amplitude sources of uncertainty 

on the uncertainty of that trajectory. If we restrict attention to 

a first-order error analysis, which reflects almost entirely the 

attention of the associated literature, the nominal reference 

prediction (x(t)) of the future state x(t) is then given by (from 

34)) 

d( x(t) )/dt = f{ ( x), (u), (ex); t} + ( !;(t)) (35) 

Here ( x(t) ) can be considered to be the estimated mean (first 

moment) of the distribution of x(t), and likewise ( u(t)), (ex(t)), 

and (!;(t)) can be regarded as the estimated or assumed means 

of their respective distributions. Equation (35) is directly anal­

ogous to the reference model of (7a) discussed in respect of the 

problem of model structure identification in section 4. 

There are two approaches to the linearization procedure 

inherent in a first-order error analysis, and these lead to differ­

ent formulations for computing the propagation of P'(t), the 

variability, or uncertainty, or error variance-covariance 

(second moment) of the predicted state (x(t)). In one of these 

the connection with conventional sensitivity analysis is clearly 

apparent ; the other owes its allegiance much more to the 

notions of an error propagation model and recursive esti­

mation as already discussed in section 4. In either case it is not 

necessary to compute the propagation of the prediction errors 

themselves but merely to quantify the propagation of their 

variance-covariance properties as a function of the variance­

covariance properties of the contributing sources of uncer­

tainty, namely, the following. 

1. E{i(t 
1
)e(t 1)} = P'(t 1), representing the uncertainty in 

the initial state of the system. 

2. E{ii(t)iiT(t)} = S(t), representing uncertainty in the mea­

sured inputs, a source of uncertainty previously subsumed 

under the definition of source 4, below. 

3. E{ti(tpT(t)} = pP(t), representing parameter uncertainty, 

and perhaps most conveniently assumed to be equal to 

pP(tNltN) at the end of some prior identification process. 

4. Q'(t) as the variance-covariance matrix of the (fictional) 

continuous-time white noise process !;(t) representing uncer­

tainty associated with unmeasured input disturbances and all 

other undifferentiated sources of uncertainty. 

Here x, ii, and ti are the errors (or small perturbations) 

previously defined in section 4 by (8). They would normally be 

assumed to have zero mean values, as would (!;(t)) = 0, and 

the parameters would normally be further assumed to be time 

invariant. 

The first approach to the computation of P'(t), which is 

the more commonly encountered, derives much more directly 
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from sensitivity analysis. It expresses the instantaneous value 

of P'(t) at future time t as a function of the variance­

covariance matrices P5(t f), S(t), PP(t), and Q5(t) and of the sen­

sitivity coefficient matrices with respect to x(t) evaluated at 

time t and as a function of (x(t)) . Here the sensitivity coef­

ficients derive from a linearization about the nominal refer­

ence prediction ( x(t) ), and in order to obtain the values of 

these sensitivity coefficients at time t it is necessary to inte­

grate an additional set of ordinary differential equations for 

the evolution of the sensitivity coefficients with time. Accord­

ingly, P5(t) is given by (see also Burns [1975] and Argentesi 

and Olivi [1976]) 

ps(t) = B0(t)P5(t f)[B 0(t)]r + BP(t)PP(t)[BP(t}F 

+ B"(t)S(t)[B"(t}F + B~(t)Q 5 (t)[B~(tw (36a) 

where the sensitivity coefficient matrices B0(t), BP(t), B"(t), and 

B~(t) , having elements [ox;(t)/oxit f)], [ox;(t)/occj], [ox,{t)/vu j], 

and [ox;(t) / o~J, respectively, are obtained from the following 

differential equations: 

dB0 (t)/dt = F 11 (t)B
0(t) B0(tf) =I (36b) 

dBP(t)/dt = F 11 (t)BP(t) + F 12(t) BP(tf) = 0 (36c) 

dB"(t)/dt = F 11 (t)B"(t) + G(t) B"(tf) = 0 (36d) 

dB~(t) / dt = F 11 (t)B~(t) +I B~(tf) = 0 (36e) 

Here the matrices F 11 , F 12, and G contain elements [i, j] 

defined by the derivatives [of;{ · }/oxJ , [of;{ · }/occJ, and [of; 

{ · }/ouj], respectively, where these derivatives are evaluated 

using the nominal reference values (x(t)), (ex(t)), and (u(t)). 

The sensitivity equations (36b)--(36e) are, strictly speaking, 

exact only for the case where the variations of ex, u, and !; with 

time are zero [Eykhoff, 1974], a point to which we shall return 

below. They are the equations of conventional sensitivity 

analysis, and it is from the solution of (36c) in particular that 

the results of Figure 2 have been generated for an assessment 

of model identifiability (see section 2). A related matrix of 

sensitivity coefficients has also appeared earlier in the determi­

nation of the posterior parameter estimation error variances 

given by (31) of section 5. 

The second approach to the computation of P5(t) follows 

directly from the discussion of the linear model of error propa­

gation discussed in section 4, and it may be helpful to note 

that Malone et al. (1984] have referred to this approach as a 

"generation of moment equations" method. In fact, given our 

preceding discussion of recursive estimation, the algorithm (in­

cluding (35) above) is equivalent to a partitioned extended 

Kalman filter from which the correction step has been re­

moved (or alternatively, the filter can be imagined to be pro­

cessing data expected to arrive at an infinite time horizon). In 

this case the linearization is made about the derivative of the 

augmented state vector, i.e., the function f
0

{ • }, which equals 

dx
0
(t)/dt. An expression for the propagation of P'(t) can then 

be derived directly from the (integrated) discrete-time 

difference-equation form of the error propagation model, i.e., 

(10a). This is achieved simply by setting up the relevant ex­

pression for x
0
(tj + 1)x

0 
r(tj+ 1) and then applying the operation 

of mathematical expectation [Beck et al., 1979; Schweppe, 

1973]. In partitioned form, that is, distinguishing between x 
and ~ within the augmented state vector errors x

0
, the follow­

ing recursive algorithm results: 

P'(tj+ 1) = <l>11(t j+ 1' t)P'(t)<l>11 T(tj+" t) 

+ <l>11(tj+" t)P'(t)<l>12T(tj+1 ' tj) 

+ <l>12(tj+" t)[P"(t)F<l>11 T(tj+ ,, t) 

+ <l>12(tj + l> t)Pp(t)<l>12 T(tj+ ,, t) 

+ r(tj+" t)S(tj+" t)rr(tj+ 1, t) + Q5(t) (37a) 

where P"(t) is the matrix of state-parameter error covariances 

and is propagated according to 

P'(tj + 1) = <l> 11 (tj + 1, t)P'(t) + <l> 12(tj + " t)PP(t) (37b) 

and 

(37c) 

Here the integration interval is from tj to tj+ 1 , and the 

matrices <1> 11 , <1> 12 , and r, where <1> 11 and <1> 12 are submatrices 

of <I>, refer to the discrete-time error model of (lOa). These 

matrices in turn depend upon the matrices F 11 , F 12 , and G as 

defined above for the companion algorithm of (36), which 

themselves refer to the continuous-time error propagatioh 

model of (9a). The matrix QP in (37c) has also been defined 

earlier in section 4 as the variance of the random pertur­

bations affecting the temporal evolution (if any) of the model 

parameters (a matter of seemingly little importance, although 

possibly of vital significance to the discussion in section 7.4). 

An analogous derivation of the algori thm for the case of a 

partial-differential equation (class I) model has been presented 

by McLaughlin [1983]. 

The complete algorithm for the mean and error variance­

covariance matrix of the prediction using a first-order error 

analysis is therefore given by (35) and either (36) or (37). The 

astute reader will have noticed that there are discrepancies 

between the two alternatives, with (37) appearing to be the less 

restrictive in its assumptions, and the more complete by its 

inclusion of pc and QP. 

This is indeed probably more apparent than real. Were the 

relationships of (36) to be derived from an augmented system 

of dynamical equations for {x, ex, u, and!;}, subsequently parti­

tioned, and then suitable assumptions made about certain un­

likely error covariances, e.g., between x(t) and ii(t), it would be 

reasonable to conjecture that the two alternatives would be 

identical (subject to identical intervals of integration). Presen­

tation of the algorithms for P5(t) in the given forms is a thor­

oughly pragmatic reflection of their most usual forms of appli­

cation. 

