WATER RESOURCES OF THE

SANTA FE RIVER BASIN, FLORIDA

By James D. Hunn and Larry J. Slack

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations Report 83-4075

Prepared in cooperation with the SUWANNEE RIVER WATER MANAGEMENT DISTRICT, FLORIDA

Tallahassee, Florida

UNITED STATES DEPARTMENT OF THE INTERIOR

JAMES G. WATT, Secretary

GEOLOGICAL SURVEY

Dallas L. Peck, Director

For additional information write to:

District Chief U.S. Geological Survey Suite 3015 227 North Bronough Street Tallahassee, Florida 32303 Copies of this report can be purchased from:

Open-File Services Section Western Distribution Branch U.S. Geological Survey Box 25425, Federal Center Denver, Colorado 80225 (Telephone: (303) 234-5888)

CONTENTS

	Page
Abstract	
Introduction	
Purpose and scope	2
Previous investigations	3
Acknowledgments	3
Geography	3
Topography and drainage	4
Climate	8
Hydrogeology	
Ground water	11
Surficial aquifer	
Confining bed	
Floridan aquifer	21
Recharge and discharge	21
Water-bearing properties	37
Potential for development	37
Surface water	
Streamflow	
Application of streamflow data	41
High flows	50
Lakes	52
Surface-water resources by drainage area	53
New River	
Santa Fe River above Worthington Springs	53
Olustee Creek	
Santa Fe River below Worthington Springs excluding	55
Ichetucknee River	
Sinking streams south of the Santa Fe River	
Cow Creek	
Water quality	
Factors affecting chemical quality	
Ground-water quality	56
Surficial aquifer	56
Confining bed	
Floridan aquifer	
Surface-water quality	
Summary	
Schlary	/ L

ILLUSTRATIONS

Figure 1.	Map showing location of the Santa Fe River basin
2-5.	Maps of the Santa Fe River basin showing:
	2. Topography
	3. Drainage features
	4. Hydrogeologic units
	5. Locations of wells and test holes
6.	Diagram explaining local well-numbering system
7-13.	Maps of the Santa Fe River basin showing:
	7. Altitude of the water table in the surficial
	aquifer, November-December, 1975
	8. Saturated thickness of the surficial aquifer November-December, 1975
	9. Altitude of the top of the confining bed
	10. Thickness of the confining bed-+
	11. Altitude of the top of the Floridan aquifer
	12. Altitude of the potentiometric surface of
	the Floridan aquifer, May 1976
	13. Locations of surface-water and ground-water
	measurement sites
-14 - 16.	Hydrographs of observation wells in the Floridan aquifer at:
	14. Wells 79 and 92
	15. Wells 15 and 51
	16. Wells 43 and 81
17-19.	Graphs showing:
	17. Rainfall and ground-water levels at Lake City, Florida, 1948-76
	18. Flow-duration curves, adjusted to the period
	1933-71, for six discharge sites in the
	Santa Fe River basin
	19. Flood-frequency curves for eight gaging stations
	in the Santa Fe River basin
20-22.	Maps of the Santa Fe River basin showing:
	20. Dissolved solids in water of the surficial aquifer
	21. Hardness of water of the surficial aquifer
	22. Dissolved solids in water of the confining bed
	TTO DISSUITABLE SOLITOR IN MOTER OF THE CONTINING DEG

ILLUSTRATIONS--Continued

Figures 2	3-26. Maps	of the Santa Fe River basin showing:		
		Hardness of water of the confining bed Dissolved solids in water in the upper 200 feet of the Floridan aquifer		
	25.	Hardness of water in the upper 200 feet of the Floridan aquifer		
	26.	Sulfate in water in the upper 200 feet of the Floridan aquifer		
Figures 2	7-30. Grap1	ns showing:		
	27.	Hardness and dissolved solids (residue on evaporation and sum) in relation to specific conductance of the Santa Fe River water near Graham (station 23)		
	28.	Relation of specific conductance to discharge for the Santa Fe River		
	29.	near Graham (station 23)		
	30.	(station 23)		
		Worthington Springs (station 56)		
		TABLES		
Table 1.		gic and geologic units in the Santa Fe		
2.	Well and to	est hole data		
3.	S. Springs and spring discharge			
4.	water-le	f long-term observation wells from which wel measurements of the Floridan aquifer ained		
5.		stage and discharge station locations and		

TABLES-Continued

		Page
Table 6.	Summary of streamflow data	40
7.	Low-flow frequency at gaging stations	43
8.	Low-flow discharge measurements	44
9.	Summary of lake-level data	52

CONVERSION FACTORS

For those readers who may prefer to use International System of Units (SI) units rather than the customary inch-pound units, the conversion factors for the units in this report are listed below:

Multiply inch-pound unit	$\underline{\mathbf{B}\mathbf{y}}$	To obtain SI unit
inch (in.)	25.4	millimeter (mm)
foot (ft)	0.3048	meter (m)
mile (mi)	1.609	kilometer (km)
square mile (mi²)	2.590	square kilometer (km²)
foot per mile (ft/mi)	0.1894	meter per kilometer (m/km)
gallon per minute (gal/min)	0.00006309	cubic meter per second (m ³ /s)
<pre>gallon per minute per foot [(gal/min)/ft]</pre>	0.000207	<pre>cubic meter per second per meter [(m³/s)/m]</pre>
million gallons per day (Mgal/d)	0.04381	<pre>cubic meter per second (m³/s)</pre>
cubic foot per second (ft ³ /s)	0.02832	cubic meter per second (m^3/s)
cubic foot per second	0.01093	cubic meter per second
per square mile [(ft³/s)/mi²]		per square kilometer [(m³/s)/km²]
inch per year (in/yr)	25.4	millimeter per year (mm/a)
foot squared per day (ft^2/d)	0.0929	meter squared per day (m^2/d)
degrees Fahrenheit (°F)	0.556 X (°F-32)	degrees Celsius (°C)
micromho per centimeter (umho/cm)	1.000	microsiemens per centimeter (uS/cm)

National Geodetic Vertical Datum of 1929 (NGVD of 1929): A geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called mean sea level. NGVD of 1929 is referred to as sea level in this report.

WATER RESOURCES OF THE SANTA FE RIVER BASIN, FLORIDA

By James D. Hunn and Larry J. Slack

ABSTRACT

The Santa Fe River basin, occupying 1,384 square miles in north-central Florida, has large supplies of good quality surface water and ground water. Principal streams include the Santa Fe, Ichetucknee, and New Rivers and Olustee Creek. The principal source of ground water is the Floridan aquifer, a thick sequence of limestone beds, the upper 300 to 800 feet of which contain potable water. Rainfall in the basin averages about 54 inches per year.

In the eastern part of the basin the Floridan aquifer is confined and its confining bed is overlain by a surficial sand aquifer. This part of the basin contains numerous small streams. Potential well yields, although generally less than in the western part of the basin, are more than adequate for present industrial and municipal needs.

The western part of the basin is a karst plain mostly overlain by confining bed sediments that are ineffectual in confining the underlying Floridan aquifer. The western part of the basin has the largest surface-water supplies and the greatest potential for high-yield wells. The Floridan aquifer is recharged directly by rainfall at an estimated average rate of 18 inches per year. Estimated transmissivity of the upper 200 feet of limestone in this part of the basin ranges from about 33,000 to 500,000 feet squared per day. Well yields of 2,000 to 5,000 gallons per minute are possible, depending on well construction.

In the eastern part of the Santa Fe River basin, estimated transmissivity of the upper 200 feet of the confined Floridan aquifer ranges from 21,000 to 36,000 feet squared per day. Well yields of as much as 1,000 gallons per minute are possible. Water-yielding zones, mostly limestone, within the confining bed supply less than 100 gallons per minute to wells. The surficial sand aquifer is another source of water for domestic supplies in much of the eastern part of the basin. It is more than 60 feet thick in parts of Clay and Bradford Counties. The full potential of the surficial aquifer has not been developed.

Spring discharge and diffuse seepage from the Floridan aquifer augment the flow of the Santa Fe River and its two tributary streams in the western part of the basin. The average flow from Ichetucknee Springs, measured in the Ichetucknee River below the springs, is about 360 cubic feet per second. In the eastern part, numerous tributary streams supply small amounts of water to the Santa Fe River and its principal tributary, New River. The base flow of most of the streams in this area is supplied by the surficial aquifer.

Water in the Floridan aquifer and in water-yielding zones of the confining bed is of the calcium-magnesium bicarbonate type. Locally, sulfate is

a major constituent. Water in the surficial aquifer is usually less mineralized but, in places, has color and contains objectionable concentrations of iron, calcium, and magnesium.

The western streams discharge water containing more calcium, magnesium, and bicarbonate, and less color than do the streams of the eastern part of the basin. This is because of the Floridan aquifer water discharge to the western streams.

The difference between the estimated average annual runoff from the Santa Fe basin (about 1,400 million gallons per day) and the estimated water use in the basin (about 17 million gallons per day) is sufficiently great to indicate potential for development of large additional water supplies in the basin.

INTRODUCTION

The Santa Fe River basin, a 1,384-mi² tributary basin of the Suwannee River, is the most heavily populated basin within the Suwannee River Water Management District. As a result of suburban development near Gainesville, increased phosphate mining in nearby areas, and the development of recreation along the Santa Fe River, the Santa Fe is one of the more likely basins to experience population growth. An assessment of the water resources of the Santa Fe basin was initiated to provide geologic and hydrologic information relevant to the management of the water resources.

Purpose and Scope

The purpose of this report is to present an analysis of the stream-aquifer system of the Santa Fe River basin, including the quantity and quality of water available from each source and their interrelation. Much information is available in previously published reports, but the basin has not been previously evaluated as a hydrologic unit.

The scope of the study includes: (1) mapping the top and thickness of hydrogeologic units; (2) identifying the source of water for each unit and the way water moves from one unit to another and to streamflow; (3) reevaluating and updating, if practical, aquifer parameters such as transmissivity and recharge rates; (4) obtaining hydrologic data such as flow duration, low-flow frequency, flood frequency, lake levels, and ground-water levels; (5) estimating average discharge for partial-record stations; (6) mapping important water-quality characteristics of the Floridan aquifer and overlying units; (7) determining the relation between stream discharge, selected streamflow quality parameters, and ground-water inflow; and (8) determining the relation between present water use and water availability.

In addition to existing U.S. Geological Survey data and data supplied by the Suwannee River Water Management District, test wells were drilled to evaluate hydrologic characteristics of the Alachua Formation. A network of partial-record surface-water stations was established to correlate flow in the tributaries with flow in the main streams, and the basic data network of observation wells was enlarged.

Previous Investigations

The geology and hydrology of Alachua, Bradford, Clay, and Union Counties were described by Clark and others (1962; 1963; 1964a; 1964b). Meyer (1962) investigated the geology and ground-water resources of Columbia County. and others (1967) mapped and described the geology of Dixie and Gilchrist The geology and hydrology of the area north of the Santa Fe River basin has been described in a comprehensive report on the Osceola National Forest (Miller and others, 1978) and in a reconnaissance report on Baker County (Leve, 1968). Older reports containing information on the geology and hydrology of the Santa Fe River basin are listed in "Selected References." The geology of the Santa Fe River basin as described in detail in the foregoing reports has been applied to the present investigation. Both Meyer (1962) and Clark and others (1964b) described the hydrogeologic units recognized in the present report. The "surficial aquifer" of the present report corresponds to the "nonartesian aquifer" of Meyer (1962) and the "water-table aquifer" of Clark and others (1962; 1964b). "Water-bearing zones in the confining bed," as used in the present report, are equivalent to the "secondary artesian aquifer" of Meyer (1962) and Clark and others (1962; 1964b). Both Meyer (1962) and Clark and others (1964a) published tables of well records which include the water-yielding unit for each well.

Acknowledgments

The Suwannee River Water Management District furnished much ground-water and water-quality data, especially for the Floridan aquifer, and also information on lake bathymetry. The Florida Bureau of Geology furnished records of wells and lithologic sample studies. Black, Crow, and Eidsness, Inc., furnished copies of its reports on Gainesville powerplant discharge, ground-water quality and movement at the Gainesville well field, and completion data for a new muncipal well at High Springs. The Alachua County Pollution Control Department supplied chemical analyses of water from its observation wells. Mr. Thomas H. Wooten of the Gainesville and Alachua County Regional Utilities Board furnished logs, specific-capacity data, and water-quality data for the wells at the Gainesville powerplant.

GEOGRAPHY

The Santa Fe River basin is part of the Suwannee River basin in north-central Florida. It includes nearly all of Bradford and Union Counties, about one-half of Columbia County, about one-third of both Alachua and Gilchrist Counties, and small parts of Clay, Baker, and Suwannee Counties (fig. 1). It is bounded on the north, south, and west by other parts of the Suwannee River basin; on the northeast by the St. Marys River basin; and on the east and southeast by the St. Johns River basin.

Agriculture, including timber, is the principal land use in the basin. Large areas of wetlands are used for growing pine trees. The basin's population, although small, is increasing, principally around the larger municipalities in the basin. Riverfront and lakefront property are being developed, partly for summer cottages and partly for permanent residences. The larger municipalities in the basin include Lake City, population 9,257; Starke,

5,306; Alachua, 3,561; and High Springs, 2,491, as of 1980 (University of Florida, 1980). Other municipalities in the basin have populations of less than 1,000.

Estimated water use for 1975 in the basin was about 17 Mgal/d. Nearly all of this was ground water.

