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Abstract: Water quality prediction has great significance for water environment protection. A water

quality prediction method based on the Improved Grey Relational Analysis (IGRA) algorithm and

a Long-Short Term Memory (LSTM) neural network is proposed in this paper. Firstly, considering

the multivariate correlation of water quality information, IGRA, in terms of similarity and proximity,

is proposed to make feature selection for water quality information. Secondly, considering the

time sequence of water quality information, the water quality prediction model based on LSTM,

whose inputs are the features obtained by IGRA, is established. Finally, the proposed method

is applied in two actual water quality datasets: Tai Lake and Victoria Bay. Experimental results

demonstrate that the proposed method can take full advantage of the multivariate correlations and

time sequence of water quality information to achieve better performance on water quality prediction

compared with the single feature or non-sequential prediction methods.
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1. Introduction

Accurate water quality prediction is the basis of water environment management and is of

great significance for water environment protection. Water quality information exist in the form of

multivariate time-series datasets. There is no doubt that the accuracy of water quality prediction will

be improved if the multivariate correlation and time sequence data of water quality are fully used.

The common methods for water quality prediction include Artificial Neural Networks (ANN),

Regression Analyses (RA), Grey Systems (GS), and Support Vector Regressions (SVR). Li et al. [1]

applied the optimized back-propagation neural network to predict the concentration of chlorophyll in a

lake. Grbić et al. [2] proposed a method based on a Gaussian process regression to predict daily average

water temperature. Candelieri et al. [3] applied clustering and SVR in water demand forecasting and

anomaly detection. Dai et al. [4] established the Grey Model (1,1) with GS theory to predict major

pollutants in a particular water environment.

Most of the methods mentioned above only adopted a single feature for prediction without

considering the multivariate correlation of water quality information. Some researchers have

considered multiple indicators in prediction [5–8], but the correlations among these indicators

haven’t been analyzed. The multivariate correlations of water quality information refer to the

complex and variable correlations among various indicators, and an example of such correlations is

the nonlinear correlation between dissolved oxygen content and multiple indicators such as microbial

concentration, temperature, salinity, etc. To take advantage of the multivariate correlations of water

quality information, it is essential to analyze the correlations among various indicators and select
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appropriate features from water quality indicators. Common methods of correlation analysis include

Granger Causality Analysis (GCA) [9], Copula Analysis (CA) [10], and Grey Relational Analysis

(GRA) [11]. GCA can only analyze the information qualitatively and it is unable to give a quantitative

description. Therefore, it can’t be directly applied to the nonlinear system such as water environment.

CA cannot find a suitable edge distribution when dealing with irregularly distributed water quality

information. There are many factors affecting the water quality indicators, which are partial and grey

in many cases. Therefore, it is favorable to solve such problems using GRA. Nevertheless, GRA has

a problem with measuring negative correlations. Therefore, an Improved Grey Relational Analysis

(IGRA) algorithm is proposed in this paper to measure the correlations among water quality indicators

more accurately. And then, it is used to make the feature selection from the indicators.

Water quality information exists as time-series, which means it changes periodically along with

time. For instance, water quality information changes significantly as the season changes. With the

development of water quality prediction, neural networks with nonlinear and self-organizing learning

characteristics are widely adopted [12–16]. However, the neuron structure of traditional neural

networks is not suitable for sequential data. A Long-Short Term Memory (LSTM) neural network,

which is a kind of recurrent neural network (RNN) [17], establishes a long time lag among preventing

gradient explosion, input, and feedback. This neuron structure has a selective memory function,

which is very suitable for dealing with sequential data such as water quality information. It has been

applied in the field of time series prediction successfully, such as in stock prediction [18] and traffic

flow prediction [19].

To take full advantage of the multivariate correlation and time sequence of water quality

information, IGRA and LSTM are combined for water quality prediction in this paper. Firstly, IGRA is

proposed to perform feature selections for water quality information. Secondly, LSTM is adopted

to establish the water quality prediction model, whose inputs are the indicators obtained by IGRA.

The proposed method is compared with other similar methods in two actual water quality datasets:

Tai Lake and Victoria Bay. The experimental results demonstrate that the method proposed in this

paper has better performance for water quality prediction compared with other similar methods.