We shall likewise pass over the rarely used second-order 

error analysis without further comment, except for the follow­

ing point [see, for example, Dettinger and Wilson, 1981]. In 

the second-order approximation the mean value of the state 

prediction, for the scalar case of errors in a single parameter cc 

only, is given by 

d(x< 2>(t))/dt = f { (x< 2», (u), (cc); t} + <Wl> 
+ (l/2)j<2l(t)pp(t) (38) 

where J< 2>(t) is the second derivative off { · } with respect to cc, 

pP(t) is the variance of the estimation errors of (cc), and 

( x< 2 >(t)) is the mean predicted value of x(t) in the second-order 

approximation. By comparison with (35) it is clear that the 

first-order approximation of the mean is exact whenj< 2 >(r) = 0, 

i.e.,f { · } is linear in the parameter cc. It is also apparent that 

when p 2 >(t) -=fa O, significant errors in the parameters will cause 

the first-order mean to L biased, and that the degree of non­

linearity of cc inf { · } is reflected in the magnitude of j<2 >(t). 

Inherent in these observations on (38) are thus some of the 

limitations that have been the principal subject of discussion 
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in the comparative studies of first-order analysis and Monte 

Carlo simulation. 

So to summarize, a first-order error analysis involves com­

putation of two statistics of the distribution of the errors (x) in 

the predicted state (about a nominal, deterministic reference 

prediction, ( x ) ). Monte Carlo simulation permits analysis (by 

whatever appropriate statistics) of a sample approximation of 

the distribution of possible future realizations of the state x. 

7.4. Case Studies 

7.4.L Prediction error magnitudes. The extension of con­

ventional sensitivity analysis to the first-order analysis of pre­

diction error propagation appears to have been first proposed 

for water quality/ecological models by Burges and Lettenmaier 

[1975] and Argentesi and Olivi [1976]. It has since been ap­

plied by many authors, both in the form of (36) [Lettenmaier 

and Richey, 1979, Reckhow, 1979a ; Di Toro and van Straten, 

1979; van Straten, 1983; Chadderton et al., 1982; Walker, 

1982] and in the form of (37) [Scavia, 1980 ; Scavia et al., 

1981a, b; Beck, 198la, 1983]. Nearly all these studies have 

focused on the problem of lake eutrophication, with the 

models analyzed ranging from the single response-variable 

model of Vollenweider [Reckhow, l979a, b; Walker, 1982] to 

a 16-state variable model for the carbon-, nitrogen-, and 

phosphorus-cycle dynamics in Lake Ontario [Di Toro and van 

Straten, 1979 ; van Straten, 1983]. 

It is unlikely that these were studies motivated by a desire 

to demonstrate just how uncertain a prediction can be, but it 

is instructive to review the figures quoted for the levels of this 

uncertainty. Argentesi and Olivi's analysis of a three-state 

variable phytoplankton model for Lake Endine, Italy, showed 

that a 10% error on the model parameters, initial states, and 

(input) solar radiation pattern could lead to prediction errors 

well above 100-200% during certain periods of the annual 

cycle. Van Straten's [1983] results for the model of Lake On­

tario likewise underline the considerable magnitude of the 

errors in predictions that might be obtained : of up to 2050%, 

for example, although the parameter errors relevant to this 

analysis are correspondingly of a high order, with individual 

values exceeding 1000%. The results of the analysis of Scavia 

et al. [198la] of a version of the same Lake Ontario model 

adapted for the inner portion of Saginaw Bay, Lake Huron, 

are similar to those of van Straten. For instance, for parame­

ter, initial state, and input disturbance error levels ranging 

between 24% and 202%, maximum prediction errors of be­

tween 148% and 772% were obtained. Very much the same 

sort of results have also been obtained by M. B. Beck and E. 

Halfon (manuscript in preparation, 1986) in their analysis of 

(yet another) model for Lake Ontario. In the analyses of both 

van Straten and Scavia et al. the highest prediction error levels 

were associated with state variables representing zooplankton 

concentrations. 

The general pattern of the results emerging from the use of 

Monte Carlo simulation, at least simply in terms of the mag­

nitudes of the prediction errors propagated, is not substan­

tially different from that of the first-order error analyses [e.g., 

Burges and Lettenmaier, 1975; Hornberger, 1980; O'Neill et al., 

1980; Gardner et al., 1980a, 1981a ; Gardner and O'Neill, 1983; 

Scavia et al., l98lb; Fedra et al. , 1981 ; Walker, 1982; Somly­

ody, 1983]. 

Thus if the point has to be made, there is ample evidence to 

suggest that the currently available models of water quality, 

and in particular the larger models, give predictions that are 

highly uncertain (with coefficients of vanatJon upward of 

700%, if such a statistic then has any real meaning). To be 

able to predict only that all things are more or less equally 

probable is not a useful basis for decision making. But there 

are certain factors, relating specifically to the possible conse­

quences of identifiability, that will tend to counterbalance the 

generation of such enormous prediction error levels : these are 

the effects of covariance (correlation) among the estimation 

errors of the model parameter values. For instance, in van 

Straten's case study of Lake Ontario, it was possible to reduce 

the prediction errors by over an order of magnitude when 

correlations among the parameter estimation errors (with cor­

relation coefficients of up to 0.8--0.9) were taken into account. 

Other examples are less dramatic [O 'Neill et al., 1982a; Beck, 

1983] but strongly supportive of van Straten's results. In fact 

it is worth noting in passing that the approach of O'Neill et al. 

is in this case closely similar to some of the ideas introduced 

by the HSY approach in section 3. 

7.4.2. Comparative studies. If the errors in the model pa­

rameters, initial states, and input disturbances are large (as 

indeed they are in some of the above studies), then this is a 

blatant violation of the key assumption in a first-order error 

analysis that all these errors should be small. There has there­

fore been widespread concern with the question of how the 

performances of Monte Carlo simulation and a first-order 

error analysis compare [Burges and Lettenmaier, 1975 ; Gar­

dner et al., 1981a; Gardner and O'Neill, 1983; Scavia et al., 

1981b; Walker, 1982; Malone et al., 1984]. Thus Burges and 

Lettenmaier conclude from an analysis of a stream DO-BOD 

model, with the three model parameters having coefficients of 

variation of 25%, 29%, and 32%, that the predicted means 

from the two methods are "not appreciably different" and the 

variances of the prediction errors from the first-order analysis 

are "quite satisfactory." Walker [1982] concludes likewise that 

the two methods "compare reasonably," and Malone et al. 

[1984] observe that "for all practical purposes the .. . tech­

niques produced identical results" for their case study of a 

simple phosphorus model for Lake Washington. 

The conclusions drawn from the comparative analyses of 

Scavia et al. [l981a], Gardner et al. [198la], and Gardner and 

O'Neill [1983] are, however, otherwise. They suggest both sig­

nificant and subtle differences of outcome from the two ap­

proaches. Although Scavia et al. [198ib] note that the two 

estimates of prediction error variance propagation are in gen­

eral "qualitatively similar," there are (from time to time) quite 

specific differences due, in their opinion, to the following three 

causes. 

L The mean values, ( x(t)), derived from the sample set of 

realizations of (34), i.e., the mean of the Monte Carlo simula­

tions, are not identical with the ("deterministic") mean values 

derived from (35) (see also the discussion of (38)). 

2. The first-order approximation deriving from the lin­

earization procedure in a first-order analysis is a poor ap­

proximation in the presence of strong nonlinearities and large 

errors (see again the discussion of (38)). 

3. The error variance estimate from the Monte Carlo sim­

ulations is difficult to interpret, or ambiguous, if the sample 

frequency distributions exhibit significant skewness or are bi­

modal, i.e., the first and second moments poorly characterize 

the full distribution. 

The effects of these three items in the study of Scavia et al. 

[198lb] are clearly not negligible. For example, Figure 13 

shows the significant differences between the estimated predic-
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Fig. 13. Comparative study of the use of first-order error analysis 
(dashed lines) and Monte Carlo simulation (solid lines) with a model 
for Saginaw Bay, Lake Huron [after Scavia et al. , 198lb]. The mag­
nitudes of the errors of prediction are expressed as coefficients of 
variation (in percent). 

tion error variances expressed as coefficients of variation, al­

though elsewhere, Scavia has given results supporting the 

strong similarity of first-order and second-order approxi­

mations, which would tend to lessen the significance of point 2 

above [Scavia, 1980]. In short, Scavia et al. are unable of 

resolve entirely the differences between the results from Monte 

Carlo simulation and first-order error analysis and conclude 

that the interpretation of the error variances from the two 

approaches should be considered fundamentally different. 

They argue, in support, that the first-order analysis refers to 

predictions about the future behavior of a typical repre­

sentative (species) of a (biological) population, whereas Monte 

Carlo simulation refers to the population as an ensemble. 