Figure 1.--Location of the Santa Fe River basin.

Topography and Drainage

Land surface ranges from about 10 feet above sea level near the mouth of the Santa Fe River to about 250 feet on Trail Ridge in western Clay County (fig. 2). This ridge, the eastern boundary of the Santa Fe River basin, extends north-south through central Florida and is the most prominent topographic feature of the basin. Another prominent feature is an area of ridges and rolling hills extending from the basin's southern boundary near Hague northwest to Lake City. The physiography and geomorphology of the basin are described by Cooke (1945), Puri and Vernon (1964), and Puri and others (1967). The western third of the basin, including parts of Alachua, Columbia, Gilchrist, and Suwannee Counties, lacks surface drainage except for the Santa Fe and Ichetucknee Rivers; thus, all water that would otherwise run off as streamflow percolates down to the Floridan aquifer and moves through the aquifer to points of discharge. Many streams in the southcentral part of the basin lose water to the Floridan aquifer through sinkholes (fig. 3).

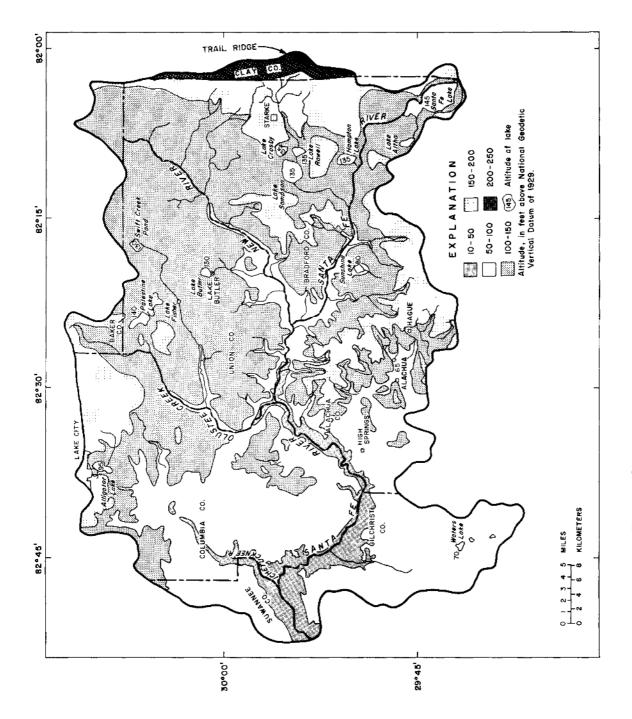


Figure 2. -- Topography of the Santa Fe River basin.

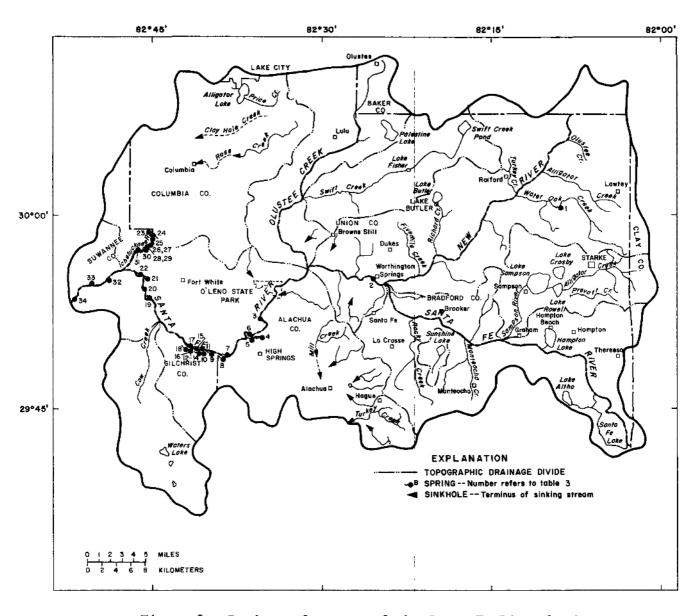


Figure 3.--Drainage features of the Santa Fe River basin.

Map number	Spring name and number	Map number	Spring name and number	Map number	Spring name and number
1	Heilbronn Spring, 02320951, 300125082092000	13	Naked Springs, 294947082405200	24	Cedar Head Spring, 29590082453200
2	Worthington Spring, 02321503, 295532082253300	14	Little Blue Spring, 294950082410000	25	Blue Hole Spring, 295847082453100
3	Resurgence of Santa Fe River, 295225082353000	15	Jonathan Spring, 295004082413000	26	Roaring Springs, 02322689, 295835082453100
4	Hornsby Spring, 295059082353600	16	Devil's Eye Springs, 295006082424900	27	Singing Springs, 295835082452900
5	Darby Spring, 295108082362500	17	July Spring, 295010082414700	28	Boiling Spring, 295825082453700
6	Columbia Spring, 02321977, 295114082364400	18	Ginnie Spring, 295009082420100	. 29	Grassy Hole Spring, 295810082453600
7	Allen Spring, 294933082385800	19	Wilson Spring, 295359082453100	30	Mill Pond Spring, 02322696 295804082453700
8	Poe Springs, 02322140, 294933082385800	20	Northbank Spring, 295433082461900	31	Coffee Spring, 295735082462700
9	Lilly Spring, 294946082394200	21	Jamison Spring, 295532082455600	32	Holly Spring, 295503082492700
10	Johnson Spring, 293120082404000	22	The Boil, 295540082461400	33	Betty Spring, 295453082502500
11	Rum Island Spring, 294959082404900	23	Ichetuckenee Spring, 295900082454300	34	Trail Springs, 295354082520000
12	Blue Springs, 294947082405900				

Figure 3.——Drainage features of the Santa Fe River basin.——Continued

Climate

The average annual temperature at Lake City is about 69°F, and at Gainesville, approximately 6 miles south of the study area, about 70°F. Average annual rainfall is about 54 inches at Lake City and about 55 inches at Gainesville. Annual rainfall for the period 1900-1976 ranged from about 30 inches in 1908 to 84 inches in 1964 at Lake City, and from about 33 inches in 1917 to 77 inches in 1964 at Gainesville (Mitchell 1902; U.S. Department of Commerce, 1975). Monthly rainfall is usually greatest from June through September. Rainfall in the basin is derived from weather fronts, local thunderstorms, and seasonal tropical storms. The dependence of average annual rainfall on three different types of storms explains, at least in part, the high variability in annual rainfall.

HYDROGEOLOGY

The Santa Fe basin is underlain by more than 1,000 feet of sedimentary rocks of Tertiary age, the upper 300 to 800 feet of which contain freshwater. The rocks that contain freshwater are the: City Limestone, Avon Park Limestone, and Ocala Limestone all of Eocene age; Suwannee Limestone of Oligocene age; Hawthorn Formation of Miocene age and Alachua Formation of Pliocene age; and unnamed clay and sand deposits of Pliocene to Holocene age (table 1). The limestones and lower part of the Hawthorn Formation form the Floridan aquifer (Parker The upper part of the Hawthorn Formation, and others, 1955). Alachua Formation, and overlying clay sediments constitute the confining bed over the Floridan aquifer, although limestones within the Hawthorn Formation are locally sources of domestic and farm water supplies. confining bed in Gilchrist County consists largely of the Alachua Formation and younger sediments. Although still called a confining bed, where thin and discontinuous these sediments- are not effective in confining the Floridan aquifer. This situation exists in much of the western part of the Santa Fe basin. In the eastern part of the basin, unconsolidated sand beds above the confining bed form the surficial The lithology of the rock units is discussed in detail by aquifer. Meyer (1962), Clark and others (1964b), Puri and Vernon (1964), Puri and others (1967), and Miller and others (1978).

Figure 4 shows the surficial extent of the hydrogeologic units in the basin. The Floridan aquifer underlies the entire area at the surface or at depth. The confining bed overlies the Floridan aquifer in most of the basin but is missing adjacent to the lower part of the Santa Fe River. The western boundary of the saturated part of the surficial aquifer is approximately a line from Alachua to Lake City. The area of saturation fluctuates laterally with changes of water level in the aquifer. West of this boundary, however, sand and clay persist as an unsaturated mantle covering nearly all the rest of the basin.

Table 1.--Hydrogeologic and geologic units in the Santa Fe River basin

[From Parker and others (1955), Meyer (1962), Puri and Vernon (1964), Clark and others (1964b), Puri and others (1967), and Miller and others (1978)]

Ge	ologic units	Hydrog	eologic units (fig.4)	Thickness	
Series	Name	Name	Description	(feet)	
Holocene Pleistocene Pliocene	Terrace and wind- blown deposits, older coarse clas- tics, and clay	Surficial aquifer	Very fine to coarse sand and gravel with variable interstitial silt and clay content, and interbedded clay	0-80	
Pliocene	Alachua Formation			0-320	
Miocene	Hawthorn Formation	Confining bed	Interbedded clay, sand, sandstone, and lime-stone		
Oligocene	Suwannee Limestone Ocala Limestone Avon Park Limestone Lake City Limestone	Floridan aquifer	Permeable limestone, dolomitic limestone, and dolomite. Dolomite content generally increases with depth	900-1,000	
	Oldsmar Limestone			L	
Paleocene	Cedar Keys Limestone				

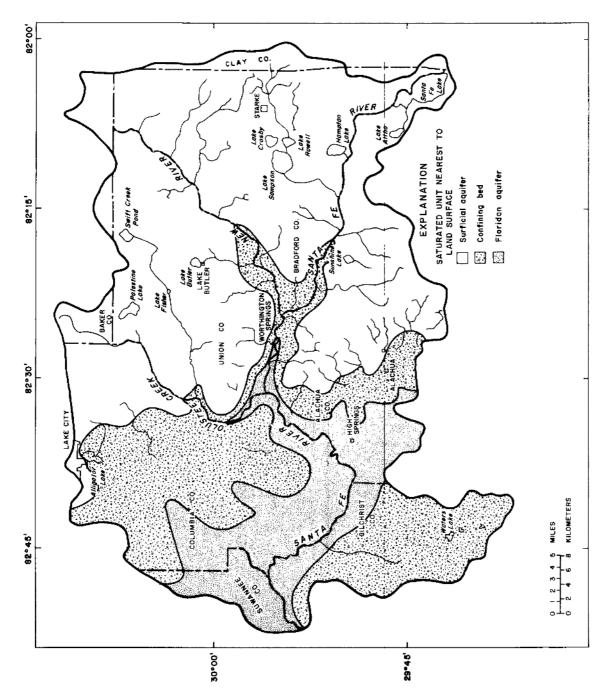


Figure 4. -- Hydrogeologic units of the Santa Fe River basin. (Location of boundary between Floridan aquifer and confining bed in Gilchrist County from Puri and others, 1967, plate 1.)

Well data on formation contacts used for mapping the aquifers and confining bed are listed in table 2 which is located at the end of this report. Locations of the wells and test holes are shown in figure 5, and the local well-numbering system is shown in figure 6. There are other numbering systems used in this report. Map numbers, to help the reader identify a hydrologic-data site on the maps of the report, are provided in tables 3 through 9. Most surface-water discharge-measurement sites historically have been identified, within each state, by a name and an 8-digit downstream-order number, such as Santa Fe River near Graham, 02320700 (see table 8). More recently, hydrologic data-collection sites are being given a 15-digit identifying number based on the latitude and longitude of the data site. Once assigned, the number is not subject to change even though more accurate mapping may change the latitude and longitude of the data site. Hydrologic data stored in the computer may be recovered from the U.S. Geological Survey data-storage bank by reference to either the downstream-order number or 15-digit number.

GROUND WATER

Surficial Aquifer

In the Santa Fe basin, the surficial aquifer (fig. 4) is composed mostly of very fine to medium-grained sand, with layers of clay and silt. The aquifer includes some coarse sand and gravel in southeastern Bradford County. The aquifer transects formational boundaries, and includes some Pleistocene to Holocene terrace deposits and windblown sand, and older deposits of Pliocene age and possibly some of the Hawthorn Formation.

The water table lies within 10 feet of land surface, except along the eastern boundary of the basin where depth to the water table is as much as 30 feet. Figure 7 shows the altitude of the water table, developed using topographic maps, with modifications from field checks made during November and December 1975. The base of the aquifer within the basin is the base of the lowermost unconsolidated water-bearing sand. The western boundary of the aquifer, as mapped in figure 4, is the limit of the saturated part of the aquifer, although the sand extends westward covering nearly all the rest of the basin. The saturated thickness of the aquifer is more than 80 feet in parts of Bradford and Clay Counties (fig. 8). Where thicknesses of less than 20 feet are indicated, the aquifer may be missing or the sand may be present but unsaturated on steep slopes.

The surficial aquifer is recharged by local rainfall, and also receives water discharged upward from water-yielding zones in the confining bed in the eastern part of the basin where the head is above that of the surficial aquifer. Clark and others (1964b) show 2-year hydrographs of two surficial-aquifer wells in the Santa Fe River basin that have a total fluctuation of about 4 feet.

Streams crossing the saturated part of the surficial aquifer receive most of their base flow from it. Low-flow measurements made in April 1976 and May 1977 showed gains in streamflow where the streams transect the aquifer. Other discharge from the aquifer includes evapotranspiration, percolation to underlying units, and discharge to wells.