The contributions of this paper are listed as follows:

(1) IGRA is proposed to make feature selections to take full advantage of the multivariate correlation

of water quality information.

(2) LSTM is employed to establish the water quality prediction model to make full use of the time

sequence of water quality information.

The rest of the paper is structured as follows: The water quality prediction method based on IGRA

and LSTM is described in Section 2. The experiments and comparison analysis with other methods are

discussed in Section 3. This paper is summarized in Section 4.

2. Proposed Methods

2.1. Feature Selection Based on IGRA

GRA is a multi-factor statistical analysis method. In this paper, the grey correlation degree in

GRA is regarded as the evaluation index for the relevance of water quality indicators. Liu et al. [20]

proposed the correlation calculation in terms of similarity and proximity. However, when their method

is used to calculate the correlation among the water quality indicators, the positive and negative areas

will counterbalance during the integration process. Due to that, the results often cannot accurately

reflect the relevance of the indicators. Therefore, IGRA is proposed in this paper.

Definition 1. Set the water quality sequence as Xi(n) = [xi(1), . . . . . . xi(n)], where Xi(n) represents the

observations of the water quality indicator Xi at the previous n historical moments and the observation of

Xi at the nth moment is denoted as xi(n). Then, the origin annihilation image of Xi(n) can be expressed as.
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X0
i (n) = Xi(n)D = [x0

i (1), . . . . . . x0
i (n)]. In particular, x0

i (k) = xi(k)d = xi(k)− xi(1), k ∈ (1, n) and the

origin annihilation operator is D.

Definition 2. Set the water quality sequence Xi(n) and X0
i (n) are 1-time series. The corresponding polylines

at the interval [k, k + 1] denoted as Xi[t] and X0
i [t], t ∈ [k, k + 1], k = 1, 2, . . . , n − 1. The area variations of

the polyline Xi[t] and X0
i [t] at the interval [k, k + 1] can be expressed as:

∆s0
i (k) =

w k+1

k
X0

i [t]− X0
i [k]dt, k = 1, 2, . . . n − 1 (1)

∆si(k) =
w k+1

k
Xi[t]− Xi[k]dt, k = 1, 2, . . . n − 1 (2)

Furthermore, at the interval [k, k + 1], the integration of the above-mentioned can be regarded as

the area of a right triangle with a right-angled side measured as 1. Then the integration can be further

expressed as:

∆s0
i (k) =

1

2
(x0

i (k + 1)− x0
i (k)), k = 1, 2, . . . n − 1 (3)

∆si(k) =
1

2
(xi(k + 1)− xi(k)), k = 1, 2, . . . n − 1 (4)

Definition 3. There are two compared water quality sequences Xi(n) and Xj(n). The similarity and proximity

coefficient between Xi(n) and Xj(n) are calculated as Equations (5) and (6), respectively:

ri,j(k) =
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pi,j(k) =







sgn(∆si · ∆sj)
min||∆si |,|∆sj||
max||∆si |,|∆sj||

∆si · ∆sj 6= 0

0 ∆si · ∆sj = 0
. (6)

sgn returns an integer variable indicating the positive and negative sign of the parameter.

The similarity and proximity between Xi(n) and Xj(n) are respectively calculated as follows:

r(Xi ,Xj)
=

1

n − 1

n−1

∑
k=1

ri,j(k) (7)

p(Xi ,Xj)
=

1

n − 1

n−1

∑
k=1

pi,j(k) (8)

The grey correlation degree between Xi(n) and Xj(n) is denoted as w (w is in the range of 0–1):

w =
r + p

1 + r + p
(9)

IGRA calculates the similarity and proximity by relative area change ratio. Positive and negative

areas will never counterbalance during the calculating process [21], which makes the calculation of the

correlations among the water quality indicators more objective and accurate. Set Xi as the water quality

indicator to predict, and the grey correlation degree w between Xi and another indicator can be calculated

by Equations (1)–(9). s water quality indicators U = {Xi1, Xi2, . . . Xis} with a larger absolute value of

grey correlation degree about Xi are selected. In particular, Xis represents the sth indicator associated
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with Xi. The selected indicators U = {Xi1, Xi2, . . . Xis} and Xi together are regarded as the features.