Gardner and 0 'N ei//'s [ 1983] conclusions are yet again 

somewhat different. They state that while " .. . the assumptions 

of sensitivity [first-order error] analysis do not appear to 

cause serious problems . . . " there is a danger that such analysis 

may prompt significantly misleading inferences about solu­

tions to the problem of reducing prediction uncertainty. 

7.4.3. Kremers results. The overall impression now 

emerging is that prediction error variances can be very large 

and that the approach of Monte Carlo simulation, with its 

lack of restrictive assumptions, would in general be preferred. 

Kremer's [1983] results run against the trend of both these 

provisional observations and in an especially provocative 

manner. 

The basis of Kremer's study is that the model parameters 

(a) can be assumed to vary with time in a random fashion. 

This is entirely consistent with the model assumed for the 

parametric variations in the discussion of recursive estimation 

(specifically (6a) of section 4). But it is clearly different from 

the normal assumption of Monte Carlo simulation. Kremer 

argues that his assumption has a certain biological validity (in 

relation to the natural genetic variability in a population of 

organisms). Hence a random choice of parameter values at 

each point in time, i.e., ( a(t)t 1)) "# ( a(t 
1

1t 1)) in general, leads 

to state variable predictions with a relatively small variance 

and with future possible trajectories clustered relatively closely 

around the nominal reference trajectory (i.e., of (35) in a first­

order error analysis). For his simple model of competitive 

algal growth, this contrasts with the results from a sample of 

random choices of the initial values of the parameters only, 

i.e., ( a(t)t 1)) = ( a(t 
1

1t 1)) in any single-prediction trajectory, 

which are distinctly bimodal and thus suggestive of a high 

prediction error variance. The underlying mechanism of the 

difference is that (chance) extreme values of the parameters do 

not persist for all time when ( a ) is allowed to vary randomly 

with time. 

This undoubtedly has important implications, not only for 

the way in which the results from the majority of studies using 

Monte Carlo simulation should be interpreted, but also for 

the use of first-order error analysis. In the algorithm of (37), 

the case of temporally varying parameters can be accommoda­

ted via the variance matrix QP, representing the expected value 

of the variance of the integral of the stochastic disturbance 

rate process ~(1) over the interval tit= tj + 1 - tj. Were the 

parameters to vary rapidly with time, never being persistently 

biased for any significant period of time, then one might 

expect QP ~ 0 (perhaps counterintuitively, but the net effect of 

their fluctuations would be zero). Should they, on the other 

hand, vary slowly (with respect to the interval tit), they might 

assume persistently extreme values over some period, and con­

versely, QP should be relatively large. Such an argument is 

purely speculative, but it is the only interpretation in agree­

ment with Kremer's findings that the "faster" the variation in 

the parameter values, the smaller the variance of the predic­

tion errors. And this, too, is a conclusion of possibly still 

greater significance, as we shall observe later. 

7.4.4. Ranking the sources of uncertainty. Let us turn first, 

however, to the question of establishing the relative impor­

tance of the various sources of uncertainty to the propagation 

of prediction errors [Miller et al., 1976; Argentesi and Olivi, 

1976; Kohberger et al., 1978; O'Neill et al. , 1980; Gardner et 

al. , 1980a, 1981a; Scavia et al., 1981a; Ha/fan , 1984; Gentil and 

Perrier, 1985]. In the context of Figure 1, the objective is to 

rank the contributions to the error of a prediction from four 

sources : the initial state of the system, the parameter estimates 

of the model, the measurements of the input (and output) 

variables, and the unknown input disturbances of the system, 

or the model structure, or whatever other factors are con­

sidered to be defined conceptually in the term I; in the basic 

model of (34). 

Having satisfied this more strategic objective, it will prob­

ably then be desirable, as a secondary objective, to rank the 

contributions of the individual parameters or variables to each 

of the four primary sources of uncertainty. 

From a first-order error analysis and for the special case 

where all the parameters, say, have identical error levels (coef­

ficients of variation) and there is no correlation among these 
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parameter errors, the relative significance of each individual 

error can be ranked straightforwardly as a function of the 

relative sensitivity coefficient defined as 

b;/(t) = [ox;(t)/oait)] / [ ( x ,{t) ) / ( cxif))] (39) 

at time t. In order to obtain an aggregate ranking for the 

entire prediction period t
1

-> tP it would be necessary to inte­

grate b;/(t) accordingly and to rank the resulting integrals. 

For the rather more general case where the parameter errors 

do not have identical levels, yet are not correlated, the per­

centage contributions (c;;) of the error on parameter j(pi/) to 

the error variance of state i(p/ ) can be computed from [Ar­

gentesi and Olivi, 1976] 

(40) 

Both (39) and (40) are based on (36) as the approach to the 

variance-covariance computation of a first-order error analy­

sis. 

The ranking of the relative significance of the individual 

sources of error can also be posed as a question of the degree 

of correlation between the predicted state errors and the pa­

rameter errors. It is in fact this interpretation, and the direct 

use of the state-parameter covariance matrix pc from (37b), 

when normalized in the form of correlation coefficients, that 

Scavia et al. [1981a] adopt for their analysis of a model for 

Saginaw Bay, Lake Huron. The same conceptual approach to 

the ranking problem is taken by those studies using Monte 

Carlo simulation for the analysis of prediction error propaga­

tion. For instance, O'N eill et al. [1980] and Gardner et al. 

[1980a] generate correlation coefficients between variations in 

the sample set of predictions x;(t) and variations in the 

random realizations of the sample set of parameter values i:i(t) 

(see also Gardner et al. [1981a] and Jaffe and Ferrara [1984]). 

The approach of Kohberger et al. [1978] is Jess straightfor­

ward. They define an aggregate weighted measure of the vari­

ations about a nominal reference state trajectory that would 

result from variations in the model parameter values; a 

sample set of realizations of the variance measure can then be 

generated, and finally this sample (as the dependent variable 

set) can be regressed on a second-order function of the sample 

parameter values. Further analysis of the properties of the 

resulting regression relationship yields the required ranking of 

the contributions of the individual parameters to the variance 

measure. 

It cannot, of course, be expected that any general pattern of 

conclusions on the significance of the different sources of un­

certainty should have emerged. Case study results tend in­

evitably to be problem and model specific. For example, pa­

rameter uncertainty was found to be much more significant 

than initial state or input disturbance uncertainty in the study 

of Scavia et al. [1981a]. Yet in contrast, Somlyody's [1983] 

analysis of a one-dimensional model for the seiche behavior of 

Lake Balaton indicated that uncertainty in the wind direction 

(a measured input disturbance) would_ be considerably more 

important than uncertainty in the model parameters such as 

the bottom friction coefficient. Notable too is the observation 

from the analysis of Gardner et al. [1980a] of the predator­

prey models of O'Neill et al. [1980] that the effects of parame­

ter uncertainty dominate over the effects of "modeling error," 

assumed in this case to be due to an erroneous model struc­

ture. This observation does, however, require clarification, for 

the results refer to errors arising from alternative model struc­

tures relative to the predictions from a reference, and assumed 

"true," model structure. Within the scheme of Figure 1 the (a 

posteriori) residual errors and identified model structure 

would be inextricably reflected in the a posteriori parameter 

estimation error variance matrix (PP), and also possibly P' . It 

is therefore perhaps a weakness of this scheme that such dis­

tinctions cannot be made, although the need for, and capacity 

to calculate, them is not immediately obvious. 

Of much more immediate concern is the result that the two 

different methods of ranking the sources of uncertainty, ac­

cording to relative sensitivity coefficients (first-order error 

analysis) or according to correlation coefficients (from Monte 

Carlo simulation), give significantly different conclusions [Gar­

dner et al., 1980a; Ha/fan, 1984]. And the important impli­

cation of a wrong ranking of the significance of the various 

sources of uncertainty is that the wrong experiment will be 

designed to reduce the uncertainty in any subsequent predic­

tions. 

7.4.5. Experimental design and the reduction of uncer­

tainty. From the (original) experimental data, identification 

has yielded knowledge of the (internal) description of the 

system's past behavior and knowledge of the uncertainty that 

circumscribes the interpretation of this behavior. We have 

examined the propagation of that uncertainty forward into the 

prediction of future behavior, distinguished the most impor­

tant sources of uncertainty giving rise to poor predictions, and 

hence can now ask the question of what new experiments can 

be designed in order to reduce the most critical uncertainties. 