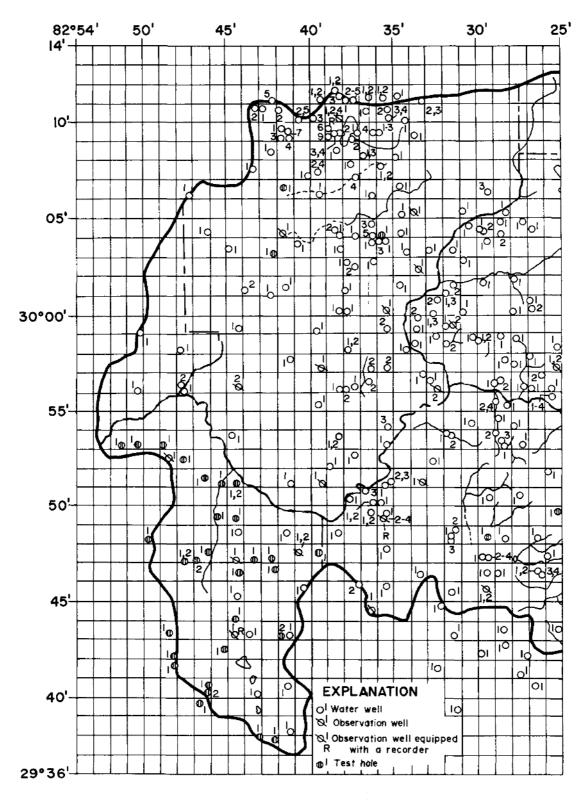
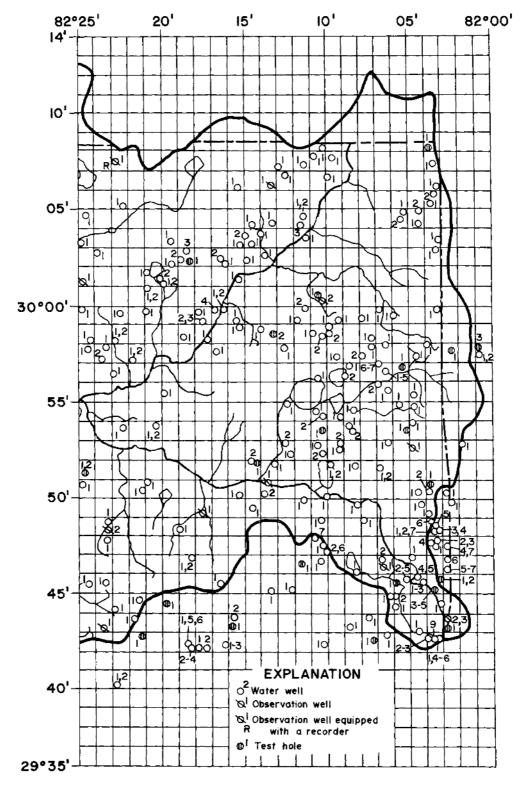
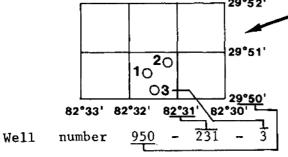



Figure 5.--Locations of wells and test holes in the Santa Fe River basin.



Locations of wells and test holes in the Santa Fe River basin.--Continued

EXPLANATION

The well-numbering system is derived from latitude and longitude coordinates on a statewide grid of 1-minute parallels of latitude and 1-minute meridians of longitude. The wells in a 1-minute quadrangle are numconsecutively bered in the order inventoried. The latitude and longitude prefix north and west and the first digit of degree number are not included in the well number.

The well number is a composite of three numbers separated by hyphens: the first number is composed of the last digit of the degree and the two digits of the minutes that define the latitude on the south side of the 1-minute quadrangle; the second number is composed of the last digit of the degree and two digits of the minutes that define the longitude on the east side of a 1-minute quadrangle; the third number gives the numerical order in which the well was inventoried in the 1-minute quadrangle.

Well number 950-231-3 was the third well inventoried in the 1-minute quadrangle north of the 29°50' parallel of latitude and west of the 82°31' meridian of longitude.

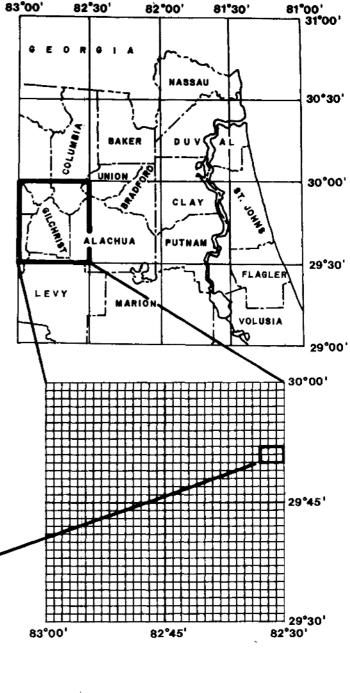


Figure 6.--Local well-numbering system.

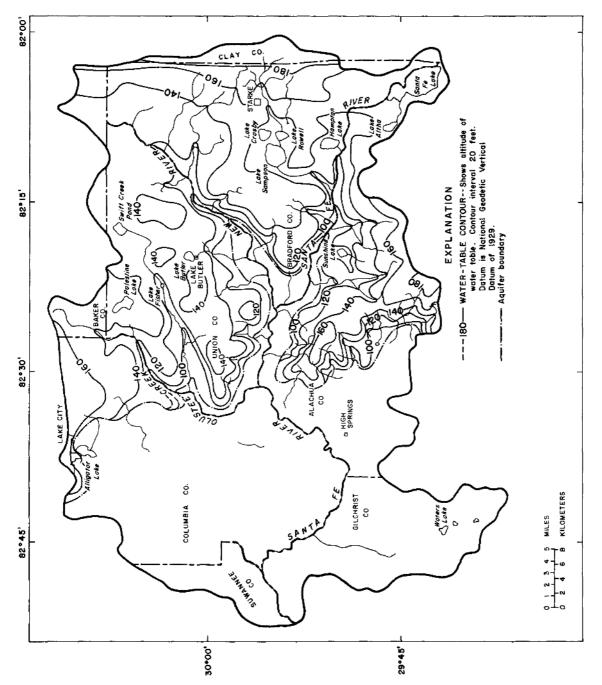


Figure 7. -- Altitude of the water table in the surficial aquifer, November-December, 1975.

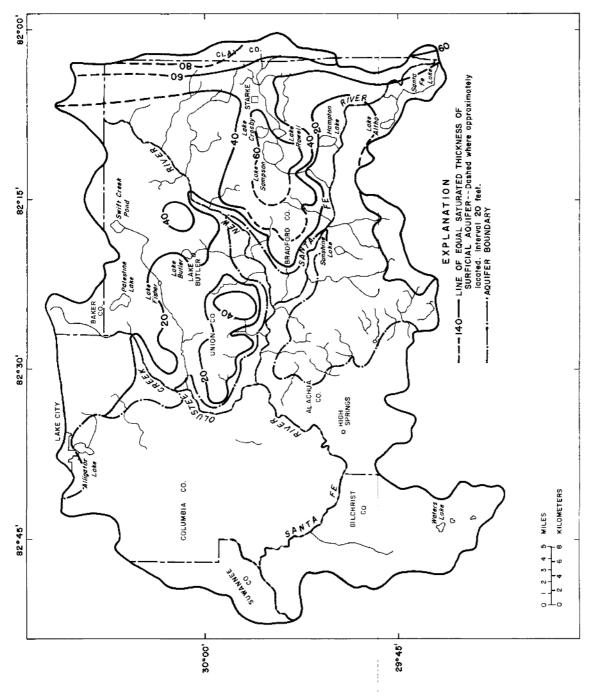


Figure 8.--Saturated thickness of the surficial aquifer, November-December, 1975.

In most of its areal extent the surficial aquifer is a potential source of water for domestic supplies. Possible problems of using the aquifer for water supply, however, include contamination by wastes or other contaminants, such as fertilizers and, where the aquifer is thin, possible depletion of the water supply during droughts. The thicker parts of the aquifer, especially in Clay County and eastern Bradford County, are potential sources for the large supplies needed for such uses as irrigation. Maximum well yields would depend on the method of well construction. Large-diameter dug wells or arrays of smaller diameter wells are possible in the surficial aquifer.

Confining Bed

The Hawthorn Formation is composed of layers of clay, sand, sandstone, and limestone. Limestone near the base of the formation is included in the Floridan aquifer. Sand layers, where they occur at the top of the formation and are not overlain by clay, are included in the surficial aquifer. The remainder of the Hawthorn Formation, and overlying Alachua Formation, and clays (table 1) constitute the confining bed.

The Hawthorn Formation occurs in the north, east, and southeast parts of the basin; and the Alachua Formation occurs in the southwest, primarily in Gilchrist and western Alachua Counties. The confining bed is missing in part of the basin (fig. 4). The boundary of the confining bed, as mapped in figure 9, does not include outliers or thin deposits of the Hawthorn and Alachua Formations that are not effective in sustaining surface ponds and swamps.

As shown in figure 9, streams have eroded the upper part of the unit. The confining bed thins toward the west, as illustrated in figure 10. Sinkholes (fig. 3) have penetrated the unit near the boundary and some of them serve as drains for small streams, diverting streamflow into the Floridan aquifer.

Water-yielding zones in the confining bed are usually limestone but locally are shell beds and possibly sand. The number, and probably the thickness, of these zones appears to increase toward the northeast as the confining bed becomes thicker.

The water-yielding zones of the confining bed are recharged by percolation from overlying deposits and by seepage from streams. Water levels in the confining bed are higher than those in the underlying Floridan aquifer throughout the eastern part of the basin (Clark and others, 1964a), indicating downward leakage to the Floridan aquifer in this area.

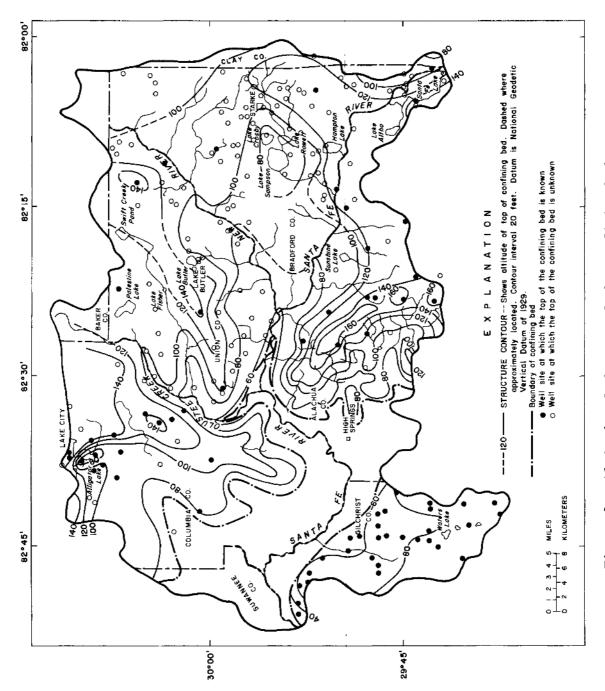


Figure 9. -- Altitude of the top of the confining bed.

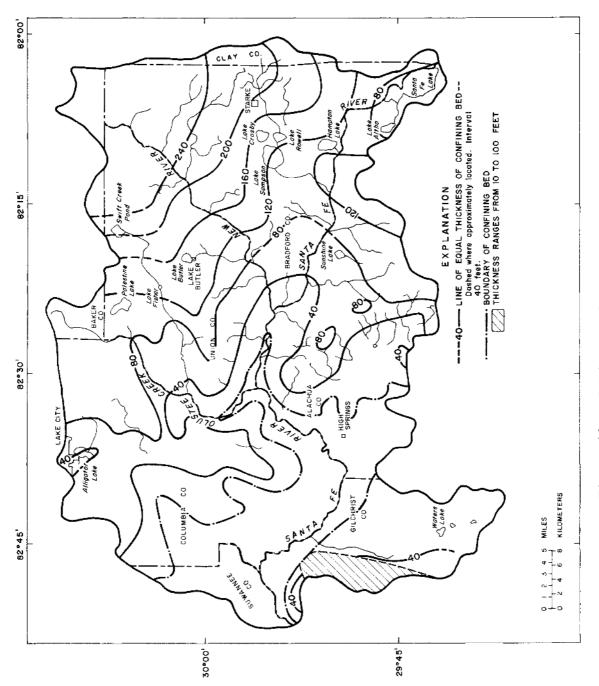


Figure 10. -- Thickness of the confining bed.

Discharge from the water-yielding zones of the confining bed is principally leakage to the Floridan aquifer. To the east, some water is presumed to discharge to the surficial aquifer near streams. western boundary, the confining bed becomes thin, and water levels in the underlying Floridan aquifer are below the base of the confining bed. (See section on Floridan aquifer, figure 12, and figure 13.) low-flow data (Surface-Water section and table 7) indicate that the streams lose water to the confining bed in this area during low flow. They probably lose flow during rising stream stages and gain flow for variable periods of time after peak flows. Heilbronn Spring near Starke (spring 1, fig. 3) discharges from the confining bed. Although its discharge is only about 18 gal/min (Rosenau and others, 1977, p. 75), its presence indicates the possibility for flowing wells in the area. Worthington Spring (spring 2, fig. 3) also discharges from the confining bed (Rosenau and others, 1977, p. 390-392); the spring had a measured flow of 386 gal/min in 1972 but was not observed to flow during the period of this investigation. Santa Fe River water was observed flowing into the spring on two occasions.