The observations of the features at previous t− d historical moments are applied to predict xi(t), which is

the value of Xi at the tth moment. The size of the sliding window is denoted as d, which determines

how many historical observations should be adopted. After feature selection via IGRA, the input

of the prediction model can be determined as T = {Xi(t − d), Xi1(t − d), Xi2(t − d), . . . Xis(t − d)},

where the observations of the indicator Xi at the previous t − d historical moments are denoted as

Xi(t − d) = {xi(t − 1), xi(t − 2), . . . xi(t − d)}, the observations of the sth associated indicator Xis at the

previous t − d historical moments are denoted as Xis(t − d) = {xis(t − 1), xis(t − 2), . . . xis(t − d)}.

2.2. Water Quality Prediction Based on LSTM

LSTM was proposed by Hochreiter and Schmidhuber in 1997 [22]. It is a new kind of RNN,

which is faster and easier to converge to the optimal solution than other traditional neural networks

when dealing with time sequence prediction problems. A water quality prediction model based

on LSTM is established in Figure 1. The inputs are observations of Xi and U = {Xi1, Xi2, . . . Xis}

at previous t − d historical moments denoted as T. The output is the prediction value of Xi at the

tth moment denoted as xi(t). The model consists of three layers: the input layer, the hidden layer,

and the output layer. The weight between the input layer and the hidden layer is represented as Wih.

The neurons of the hidden layer are denoted as H = (h1, h2, . . . , hj), where the jth neuron of the hidden

layer is expressed as hj. The weight within the hidden layer is denoted as Whh. The weight between

the hidden layer and output layer is represented as Who.

Figure 1. Water quality prediction model based on LSTM.

The calculation of the model is shown as follows:

hn = H(WihT + Whhhn−1 + bh) (10)

xi(t) = Who H + by (11)

In the above formulas, the bias vector of the hidden layer is denoted as bh and the bias vector of

the output layer is denoted as by.

Each neuron of hidden layer in Figure 1 consists of three gates: the input gate, the output gate,

and the forget gate. The structure of LSTM neuron is shown in Figure 2.
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Figure 2. Structure of LSTM neuron.

In Figure 2, the forget gate determines which part of the information should be forgotten according

to the current input xi(t − d), the last moment state of the neuron ct−d+1 and the last moment output

of the jth neuron hj(t − d + 1) in the hidden layer. The input gate determines which part of the

information should be the input of the current moment state ct−d according to xi(t − d), ct−d+1 and

hj(t − d + 1). The output gate determines the output of the current moment state according to the ct−d,

hj(t − d + 1) and xi(t − d).

The calculation of the forget gate is shown as follows:

F = σ(W f ixi(t − d) + W f cct−d+1 + W f hhj(t − d + 1) + b f ) (12)

The calculation of the input gate is shown as follows:

I = σ(WIixi(t − d) + WIcct−d+1 + WIhhj(t − d + 1) + bI) (13)

The calculation of the update state in the neuron is shown as follows:

ct = F ∗ ct−d+1 + I ∗ g(Wcixi(t − d) + Wchhj(t − d + 1) + Wccct−d+1 + bc) (14)

The calculation of the output gate is shown as follows:

O = σ(Woixi(t − d) + Whhhj(t − d + 1) + Wocct−d+1 + bo) (15)

The calculation of the hidden layer at the tth moment is shown as follows:

hj(t − d) = ot ∗ P(ct−d+1) (16)

In the above formulas, the sigmoid function is represented as σ. g and P are the extensions of stand

sigmoid function with the value ranges of [−2, 2] and [−1, 1], respectively. W f i, W f c, and W f h are the

weights between the forget gate and the input layer, the state unit, the hidden layer, respectively. WIi,

WIc and WIh are the weights between the input gate and the input layer, the state unit, the hidden layer,

respectively. Wci, Wch, and Wcc are the weights between the state cell and the input layer, the hidden

layer, the last moment state of the state cell, respectively. Woi and Woc are the weights between the

output gate and the input layer, the state cell, respectively. The bias vectors of the forget gate, input

gate, the state cell and the output layer are denoted as b f , bI , bc, bo, respectively. ∗ stands for the

scalar product.

