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Abstract: Water quality analysis is a crucial step in water resources management and needs to be

addressed urgently to control any pollution that may adversely affect the ecosystem and to ensure

the environmental standards are being met. Thus, this work is an attempt to develop an efficient

model using support vector machine (SVM) to predict the water quality of Langat River Basin

through the analysis of the data of six parameters of dual reservoirs that are located in the catchment.

The proposed model could be considered as an effective tool for identifying the water quality status

for the river catchment area. In addition, the major advantage of the proposed model is that it could

be useful for ungauged catchments or those lacking enough numbers of monitoring stations for water

quality parameters. These parameters, namely pH, Suspended Solids (SS), Dissolved Oxygen (DO),

Ammonia Nitrogen (AN), Chemical Oxygen Demand (COD), and Biochemical Oxygen Demand

(BOD) were provided by the Malaysian Department of Environment (DOE). The differences between

dual scenarios 1 and 2 depend on the information from prior stations to forecast DO levels for

succeeding sites (Scenario 2). This scheme has the capacity to simulate water-quality accurately, with

small prediction errors. The resulting correlation coefficient has maximum values of 0.998 and 0.979

after the application of Scenario 1. The approach with Type 1 SVM regression along with 10-fold

cross-validation methods worked to generate precise results. The MSE value was found to be between

0.004 and 0.681, with Scenario 1 showing a better outcome.

Keywords: support vector machine; water quality; dissolved oxygen

1. Introduction

Water plays a crucial role in environmental and social life. It occupies the largest area of our

planet, and therefore, among all other natural resources, water resources gain the most special place.

However, the ongoing increase in urbanization and industrialization processes generate wide ranges

of hazardous contaminants that deteriorate the quality of river waters. The produced wastes are
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discharged into water bodies in different forms, for instance, organic pollutants (pesticides, insecticides,

phenols, hydrocarbons, etc.), heavy metals (lead, arsenic, copper, cadmium mercury, etc.), and microbial

pathogens. All these water pollutants cause adverse effects on public health and the surrounding

wildlife. Therefore, there is an exigent demand to monitor the levels of water quality. Rapid population

growth and climate change in the past few decades resulted in the scarcity of fresh water, as well as

degrading the water-quality levels across the globe [1]. The Water Quality Index (WQI) summarizes

water quality information in a readily-understood scale format. Index numbers range between 1 and

100, wherein higher numbers indicate better water-quality levels. Generally, river stations that score 80

or more indicate that water quality meets expectations for “clean rivers”, stations that score from 40 to

80 indicate “slightly polluted rivers”, whereas river stations that score below 40 indicate that the water

quality expectations are not being met, and are regarded as “polluted rivers”.

In past research, various water-quality parameters are integrated into a general index that forms

the water-quality index (WQI). The development of WQI and its use in assessing water-quality levels

have risen exponentially [2]. One of the challenges faced in recent researches on water quality is the

need to reduce costs while developing smarter computer-aided means of assessing water-quality levels.

WQI represents the best means to communicate and categorize water-quality levels in assessments of

water suitability for various applications. Nevertheless, a variety of WQI types have been planned for

quick and efficient assessments of the general level of water quality throughout particular regions.

The WQI scale relied on by the Canadian Council of Ministers of Environment is utilized in Canada

and many other countries [3].

1.1. Background

Polluted water has been widely spread all over the globe in the past few decades, and

thus water-quality level assessment and forecasting have become more essential to the ecological

management organisations of many countries. A set of six parameters is typically used in DOE

analyses for evaluating surface water characteristics in terms of pH, Suspended Solids (SS), Dissolved

Oxygen (DO), Ammonia Nitrogen (AN), Chemical Oxygen Demand (COD), and Biochemical Oxygen

Demand (BOD). The prediction of water-quality parameters based on accurate values could enable

better early cautionary of contaminated water and timely decision-making. To this day, dual scenarios

are extensively employed to forecast water-quality trends. Scenario 1 is designed to validate the DO

prediction scheme at each station according to five input parameters, while Scenario 2 is designed to

validate the DO prediction scheme according to five input parameters as well as DO predictions from

a prior (upstream) station [4–6].