Thus the review has turned a full circle. This is, once again, 

and as already discussed in section 2, problem (P4). But given 

now the greater body of prior knowledge of the system's be­

havior and uncertainties, the problem of experimental design 

can be considered in less primitive terms than before. In par­

ticular, if the relationship between the state variables and the 

measured output response variables is assumed to be of the 

form of (32b) (for the class II model structure), i.e., 

(41) 

the problem of experimental design can be formulated within 

the conceptual framework of control theory (more precisely, as 

a filtering problem ; Moore [1973], Moore et al. [1976], Letten­

maier and Burges [1977], and Canale et al. [1980]). A more 

sophisticated experimental design problem can therefore be 

postulated, i.e., one that is conditioned upon a knowledge of 

uncertainty : 

Given a model, knowledge of the internal description of the 
system's behavior {x, or}, and its associated uncertainty, how will 
information about the external description of the system {u, y} 
and its associated uncertainty, alter the knowledge of x and or ? 

In simple terms, several authors have remarked that a 

higher frequency of sampling (of u and y) should be allocated 

to (predicted) periods of rapid change in the state variables (or 

equivalently of maximum biological activity) because these are 

periods of maximum prediction error variances [Gardner et 

al. , 1980a ; Scavia et al., 1981a; Lettenmaier and Richey, 1979; 

Jorgensen et al., 1981]. This is clearly similar to the comments 

on sensitivity coefficients, identifiability, and experimental 

design in section 2, in particular, the discussion of Figure 2, 
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but it differs in respect of the reference to prediction uncer­

tainty. 

In more advanced terms, the above problem of experi­

mental design can be cast as a problem of constrained opti­

mization, of minimizing the cost of the measurement strategy 

subject to constraints on the leading diagonal of the state 

estimation error covariance matrix, i.e., P'(t) in (37a) [Canale 

et al., 1980]. For example, Figure 14 shows the propagation of 

error variance about nominal (predicted) state (x) and pa­

rameter (a) trajectories for phosphate concentration and a 

phytoplankton growth rate constant in one of the spatial seg­

ments of a model for Saginaw Bay, Lake Huron [Canale et al., 

1980]. In the event that no further observations are made of 

the system, the uncertainty in the state prediction propagates 

with increasing magnitude, while the parameter uncertainty 

remains unchanged. In other words, this is simply the solution 

of (37), i.e., use of the prediction step alone of the filtering 

algorithm presented as (12) in section 4. However, were a new, 

"near-optimal" monitoring program to be implemented, both 

error variances would be progressively reduced. In this case, 

the assumption is that future observations of the output re­

sponse (y) of the system would be available and that these 

observations would be uncertain, with an error variance of, 

say, R, associated with 11 in (41). Without necessarily speci­

fying what the values of y would be, this enables use of both 

the prediction and correction steps of the filter of (12), the 

reduction in the error variance propagation being brought 

about specifically by (12d). 

7.5. Commentary 

Unlike the topic of identification, which suffers from a 

weakness in the availability of appropriate methods, the 

analysis of prediction error propagation needs perhaps not so 

much new methods and approaches as new questions about 

what the analyst wishes to achieve in making predictions. 
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Fig. 14. Analysis of error propagation in a case study of monitor­
ing program design for Saginaw Bay, Lake Huron [after Canale et al., 

1980]. (a) Phosphate concentration. (b) A phytoplankton growth rate 
constant. Dots represent the predicted state x or parameter oc, and the 
first bar symbol of each such pair represents the one standard devi­
ation bounds of the errors for a "zero" measurement strategy, while 
the second bar refers to a "full" measurement strategy. 

There are certainly good reasons for continuing to explore the 

limitations of first-order error analysis vis a vis the use of 

Monte Carlo simulation, for erroneous conclusions can be 

drawn, in particular, about how to set about reducing predic­

tion uncertainty. But for most practical purposes these meth­

ods are well tested and do, by and large, deliver the answers 

sought to the questions asked. Such satisfactory preformance 

cannot, for comparison, be attributed to the problems dis­

cussed throughout sections 3-6. If anything, the straightfor­

ward analysis of prediction error propagation has received less 

attention in the past 2 or 3 years, suggesting possibly a shift of 

interest toward issues of management and decision making 

under uncertainty (as discussed in section 8). 

Perhaps surprisingly the choice of types of probability den­

sity function characterizing the sources of uncertainty has not 

been extensively discussed . One exception is the analysis of a 

stream ecosystem model by O'Neill et al. [1982a], who have 

concluded that their model yielded expected values and coef­

ficients of variation that were insensitive to the choice among 

uniform, triangular, and Gaussian distributions (by far the 

most commonly used statistical assumptions). This implies 

neither a lack of statistical rigor nor a lack of curiosity about 

extreme-value events. Rather it reflects a lack of sufficient field 

data, especially for variables of a biological or biochemical 

character, by which to justify a more refined choice of density 

function. 

Most of the evidence suggests that the current models of 

water quality, in particular, the larger models, are easily capa­

ble of generating predictions to which little confidence would 

be attached. Yet there have been few case studies of the truly 

larger scale models, and the challenge that they represent (as 

O'Neill and Gardner [1979] have described it) has not been 

adequately met. In this respect, much remains to be done. 

On balance, it has to be accepted that a first-order error 

analysis will always be suspect in its accuracy because of the 

inherent approximations of linearization. It is similarly not as 

complete in its analysis as Monte Carlo simulation, but it may 

well be less cumbersome in its mechanization of the effects of 

correlated errors and in being able to preserve the relation­

ships between prediction error and the various sources of un­

certainty (which are particularly evident from the structures of 

(36) and (37)). It must also be an advantage of first-order error 

analysis (as yet not fully exploited) that it can be interpreted in 

the context of filtering theory and hence viewed more nat­

urally in the Bayesian terms of this review. This conceptual 

setting of first-order error analysis may indeed prove to be 

more fruitful in stimulating new questions for the analysis of 

prediction error propagation. It may then be that Monte 

Carlo simulation is the more appropriate method for address­

ing the numerical solution of these new problems. 

However, before turning to a possible agenda of problems 

for the future, let us close this discussion of prediction error 

propagation- of predictability itself- with an apparent para­

dox. In a stochastic model, whose parameters vary randomly 

with time, the faster the rate of random parametric variation, 

the less is the variability of the predicted state of the system 

[Kremer, 1983] (see also Tiwari [1979] and related discussion 

by Finney et al. [1982]). Consider now a deterministic nonlin­

ear model, with no stochastic elements, that predicts essen­

tially chaotic behavior [May, 1976]. Could it be, if we believe 

our common experience that reality is orderly and somehow 

predictable, that out of randomness comes forth order (see 

also O'Neill et al. [1982b])? 
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8. F URTHER STUDIES 

It is perhaps a foolhardy reviewer of the subject of uncer­

tainty who would speculate about the directions of future re­

search. But let us begin by reiterating the main trends of the 

discussion from both section 2 and sections 3- 7. 

The objective throughout the whole of this review has been 

to steer a middle course between opposing approaches to 

modeling that are either overly complicated or overly sim­

plified, albeit with a distinct tendency to err on the side of 

simplicity. It would be naive to imagine that there is a best 

approach to the development of models for identifying and 

predicting the behavior of environmental systems, any more 

than there is a best model for a given problem. While it is 

always possible to construct a model that includes every detail 

of conceivable relevance, what we have loosely labeled a class 

I model, such a model is not an effective prescription for the 

exhaustive interpretation of field data. And while it is equally 

possible to interpret time-series field data via a simple input/ 

output model (a class III model), this is insufficient if it is not 

coupled with a procedure for the assessment and revision of 

prior theories about the phenomena governing process behav­

ior. So there has been some movement toward a position in 

which these two polarized approaches can be seen as comple­

mentary : the one representing more the assembling of an 

archive of hypotheses (class I), the other representing a vehicle 

for the interpretation of field data (class III). 

Any discussion of the (scientific) merits of a preferred ap­

proach to modeling by reference to observed behavior tends 

ultimately to be deflected into a sterile discussion of goodness 

of fit to the data. It is thus difficult to expose the limitations of 

the various approaches unless, that is, the debate is cast in 

terms of the question of prediction. It is prediction too that is 

of direct relevance to management and decision making. In 

fact, there is a dilemma [Beck, 1981b, 1983]. Intuition would 

have led us to suppose that the comprehensive model would 

be superior in its "predictive power," such superiority resting 

upon the assertion that the simpler models (identified from an 

inevitably restricted sample of past observations) would be 

unable to predict the future under conditions substantially 

different from those of the past. But is this superiority justi­

fied ? For we have now seen that this assertion is crucially 

suspect in overlooking the problem of identifiability, i.e., the 

ambiguities of representing past behavior, and the propaga­

tion of (possibly gross) uncertainties in predicting future be­

havior. The dilemma is that the simpler model, reflecting only 

the observed behavior of the past, and being presumably well 

identified, will predict an "incorrect" future and, worse still, 

suggest possibly substantial confidence in that prediction. The 

more complex model, although it may be capable of predict­

ing a "correct" future, will be reliant upon apparently re­

dundant or ambiguous hypotheses for that prediction, which 

should not therefore be accorded much confidence. Moreover, 

such models may be capable of generating equally probable, 

but quite contradictory predictions. 