The water-yielding zones of the confining bed are used mostly for domestic and farm supplies, and in places for irrigation. In Bradford and eastern Union Counties these zones are the principal source of domestic supplies (Clark and others, 1964b). The potential of the confining bed has not been fully developed in the eastern and northeastern parts of the basin, where it is thickest (fig. 10), because the area is predominantly rural. South of the Santa Fe River, within the basin, very few wells supply water from the confining bed. Most wells tapping the confining bed are 2-inch jetted wells, with the casing seated near the top of the bed and finished open-hole to the depth necessary to obtain the desired yield. Clark and others (1964b) report specific capacities ranging from 0.2 to 10 (gal/min)/ft of drawdown. Although confining bed water-yielding zones do not have the potential to supply large municipal and industrial needs, wells open to more than one zone may supply 50 to 100 gal/min.

The Alachua Formation (Puri and others, 1967) covers most of Gilchrist County within the Santa Fe basin, and part of western Alachua County. Logs of test holes furnished by the Florida Bureau of Geology indicated some sand in the Alachua Formation or in overlying unconsolidated deposits. However, Clark and others (1962) specifically exclude "sand and clayey sand overlying the Ocala Group in southern and western Alachua County" from their "water-table aquifer." Test holes were drilled at six locations in Gilchrist County in order to determine the presence or absence of a surficial aquifer associated with the Alachua Formation. These test holes are listed in table 2 as local numbers 940-246-2, 943-241-2, 943-248-1, 947-244-2, 947-247-2, and 949-244-1. No water was encountered above the Floridan aquifer and no wells in Gilchrist County are known to be producing water from deposits overlying the Floridan aquifer. The unconsolidated deposits found in the test wells, with the exception of 10 feet or less of unsaturated sand at the surface, are considered to be part of an areally extensive confining This material confines water in the Floridan aguifer and supports

the ponds, lakes, and swamps of Gilchrist and western Alachua Counties. This confining bed (fig. 4) consists predominantly of noncalcareous fine sand, silt, and clay in varying proportions; it becomes a reddish phosphatic clay near its eastern edge. A green to green-blue clay underlies the sand, silt, and clay in places. In this area, the thickness of the confining bed is extremely variable; maximum thickness is about 100 feet where test drilled. The confining bed is overlain by a few feet of surficial sands that constitute the surficial aquifer in the eastern part of the basin; however, no wells or saturated sands were found. Domestic wells are finished in the Floridan aquifer.

The confining bed has a water table near land surface and, consequently, has large evapotranspiration losses. In some places material from the confining bed may have reduced the transmissivity of the upper part of the Floridan aquifer by filling openings in the limestone with clay and silt.

Floridan Aquifer

The Floridan aquifer (Parker and others, 1955) is the principal source of water for municipal and industrial use in the Santa Fe basin. highly productive aquifer consists of several hundred feet of limestone and dolomite. The stratigraphic units constituting the aquifer are, from oldest to youngest: Lake City Limestone, Avon Park Limestone, and Ocala Limestone, all of Eocene age; Suwannee Limestone of Oligocene age; and limestones at the base of the Hawthorn Formation of Miocene age. The aquifer is overlain by the confining bed and surficial aquifer in the eastern part of the basin, and by the confining bed in much of the western part of the basin (fig. 4). The top of the aquifer slopes gently toward the northeast from the central part of the basin (fig. 11). The confining bed's effectiveness in confining the Floridan aquifer does not extend to the limits of the hydrogeologic unit (compare figs. 4 and 11). Very little is known about the confining bed below the Floridan aquifer, but it is presumed to consist of gypsiferous limestone and dolomite in the lower part of the Lake City Limestone and in the upper part of the Oldsmar Limestone (Meyer, 1962; Clark and others, 1964b). Miller and others (1978) extend the base of the Floridan to the base of the Cedar Keys Limestone. The thickness of limestone containing potable water is as little as 300 feet near the Santa Fe River at High Springs (see section on Recharge and Discharge) and increases to more than 800 feet (Causey and Leve, 1976) to the north and to the south of this reach of the river. Part of the aquifer is unconfined in the western basin. About 200 mi² of the Floridan aquifer is only partly saturated near the western edge of the main part of the confining bed.

Recharge and Discharge

Recharge to the Floridan aquifer within the Santa Fe basin is mostly from precipitation within the basin, as direct percolation through the overlying confining bed and surficial aquifer. The rate of recharge is much greater where the aquifer is unconfined; there are few streams or lakes and much of the rainfall percolates directly into the Floridan aquifer.

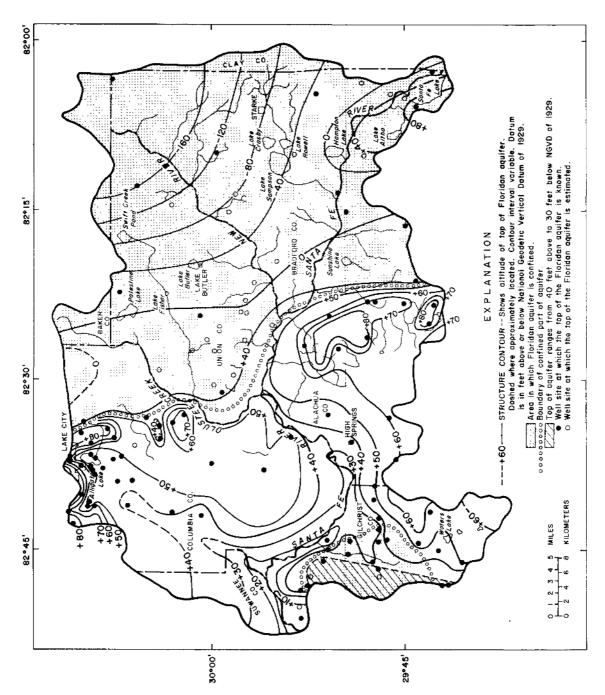


Figure 11. -- Altitude of the top of the Floridan aquifer.

Where the Floridan aquifer is confined (fig. 11), the confining bed is capable of supporting a water table within a few feet of land surface, associated with streams, lakes, ponds, and swamps. The rate of recharge to the Floridan aquifer is limited by the thickness and vertical hydraulic conductivity of the confining bed and surficial aquifer, and by the difference in hydraulic head between the water table and the potentiometric surface of the Floridan aquifer. The recharge rate can be increased locally by developing the Floridan aquifer and lowering its potentiometric surface. The increase in the rate of recharge is directly proportional to the increase in head difference between the surficial water table and potentiometric surface in the Floridan aquifer. If the potentiometric surface in the Floridan aquifer is lowered below the base of the confining bed, no further increase in the recharge rate occurs.

The rate of recharge to the confined part of the aquifer in eastern Alachua and southeastern Bradford Counties has been estimated by Clark and others (1964b) to be 1.8 in/yr. The remainder of the average annual rainfall is lost to evapotranspiration and streamflow before reaching the Floridan aquifer. The confined areas of the Floridan aquifer contain two potentiometric highs (fig. 12), one in the southwest (Gilchrist County) and the other in the southeast (Alachua and Bradford Counties) parts of the basin. Isolated potentiometric highs are often considered recharge areas, but they can also be the result of lower aquifer transmissivity relative to surrounding areas. The potentiometric high in Gilchrist County, near the Suwannee and Santa Fe Rivers (fig. 12), is surrounded by unconfined areas and is confined by a bed that supports Cow Creek and numerous ponds and swamps, which discharge much of the rainfall as evapotranspiration. The area surrounding the Gilchrist County potentiometric high is unconfined and, consequently, infiltration is high and surface-water features other than the Santa Fe River are lacking. Recharge to this potentiometric high is less than in surrounding areas because the confining bed restricts infiltration and enhances surface runoff and evapotranspiration. The presence of the high potentiometric levels is, therefore, attributed to relatively low transmissivity compared to that of the surrounding area.

The potentiometric high in eastern Alachua and southeastern Bradford Counties may also be caused, in part, by lower aquifer transmissivity; however, its estimated recharge rate (1.8 in/yr) may be higher than average for the confined part of the Floridan aquifer. Miller and others (1978, p. 82-83) give an estimate of 0.3 in/yr for the Osceola Forest, adjacent to the northern boundary of the Santa Fe basin.

Recharge to the unconfined part of the Floridan aquifer, a well developed karst area, varies with rainfall. During 1959, a year with greater than average rainfall, Clark and others (1964b) estimated recharge to the unconfined part of the Floridan aquifer to be 25 inches.

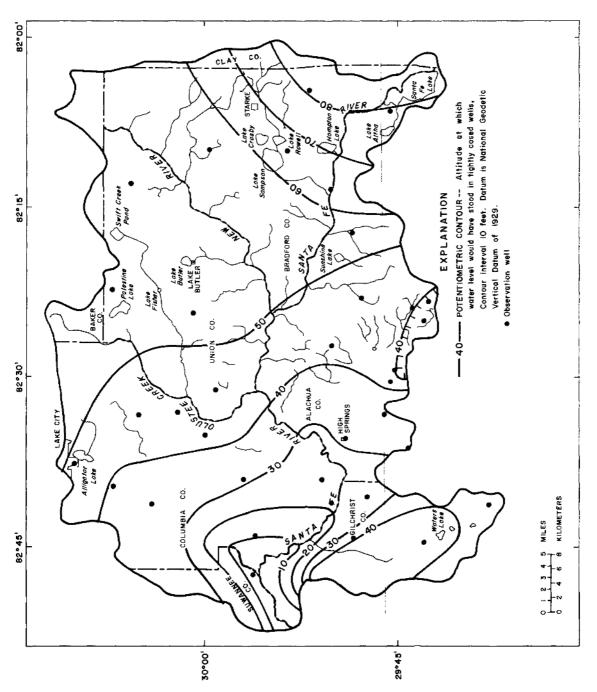


Figure 12.--Altitude of the potentiometric surface of the Floridan aquifer, May 1976 (from Fisk and Rosenau, 1977).

Estimated average recharge to the unconfined part of the aquifer was obtained by using the Ichetucknee Springs drainage area estimated from the potentiometric surface map of Fisk and Rosenau (1977), presented here as figure 12. Ichetucknee Springs drain about 400 mi 2 of the Floridan aquifer, 250 mi 2 of which represent unconfined conditions and 150 mi 2 , confined. Assuming a recharge rate of 2 in/yr for the confined part, and using the average measured discharge of the springs (360 ft 3 /s), average recharge to the unconfined part of the Floridan aquifer is estimated to be about 18 in/yr.

The Floridan aquifer discharges to the Santa Fe and Ichetucknee Rivers, by evapotranspiration near the rivers where the potentiometric surface is near land surface, and by discharge through wells. Water flows out of the basin through the aquifer to the north and southwest. The contribution to streamflow in the drainage area of Ichetucknee Springs is about $0.9~(\mathrm{ft^3/s})/\mathrm{mi^2}$. Assuming a similar rate for the remainder of the Floridan aquifer, discharge to the Santa Fe River is estimated to average 1,400 $\mathrm{ft^3/s}$. Known springs in the Santa Fe basin and measurements of their discharge are listed in table 3.

Wells completed in the upper 300 feet of the Floridan aquifer generally yield potable water, and aquifer discharge to springs is low in mineral content. Exceptions to this generalization occur near the municipality of High Springs and at Wilson Spring (fig. 3, spring 19). The resurgence (labeled spring 3) of the Santa Fe River, Hornsby Spring (spring 4), and Columbia Spring (spring 6) discharge water with sulfate concentrations in the range of 60 to 70 milligrams per liter (mg/L). Clark and others (1964a) also found high sulfate concentrations during periods of low flow of the Santa Fe River near these springs. April 14, 1977, the Santa Fe River at O'Leno State Park had a flow of 128 ft³/s and a sulfate concentration of 30 mg/L. River discharge about 4 mile downstream of the resurgence was 285 ft3/s with a sulfate concentration of 70 mg/L. The 157 ft³/s gain in discharge in the underground reach had a calculated average sulfate concentration of about 100 mg/L. An analysis by Black, Crow, and Eidsness, Inc. (written commun., 1969) of water from a municipal well at High Springs which is open to the Floridan aquifer from 350 to 500 feet, indicated a sulfate concentration of 370 mg/L, an unusually high concentration for wells of this depth.

Two industries near High Springs discharge a sulfate effluent into streams that drain, through sinkholes, into the Floridan aquifer where ground-water flow is toward the Santa Fe River. The quantity of sulfate involved, however, is too small to account for the sulfate load of the Santa Fe River; and the the detection of high sulfate concentrations in the river by Clark and others this industrial development. Nor are the hydrogeologic units overlying the Floridan aquifer important sources of sulfate. The only known source of large amounts of sulfate is deeply circulating water within the Floridan aquifer. The quality of the discharge from Columbia Spring and Hornsby Spring, and probably of the resurgence of the Santa Fe River, varies with discharge. Columbia Spring and Hornsby Spring are known to receive, rather than discharge, water during high river stages.

Table 3.--Springs and spring discharge

[Discharge is from the Floridan aquifer unless otherwise noted and is in cubic feet per second (ft^3/s); e = estimated]

[Data in part from Rosenau and others, 1977]

Map num- ber (fig. 3)	Spring name and number	Discharge (date measured)	Remarks
1	Heilbronn Spring, 300125082092000, 02320951	le (09/15/76)	Head is more than 2.5 ft above land surface. Discharge is from the confining bed.
2	Worthington Spring, 295532082253300, 02321503		Discharge during recession of river stages. Backflows during rising river stages. No exchange of water with river during extreme low flow (10 ft ³ /s or less). Discharge is from the confining bed and possibly the Floridan aquifer.
3	Resurgence of Santa Fe River 295225082353000		Generally not considered a spring, but contains ground water contributed in 3-mile underground reach of river upstream from resurgence. Approximate gain in flow in this reach: 211 ft ³ /s, Feb. 23, 24, 1961; 157 ft ³ /s, Apr. 13, 14, 1977. No information on backflow.
4	Hornsby Spring, 295059082353600	250 (04/19/72) 76 (04/25/75)	Privately owned and developed. Used for recreation. Backflows during high river stages.
5	Darby Spring 295108082362500		Discharge is below water surface and assumed to be very small. No information on backflow.
6	Columbia Spring, 295114082364400, 02321977		Color of discharge and sinkholes upstream indicate that part of the discharge is river water.