In this study, time-series predictive techniques for water quality were discussed, which predict the

value of water quality parameters at interval t through use of preceding time series, based on similar

and other parameters. For many decades, numerous statistical analyses and AI-based modelling

strategies have been used to influence time-series predictive techniques for water quality and in water

resources management [6–15]. To this day, the term water quality is utilized for describing water

conditions, such as physical, chemical, and biological properties. Among the most important factors

for water quality is the dissolved oxygen (DO), which refers to the presence of oxygen gas molecules

(O2) in terms of mg/L concentrations. Plant and animal species cannot directly utilise the oxygen

that forms part of water molecules (H2O). The dissolved oxygen content can be decreased through

respiration processes, wherein oxygen enters surface water from the air as a photosynthetic product of

river plants. Generally, a constant high level of DO is best for ecosystems.

The level of DO varies according to many factors such as depth, altitude, and season, rates of

flow, water temperatures, and time of the day. Water coursing at increased temperatures and at higher

altitudes normally contains lesser amounts of DO. Moreover, DO levels peak during the daytime,

whereas during night time, the DO levels lower along with the decreased photosynthetic action due

to the oxygen-consuming activities including oxidation and respiration, until just before dawn. DO

levels directly affect fish cultures: (1) At low DO levels (0–2 mg/L), oxygen is insufficient to support
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fish cultures; (2) at middle DO levels (2–4 mg/L), few river fish and insect species can survive; (3) at

higher DO levels (4–7 mg/L), oxygen is sufficient to support diverse river life, particularly cold-water

fish species; (4) For the majority of stream fish, the optimal DO range is 7–11 mg/L. Human activities

that influence DO levels in surface water include the entry of additional oxygen-consuming organic

wastes, including sewage, nutrient additions, changing water flows, rising water temperatures, and

added chemicals [16].

Selangor, Malaysia, has long experience with river water pollution issues linked to land-use trends.

The Langat River forms a principal basin that drains into densely-populated and highly-developed

areas in Selangor. For four decades, the river has served almost half the populace of Selangor as a

water supply and remains a source of hydroelectric power and flood discharge controls. More than

two-thirds of the region’s population resides in the floodplain, which features highly fertile soil for

agricultural as well as for industrial, residential, and recreational purposes. This situation has brought

about conflict between economic development and river ecosystems, which has led to increasing

amounts of wastes in riverine channels [17]. A total of 42 tributaries surveyed in Peninsular Malaysia

are categorised as highly polluted, including Langat River Basin. In 1999, a total of 13 tributaries across

Malaysia along with 36 rivers were polluted as a result of industrial, construction, and agricultural

activities along the tributaries [18]. Until 1990, a total of 48 rivers could still be classified as clean, in

comparison to only 32 that remained clean as of 1999 [15]. Some 60% of all main rivers are subject to

regulation for residential, agricultural, and commercial purposes. The primary pollution sources in

Malaysia that affect its river systems are sewage disposal, discharge from small- and medium-sized

industries that improperly treat effluents, and various land-clearing and earthwork processes. By 1999,

some 42% of all river basins were reportedly contaminated with suspended solids (SS) as a result

of badly planned and controlled land-clearing processes, some 30% with heavy biological oxygen

demand (BOD) due to industrial effluent, and some 28% with ammoniacal nitrogen (AN) due to animal

husbandry activity and domestic disposal of sewage [19].

Surface water pollution has been identified as the primary problem that affects the Langat River.

The expansion of human development in the basin has led to increased wastes entering its channels.

In efforts to prevent further pollution, the Department of Environment (DOE), under Malaysia’s

Ministry of Natural Resources and Environment, has set up telemetry stations all along the river in

a programme that monitors the water-quality levels on a continuing basis. Based on water-quality

data, the water-quality index (WQI) was applied in order to assess water-quality status and river

category. The measure offers a useful basis for forecasting changes in water-quality levels, through

the consideration of several factors. WQI comprises six water-quality level variables, including SS,

pH, AN, dissolved oxygen (DO), chemical oxygen demand (COD), and biochemical oxygen demand

(BOD) [14].