So again, the middle course may have something to contrib­

ute, and it does seem to echo Botkin's [1977] conjecture that, 

"if small is beautiful, and big is ambiguous, then middle-sized 

is meaningful." It too, however, is by no means without limi­

tations. Suppose we take the form of our intermediate class II 

model structure. It reflects a position on the identification of 

models that favors simplicity in the prior hypotheses, makes 

some relatively direct reference to the physical, chemical, and 

biological phenomena believed to govern observed behavior, 

and attempts to interpret the field data in like terms. Such a 

strategy will always pose the substantial difficulty (as dis­

cussed in section 4) of having to choose or to generate ad­

ditional hypotheses to be included in a demonstrably inad­

equate model structure. This is arguably neither better nor 

worse than the problem of starting with a comprehensive 

model and then handling the difficulty of identifying those 

redundant hypotheses that are to be excluded from the model 

structure (assuming it were first possible to demonstrate the 

inadequacy of the structure, which is debatable). 

Not surprisingly, then, there are many unresolved issues for 

the further development of the subjects of uncertainty, identifi­

cation, and prediction in water quality modeling. The key 

questions to be addressed in this section are as follows. 

l. Are the basic problems of model identification ones pri­

marily of inadequate method or of inadequate forms of data? 

2. What opportunities are there for the development of 

improved, novel methods of model structure identification, in 

particular, with regard to exposing the failure of inadequate, 

constituent model hypotheses? 

3. How can an archive of prior hypotheses be appropri­

ately engaged in inferring the form of an improved model 

structure from diagnosis of the failure of an inadequate struc­

ture? Moreover, in what form should the knowledge of the 

archive be most usefully represented? 

4. What does a lack of identifiability imply for the distor­

tion of a model structure, and what are the consequences of a 

distorted model structure in terms of generating predictions? 

5. Given uncertainty, how can one speculate about the 

prediction of a "radically different" future? 

6. What, in the end, does all this mean for decision making 

under uncertainty? 

8.1. The Nature of the Data 

When all the sophistication of the algorithms for identifi­

cation is stripped away, the inescapable precondition for their 

successful application is that the dynamic changes in the input 

variables (u) are almost self-evidently related to corresponding 

changes in the output response variables (y). Consider, as an 

illustration of the ideal, the classic tracer experiment for deter­

mining the advective transport and dispersion of a pollutant 

along a river. There can be little doubt that the typical pattern 

of the downstream output response concentration (of Figure 

15a) is unambiguously related (in some way) to the upstream 

input pulse of tracer. Now consider, by way of contrast, the 

fast (high frequency) output response of an algal bloom in a 

lake, to which no obviously impulselike change in input solar 

radiation or nutrient loading pattern corresponds (Figure 

15b). What we see in terms of the external description of the 

system { u, y} in this case is "apparently insignificant input 

perturbation: significant output perturbation." It might con­

versely occur that the in situ field data exhibit "apparently 

significant input perturbation : insignificant output pertur­

bation," a situation commonly found in the performance of 

biological wastewater treatment processes (Figure 15c; see 

also Beck [1986]). 

Either of the latter two cases is precisely what one would 

wish to avoid for the purposes of model identification; they 

reflect strongly nonlinear input/output relationships. Most 

methods of identification, suitable for the form of external 

description of Figure 15a, assume a priori a simple, linear 
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Fig. 15. Stylized examples of input and output field data patterns 
for (a) a dye tracer experiment in a river, (b) the occurrence of an algal 
bloom in a lake, and (c) a secondary biological wastewater treatment 
process. 

model structure, and from there can proceed to the identifi­

cation of weak forms of nonlinearity (see section 4). Even to 

begin to interpret the external descriptions of Figures I Sb and 

!Sc, it is necessary a priori to postulate virtually the correct 

form of (strong) nonlinearity, and this is notoriously difficult 

for, say, the population dynamics of algae (M. B. Beck and B. 

A. Finney, Operational water quality management: A case 

study of the Bedford Ouse River system, submitted to Water 

Resources Research, 1986). 

The difficulties of identifying environmental systems are 

thus not merely that the data are uncertain, but that they are 

derived from poor approximations of the classical experiments 

of laboratory science. 

8.2. Failure 

In section 4 the idea of model structure was defined as a 

complex amalgam of constituent hypotheses. In order to un­

derstand what was ineaht by the selection and evaluation of 

that structure we introduced a conceptual analogy between a 

inodel structure and a physical engineering.structure. The gen­

eral problem of model structure identification, irrespective of 

the method used for its solution, is the need to expose unam­

biguously the failure not of the model as a whole, but of the 

constituent model hypotheses. The failure of a hypothesis can 

be likened to the failure of a component member of a physical 

structure subjected to various loads, and in other ways this 

same notion can be equated with Popper's view of the scientif­

ic method. 

The use of recursive estimation algorithms is one specific 

means of solving the problem of model structure identifi­

cation, indeed one that has had much to do with the definition 

of the problem. In section 4, temporal variation of the esti­

mated values of the model parameters was taken to be indica­

tive of the failure of a constituent hypothesis. Thus in the 

model structure or "graph" of Figure Sb, the nodes represent 

the model's state variables (x) and the branches (structural 

members) the model parameters (a). The external loads placed 

on the (model/engineering) structure may be assumed to be 

equivalent to the errors of mismatch between observed and 

estimated behavior. The "distortion" necessary for the model 

structure to be matched with the structure of the dynamics 

underlying the observations is reflected in the deflections of 

the recursive parameter estimation trajectories (such as those 

of Figure Sc). The capacity of a structural member (hypoth­

esis) to resist deformation, i.e., its mechanical properties, corre­

sponds in some way to the confidence (uncertainty) attached 

to that constituent hypothesis (as parameterized through a). 

And last, the more rigidly (confidently) the model structure is 

stated, the more easily demonstrable ought to be its failure. 

The questions that one would like to have answered are the 

following: has a failure of a constituent hypothesis occurred, 

what are the relative weaknesses/strengths of the individual 

hypotheses, and what is the connection between the failed 

hypotheses and the mismatch between the model and the ob­

servations? 

However, experience shows that clear answers to these 

questions are difficult to obtain because (1) the performance of 

the extended Kalman filter (EKF) is not as robust as would be 

desirable and, inter alia, is heavily compromised by the need 

to make more or less arbitrary assumptions about the sources 

of uncertainty affecting the identification problem, (2) the in­

strumental variable algorithtn, while it overcomes these limi­

tations of the EKF, does not (as usually implemented) make 

direct reference to the physical, chemical, and biological ori­

gins of the constituent model hypotheses, and (3) it is difficult 

to absorb and interpret the wealth of diagnostic evidence de­

riving from the test of the model structure. 

This third point will be dealt with in a later section. More 

immediate, and more compelling, is the idea that the advan­

tages of the IV and EKF algorithms should be combined, and 

their disadvantages eliminated. 

It has to be significant then that with one and the same 

minor modification (use of an innovations process repre­

sentation) both can be shown to solve the dual of the primal 

estimation problem for which each was originally intended, 

i.e., (1) accurate parameter estimation with the EKF [Ljung, 

1979], which as we have said in section 4, is an algorithm 

originally intended for the purposes of state estimation, and 

(2) state estimation with the IV [Young, 1979], an algorithm 

clearly developed initially for the purposes of parameter esti­

mation. 

It is impossible to resist the temptation to observe that such 

simultaneity of publication date, similarity of authors' names, 

and symmetry of algorithmic structure must be auspicious! 

Indeed they are. The ramifications of these developments are 

several and go well beyond the scope even of this review. They 

are also complex, convoluted, and although directed ulti­

mately at simplified algorithms for model structure identifi-
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cation, difficult to summarize in the straightforward, qualita­

ti ve terms that follow (other preliminary comments are given 

elsewhere ; Beck [1985c, d]). 

First, and of most immediate significance, Ljung's modified 

form of EKF conducts the estimation of the modei parameters 

as though there were perfect knowledge (i.e., no uncertainty) of 

the state variables, which is notably what the IV does in any 

case. This obviates the need to make some of the notoriously 

arbitrary assumptions about the sources of uncertainty influ­

encing the identification problem, which have so limited the 

ease of implementing the ordinary EKF. It ought also to lend 

robustness to the performance of EKF-like algorithms. 