Table 3.--Springs and spring discharge--Continued

Map num- ber (fig. 3)	Spring name and number	Discha (dat measur	te	Remarks
	Poe Springs group		,	Includes Allen Spring, Poe Springs, Lilly Spring, Johnson Spring, Rum Island Spring, and the Blue Springs group (map numbers 7-18). Backflow has not been observed or reported in any spring of the Poe Springs group.
7	Allen Spring, 294938082384800		- .	Briel (1976).
8	Poe Springs, 294933082385800, 02322140	75 (01) 31 (03) 84 (12)	/19/17) /31/29) /14/32) /13/41) /22/46)	Privately owned and developed. Spring opening collapsed or filled.
9	Lilly Spring, 294946082394200	32 (05,	/09/75)	Several small openings.
10	Johnson Spring, 293120082404000		-	Discharge at mouth of spring run estimated as 50 ft ³ /s, May 9, 1975.
11	Rum Island Spring, 294959082404900	50e (05,	/09/75)	Spring area improved by Columbia County.
	Blue Springs group			Includes Blue Springs, Naked Springs, Little Blue Spring, Jonathan Spring, Devil's Eye Spring, July Spring, and Ginnie Spring (map numbers 12-18). Privately owned and developed.
12	Blue Springs, 294947082405900	42 (04,	/28/75)	Cavern that supplies spring collapsed about 50 ft from entrance.
13	Naked Spring, 294947082405200	28 (04)	/28/75)	Located less than ¼ mi east of Blue Springs. Spring run discharges into Blue Springs run.

Table 3.--Springs and spring discharge--Continued

-

Map num- ber (fig. 3)	Spring name and number	Discharge (date measured)	Remarks
14	Little Blue Spring, 294950082410000	No flow visible (04/28/75)	Located less than 4 mi west of Blue Springs. Spring run discharges into Blue Springs run.
15	Jonathan Spring, 295004082413000		Briel (1976).
16	Devil's Eye Springs, 295006082414900		Two main openings, called "Devil's Eye" and "Devil's Ear." Discharge was under water and may have been greater than 50 ft ³ /s, May 12, 1975.
17	July Spring, 295010082414700	58 (05/12/75)	
18	Ginnie Spring, 295009082420100	46 (04/28/75)	Privately owned and developed. Extensive cavern system (W. T. Hurst, Alachua County Pollution Control, oral commun. 1975).
19	Wilson Spring, 295359082453100	20-50e (09/16/76)	Color of water indicates that some of the discharge is river water. The sulfate concentration of 78 mg/L indicates an additional ground-water source.
20	Northbank Spring, 295433082461900		Briel (1976).
21	Jamison Spring, 295532082455600	0 (09/16/76) 3e (04/28/77)	Several openings.
22	The Boil 295540082461400		Spring located in river bed. Discharges clear water into dark-colored river water. Discharge difficult to measure or estimate, but could be greater than 50 ft ³ /s.

Table 3.--Springs and spring discharge--Continued

Map num- ber (fig. 3)	Spring name and number	Discharge (date measured)	Remarks
	Ichetucknee Springs group, 295709082471000, 0232270	360 average, (1931-76) ¹ 126 (05/17/46)	In Ichetucknee Springs State Park. Springs and spring run (Ichetucknee River) used for swimming, canoeing, tubing, and scuba diving. No observations or reports of backflow. Ichetucknee Springs group includes Ichetucknee, Cedar Head, Blue Hole, Mission Springs group, Boiling, Grassy Hole, Jamison, Mill Pond, and Coffee, (map numbers 23-31).
23	Ichetucknee Spring, 295902082454300	~~	Also known as Ichetucknee Head Spring.
24	Cedar Head Spring, 295900082453200		Very small spring.
25	Blue Hole Spring, 295847082453100		Cavern system. Also called Jug Spring.
	Mission Springs	49 (05/17/46)	Includes Roaring Springs and Singing Springs (map numbers 26 and 27).
26	Roaring Springs, 295835082453100, 02322689		
27	Singing Springs, 295833082452900		
28	Boiling Spring, 295825082453700		
29	Grassy Hole Spring, 295810082453600		

 $^{^{\}mathrm{I}}$ Includes Ichetucknee Spring, Cedar Head Spring, and Blue Hole Spring.

Table 3.--Springs and spring discharge--Continued

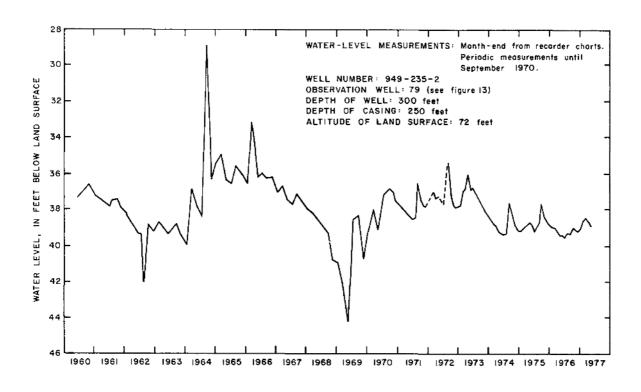
Map num- ber (fig. 3)	Spring name and number	Discharge (date measured)	Remarks
30	Mill Pond Spring, 295804082453700, 322696	22 (05/17/46) 19 (07/11/75)	
31	Coffee Spring, 295735082462700		
32	Holly Spring 295503082492700	le (04/27/77)	
33	Betty Spring, 295453082502400	le (09/16/76)	
34	Trail Springs 295354082520000		Discharge is below river surface and assumed to be very small.

A group of springs downstream from Columbia Spring (fig. 3, spring 6) was identified by Briel (1976) as the Poe Springs group and includes those springs from Poe Springs downstream to, and including, Ginnie Spring (fig. 3, springs 7 through 18, and table 3). Some smaller springs may exist downstream from Ginnie Spring and upstream of the Fort White daily discharge station (number 88, fig. 13). The gain in discharge of the Santa Fe River from the Floridan aquifer between surface-water stations 84 and 88 (fig. 13), which span the Poe Springs group, is about 700 ft³/s at 90 percent flow duration. Known spring flow probably accounts for no more than 50 percent of this amount. None of these springs have been reported to backflow during high river stages. Their discharge is low in dissolved solids and sulfate.

The ground-water contribution to streamflow between surface-water station 88 and the mouth of the Ichetucknee River is partly from numerous large joints in the limestone streambed. Wilson Spring (spring 19) and The Boil (spring 22) have discharges estimated to be between 10 and 100 ft 3 /s. It is not known whether the springs and large joints in this reach backflow during high river stages. Water that discharges from Wilson Spring is high in dissolved solids and sulfate concentrations and has a dark color similar to the river water.

Ichetucknee Springs, a group of at least nine springs (fig. 3, springs 23-31) upstream from station 95, discharge an average of $360 \text{ ft}^3/\text{s}$ from a drainage area estimated to be 400 mi^2 . The water is low in dissolved solids and sulfate. No springs are known between station 95 and the Santa Fe River.




Figure 13. -- Locations of surface-water and ground-water measurement sites.

From the mouth of the Ichetucknee River to the Suwannee River, the known springs discharging to the Santa Fe River are small, each discharging probably less than $5 \text{ ft}^3/\text{s}$. Although large joints may be present in the channel, the water is too deep and highly colored in nearly all of this reach to permit their detection.

Figures 14-16 show water-level fluctuations in observation wells open to the aquifer. Table 4 lists the observation wells, their locations (fig. 13), and frequency of observation. In general, the magnitude of fluctuations is greatest on the potentiometric highs (fig. 12) and smallest near the Santa Fe River (fig. 13, observation wells 79 and 92). Annual fluctuations of water levels are due largely to variations in rainfall. The hydrographs show a long-term decline in water levels following record high rainfall during the 1960's. The only pumping that might have affected a hearby well (fig. 13, observation well 81) is in Lake City, and it shows little effect. The water levels in observation well 81 may be partially stabilized by perennial infiltration from nearby Alligator Lake, which has surface-water inflow but no outflow. Figure 17 is a 30-year comparison of water levels in observation well 81 with cumulative departure from average annual rainfall at Lake City (Miller and others, 1978). The graphs show a general correlation between water levels and rainfall.

Table 4.--Location of long-term observation wells from which water-level measurements of the Floridan aquifer were obtained

			1	
Map number (fig. 13)	Latitude	Longitude	County	Frequency of water-level measurements and period of record
1	29°43'13"	82°02†46"	C1ay	Monthly, May-September 1960, Bimonthly, 1975-76.
4	29°52 ' 57 "	82°04'57"	Bradford	Semimonthly to bimonthly, September 1959-June 1960, Bimonthly, 1975-76.
15	30°00'20"	82°10'30"	do.	Bimonthly, 1959-78.
22	29°50'55"	82°13'08"	do.	Bimonthly, 1975-76.
43	30°07'47"	82°22'58"	Union	Daily, 1958-78.
51	30°01'01"	82°24'52"	do.	Bimonthly, 1959-78.
79	29°49'28"	82°35'53"	Alachua	Bimonthly, June-September 1970 Daily, 1970-78.
81	30°10'31"	82°38'10"	Columbia	Daily, 1948-78.
92	29°43'30"	82°44'50"	Gilchrist	Bimonthly, July 1964-May 1965 Daily, 1965-78.

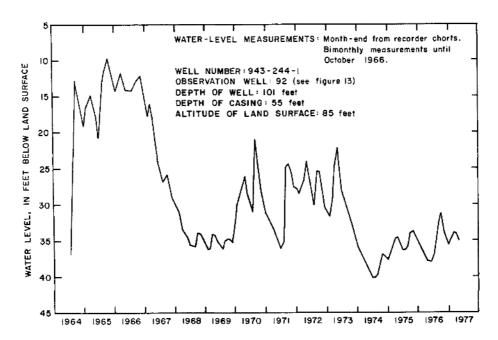


Figure 14.--Hydrographs of observation wells in the Floridan aquifer at wells 79 and 92.

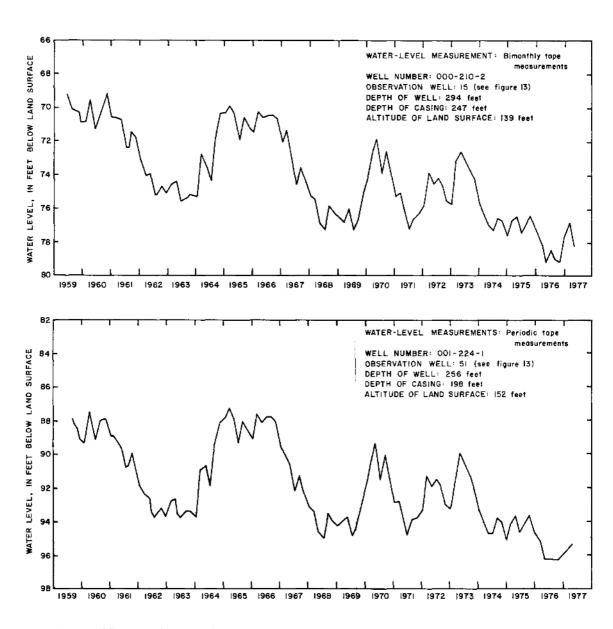
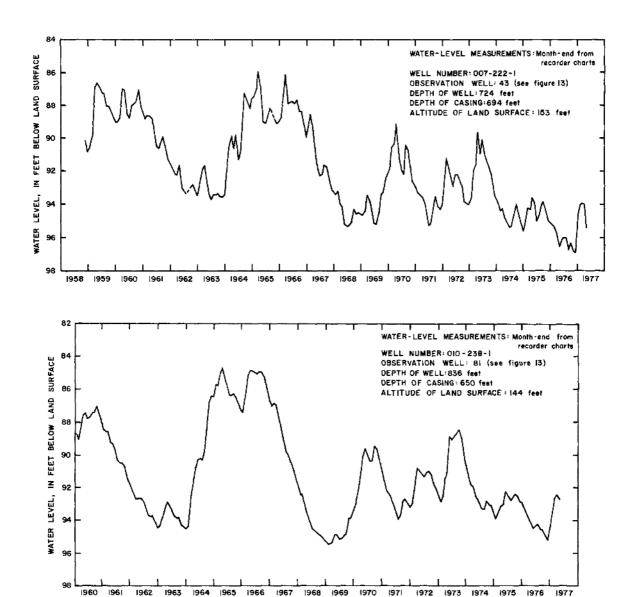
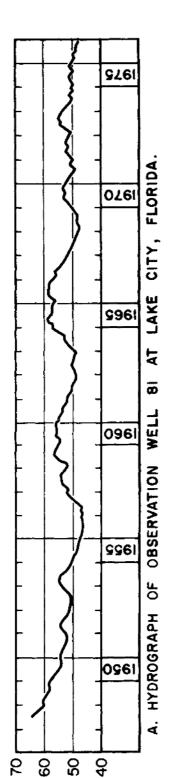
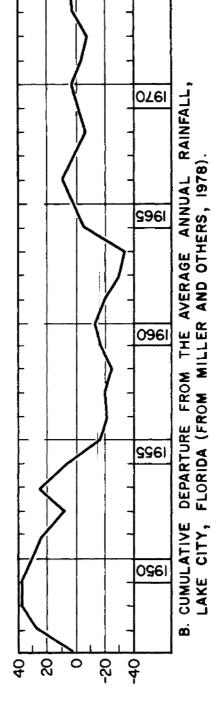


Figure 15.--Hydrographs of observation wells in the Floridan aquifer at wells 15 and 51.