1.2. Problem Statement

The level of pollution has been increasing in Selangor with regards to the increased amounts of

wastes entering the Langat River leading to water shortage within the basin. Numerous sources of

wastes contaminate the Langat River, including emissions of industrial effluent that are 58% of all

pollutants, with 28% discharged from domestic sewage treatment plants, while construction projects

account for some 12% and pig farms only 2% of the total. In 2011, the WQI for Langat River was

between 72 and 75, which led to its classification as a slightly polluted river. WQI remains at a class

I level at the upstream station in the Hulu Langat District prior to the Lui River, which indicates a

low-pollution area. However, WQI changes to a class III level at the downstream station past the Batang

Benar and Balak tributaries [20]. This paper examines the efficiency of Support Vector Machine (SVM)

models in predicting water-quality levels for Langat River within Malaysia. A network was devised

and trained using six major parameters to estimate water-pollutant levels as well as water-quality

levels and classes. Its dataset includes records that have been gathered over the past decade since

2006. Artificial Neural Network (ANN) and Support Vector Machine (SVM) systems have been used to
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forecast water-quality levels. SVM offers more advantages than its ANN equivalents, for it can resolve

small samples in term of nonlinear, high-dimensional, localised minima, and other partial elements.

SVM also features a modular scheme that enables independent implementation of component designs.

This research demonstrates the use of SVM in forecasting water-quality characteristics based on these

six parameters, with dynamic processes masked in the very measurement data.

1.3. Objectives

The objectives and goals of the project are as follows:

(1) To provide effective methods of water-quality prediction to decision makers, towards better water

resource planning and management.

(2) To present a system-independent method of water-quality forecasting that utilises SVM in place

of statistical modelling methods.

(3) To provide recommendations to water-quality management agencies that accord with the research

findings on the Langat River Basin, regarding how such findings may be integrated into ecological

strategies for catchment management.

2. Materials and Methods

2.1. Case Study

The Langat basin (Figure 1) includes a key catchment that provides for raw water supplies and

further resources to some 1.2 million people residing there. Key stretches serve various towns, namely

Kajang, Cheras, Bangi, Putrajaya Government Centre, and so on. Dual reservoirs are located in the

catchment, namely Semenyih and Hulu Langat Dam, along with eight water-treatment plants that

provide for safe and clean and water supplies. Langat River features a total catchment area of some

2350 km2 and is located at latitudes between 2◦40′M 152” N and 3◦16′M 15” N and along longitudes

between 101◦19′M 20” E and 102◦1′M 10” E. The principal river has a length of 141 km that stretches

some 40 km east of the capital of Kuala Lumpur and features several tributaries, the largest of which are

the Lui, Semenyih, and Beranang Rivers. There are two reservoirs that the Langat and Semenyih dams

supply via particular catchment. The newer Langat dam was constructed in 1981 with a catchment area

totalling 54 km2, whereas Semenyih was constructed in 1942 and features a catchment area totalling

41 km2. The Langat River represents more than just a supply of water, for it serves further purposes

that include recreational activities, fishing, irrigation, effluent discharge, as well as sand mining. As a

result of the growth of numerous activities along its streams, it has become necessary to evaluate

related water demand and resource supply.

This research investigates water-quality forecast methods for the Langat catchment, which drains

into three major tributaries, the Langat, Semenyih, and Labu Rivers. Nevertheless, this research only

covers the upper portion of the Langat catchment. The primary Langat tributary flows some 182 km

from the major range (Banjaran Titiwangsa) in the northeast of Hulu, through Langat District in the

south-southwest direction, and drains via the Straits of Malacca. The Langat and Semenyih Rivers

both originate in hilly and forested regions along the western slopes of Banjaran Titiwangsa, which

is northeast of the Hulu Langat District. Semenyih River runs mainly from the Semenyih Dam, in a

stretch that flows south-southwest into and through the towns of Semenyih and Bangi Lama, which

then joins with the Langat River some 4 km east of Bangi Lama. Semenyih River is joined by the

Beranang and Pajam Rivers as well, and both originate in the northern area of the Seremban District,

namely Negeri Sembilan. The data has been gathered from seven water stations along the Langat River.
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Figure 1. Water station on Langat River basin map.

2.2. Select Appropriate Inputs

The water-quality data utilized in this research was obtained through the Malaysian Department

of Environment (DOE). Time-series data for selected parameter sets through four stations from 2006

until 2016 were utilized in this research. Six water-quality parameters were chosen for SVM modelling

in this research, specifically pH, Suspended Solids (SS), Dissolved Oxygen (DO), Ammonia Nitrogen

(AN), Chemical Oxygen Demand (COD), and Biochemical Oxygen Demand (BOD). Simple statistics

for measured water-quality parameters in the Langat River from 2006 to 2016 are displayed in Table 1.

Table 1. Basic statistics of the measured water quality parameter in Langat River.