Second, the mechanism by which the above is achieved in­

volves estimation of the filter gain matrix elements (for which 

purposes the assumption of an innovations process repre­

sentation is necessary). Adaptation of the model's state­

parameter estimates as the data are processed sequentially, 

which lies at the heart of our interpretation of model structure 

identification, becomes thus less dependent on arbitrary prior 

assumptions and more dependent on the posterior properties 

of the actual errors of mismatch between the model and the 

data. 

Third, and rather more speculative, if the primal problem 

has been stated as estimation of the model parameters given 

perfect knowledge of the state, the dual problem would be that 

of estimation of the states given perfect knowledge of the pa­

rameters. This pair of dual problems corresponds with the 

quality of mesh and nodal descriptions of networks such as 

that of Figure Sb . We know that graphs, networks, and con­

nectivity are intimately related to the analysis of structural 

identifiability [e.g., Cobel/i et al., 1979]. We know too that 

structural mechanics is based upon graph theory and network 

representations [Spillers, 1972] and still further that dual 

mathematical programs play an important role in the plastic 

limit analysis of loaded engineering structures [Munro and 

Smith, 1972]. If therefore the problem of model structure 

identification has an analogy in the problem of plastic limit 

analysis, one must ask the potentially very fruitful question, 

Do the existing solutions to plastic limit analysis suggest 

future analog solutions to model structure identification? 

Last, and in a more philosophical vein, let us note that 

assuming perfect knowledge of the parameters is the limiting 

case of making those bold, confident hypotheses that Popper 

has argued are essential to the application of the scientific 

method [Popper, 1968]. In this respect, the trend of what has 

been said in this section would appear to be in the right 

direction and, moreover, meets many of the objections raised 

in the commentary to section 4 on model structure identifi­

cation. But making bold, perfectly confident hypotheses (i.e., in 

our terms, deterministic, constant parameters) and then seek­

ing to detect the failure of these hypotheses via the temporal 

variability of the estimated model parameter values is an ap­

parent paradox. So how might such a test be implemented? 

This is extremely difficult to answer, but one attractive possi­

bility would be to represent the "bold, confident hypotheses" 

as a deterministic, nonlinear, continuous-time reference trajec­

tory model (such as (7) of section 4) and to interpret the failure 

of these hypotheses via the estimated parameters of a corre­

sponding discrete-time small-perturbations model (such as (10) 

of section 4). The resulting estimation problem would also 

have the desirable properties of referring to algebraic equa­

tions that are linear in the parameters and would therefore be 

an ideal response to the remarks made in the commentary of 

section 5 on estimation. 

All of these points, however, are highly speculative, not sub­

stantiated, and like the bold, confident hypotheses, may them­

selves turn out to be demonstrably wrong. But they are still 

worth mentioning because they offer the possibility of escape 

routes from the narrow methodological confines into which (in 

this reviewer's opinion) the subject of identification and pa­

rameter estimation has fallen in recent years. 

8.3. Inference 

The essential purpose of modeling is the need to understand 

the behavior of a system either in order to give a satisfactory 

scientific explanation of that behavior or to give advice for the 

guidance of decision making. There are three broadly different 

types of knowledge that enter into the acquisition of this un­

derstanding. 

l. Observed knowledge of the external description of the 

system, i.e., the experimental observations of the system's 

inputs and outputs {u, y}. 

2. Theoretical knowledge of the internal description of the 

system, i.e., the constituent hypotheses cast in terms of the 

model's states and parameters {x, ci} (and their relationships 

with the inputs and outputs). 

3. Knowledge of a diagnostic, interpretative character 

about the mismatch between the system and the model, e.g., 

the failure of constituent hypotheses and the identification of 

anomalous events. 

If we were content merely to order and classify the observed 

facts , without further interpretation, then we would need no 

more than the first type of knowledge, and almost all of this 

review would be irrelevant. However, this is not the case, and 

it has become the tradition (over many years) to seek to repre­

sent knowledge in the abstract form of mathematical relation­

ships and in as complete (and elegant) a form as possible, i.e. , 

the class I model as defined in the introduction to the review. 

With the advent of the digital computer this archiving of hy­

potheses, of knowledge of a theoretical type, has been practi­

cally removed from virtually all constraints other than the 

creativity of the mathematical analyst to express equations for 

those (observed) phenomena he believes he understands. This 

review has had little to do with that process. In fact where the 

review has discussed model development, in the context of 

identification, it has concerned itself with the development of 

theories strictly by reference to the in situ field data, and using 

the less complete (less elegant) class II and III models as ve­

hicles for that process. As such, all of this review (of system 

identification) and now the comments of the preceding dis­

cussion of failure have been about increasing knowledge of the 

third type, that is, knowledge of a diagnostic character about 

why a model fails to describe observed behavior. 

The problem of inference (as intended here) is therefore the 

problem of reasoning about the possible form of an improved 

posterior model structure given diagnostic knowledge of the 

failure of a prior model structure. This reasoning is one of 

synthesis because by a sifting and piecing together of the diag­

nostic evidence (like the forensic science called for in section 

5), it must proceed to a "good hunch" as to why the model 

failed and how it might be improved. It is also inductive and, 

thus being akin to the creative process of scientific discovery, 

is not entirely capable of being reduced to some logical algo­

rithmic form [Beck, 1985d] and should not be so reduced. 
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So what can be said of tentative solutions to this problem of 

inference? Our response involves examination of the nature of 

the inferential reasoning process, which brings into question 

the nature of knowledge representation, which in turn intro­

duces both a challenge to conventional wisdom on model 

building, and a quite different view of the problems of uncer­

tainty, identifiability, and predictability. 

8.4. Knowledge Representation 

Consider the case study of wind-induced resuspension of 

sediment material in a shallow lake that was discussed in 

section 4. On identification it was found that the prior model 

structure failed to characterize observed behavior over the last 

40 days or so of the experimental record, in that the model 

persistently overestimated the observed suspended solids con­

centration (Figure 7). This anomaly requires explanation. Sev­

eral hypotheses (at least three) could be plausible candidates, 

one of which concerns the possible effects of wind fetch length. 

The actual reasoning that then took place-insofar as it can 

be recalled-was of the following form: "if" wind fetch length 

increases (decreases), "then" water surface shear stresses in­

crease (decrease), "and" sediment shear stresses increase (de­

crease), "and" more (fewer) sediment particles are resuspended. 

There is nothing novel about this form of reasoning, as any 

developer of a model will know. Indeed, it is so commonplace 

that it is difficult to notice what might be its importance in the 

present discussion. 

First, the central problem of inference is the incompatibility 

of the various forms of knowledge used in its solution. For 

instance, taking another aspect of the Balaton example [Beck, 

l 985d]: how can diagnostic knowledge concerning correlated 

variations between observed temperature and an estimated 

parameter in an algebraic, input/output (class III) model be 

matched with theoretical knowledge of particle motion in a 

partial-differential equation representation (class I model) in 

order to change the structure of an ordinary-differential equa­

tion (class II) model? What the above example of inferential 

reasoning suggests is that it is the imprecise, linguistic knowl­

edge at the basis of our mental models of how systems behave 

that may be the most useful common denominator of the 

various types of knowledge and knowledge representation. 

Second, if this is the case, then it is not the precise partial­

differential equation representation of particle motion that is 

crucial to this kind of inferential process, but rather the more 

primitive chains of less precise, more macroscopic logical 

reasoning. 

Third, there would be little point in concernin~ ourselves 

with this qualitative form of reasoning if no additional assist­

ance could be given to what we already practice with great 

facility. And this is where the much talked-of recent devel­

opments in the expert systems of artificial intelligence may 

have a significant role to play [Duda and Shortliffe, 1983 ; 

Forsyth, 1984]. 

Fourth, since we can therefore represent and manipulate 

knowledge in the qualitative, imprecise, linguistic terms of, for 

example, fuzzy logic [Tong, 1978 ; Bosserman and Ragade, 

1982; Jowitt, 1984; Camara et al., 1985], what are the impli­

cations of this for the "classical" approach to uncertainty, 

identification, and prediction upon which the whole of this 

review has been built? 

The implications, if not profound, are undoubtedly pro­

vocative. Consider the following conjecture. If the systems 

whose behaviour we attempt to describe are inherently impre­

cise, and if the observations that can be made of such systems 

are also imprecise, it is illogical to entertain algebraic or differ­

ential forms of equations as candidate descriptions of the 

system. This conjecture has merit, and a very preliminary 

reaction to expert systems would be that they seem to work 

best when the system's dynamics are highly nonlinear, as ob­

served for instance, in the earlier discussion of Figures I Sb and 

I Sc ; a theory is in its initial phases of development, e.g., as a 

verbal, conceptual model ; crude order must be imposed on a 

confused and conflicting welter of experimental observations; 

and decision making must be conducted in a setting where a 

pragmatic, universal shortcut to interdisciplinary communi­

cation is a priority (a matter to which we shall return below). 