Figure 16.--Hydrographs of observation wells in the Floridan aquifer at wells 43 and 81.

1929, IN FEET

ABOVE NGVD OF

WATER LEVEL

9261

Figure 17. -- Rainfall and ground-water levels at Lake City, Florida, 1948-76.

RAINFALL, IN INCHES

CUMULATIVE DEPARTURE FROM AVERAGE ANNUAL

Water-Bearing Properties

Three aguifer tests have been run in the confined part of the Floridan aquifer in or near the Santa Fe basin; at the Sperry plant northeast of Gainesville (Clark and others, 1964b), at Lake City (Meyer, 1962), and in the Osceola National Forest northeast of Lake City (Miller and others, 1978). The calculated transmissivities were 21,000 ft²/d at the Sperry plant, 36,000 ft²/d at Lake City, and about 33,000 ft²/d in the Osceola Forest. Because the wells tested penetrated only about the upper 200 feet of the aquifer at the Sperry plant and at Lake City, and the upper 100 feet in the Osceola Forest, and because the Floridan aquifer is known to be vertically anisotropic, these transmissivity values probably are representative of only the upper part of the Although no aquifer tests have been made in the confined aquifer. the basin, specific-capacity unconfined part of tests transmissivities of 60,000 ft²/d or more. Clark and others (1964b) indicated that the highest specific capacities known to them [as much as 20,000 (gal/min)/ft] occurred in western Alachua County, where the aquifer is unconfined. Since publication of that report, two specificcapacity tests have become available for the unconfined part of the Floridan aquifer: 108 (gal/min)/ft at a powerplant northwest of Gainesville, and 177 (gal/min)/ft at a new municipal well at High Springs (table 2 and fig. 5, local well numbers 945-223-1 949-235-4). Estimated transmissivities are 30,000 and 47,000 ft²/d, respectively. Using the confined and unconfined recharge rates for the Ichetucknee Springs basin and the average flow of Ichetucknee Springs (360 ft3/s), the transmissivity of the unconfined part of the Floridan aquifer near the springs can be estimated to be 500,000 ft2/d. estimate, however, may reflect the effect of the total thickness of the aquifer on spring discharge, as compared to the effect of penetration of only part of the aquifer by most wells.

Potential for Development

The confined part of the Floridan aquifer (fig. 11) is a potential source of water for users requiring as much as 1,000 gal/min from individual wells. Extensive development of the confined part of the aquifer would increase its recharge by increasing the difference in hydraulic head between the water table in the surficial aquifer and the head in the Floridan aquifer. The maximum possible increase in this head difference is about 3 times in the northeast part of the basin, not taking into account any resulting head changes in the surficial aquifer. The increase in the rate of recharge would be directly proportional to the increased head difference, and would result in decreased discharge to streams and decreased evapotranspiration from the surficial aquifer.

The unconfined part of the aquifer is a potential source of water for users requiring as much as 5,000 gal/min from individual wells. Recharge is derived from local rainfall and could not be increased appreciably by pumping the aquifer, except by inducing infiltration near the Santa Fe River and utilizing runoff from that part of the basin where the aquifer is confined.

Heavy pumping from the confined part of the aquifer, or long-term droughts, could cause sinkhole development by lowering the water pressure that helps to support beds overlying large cavities in the aquifer rock. Sinkhole development may occur in either the confined or unconfined part of the aquifer during drilling of a well, especially if sand is pumped from underground cavities. If drilling activities permit sand to flow downward into cavities in the limestone, surface depressions may develop.

The unconfined part of the aquifer can be contaminated by waste discharge into sinkholes or to streams that drain into sinkholes. The present extent of such contamination is unknown and therefore presumably small, but could increase with industrial and municipal development.

SURFACE WATER

Streamflow

Total runoff from the Santa Fe basin averages about 2,150 ft³/s or roughly 1,400 Mgal/d. This amount is sufficiently larger than the estimated water use (17 Mgal/d) to indicate an appreciable unused water-supply potential for the basin. The estimated total discharge is the sum of the average discharge of Ichetucknee Springs near Hildreth, about 360 ft³/s (fig. 13, station 95, and table 5), the Santa Fe River near Fort White, about 1,640 ft³/s (fig. 14, station 88), and the estimated average discharge from an ungaged area between the aforementioned discharge stations and the mouth of the Santa Fe River. This ungaged area is assumed to contribute the same amount of streamflow per square mile as the Ichetucknee Springs drainage basin, based on similar geology.

Table 5.--Hydrologic stage and discharge station locations and measurement frequency

Map number (fig. 13)	Station name and number 1	Type and frequency od data
	Streams	
23	Santa Fe River near Graham, 02320700	Daily discharge, 1957-78.
21	Sampson River at Sampson City, 02320800.	Partial record, 1958-76.
24	Sampson River at Graham, 02320815	Partial record, 1958-76.
20	New River near Raiford, 02320900	Partial record, 1958-76.
28	New River near Lake Butler, 02321000	Daily discharge, 1950-71; Partial record, 1975-76.
56	Santa Fe River at Worthington Springs, 02321500.	Daily discharge, 1931-78.

Downstream order number or site number used for U.S. Geological Survey automatic data processing.

Table 5.--Hydrologic stage and discharge station locations and measurement frequency--Continued

Map number	Station name and number $^{\mathrm{l}}$	Turn and fraguency of late
	Station name and number	Type and frequency of data
(fig. 13)		
	StreamsContinued	
60	Olustee Creek near Lulu, 02321600	Partial record, 1965-76.
53	Swift Creek near Lake Butler, 02321700	Daily discharge, 1957-60.
76	Olustee Creek near Providence, 02321800.	Daily discharge, 1957-60.
57	Turkey Creek near Hague, 294445082242500.	Partial record, 1975-76.
58	Turkey Creek tributary at Hague, 02322020.	Partial record, 1975-76.
84	Santa Fe River near High Springs, 02322000	Daily discharge, 1931-71; Partial record, 1975-76.
88	Santa Fe River near Fort White, 02322500	Daily discharge, 1927-30, 1932-78.
93	Cow Creek near Fort White, 02322590	Partial record, 1975-76.
95	Ichetucknee Springs near Hildreth, 02322700.	Partial record, 1929-78.
96	Santa Fe River near Hildreth, 02322800	Daily stage, 1947-78.
	Lakes	
7	Santa Fe Lake near Keystone Heights, 02320600.	Weekly, 1957-78.
7A	Lake Altho at Waldo, 02320630	Daily, March-September 1976.
16	Lake Sampson near Starke, 02320750	Weekly, 1957-78.
37	Lake Butler at Lake Butler, 02321300	Fragmentary record, 1957-65; Weekly, 1965-78.
97.	Waters Lake near Trenton, 02322550	Weekly, 1972-78.
80	Alligator Lake at Lake City, 02322600	Weekly, 1965-67, 1972-78; Fragmentary record, 1967-72.

Downstream order number or site number used for U.S. Geological Survey automatic data processing.

Average annual runoff is higher in the western than in the eastern part of the basin (table 6). In the east, the confining bed retards downward percolation of ground water to the Floridan aquifer resulting in a high water table in the overlying surficial aquifer and the existence of many streams, lakes, and swamps; consequently, evapotranspiration losses are greater than in the west. Also, some water that percolates through the confining bed and recharges the Floridan aquifer ultimately discharges to streams in the western part of the basin.

Table 6.--Summary of streamflow data

[e = estimated for water year 1976]

Map num-		Drainage	Period	,	Discha	arge	
ber	Gaging station,	area	of	Maximum	Minimum	Aver	age
(fig. 13)	name and number	(mi ²)	record used	(ft ³ /s)	(ft ³ /s)	ft ³ /s	in/yr
23	Santa Fe River near Graham, 02320700	94.9	1957-76	2,360	0.05	64.1	9.2
21	Sampson River at Sampson City, 02320800	59.7	1958-67 1975-76	325	2.1	35e	8.0
24	Sampson River at Graham, 02320815	74.3	1975–76	189	4.9	41e	7.5
20	New River near Raiford, 02320900	88.1	1958-76	2,060	.40	50e	7.7
28	New River near Lake Butler, 02321000	193	1950-70 1975-76	11,400	.20	117e	8.2
56	Santa Fe River at Worthington Springs, 02321500	575	1931-76	20,000	.50	446	10.5
60	Olustee Creek near Lulu, 02321600	49.1	1965-67 1969-73 1975-76	2,130		28e	7.7
57	Turkey Creek near Hague, 294445082242500		1975-76	4.0	.75	2.6e	
58	Turkey Creek tributary at Hague, 02320020		1975-76	3.8	1.4	2.8e	

 $^{^{\}rm l}$ Downstream-order number or site number used for U.S. Geological Survey automatic data processing.

Table 6.--Summary of streamflow data--Continued

- * *	Drainage					
ation umber	area (mi ²)	Period of record	Maximum (ft ³ /s)	Disch Minimum (ft³/s)		rage in/yr
	ζ /	used	(20 /0)	(22 / 5)	, -	
ver near s,	868	1931-71 1975-76	20,000	31	900e	14.1
ver near 02322500	1,017	1927-30 1932-76	17,000	609	1,643	21.9
ear 02322590		1975–76	32	.99	9e	4.7
Springs th,	² 400	1917-75	578	241	360e	12.2
	02322590 Springs	02322590 Springs ² 400	02322590 Springs ² 400 1917-75	02322590 Springs ² 400 1917-75 578	02322590 Springs ² 400 1917-75 578 241	02322590 Springs ² 400 1917-75 578 241 360e

Downstream-order number or site number used for U.S. Geological Survey automatic data processing.

Application of Streamflow Data

The entire range of discharge at a gaging station compared with time is shown by the flow-duration curve, which presents the percentage of time that discharges have been equaled or exceeded without considering the length of time that any given discharge has been sustained. Flow-duration curves for six discharge sites are shown in figure 18. The slopes of the curves for stations 84 and 88 are not as steep as for the other stations. The base flow at stations 84 and 88 is discharge from the Floridan aquifer. The other stations (23, 28, 56, and 76) receive discharge only from the surficial aquifer and a minor amount of seepage from the confining bed at base flow. The curves of the latter stations are somewhat parallel, except for station 76, Olustee Creek near Providence. This stream is known to lose water during low-flow periods, and the loss is reflected by a steepening in slope of the curve.

Low-flow frequency data (table 7) indicate the probability of a specific recurrence of minimum average discharge for periods of 3, 7, 14, 30, 60, 120, 183, and 365 days.

²Estimated from potentiometric surface map.

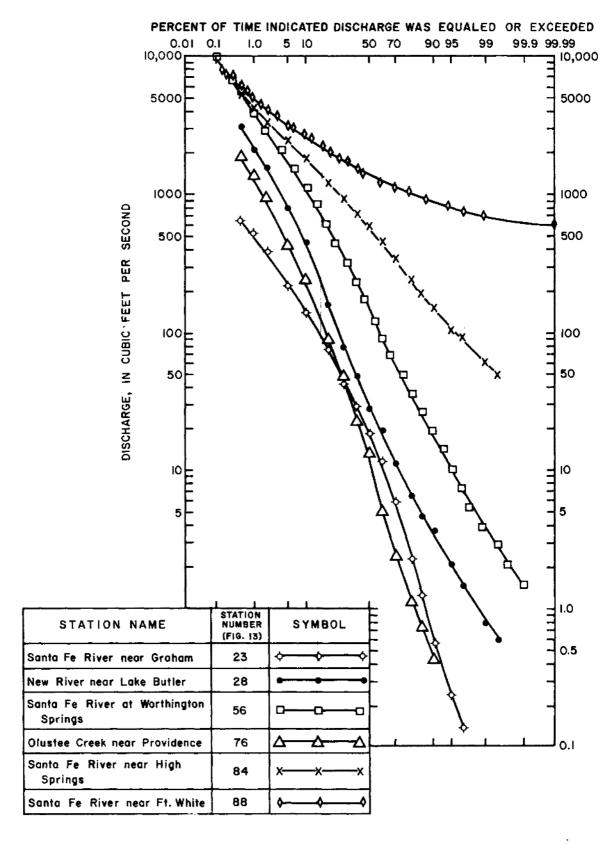


Figure 18.--Flow-duration curves, adjusted to the period 1933-71, for six discharge sites in the Santa Fe River basin.