Sampling
Site

Basic
Statistic

DO
(mg/L)

BOD
(mg/L)

COD
(mg/L)

pH
SS

(mg/L)
AN

(mg/L)

Station 1

Mean 4.34 6.29 29.77 6.46 160.45 0.59
Min 0.83 1 4 2.41 0.1 0.01
Max 7.53 23 99 7.36 1050 1.69
SD 1.354 4.691 17.07 0.69 199 0.443
CV 31.2 74.5 57.3 10.6 124 74.9

Station 2

Mean 4.34 5.77 25.54 6.58 121.3 0.96
Min 0.87 1 7 3.8 1 0.01
Max 7.5 24 70 7.92 821 3.73
SD 1.11 3.59 12.74 0.70 116.58 0.662
CV 25.67 62.25 49.90 10.70 96.11 69.23

Station 3

Mean 5.81 5.29 23.72 7.01 182.9 1.11
Min 3.55 1 2 6.10 5 0.01
Max 7.62 17 66 8.28 1400 5.75
SD 0.77 2.50 11.87 0.323 202.94 0.995
CV 13.2 47.34 50.06 4.61 110.96 90.01

Station 4

Mean 5.50 8.03 30.50 7.07 272.44 1.56
Min 2.39 2 5 5.84 3 0.01
Max 8.2 27 84.10 7.91 1910 6.65
SD 1.19 4.84 15.24 0.29 350.52 1.27
CV 21.65 60.29 49.9 4.20 128.66 81.44
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2.3. Structure of SVM

Support vectors are the training points that are the nearest to the separating hyperplane and

the basic concept of SVM is illustrated in Figure 2. There are decision functions that are accountable

for example, hyperplanes that are able to delineate the positive and negative data that has marked

the maximum margins. This shows the range from the nearest positive sample to a hyperplane and the

range between the nearest negative sample and the hyperplane shall be maximized [21].

y(x) = wTφ(x) + b (1)

where, φ(x) represents the high dimensional feature spaces, which is nonlinearly mapped from the

input space x. The coefficient are w and b are estimated by minimizing the regularized function R(C):

R(C) = C
1

N

N
∑

i=1

Lε(di, yi) +
1

2
‖w‖2 (2)

where

Lε(di, yi) =

{

∣

∣

∣di − yi

∣

∣

∣− ε i f
∣

∣

∣di − yi

∣

∣

∣ ≥ ε

0 otherwise
(3)

To obtain the estimation of w and b, Equation (2) is transformed to the primal function given by

Equation (4) by introducing the positive slack variables ξi and ξ∗
i

as follows:

Minimize : R(C) = C















N
∑

i=1

(

ξi + ξ
∗
i

)















+
1

2
‖w‖2 (4)

Subject to



















di −w∅(xi) − bi ≤ ε+ ξi, i = 1, 2, . . . , N

w∅(xi) + bi − yi ≤ ε+ ξ
∗
i
, i = 1, 2, . . . , N

ξi, ξ
∗
i
≥ 0 i = 1, 2, . . . , N

The first term (l/2‖w‖2) is the weights vector norm, di the desired value, and C is referred as

regularized constant determining the tradeoff between the empirical error and the regularized term. ε

is called the tube size of SVM as shown in Figure 2.

𝑦(𝑥) = 𝑤𝑇𝜙(𝑥) + 𝑏
ϕ 𝑅(𝐶)

                             𝑅(𝐶) = 𝐶 1𝑁 ∑ 𝐿𝜀(𝑑𝑖 , 𝑦𝑖)𝑁
𝑖=1 + 12 ‖𝑤‖2

𝐿𝜀(𝑑𝑖 , 𝑦𝑖) = {|𝑑𝑖 − 𝑦𝑖| − 𝜀                  𝑖𝑓 |𝑑𝑖 − 𝑦𝑖| ≥ 𝜀  0                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       
𝜉𝑖 𝜉𝑖∗  𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒:    𝑅(𝐶) = 𝐶 (∑(𝜉𝑖 + 𝜉𝑖∗)𝑁

𝑖=1 ) + 12 ‖𝑤‖2
𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {𝑑𝑖 − 𝑤∅(𝑥𝑖) − 𝑏𝑖− ≤ 𝜀 + 𝜉𝑖 , 𝑖 = 1,2, … , 𝑁𝑤∅(𝑥𝑖) + 𝑏𝑖 − 𝑦𝑖  ≤ 𝜀 + 𝜉𝑖∗, 𝑖 = 1,2, … , 𝑁𝜉𝑖 , 𝜉𝑖∗  ≥ 0 𝑖 = 1,2, … , 𝑁

(l/2‖ ‖2) is the weights vector norm, 𝑑𝑖 𝐶𝜀

Figure 2. Hyperplane and the basic concept of support vector machine (SVM) [21].