The selective memory function of LSTM is implemented by the gating mechanism that makes

LSTM more suitable for dealing with time sequence prediction problems than other traditional neural



Water 2018, 10, 1148 6 of 11

networks. The water quality prediction model based on LSTM can take full advantage of the time

sequence of the water quality information to improve the accuracy of prediction.

2.3. Water Quality Prediction Method Based on IGRA and LSTM

The procedure of water quality prediction method based on IGRA and LSTM is shown in Figure 3.

In order to take full advantage of the multivariate correlation and time sequence of water quality

information, the method in Section 2.1 is applied to select features from water quality information and

the method in Section 2.2 is adopted to establish a water quality prediction model.

The specific steps for the prediction of the water quality indicator Xi are shown as follows:

Step 1. Exclude outliers based on Pauta criterion and normalize datasets.

Step 2. Calculate the correlation between Xi and other water quality indicators by IGRA.

Step 3. Select a set of water quality indicators U including larger absolute values of correlation about

Xi. After that, construct a training set D.

Step 4. Establish the water quality prediction model based on LSTM, train the model by D until the

loss function of the model converges.

Step 5. Input the observations T of Xi and U at previous t − d historical moments to the model to

acquire the prediction value xi(t) of Xi at the tth moment.

i
X

U

D

U

t d−

( )
i
x t

T

i
X

D

i
X

 

Figure 3. Flow chart of water quality prediction method based on IGRA and LSTM.
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3. Results and Discussion

The experiment is implemented by advanced neural network toolkit Keras and TensorFlow.

From our previous work [23], the optimal number of neuron nodes for each layer is 3, 8, and 1.

The number of epochs is set to 50 and the proportion of training set and test set is set to 8:2.

The proposed method is compared with other similar methods in two actual water quality datasets:

Tai Lake and Victoria Bay.

3.1. Datasets

Tai Lake is the third largest fresh water lake in China, with a perimeter of about 400 kilometers.

In recent decades, the industry and agriculture in the coastal areas of Tai Lake has developed rapidly,

the water quality has been seriously polluted. In 2000, only 15% of the water bodies weren’t polluted,

and the rest suffered varying degrees of pollution. The dataset of Tai Lake is composed of 648 monthly

historical monitoring data collected from 8 monitoring stations between 2000 and 2006. It includes

10 water quality indicators: Total Nitrogen (TN), Total Phosphorus (TP), Ammonia Nitrogen (NH3-N),

Suspended Solids (SS), Water Temperature (WT), Dissolved Oxygen (DO), Hydrogen Ion Concentration

(pH), Transparency, Chloride (CL), and Precipitation.

Victoria Bay is the harbour between the Kowloon Peninsula and the Hong Kong Island in China.

The area is about 41.88 km2. It was formed more than 7000 years ago when the sea level was lower than

it is now. In recent years, the content of DO in Vitoria Bay has been lower than the standard. The dataset

of Victoria Bay is composed of 4283 historical monitoring data collected from 8 monitoring stations

every two weeks between 1986 and 2016. It includes 9 water quality indicators: Escherichia coli (E. coli),

5th Biochemical Oxygen Demand (BOD5), NH3-N, Nitrite, Phosphate, pH, WT, Salinity, and DO.

It’s important to make water quality predictions for Tai Lake and Victoria Bay. The water quality

indicator predicted in this experiment is DO.

3.2. Results of Feature Selection

This paper applies different relational analysis methods to calculate the correlation between DO

and other indicators. The results of Tai Lake and Victoria Bay are shown in Tables 1 and 2.

Table 1. The relational analysis results of Tai Lake.

WT Precipitation pH NH3-N Transparency SS TP CL TN

literature [20] 0.496 0.524 0.667 0.474 0.499 0.553 0.467 0.656 0.521
literature [21] −0.166 0.018 0.112 −0.045 −0.043 −0.024 −0.021 0.023 −0.001

IGRA 0.566 0.347 0.183 −0.099 −0.088 −0.050 −0.045 0.044 −0.003

Table 2. The relational analysis results of Victoria Bay.