Table 7.--Low-flow frequency at gaging stations

Map number (fig.	Station name and number (period of	Con- sec- utive			in cubic			
13)	record used)		2	5	10	20	50	100
23	Santa Fe	3	0.9	0.2	0.1	0.06	0.03	0.02
	River near	7	1.1	.3	.1	.1	.04	.02
	Graham	14	1.4	.4	.2	.1	.05	.03
	02320700	30	2.5	.8	. 4	.2	.1	.1
	(1958-76)	60	4.5	1.2	.6	.3	.2	.1
	,	120	13	4.5	2.6	1.6	.9	.6
		183	29	12	6.9	4.3	2.5	1.7
		365	50	25	18	13	8.9	6.9
28	New River	3	1.8	0.8	0.5	0.4	0.2	0.2
	near Lake	7	2	1	.7	.5	.3	.2
	Butler	14	2.5	1.3	.9	.7	• 5	.4
	02321000	30	3.7	1.9	1.4	1	.7	.6
	(1951-71)	60	6.8	3.3	2.2	1.5	1	.7
	(-,,,	120	22	7.9	4.6	2.9	1.8	1.2
		183	58	19	11	6.5	3.6	2.4
		365	155	65	36	21	11	6.4
56	Santa Fe	3	11	4.3	2.5	1.6	0.9	0.6
	River at	7	12	5.2	3.2		1.3	.9
	Worthington	14	15	7	4.5	3.1	1.9	1.4
	Springs	30	21	9.8	6.3		2.6	1.9
	02321500	60	32	15	9.5	6.4	4.1	3
	(1932-76)	120	82	31	18	11	6.1	4.1
		183	152	58	33	21	12	8.1
		365	399	210	141	99	64	47
84	Santa Fe	3	232	125	89	67	47	38
	River near	7	236	128	91	68	48	38
	High Springs	14	241	131	94	70	51	40
	02322000	30	255	138	99	74	54	43
	(1932-71)	60	272	148	107	82	60	49
		120	343	182	129	96	69	55
		183	451	224	152	109	74	57
		365	787	433	298	211	138	102

Table 7.--Low-flow frequency at gaging stations--Continued

Map number (fig.	Station name and number (period of	Con- sec- utive		Discharge, recurrence		-		
13)	record used)	days	2	5	10	20	50	100
88	Santa Fe	3	977	814	747	699	652	624
	River near	7	982	818	750	702	655	627
	Fort White	14	988	822	755	706	659	632
	02322500	30	1,010	832	762	714	667	639
	(1928-30)	60	1,030	851	780	731	685	659
	(1932-76)	120	1,110	892	802	750	695	664
	•	183	1,230	944	838	766	698	660
		365	1,550	1,200	1,000	944	841	780

Low-flow discharge measurements made during a short period of time are used to estimate the relative availability of water in different drainage basins, and different reaches of the same stream, and to assess areas of ground-water discharge to streams. Low-flow measurements, including observations of no flow, were made at 73 sites in April 1976 and in May 1977 (table 8) when the Santa Fe River was near 90 percent flow duration at Worthington Springs and near Fort White. The measurements at stations 77, 78, 82, and 83 were made at about 80 percent flow duration.

Table 8.--Low-flow discharge measurements

[e = estimated]

Map number (fig. 13)	Station name and number l	Discharge (ft ³ /s)	Date
5	Double Run Creek near Theressa, 02320620	0.2e No flow	04-26-76 05-25-77
12	Santa Fe River near Hampton, 02320692	do. do.	04-26-76 05-25 - 77
23	Santa Fe River near Graham, 02320700	0.5	04-26-76 05-25-77

Downstream-order number or site number used for U.S. Geological Survey automatic data processing.

Table 8.--Low-flow discharge measurements--Continued

Map number (fig. 13)	Station name and number 1	Discharge (ft ³ /s)	Date
2	Alligator Creek near Starke, 295610082034600	9.2 No flow	04-26-76 05-25-77
9	Alligator Creek at Starke, 02320732	11.4 7.1	04-26-76 05-25-77
10	Prevatt Creek near Starke, 295440082053600	No flow do.	04-26-76 05-25-77
17	Tributary to Lake Sampson near Starke, 295635082185300	0.2 .003	04 - 26-76 05-25-77
21	Sampson River at Sampson City, 02320800	1 1e	04 - 26-76 05-25-77
24	Sampson River at Graham, 02320815	3.2	04-26-76 05-25-77
30	Tributary to Santa Fe River near Graham, 295143082170400	.le No flow	04-26-76 05-25-77
32	Tributary to Monteocha Creek at Monteocha, 294754082170200	0.06 No flow	04-26-76 05-24-77
33	Monteocha Creek at Monteocha, 02320827	Ponded	04-26-76
34	Little Monteocha Creek near Monteocha, 24923082181000.	0.02	04-26-76
31	Tributary to Monteocha Creek north of Monteocha, 294930082165200	0.2e No flow	04-26-76 05 - 24-77
36	Tributary to Santa Fe River near Brooker, 295226082184000	0.05 No flow	04-26-76 05 - 25-77
42	Rhuda Branch south of Sunshine Lake, 2949708200300	0.06 No flow	04-27-76 05-24-77

 $^{^{\}rm l}$ Downstream-order number or site number used for U.S. Geological Survey automatic data processing.

Table 8.--Low-flow discharge measurements--Continued

Map number (fig. 13)	Station name and number 1	Discharge (ft ³ /s)	Date
45	Rocky Creek 3 miles southwest of Sunshine Lake, 294802082221800	Ponded No flow	04-26-76 05-24-77
47	Tributary to Rocky Creek southeast of LaCrosse, 294911082230500	0.1 No flow	04-27-76 05-24-77
46	Rocky Creek near LaCrosse, 02320870	Ponded do.	04-27-76 05-24-77
48	Tributary to Rocky Creek northeast of LaCrosse, 295152082232500	0.6 No flow	04-27-76 05-24-77
49	Tributary to Santa Fe River north of LaCrosse, 295219082244200	0.09 No flow	04-27-76 05-24-77
54	Tributary to Santa Fe River near Santa Fe, 295246082251400	0.1 No flow	04-27-76 05-24-77
3	Tributary to Olustee Creek near Lawtey, 300423082050000	1.4	04-27-76 05-24-77
13	New River at State Highway 125 near Raiford, 300612082094000	.8 No flow	04-27-76 05-25-77
6	Tributary to Alligator Creek near Lawtey, 300328082051800	0.6 No flow	04-27-76 05-24 - 77
11	Alligator Creek near Lawtey, 02320898	0.3e No flow	04-27-76 05-24-77
20	New River near Raiford, 02320900	3 1.4	04-27-76 05-25-77
25	Turkey Creek near Raiford, 300304082135000	1.9 .4	04-27-76 05-24-77
8	Water Oak Creek near Starke, 02320950	.05e No flow	04-27-76 05-24-77

Downstream-order number or site number used for U.S. Geological Survey automatic data processing.

Table 8.--Low-flow discharge measurements--Continued

Map number (fig. 13)	Station name and number 1	Discharge (ft ³ /s)	Date
18	Gum Creek near Lawtey, 300045082111300	0.4 No flow	04-26-76 05-24-77
19	Water Oak Creek near Lawtey, 02320960	2.2	04-26-76 05-24 - 77
26	Tributary to New River near Raiford, 300117082145500	.4e No flow	04-27-76 05-24-77
27	McKinney Branch at SR 235, 300012082152700	1.35	04-27-76
28	New River near Lake Butler, 02321000	16 4.4	04-26-76 05-25-77
29	Tributary to New River near New River, 295703082172500	.3 .5e	04-27-76 05-25-77
35	Tributary to New River near Brooker, 295652082185300	.4 .4e	04-27-76 05-25-77
39	Tributary to New River southwest of New River, 295631082193200	.6e	05-25-77
40	Tributary to New River in section 30 near Brooker, 295654082203200	No flow do.	04-27 - 76 05-25-77
38	Richard Creek near Lake Butler, 02321200	No flow do.	04-27-76 05-24-77
41	New River near Brooker, 295700082204400	21 No flow	04-27-76 05-25-77
44	Fivemile Creek near Dukes, 02321446	0.04 .001	04-27-76 05-24-77
50	New River near Worthington Springs, 295536082244000	17 7.2	04-27-76 05-24-77

 $^{^{\}rm l}$ Downstream-order number or site number used for U.S. Geological Survey automatic data processing.

Table 8.--Low-flow discharge measurements--Continued

Map number (fig. 13)	Station name and number $^{\mathrm{l}}$	Discharge (ft³/s)	Date
55	Tributary to Santa Fe River in section 4 near Santa Fe, 295418082252300	0.05 No flow	04-26-76 05-24-77
56	Santa Fe River at Worthington Springs, 02321500	22 9	04-26-76 05-24 - 77
62	Tributary to Santa Fe River near Worthington Springs, 295645082272100	.6 No flow	04-26-76 05-24-77
63	Stream at County Road east of Alachua, 294759082264500	0.02e .02	04-27-76 05-24-77
64	Tributary to Santa Fe River west of Santa Fe, 295248082280800	.le No flow	04-26-76 05-25-77
65	Tributary to Santa Fe River near Bland, 295408082290800	0.2 .1e	04-26-76 05-25-77
67	Mill Creek at Alligator Road east of High Springs, 2950400823000	.1 .1e	04 - 27-76 05-28-77
52	Olustee Creek near Olustee, 301219082250700	.2e No flow	04-26-76 05-25-77
59	Olustee Creek in section 18 near Olustee, 300837082272900	No flow do.	04-26-76 05 - 25-77
60	Olustee Creek near Lulu, 02321600	0.4	04-27-76 05-25-77
66	Olustee Creek at State Highway 241 near Lulu, 300502082301900	.6 .4	04-26-76 05-25-77
68	Olustee Creek at State Highway 240 near Providence, 300328082315800	1.29	04-27 - 76 05-25-77
60A	Swift Creek at State Highway S-231 near Lake Butler, 300456082213900	.2 No flow	04-26-76 05-24-77

 $^{^{1} \, \}mathrm{Downstream}\mathrm{-order}$ number or site number used for U.S. Geological Survey automatic data processing.

Table 8.--Low-flow discharge measurements--Continued

Map number (fig. 13)	Station name and number l	Discharge (ft ³ /s)	Date
60В	Tributary to Swift Creek near Lake Butler, 302202082232200	No flow 0.03	04-26-76 05-24-77
61	Swift Creek near Shaws Still, 300220082280200	1.2e No flow	04-27-76 05-24-77
75	Olustee Creek at State Highway 245 near Providence, 300057082333700	No flow do.	04 - 27-76 05 - 25-77
74	Olustee Creek at County Road near Providence, 295822082333600	No flow	04-27-76
69	Tributary to Olustee Creek near Providence, 02321894	0.6e .5e	04-27-76 05-25-77
72	Olustee Creek at State Highway 18 near Providence, 295701082315000	No flow do.	04-27-76 05-25-77
70	Santa Fe River near Bland, 295633082302500	No flow	0 5- 25-77
71	Pareners Branch near Bland, 295352082310700	0.4e No flow	04-27-76 05-25-77
73	Pareners Branch near O'Leno State Park, 295419082331200	No flow do.	04-27-76 05-25-77
77	Santa Fe River at O'Leno State Park, 02321898	128	04-13-77
78	Santa Fe River near Traxler, 02321961	285	04-14-77
82	Santa Fe River at U.S. Highway 441 near High Springs, 295110082363100	395	04-14-77
83	Santa Fe River Diversion to Suck Hole, 02321991	217	04-15-77
84	Santa Fe River near High Springs, 02322000	212	05-25-77

 $^{^{1}\!\!\}text{Downstream-order number or site number used for U.S. Geological Survey automatic data processing.}$

Table 8.--Low-flow discharge measurements--Continued

Map number (fig. 13)	Station name and number 1	Discharge (ft ³ /s)	Date	
88	Santa Fe River near Fort White, 02322500	895	05-24-77	
89	Santa Fe River at State Highway 47 near Fort White, 02322540	1,020	05-25-77	
95	Ichetucknee Springs near Hildreth, 02322700	300	05-24-77	
96	Santa Fe River near Hildreth, 02322800	1,590	05-24-77	

Downstream-order number or site number used for U.S. Geological Survey automatic data processing.

The low flows in some reaches of the streams in the eastern part of the basin have been increased artificially by sewage and industrial-waste discharge, and decreased in other reaches by irrigation pumpage and by impoundments to maintain lake levels.

Flow duration, frequency, and low-flow measurements are only useful for predicting future streamflow characteristics if they reflect stable past stream conditions and are to be applied to the same conditions, making appropriate adjustments for new impoundments, diversions, withdrawals, waste discharges, and climatic changes.

High Flows

The Santa Fe River is subject to flooding from high streamflow within the basin and from backwater from the Suwannee River. The mouth of the Santa Fe River is about 45 miles direct, and more than 50 river miles upstream, from the Gulf of Mexico. Much of the flood plain of the lower Santa Fe River is less than 20 feet above sea level (fig. 2) and is susceptible to backwater from high flows in the Suwannee River. The highest discharges of record for the Santa Fe River (20,000 ft³/s) have occurred near High Springs and at Worthington Springs (table 8). During periods of flooding and high runoff in the Suwannee River basin, backwater from the Suwannee River reduces peak discharges in the lower reach of the Santa Fe River, and much of the flood flow is retained in storage until the Suwannee River recedes. Figure 19 shows flood-frequency data, calculated according to guidelines (U.S. Water Resources Council, 1967), for the eight gaging stations for which data are available.