It is similar to the equation accuracy that is related in the training data. The multipliers that are

non zero are known as support vectors. This is where the variable slacks and brought into the study. ξi
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and ξ∗
i

are introduced and by introducing this and by exploiting constraint optimality the function

decision by Equation (1) gives the following:

y(x) =
N
∑

i=1

(

αi − α
∗
i

)

K (x, xi) + b (5)

In Equation (5), αi and α∗
i
, are the so-called Lagrange multipliers. They satisfy the equalities αi, ×

α∗
i
= 0, αi, ≥0 and α∗

i
≥ 0 where, i = 1, 2, . . . , n and are obtained by maximizing the dual function of

Equation (4) which has the following form:

R
(

αi,α
∗
i

)

=
N
∑

i=1

di

(

αi − α
∗
i

)

− ε

N
∑

i=1

(

αi + α
∗
i

)

−
1

2

N
∑

i=1

N
∑

j=1

di

(

αi − α
∗
i

) (

α j − α
∗
j

)

K
(

xi, x j

)

(6)

with the constraints
N
∑

i=1

(αi) =
N
∑

i=1

(

α∗i

)

and αi,α
∗
i ∈ [0, C], i = 1, 2, . . . , N (7)

K
(

xi, x j

)

is defined as the kernel function. The value of the kernel is equal to the inner product of

two vectors xi and x j in the feature space φ(xi) and φ(xj), that is, K
(

xi, x j

)

= φ(xi) × φ(xj).

Four common kernel function types of SVM are given as follows:

Linear kernel : K
(

xi, x j

)

= xT
i × x j (8)

Polynomial kernel : K
(

xi, x j

)

=
(

γxT
i × x j + r

)d
, γ > 0 (9)

Radial basis kernel : K
(

xi, x j

)

= exp(−‖xi − x j‖
2), γ > 0 (10)

Sigmoid kernel : k
(

xi, x j

)

= tanh
(

xT
i × x j + r

)

(11)

Here, γ, r and d are kernel parameters. The kernel parameters should be carefully chosen as

it implicitly defines the structure of the high dimensional feature space φ(x) and thus controls the

complexity of the final solution.

There are two types of SVM regression; both have the general formula given in Equation (1). The

first type of SVM regression is known as Type 1 or Epsilon. This type of error function is given by the

formula shown in Equation (4). The second type of regression is known as Nu.

2.4. Statistical Indexes

Model performances were assessed based on three statistical indexes.

2.4.1. Coefficient of Efficiency (CE)

To assess model performance, Coefficient of Efficiency (CE) was utilized [5].

CE = 1−

∑n
i=1 (m− p)2

∑n
i=1 (m−m)2

(12)

wherein n is the number of observations, m and p correspond to the measured and predicted data,

while m denotes the average of the measured data.
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2.4.2. Mean Square Error (MSE)

Mean square error (MSE) is utilized to establish and define the fit of the network outputs to the

desired scheme. Lower values for MSE enable higher performance (values nearer 0 indicate reliable

and accurate results), which is expressed as follows:

MSE =
1

n

n
∑

i=1

(m− p)2 (13)

2.4.3. Coefficient of Correlation (CC)

Coefficient of correlation (CC) is utilized to assess the linear relationship between the observed

and predicted data. It is defined as follows:

CC =

∑n
i=1(m−m)(p− p)

√

∑n
i=1 (m−m)2∑n

i=1(m− p)2

(14)

2.5. Sensitivity Analysis

To assess the effect of input parameters on this model, dual evaluation processes are utilized.

Firstly, performance evaluations for various possible parameter combinations are investigated using

Mean Square Error (MSE) and Coefficient of Efficiency (CE) and methods, in order to establish the

most effective parameters for the output. Generally, six networks were compared, each of which

demonstrate the significance of eliminated parameters that influence network accuracy [22].