Phosphate WT Nitrite Salinity NH3-N BOD5 pH E. coli

literature [20] 0.499 0.581 0.579 0.464 0. 590 0.565 0.460 0.554
literature [21] −0.043 −0.166 0.257 0.018 −0.048 −0.017 0.011 −0.006

IGRA −0.879 0.579 0.519 0.456 −0.085 −0.035 0.021 −0.013

It is obvious from Tables 1 and 2 that compared with grey relational analysis used in literature [20],

IGRA cannot only measure the positive correlation but also the negative correlations between DO and

other water quality indicators. Compared with grey relational analysis algorithm in terms of similarity

in literature [21], the results of IGRA in term of the similarity and proximity are more consistent with

the results of qualitative analysis.

To further verify the effectiveness of IGRA, 4 indicators in the above tables, each of which has

larger absolute correlation with DO, are selected as input features for the prediction model based on

LSTM. The prediction errors of Tai Lake and Victoria are shown in Tables 3 and 4.
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Table 3. Feature selection and prediction error of Tai Lake.

Features RMSE

literature [23] DO 0.089
literature [20] DO, pH, CL, SS 0.082
literature [21] DO, WT, pH, NH3-N 0.079

IGRA DO, WT, Precipitation, pH 0.074

Table 4. Feature selection and prediction error of Victoria Bay.

Features RMSE

literature [23] DO 0.084
literature [20] DO, NH3-N, Nitrite, BOD5 0.083
literature [21] DO, Nitrite, WT, NH3-N 0.071

IGRA DO, Phosphate, WT, Nitrite 0.065

From Tables 3 and 4, compared with literature [23], which adopts only one feature DO for

prediction, the results of the method with multiple features as inputs are better. Compared with the

grey relational analysis algorithms in literature [20] and literature [21], the prediction error (root mean

square error, RMSE) is smaller when the features are selected by IGRA. It suggests that IGRA can

fully take advantage of the multivariate correlation of water quality information, which is effective for

improving the accuracy of prediction.

3.3. Results of Water Quality Prediction

The result of feature selection for Tai Lake through IGRA is shown in the fourth row of Table 3.

The result of feature selection for Victoria Bay is shown in the fourth row of Table 4. The comparison

among DO prediction results of LSTM, Back Propagation (BP) neural network, and Auto Regressive

Integrated Moving Average (ARIMA) model with the same inputs are shown in Figures 4 and 5.

RMSE of methods mentioned above is shown in Figure 6.

Figure 4. Prediction results of Tai Lake.
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Figure 5. Prediction results of Victoria Bay.

Figure 6. RMSE of BP, LSTM and ARIMA.

The prediction results in a random window of sequential sampling points from the test data set

are shown in Figures 4 and 5. According to these, the results of LSTM are closer to the real observations.

It indicates that the prediction model based on LSTM is more accurate than other models based on

BP or ARIMA. The RMSE for the entire test data set is shown in Figure 6. According to the Figure 6,

the RMSE of LSTM is lower than that of BP and ARIMA in Tai Lake and Victoria Bay. It suggests that

LSTM can fully take advantage of the time sequence of water quality information, which is effective

for improving the accuracy of prediction.

4. Conclusions

Water quality prediction has great significance for water environment protection. Considering the

multivariate correlation and time sequence of water quality information, a water quality prediction

method based on IGRA and LSTM is proposed in this paper. First, IGRA is proposed to select features

that are the indicators with a larger absolute correlation with the indicator to predict. In the second

place, a prediction model based on LSTM is established, whose inputs are the indicators obtained
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by IGRA. The proposed method is compared with other similar methods in two actual water quality

datasets: Tai Lake and Victoria Bay.

The experiment results demonstrate the following: (a) that IGRA can take full advantage of

the multivariate correlation of water quality information and effectively select out the main impact

indicators for the indicator to predict, and (b) that the prediction model based on LSTM can make the

best use of the time sequence of water quality information and improve the accuracy of prediction.

However, enough water quality indicators are required to use IGRA to make feature selection, and a

large amount of historical monitoring data is required for training prediction models based on LSTM.

In addition, the training time is somewhat long. Due to the complex structure of LSTM neurons,

without the help of GPU, a training cycle which includes 100 iterations takes about 30 min. It is

considered to improve the structure of the neurons for shorter training time in the future.
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