But will our observations always remain imprecise, and will 

our theories never develop beyond their initial stages? 

Consider further the following. Suppose the opinion of an 

expert biologist or geochemist is sought for the description of 

the behavior of a given lake system. In effect, what is being 

asked for (and what will be given) is an interpretation of exist­

ing theories and casual experimental observation. The logical 

rule that results- most naturally in the form of a cause-effect 

statement- is an amalgam of theoretical and observed knowl­

edge. This process is now explicitly subjective but then so too, 

implicitly (upon careful reflection), is the classical approach to 

model building. The distinctive roles of theory and observa­

tion have become blurred. It is not clear what has happened 

to the role of identification and diagnosis. Nor is it clear 

whether any principles of scientific method do or should 

govern this process (perhaps it has become "anarchistic" in 

Feyerabend's [1975] terms). 

The instinctive, long-term inclination of the scientist is to 

give his theories as much precision, rigidity, and independence 

as possible. Insofar as it is possible, we wish to set out theories 

apart from subjective interpretation. Or do we? Can we, ulti­

mately, accept imprecision (as opposed to uncertainty) as fun­

damental to nature? 

8.5. Questions for Prediction 

It has been said that the variance (uncertainty) properties of 

the posterior parameter estimation errors can be thought of as 

a synopsis of the results of forcing a model structure to fit the 

data. In terms of the analogy of a physical engineering struc­

ture, such "forcing" may cause a distortion of the model struc­

ture. And in much the same way as we have already discussed 

the possibility of a model structure in speculating about the 

interpretation of past behavior, so this metaphor can be ex­

ploited in order to study the implications of distorted struc­

tures molded by the fitting process to possibly quite different 

shapes. 

Suppose that the model under study has been fitted to a set 

of data, that the model structure suffers from problems of 

identifiability, and that many combinations of the parameter 

estimates give "acceptably good" fits to the data, two of which 

might correspond with the oair of distorted structures in 

Figure 16. Unwittingly either version of the fitted model struc­

ture might be used for the purposes of predicting the long­

term future behavior of the system. For instance, Figure 17a 

shows two sets of predictions that could have been generated 

by the two equally possible structures of Figure 16. In fact 

these results refer to the behavior of a phytoplankton popu­

lation in a model of Lake Ontario [Ha/fan, 1979], the differ-



1434 BECK : UNCERTAINTY IN WAT!'R QUALITY MODELS 

(a) (b) 

Fig. 16. Conceptual analogs of two equally possible versions of a 
model structure resulting from the problem of model identifiability. 

ence in initial values deriving from the different "equilibrium" 

annual cycles established after a transient from the present 

state (M. B. Beck and E. Halfon, manuscript in preparation, 

1986). 

What would one conclude from such predictions? Whatever 

the temptation, no conclusions should be drawn except, of 

course, to qoubt the value of purely deterministic predictions 

and to raise again a question mark over the predictive powers 

of comprehensive models. One might have expected the con­

clusion that there may be so much uncertainty attached to 

these predictions that literally anything could happen in the 

future. This too would be inappropriate. In Figure l 7b the 

bounds for the alternative predictions lying within one stan­

dard deviation of their respective mean (i .e., deterministic) tra­

jectories are indicated. All errors have been assumed to be 

normally distributed, only errors arising from the model pa­

rameter estimates have been accounted for, and in fact the 

results shown have been computed from the algorithm of (37) 

in section 7. There are times when the predictions do not differ 

significantly, i.e., they are "indistinct," times when their means 

are seemingly different but there is sufficient uncertainty to 

render these predictions "ambiguous," and many times when 

the nominal trajectories are substantially different and with 

sufficiently little error that they are confidently "contradic­

tory." 

Such reasoning may be spurious, and certainly these results 

are based on the strong assumption, among others, that iden­

tical variance-covariance structures hold for different nominal 

sets of parameter estimates. Consider, however, that for the 

problems of surface water acidification there is every possi­

bility of needing to make decisions in the face of competing 

(and conflicting) hydrological and hydrochemical theories. 

Given all the existing uncertainties, the questions that we 

would like to see opened up by this type of analysis are (1) is it 

possible to distinguish any significant difference between the 

consequences of competing theories that give equally plausible 

explanations of past behavior, (2) is it possible to design a 

crucial experiment that will distinguish among competing 

theories, (3) how confident do we have to be of our models in 

order to distinguish significant differences among the re­

sponses of the system to alternative input scenarios, (4) if the 

system's predicted behavior is not sensitive to the unidentified 

constituent hypotheses of a part of the model and is only 

sensitive to their collective effects, is it really necessary to 

concern ourselves with a lack of model identifiability [see also 

McLaughlin, 1985], and (5) how would it be apparent that the 

postulate of this question (question 4) is valid? 

The problem of identifiability, which throughout this review 

has been treated as highly undesirable, may not therefore have 

material consequences for the problem of prediction (subject 

to the technicality of question 5). In fact a Jack of identiflabil­

ity, instead of being undesirable, may even be of benefit m 

trying to answer certain questions, as we now discuss. 

8.6. The Future Under Substantially Changed Conditions 

Hitherto, the questions of prediction examined here have all 

been based on a conventional problem statement. 

Question 1 ( Ql ) . Given the model structure, its parameter 

estimates, the future input qisturbances (and, of course, specifi­

cations of the relevant sources of uncertainty), what future 

behavior is generated? 

Suppose, however, that this question is turned on its head, 

so that (incorporating some of the ideas discussed in section 3) 

we have the following. 

Question 2 (Q2) . Given definitions of acceptable (B) and 

unacq!ptable (B) future behaviors, to what constituents of the 

model structure and assumed future inputs are these behaviors 

most/ least sensitive? 

Or the question can be put in a much more interesting 

fashion. 

Question 3 ( Q3). Given definitions of essentially similar 

(S) and radically different (S) future behaviors, determine an­

swers similar to those of (Q2). 
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Fig. 17. Predictions derived from two equally possible combi­
nations of model parameter values : (a) deterministic predictions and 
(b) deterministic predjctions and plus or minus one standard devi­
ation bounds (dashed lines) on the errors associated with each state­
prediction x. A, ambiguous; C, contradictory ; and I, indistinct. 



BEC K : UNCERTAINTY IN WATER QUALITY MODELS 1435 

Provided therefore that the analyst can define what he un­

derstands by the future "under substantially changed con­

ditions" (and it is no bad thing that he should be forced to do 

this), he has thus a means of locating its causal mechanisms. 

And if there are constituent hypotheses in the model that 

support this radically different future behavior, then in prin­

ciple they ought not to be identifiable against the record of 

past behavior. In other words, we have a reversed form of 

logic in which the implications of a statement about the future 

can be tested against the record of the past. 

8.7. Decision Making Under Uncertainty 

There has always been decision making under uncertainty, 

and there has been quantitative analysis ostensibly in support 

of it for at least 20 years [Loucks and Lynn, 1966]. Present 

trends suggest that in the area of water quality management 

there is a growing momentum of interest in a variety of meth­

odological alternatives for incorporating uncertainty into the 

analysis of decision making. This interest can be separated 

broadly into five classes. 

1. The use of Monte Carlo simulation, either simply to 

calculate the distributions (variability) of water quality charac­

teristics that would result from alternative management sce­

narios [Whitehead and Young, 1979; O'Neill et al., 1982c, 

1983] or to assess the risk of violating a prescribed standard 

[Fontaine, 1984 ; Chapra and Reckhow, 1983]. 

2. The solution of problems of constrained optimization 

under uncertainty [Lohani and Thanh, 1979; Lohani and Sa­

leemi, 1982; Fisher, 1983 ; Herbay et al., 1983 ; Somlyody and 

Wets, 1985 ; Fontaine and Lesht, 1986]. 

3. Extension of problem 2 to the notion of fuzzy program­

ming in order to derive "satisficing," as opposed to optimizing, 

solutions [Chuang and Munro, 1983]. 

4. The more general application of fuzzy logic (and expert 

systems), either as an operational means of gauging the per­

formance of a pollution control authority [Jowitt and Lum­

bers, 1982] or as a means of system simulation and prediction 

in an interdisciplinary, decision-making environment [Camara 

et al., 1985; Fedra, 1985]. 

5. Use of the ideas of decision analysis along the lines 

suggested by Chapra and Reckhow [1983] for the control of 

polychlorinated biphenyls (PCB) discharges to the Great 

Lakes. 