3. Results and Discussion

3.1. Kernel Functions of SVM

In this study, SVM was developed with the use of various kernel function types such as Linear,

Polynomial, Radial Basis, and Sigmoid functions. Trial and error method were conducted in order to

establish the best types of kernel functions through cross-validation-based processes. Table 2 displays

a comparative analysis of predictive performances for the SVM model based on four different kernel

function types. Regarding the coefficient of correlation value when utilising RBF kernel, the predictive

precision of the test data was most reliable at around 0.801, followed by the Polynomial 0.496, Linear

0.438, and Sigmoid 0.336 kernels.

Table 2. Performance of SVM model with four kernel function.

Kernel Function
Mean Squared Error Correlation Coefficient

Training Testing Training Testing

Linear 0.229 0.189 0.564 0.438
Polynomial 0.177 0.217 0.732 0.496

RBF 0.177 0.322 0.998 0.801
Sigmoid 155.886 418.735 0.105 0.336

3.2. Epsilon-RBF Model and Nu-RBF Model

The search for model parameter sets does have a vital role in acquiring reliable predictive

performances for SVM. Settings for hyper-parameters (C, γ) and kernel parameters (Nu and Epsilon)

are considered to be vital in shaping SVM generalization performances (approximation accuracy).

In the search for the best SVM architecture for particular applications, dual test types exist for

RBF kernel functions, namely Epsilon (ε) and Nu. Epsilon-RBF is utilized for predictions, so C is set to

8.5 and γ = 8, with ε set to values ranging from 0.001 to 0.5. Results for model performance in testing
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and training are displayed in Table 3, which shows that MSE increases with increases in values of ε

while every correlation coefficient value and the numbers of support vectors decreases. Lastly, an ε

value of 0.001 yields minimal generalization errors, with acceptable numbers of the support vector (36)

selected. Where the Nu model increases, the predictive precision of the test data will gradually rise to

its highest value (at Nu = 0.4), with the remaining values set as displayed. Table 4 also displays the

numbers that associate with support vectors increasing as Nu values increase. In accordance with

these results, it is noted that the best-fitting values for correlation coefficient and MSE correspond to

0.998 and 0.001, respectively, where obtained by utilizing Nu-RBF Model with Gamma equal to 8 and

Capacity equal to 8.5.

Table 3. The result of various Epsilon parameter ε, of SVM model where C = 8.5 and gamma = 0.2 of

total behavior prediction model.

ε

Mean Error Squared Correlation Coefficient
No. of Support Vectors

(Train) (Test) (Train) (Test) (Overall)

0.001 0.008 0.305 0.976 0.286 0.785 36
0.1 0.030 0.353 0.910 0.198 0.703 27
0.2 0.074 0.226 0.802 0.166 0.654 14
0.3 0.118 0.212 0.688 0.130 0.567 9
0.4 0.144 0.222 0.633 0.126 0.519 6
0.5 0.206 0.275 0.538 0.104 0.443 5

Table 4. Nu-RBF performance utilizing different values of Nu with fixed (gamma = 8, capacity = 8.5) of

Total behavior prediction model.

Nu
Mean Error Squared Correlation Coefficient

No. of Support Vectors
(Train) (Test) (Train) (Test) (Overall)

0.001 0.357 0.363 0.416 0.057 0.339 2
0.1 0.018 0.340 0.946 0.241 0.743 33
0.2 0.003 0.302 0.992 0.306 0.802 41
0.3 0.001 0.326 0.998 0.272 0.797 41
0.4 0.001 0.321 0.998 0.278 0.801 44
0.5 0.001 0.331 0.998 0.268 0.795 42

3.3. Optimising the Parameters of SVM

There are two essential parameters that are required to be selected in order to achieve the best

structure of the SVM model. These parameters are gamma γ and capacity parameter C. The prediction

accuracy shows a very high sensitivity to the selection of C, as a small value of C can possibly cause

the model to undervalue the target at some stage in the training data. This is primarily because the

use of moderately small weight in the training data will lead to larger values of the predictor as the

model is examined through the testing dataset and vice-versa. In addition to this, when the value

of C is large, its significance will diminish when the mapping between the input and the output is

detected. On the contrary, a large value of C could indicate an extensive range of support vector’s

values. In accordance to it, the supplementary data records can possibly be selected for the optimisation

of the support vectors. Taking this aspect into consideration, the optimal values for γ and C need to

be selected through numerous trials and error methods. The selection of the optimal values of these

parameters will substantially improve the probability to attain a high level of accuracy in estimating

the desired data.

In the present study, the objective is to ascertain the appropriate values of the parameters γ and C.

The replication processes that involved a number of parameters were also considered as the highlights

of SVM and regarded as a key step in behaviour prediction model. At the initial stage of building the

recommended model and throughout the training session of the input-output data, a constant value of
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γ equal to 0.1 was considered, while the values of C were changeable and in the range of 0 and 10.

As a result, the prediction error was calculated as MSE, while correlation coefficient was computed as

the number of the support vectors. Figure 3 illustrates that an increase in the used value of C leads

to a small decrease in the value of MSE and in the number of the support vectors but, in contrast,

causes an increase in the value of correlation coefficient. Furthermore, by keeping the emphasis of

the observation on the parameter C, it was found that the highest correlation coefficient value was

0.998 and the lowest value of MSE point was 0.001. According to the observation, with an increase

in the value of parameter C, there is a marginal reduction in the value of MSE, and then it shows an

upward trend after the value of C reaches the optimal point. Therefore, it is advantageous to choose

the parameter C to be 8.5 for station 4, and the remaining figures for every other station. In reality,

it is important to first ascertain the applicable values for the hyper parameters C and γ because it will

be a significant step in the implementation of any SVM model. Hence, conducting a trial and error

procedure is important and necessary. The generalised accuracy has been assessed using different

values of kernel hyper in relation to this context. Due to the shortcoming of parameter γ, it was

resolved that its optimal value will be searched so that it is within the range of [0.001, 10] at increments

of 1 for γ, while the values are fixed for C (C = 8.5) and Nu (Nu = 0.3). As a consequence, the optimal

selection value of γ is derived using 10-fold cross-validation that involves repetition of ten times with

the purpose of improving the reliability of the model outcomes. The final architecture of the model in

the competition during the training session is such that the parameters yield minimum errors during

the course of validation. The relationship between correlation coefficient and γ is presented in Figure 4.

The figure illustrates where the value of correlation coefficient begins to rise as the value of γ increases,

and attains its peak value at 8 for station 4. Thereafter, the selection of values of parameters takes place

that offers the minimum generalisation error. For the model in training and forecasting phase, the

best outcome is taken into consideration when choosing γ = 8 with a satisfactory number of support

vectors 41 for station 4, while the remaining figures are for other stations.

γ

γ
γ

γ
γ

γ

 

Figure 3. The result of various capacity parameter C, of SVM model, for (a) station 1; (b) station 2;

(c) station 3; and (d) station 4.
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 Figure 4. The result of various capacity parameter Gamma, of SVM for (a) station 1; (b) station 2;

(c) station 3; and (d) station 4.

3.4. SVM Model Development

The cross validation procedure is regarded as one of the extensively used approaches for assessing

the values of the model architecture parameters. The training dataset is unsystematically fragmented

into a set number of V-folds (V1, V2, . . . Vn) so that the V-folds cross validation can be used. The chosen

SVM model is then implemented in sequence as per the observations in relation to the V-1 folds.

The expected results of the performing architecture can then be attained using the process with specific

parameters on the sample V, so that the error defined by one of the statistical indices can be figured

out. In other words, the sample or fold that was not visible during training of the SVM model was

identified. The key limitation of this procedure is that the average accuracy for the v times causes a

tendency for a consistent measure model error and impacts its stability, that is, the strength of the

model for analysing the unseen session data. As shown in Table 5, the RMSE and MAE values attained

by using the 10-fold cross-validation results in the best goodness of fit and performance. After the

selection of the optimal kernel parameters, the Nu-RBF model is selected as the optimal model for

evaluating the whole training data. Figure 5 presents a comparison of actual versus expected behaviour

of DO concentration for testing data set at station 4: (a) Nu-SVM type model; (b) Epsilon-SVM type

model. It can be seen that the both proposed model capable of predicting DO accurately but, in general,

Nu-SVM outperformed Epsilon-SVM. While Figure 6 depicts the comparison between actual and

predicted value of DO for all stations during testing.
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Table 5. Statistical evaluation using 3, 5, 7, 10, and 15-fold cross-validation for Epsilon-RBF and

Nu-RBF models.