This looks promising, but the real question is whether any 

quantitative analysis of uncertainty has been, or is being, used 

to assist decision making in practice. 

As a matter of actual policy, current practice in the United 

Kingdom with regard to the control of river pollution is to 

analyze the impact of polluting discharges in probabilistic 

terms in order to set probabilistic standards to be satisfied by 

those discharges [Warn and Brew, 1980]. Considerations of 

uncertainty are therefore integral to the monitoring of com­

pliance with the given standards [Warn and Matthews, 1984]. 

As a matter of proposed policy, the U.S. Water Pollution 

Control Federation recommended in 1981 that the following 

would be desirable. 

Analyzing the wasteloads for water quality-limited streams 
using verified mathematical models that are calibrated with loci:! 
information. 

Consider setting aside some of the stream's capacity as a re­
serve for future discharges and as a hedge against errors or inac­
curacies in the predictions made with the model. 

[ W acer Pollution Control Federation, 1981]. 

As a matter of independent comment on this review, many 

of its elements are referenced elsewhere in a document com­

missioned by the Dutch government on "Handling uncer­

tainty in environmental impact assessment," where they 

appear (quite appropriately) as an appendix of brief details 

[Ministry of Public Housing, Physical Planning, and Environ­

mental Protection, 1985]. 

And last, as a matter for the reader to consider for himself, 

Somlyody and van Straten [1986] have described recently a 

uniquely comprehensive study of managing eutrophication in 

Lake Balaton, Hungary, in which the issue of uncertainty per­

meated essentially every aspect of the supporting mathemat­

ical analysis. In their book, the political "background to a 

decision" is discussed at length [Lang, 1986]. Given this evi­

dence, the questions are, Did the analysis influence the de­

cision; if so, in what way; and more generally, is it really 

necessary to spend a lot of time to establish the relevance of 

scientific analysis to management ? 

9. CONCLUSIONS 

The purpose of this review has been to assess the role of 

uncertainty in the development of mathematical models for 

the interpretation and explanation of past observed behavior 

and for the prediction of future behavior. It has not been the 

intention to review the relevance of these subjects to problems 

of decision making under uncertainty. 

The contributions of over a decade of research into the 

analysis of uncertainty in water quality modeling have been 

many and varied. Perhaps the most innovative has been the 

HSY algorithm of section 3, a conceptually simple means of 

generating preliminary hypotheses about the behavior of a 

system under conditions of sparse field data and gross uncer­

tainty in the prior theoretical knowledge of the system's be­

havior. As such, this problem has been long standing, and it is 

surprising that it was not properly recognized and addressed 

until relatively recently. 

If adequate numbers of (time series) field data are available 

and the prior theoretical knowledge is less uncertain, there 

emerges a more refined problem of model structure identifi­

cation (section 4). The primary advance of the past decade has 

been one of improved problem definition. In other words, it is 

now more clear what sort of questions should be asked of this 

type of analysis and on what basis they might be answered, 

i.e., by seeking to expose the failure of constituent model hy­

potheses and then attempting to infer the form of an improved 

model structure from diagnosis of the failed prior structure. 

This advance has been gained largely through the application 

of recursive methods of estimation, even though these methods 

may not eventually be the best means of solving the problems 

of model structure identification, and can certainly be shown 

to have several limitations. 

Given the identified model structure, model calibration or 

parameter estimation would have seemed a straightforward 

problem to solve with no shortage of available methods of 

solution. On the whole, this has not proved to be the case. 

Most attempts at solving this problem have not been entirely 

successful because of a '..lck of model identifiability. In addi­

tion, little attention has been paid to evaluation of the residual 

uncertainty associated with the estimated model parameter 

values (section 5). The conclusion of this review is that a lack 

of model identifiability is unlikely to be overcome in the near 

future by improvements in the associated methods of numeri-
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cal optimization. The profit to be derived from this failure is 

that model identification (of which parameter estimation is 

merely a part) should be more usefully viewed as a kind of 

forensic science, a painstaking piecing together and sifting of 

all the evidence obtained from a variety of lines of investi­

gation, with the objective of providing a plausible and rigor­

ous explanation of why the system behaved as observed. 

The case of prediction under (explicit) uncertainty is rather 

different from that of identification under uncertainty. The 

initial set of questions has been well defined and adequately 

answered (section 7). We now know that the larger models of 

water quality may give highly uncertain predictions of future 

behavior, and that caution should be exercised in the use of a 

first-order error analysis (as could be expected), especially with 

regard to ranking the importance of the various contributing 

sources of uncertainty. For prediction, it is not so much new 

methods of analysis that are required in the future, but rather 

a more wide-ranging set of questions to be answered. 

In the long term, however, whence has the subject of uncer­

tainty in water quality modeling come, and whither is it des­

tined? We might speculate that just prior to the seminal stud­

ies of Streeter and Phelps [1925] there would presumably have 

existed some simple, imprecise, verbal models of the behavior 

of water quality in river systems. There were no electronic 

computers. By the end of the 1970's, under the liberating influ­

ence of powerful mainframe computers, there were immensely 

complex, seemingly arbitrarily precise, and predominantly de­

terministic models of water quality [Chen and Smith, 1979]. 

There was too a nascent awareness of uncertainty [O 'Neill and 

Gardner, 1979]. This review speaks for the present importance, 

if not dominance, of indeterminism, and against this back­

ground there is the unmistakable possibility of a reversion in 

the future to forms of imprecise, linguistic models of behavior 

[Camara et al., 1985]. This is being done under the objective 

of improving communication and because now (this time 

around) the manipulation and exploitation of such models can 

be expected to be profoundly changed by recent developments 

in the methods and programming languages of artificial intel­

ligence [Duda and Shortliffe, 1983]. 

If this is so, it will change many of the conventions either 

assumed or set up in this review. The original motivation for 

the review, it has to be said, was a concern with the correct­

ness of the convention that the more detailed and "compre­

hensive" the model, the more "scientific" would be the expla­

nation of past behavior and the more accurate the prediction 

of future behavior. In the end, the conventional assumptions 

made here about the application of the scientific method may 

themselves have to be overturned, either as a consequence of 

philosophical inquiry [Chalmers, 1982] or as a result of the 

challenge of modern computer technology and artificial intelli­

gence. What is it, we will have to ask ourselves, that lies 

behind the impressive color graphics that tell us that water 

quality will be "disgusting" as a result of some contemplated 

action? 

NOTATION 

a (subscript) augmented (state-parameter) system properties. 

B matrices of sensitivity coefficients [8x ;/8xit 1)], 

[8x;/8cxi] , [8x J duJ, [8x; /8U . 
C matrix of sensitivity coefficients [8yJ8cxi]. 

e error of mismatch between model response and observed 

response. 

F system matrix for a linear system. 

G input matrix for a linear system. 

H observations matrix for a linear system. 

J squared-error criterion for parameter estimation. 

K Kalman gain matrix. 

P. variance-covariance matrix of (state-parameter) 

estimation errors. 

p c covariance matrix of state and parameter estimation 

errors. 

pP variance-covariance matrix of parameter estimation 

errors. 

p• variance-covariance matrix of state estimation errors. 

Q. variance-covariance matrix of augmented (state­

parameter) system disturbances. 

QP variance-covariance matrix of parameter disturbances. 

Qs variance-covariance matrix of state disturbances. 

r three-dimensional, orthogonal spatial directions. 

R variance-covariance matrix of output measurement 

errors. 

S variance-covariance matrix of input measurement errors. 

time. 

t 1 beginning of prediction period. 

tk kth discrete instant in time. 

tN end of identification period. 

tP end of prediction period. 

t 0 beginning of identification period. 

u measured input disturbances of the system. 

W weighting matrix. 

x state variables. 

x. augmented state-parameter vector. 

x* instrumental variable vector. 

y measured output response variables. 

ex vector of model parameters (class II model). 

~ vector of model parameters (class III model). 

I; unmeasured input disturbances of the system. 

v innovations process errors, i.e., one-step-ahead 

prediction errors. 

ro lumped errors of a class III model representation. 

9 vector of model parameters (class I model). 

~ parametric disturbances. 

'I' gain matrix in batch estimation algorithm. 

<l> state transition matrix. 

Accents are used to denote the following : overbar, nominal, 

or reference, values of the states, parameters, inputs, or out­

puts ; tilde, errors (or small perturbations) associated with the 

states, parameters, inputs, or outputs. Angle brackets denote 

estimated (or predicted) values of the states, parameters, 

inputs, or outputs. (In some figures, estimates are denoted by a 

circumflex.) 
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