Statistical Evaluation
V-Fold

3 5 7 10 15

ε-RBF Model:

RMSE 0.458 0.164 0.167 0.164 0.164
MAE 0.393 0.538 0.530 0.538 0.538
CR 0.6050 0.933 0.933 0.933 0.933

Nu-RBF model:

RMSE 0.089 0.070 0.089 0.089 0.077
MAE 0.648 0.646 0.646 0.648 0.632
CR 0.980 0.986 0.980 0.986 0.984

ε

 

Figure 5. Comparison of actual versus predicted behavior Dissolved Oxygen (DO) concentration:

(a) Nu-SVM type model and (b) Epsilon-SVM type model.

ε

  

Figure 6. Cont.
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Figure 6. Comparison between actual and predicted value for DO.

3.5. Compression between Scenario One and Two

The compression between the two scenarios reveals that scenario 1 yields a more accurate result

than scenario 2 in predicting DO in a two-week time horizon. Tables 6 and 7 present the results.

As observed in Table 6, the sensitivity analysis produces more accurate results when all the input

parameters are included. In scenario 1, the best model is the first model, which produces the highest

value for correlation coefficient equal to 0.99 while the lowest mean square error value is equal to

0.001 at station 4 after including all the six parameters as input to the model. Moreover, this model

performed well in all stations where the mean square error is in the range of 0.001 to 0.44 and the

correlation coefficient is in the range of 0.93 to 0.99 for all stations. Figure 7 presents a Scatter plot of

the observed and expected values for Scenario 1 for all four stations. On the other hand, for scenario 2,

most model proposed model performed poorly in predicting DO except the model where the predicted

DO from all previous three stations were used as input to predict DO as station 4 which is considered

as the best model that produces the highest value for correlation coefficient equal to 0.979. Table 8

depicts the performance of the proposed model in prediction DO in different horizon at all stations in

terms of maximum residual error.

Table 6. Correlation coefficient for Scenario 1.

Model Input Parameters
Correlation Coefficient Mean Square Error

DO 1 DO 2 DO 3 DO 4 DO 1 DO 2 DO 3 DO 4

1 DO, BOD, COD, SS, pH, AN 0.99 0.99 0.93 0.95 0.004 0.044 0.035 0.001
2 DO, BOD, COD, SS, pH 0.92 0.85 0.64 0.72 0.141 0.281 0.212 0.008
3 DO, BOD, COD, SS, AN 0.90 0.82 0.82 0.73 0.175 0.131 0.203 0.071
4 DO, BOD, COD, pH, AN 0.97 0.94 0.88 0.92 0.058 0.084 0.052 0.009
5 DO, BOD, SS, pH, AN 0.95 0.91 0.83 0.85 0.081 0.124 0.105 0.040
6 DO, COD, SS, pH, AN 0.96 0.92 0.79 0.82 0.068 0.160 0.135 0.038

Table 7. Results for scenario 2.

Model Input Parameters
CC

DO 2 DO 3 DO 4

1 DO 1 0.279
2 DO 1 0.236
3 DO 2 0.258
4 DO 1, DO2 0.571
5 DO 1 0.503
6 DO 2 0.344
7 DO 3 0.361
8 DO 1, DO2 0.746
9 DO 1, DO3 0.656

10 DO 2, DO3 0.701
11 DO 1, DO2, DO 3 0.979
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Figure 7. Scatter plots between the observed and predicted value for Scenario 1.

Table 8. Maximum residual error for DO.

Station
Maximum Residual Error

1 Week 2 Weeks Month

1 2.264 2.068 1.409
2 1.924 0.634 0.525
3 3.992 3.04 2.559
4 0.994 1.129 0.450

4. Conclusions

The prediction of water quality is very vital in monitoring the pollution and in sustaining the

availability of potable water resources. Undoubtedly, it can afford early warnings when the water

quality changes as well as it can reduce the adverse consequences resulting from the poor water quality.

Herein, the SVM approach was introduced to estimate the water quality of Langat River Basin using

six parameters. The presented model accurately estimated the water quality factors with relatively

minor prediction errors, proving a quite efficient and robust performance. The model also can help in

the optimization of water quality monitoring plans by decreasing the frequency, quantity of sampling

sites, and water quality factors. Prediction precision with the maximum error was equal to 1% and CC

was equal to 0.9987. Even though the outcomes seem to be reasonable, the application of water quality

parameters is quite sensitive to the error level. 1% as a maximum error is comparatively on the higher

side in such an application which triggers the need to improve it. In this regard, it is suggested to

deploy the optimal kernel parameters determined and choose the Nu-RBF model as the optimal model.
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