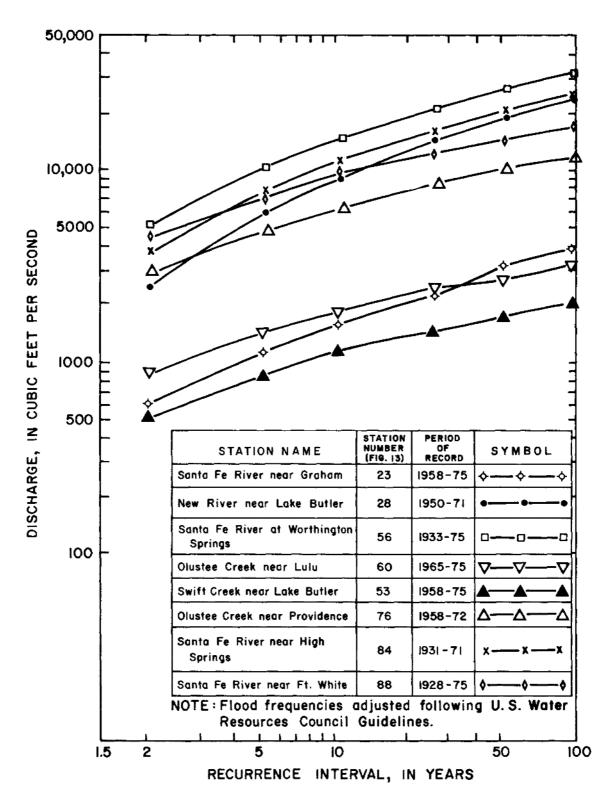


Figure 19.--Flood-frequency curves for eight gaging stations in the Santa Fe River basin.

Lakes

Lakes in the Santa Fe basin (fig. 13) are used primarily for recreation. Most of them occupy shallow topographic depressions in the surficial aquifer. Santa Fe Lake is believed to penetrate the entire thickness of the surficial aquifer, reaching the underlying confining bed. The greatest known lake depth is 28 feet in Santa Fe Lake (oral commun., Richard Musgrove, Suwannee River Water Management District, 1977). Alligator Lake, Sunshine Lake, and the lakes and ponds of Gilchrist County occupy depressions in the confining bed. Because of their small areal extent, shallow depth, and low surface-water inflow, the lakes in the basin are not considered potential sources for large water supplies. Table 9 summarizes information on physical characteristics and lake-level fluctuations for six lakes in the basin.

Table 9.--Summary of lake-level data

[All lakes are in the surficial aquifer except Alligator Lake and Waters Lake which are in the confining bed (fig. 4)]

Map num-	Lake station name and number	face a area a	Drain-	Period	Lake levels (feet above sea level)			
ber (fig.			age area (mi²)	of record used	Period of record Maximum Minimum		10/75-09/76 Maximum Minimum	
13)		(m1-)	(m1-)	usea	Maximum	MINIMUM	maximum	MINIMUM
7	Santa Fe Lake near Keystone Heights, 02320600	8.28	20.9	1957–76	142.62	138.44	141.04	139.62
7A	Lake Altho at Waldo, 02320630	.87	3.39	03/76- 09/76	<u></u> :		143.92	143.26
16	Lake Sampson near Starke, 02320750	3.24	59.3	1957-67 1974-76	136.15	130.22	132.39	130.29
37	Lake Butler at Lake Butler, 02321300	.68	3.94	1957-67 1974-76	134.02	128.93	131.65	130.10
80	Alligator Lake at Lake City, 02322600	.54	15.4	1965-76	99.98	90.23	97.58	93.66
97	Waters Lake near Trenton, 02322550	.29	15.7	1972-76	74.68	63.70	71.68	64.90

Surface-Water Resources by Drainage Area

New River

The headwaters of New River are underlain by the surficial aquifer in southeastern Baker County. The stream flows across the confining bed from about 3 miles downstream from the municipality of Raiford (fig. 4) to the mouth, which is about 0.5 mile upstream from the daily discharge station on the Santa Fe River at Worthington Springs (fig. 13). New River is more deeply entrenched than the Santa Fe River above Worthington Springs because the surficial aquifer is generally thicker in the New River basin (fig. 13), and is more easily eroded than the confining bed. New River makes a larger contribution to the discharge of the Santa Fe River at Worthington Springs than does the reach of the Santa Fe River above the mouth of New River.

New River gained flow in the reach crossing the surficial aquifer during April 1976 and May 1977 low-flow measurements. Water apparently was lost to permeable zones in the reach crossing the confining bed (fig. 4) on each of the low-flow measurements. Because losses occurred in different reaches of the streams at different times, they could be explained by withdrawals for irrigation or by unequal distribution of rain showers. However, losses of flow to the confining bed in two tributaries, Richard Creek and the nearby unnamed tributary (fig. 3), cannot be attributed to irrigation. Some losses from New River probably occur during low flow even though the stream shows a net gain. Losses from New River and the two tributaries may ultimately pass through the confining bed into the Floridan aquifer. Worthington Springs, which discharges from a permeable zone in the confining bed (fig. 3), and possibly from the Floridan aquifer, was not flowing when the low-flow measurements were made.

The base flow of New River is sustained by discharge from the surficial aquifer throughout most of its length and by several short tributary streams, upstream of apparent flow losses, that derive their base flow from water-yielding zones in the confining bed. The water in these tributary streams is clear at low flow in contrast to the dark-colored water in streams supplied by the surficial aquifer.

Santa Fe River above Worthington Springs

The headwaters of the Santa Fe River are at Santa Fe Lake and Lake Altho. The river flows northward about 4 miles through a swamp before heading northwest toward its junction with New River (fig. 3). Although no losses of flow are known in this reach, the surficial aquifer is thin except near the lakes, and supplies only a small amount of base flow. In addition, evapotranspiration losses occur from the lakes and swamp and recharge to the Floridan aquifer possibly is greater in the vicinity of the headwaters of the Santa Fe River in eastern Alachua and southeastern Bradford Counties than in most of the artesian or eastern part of the Floridan aquifer. (See section on Recharge and Discharge.) These factors make the Santa Fe River above Worthington Springs a smaller stream at low flow than New River.

The principal tributary of the Santa Fe River above Worthington Springs, other than New River, is Sampson River (fig. 3). This stream is controlled to the extent that it is difficult to determine its natural low-flow characteristics. Sampson River begins east of the municipality of Starke as Alligator Creek, and flows through the outskirts of Starke and through two lakes southwest of Starke before entering the Santa Fe River. The base flow of the stream is supplied by the surficial aquifer and by industrial and municipal discharge. It is also affected by regulation of the height of a dam at the outlet of Lake Sampson, and by irrigation withdrawals below Lake Sampson.

Lesser tributaries to the south of the Santa Fe River are Monteocha Creek and Rocky Creek (fig. 3). Low-flow measurements of these streams and their tributaries are shown in table 8 and, except for one measurement of $0.6~\rm ft^3/s$, are less than $0.3~\rm ft^3/s$, or the velocity was too low to operate a current meter, indicating ponded water. The base flow of these streams is supplied by the thin surficial aquifer. An additional reason for their small base flow is the presence of a small closed drainage basin between the streams, terminating in Sunshine Lake. Drainage from the lake is probably into the Floridan aquifer.

Olustee Creek

Olustee Creek rises in southwestern Baker County. During April 1976 and May 1977, low-flow measurements were made along the length of Olustee Creek (fig. 13). The data (table 8) show that the stream gained flow across the surficial aquifer from its headwaters to about 2 miles north of the mouth of Swift Creek (fig. 3) and lost flow across the confining bed and the Floridan aquifer from there to the mouth. Olustee Creek is not known to be used as a water supply.

Swift Creek, the only important tributary to Olustee Creek, rises in the swampy area surrounding Swift Creek Pond (fig. 3) and extends as a poorly defined channel through swamps to a point about 2 miles downstream from Lake Fisher, where the channel becomes and remains well defined to the mouth. Swift Creek does not flow in extremely dry weather. The surficial aquifer supplies the base flow of the stream, to a point where the stream flows across the confining bed, about 1 mile upstream from the mouth. The stream may lose water in the reach across the confining bed, but the ponded water near the mouth prevents determination of loss of flow.

Palestine Lake (fig. 3) has been observed by Richard Musgrove of the Suwannee River Water Management District to drain westward into Olustee Creek (oral commun., 1976). The lake was also observed (Clark and others, 1964b) to drain into the St. Marys River basin to the north. The difference in elevations of the two lake outlets is, apparently, so small that drainage may occur in either direction; perhaps depending on stream stage and rainfall beyond the Palestine Lake basin.

Santa Fe River below Worthington Springs excluding Olustee Creek

The Santa Fe River flows across the Floridan aquifer from a point near Worthington Springs to its confluence with the Suwannee River. The aquifer supplies nearly all of the base flow of this reach of the Santa Fe River. The river may receive limited recharge from the confining bed near Worthington Springs and in Gilchrist County, and from sand overlying the confining bed. It is recharged by several large springs (table 3, fig. 3) and it alternately gains and loses flow at least as far downstream as (fig. 13). station 89 Because the potentiometric map (fig. 12) ground-water flow toward the river, it is assumed that the river has a variable subsurface component of discharge which is not measured at gaging This component was measured as more than 200 ft³/s at 0'Leno stations. State Park (station 77) and at a sinkhole near High Springs. State Park, the river flows underground for about 3 miles. Water moving up from the Floridan aquifer either discharges directly to the river or moves downstream as a subsurface component. Loss from surface discharge into the limestone also has been observed between stations 88 and 89 (fig. 13).

Ichetucknee River.--This stream is fed by at least nine springs above gaging station 95 (fig. 13). The drainage area of the springs is not defined by surface topography but has been estimated from the potentiometric map (fig. 12) of the Floridan aquifer for purposes of estimating recharge to the unconfined part of the Floridan aquifer. The drainage area includes Rose Creek, a small stream that drains underground in one or two places (fig. 3), depending on the amount of discharge; and Clay Hole Creek, which is shown on most published maps of the area, but which is dry most of the time. Alligator Lake at Lake City, within the drainage area of Ichetucknee River drains vertically into the Floridan aquifer, along with a short tributary, Price Creek. The minimum discharge of record for the Ichetucknee River is 241 ft³/s (U.S. Geological Survey, 1976).

Sinking streams south of the Santa Fe River.—Several small streams drain through sinkholes (fig. 3) into the Floridan aquifer near the western edge of the surficial aquifer (fig. 4) south of the Santa Fe River; two carry industrial wastes. Most of the base flow of these streams is supplied by the surficial aquifer, and by small springs and seeps from the confining bed. Water in the streams and in water-yielding zones in the shallow subsurface in this area is perched above the Floridan aquifer.

Cow Creek.—This stream rises from the confining bed and overlying surficial sands in the southwest part of the Santa Fe basin (fig. 3). A chemical analysis of the water from the stream indicates near saturation with calcium carbonate. Because the confining bed and surficial sands in this area are noncalcareous, much of the base flow of Cow Creek is upward discharge from the limestone rocks of the Floridan aquifer. The artesian head in the Floridan aquifer is high enough to supply upward discharge through the confining bed to the stream in this area (fig. 12).

WATER QUALITY

Factors Affecting Chemical Quality

The quality of the water in the streams and aquifers of the Santa Fe basin is generally satisfactory for most uses. Because of the low population density and lack of extensive industrial development the effect of man on water quality Quality of water is affected principally by natural factors. is minimal. principal natural factor active in the basin is rainwater containing dissolved carbon dioxide and organic acid acting as a solvent on soil and rocks. Manmade factors, such as municipal and industrial wastes, urban runoff, and fertilizer use, presently have their greatest effects on surface water. The surficial aquifer in the eastern part of the basin and the Floridan aquifer may be affected by development in the future, as the population grows. The increased use and reuse of water from the unconfined aquifer may result in increased dissolved minerals and nutrients specific to the users' waste byproducts. Floridan aquifer in most of the eastern part of the basin is protected from direct infiltration of contaminants by the confining bed.

The significance of dissolved mineral constituents and properties of water is discussed in the annual water-data reports (U.S. Geological Survey, 1976, for example) and by Hem (1970).

Ground-Water Quality

The solution of limestone (CaCO₃) or dolomite [CaMg(CO₃)₂] by natural waters in the presence of carbon dioxide (CO₂) is probably the largest single factor responsible for the chemical character of fresh ground water in Florida. Whereas limestone and dolomite are only slightly soluble in pure water, their solubility increases in water that contains carbon dioxide derived from the atmosphere and, to a much larger extent, soil air as the water percolates through the soil and the unsaturated zone above the water table. Carbon-dioxide concentrations in soil air--primarily resulting from plant respiration and decay of plant material—are commonly one to two orders of magnitude greater than in atmospheric air. Sulfate derived from the solution of gypsum (CaSO₄·2H₂O) and anhydrite (CaSO₄) is a principal constituent of ground water in part of the Santa Fe basin. The concentration of dissolved solids in ground water depends to a large extent on the length of time that ground water is in contact with the rocks.

Surficial aquifer.--The quality of water from wells in the surficial aquifer varies areally and with thickness of aquifer penetrated by the well. The upper 30 feet of the aquifer receive recharge from rainfall and discharge much of this water to nearby streams and to evapotranspiration. This shallow zone has been leached by circulating ground water, and wells completed in it generally produce water low in dissolved solids. Figures 20 and 21 show the general distribution of dissolved solids and hardness concentrations of water in the surficial aquifer. The highest dissolved solids and hardness values were obtained in central Bradford County, in one of the thickest parts of the aquifer, from wells completed below the 30-foot depth or shallow zone. In an area of equal thickness along the Bradford-Clay County line (fig. 8), the wells sampled were less than 30 feet deep and dissolved solides were less than

100 mg/L (fig. 20); concentrations at greater depths should be higher because of longer residence time in the aquifer. Sulfate concentrations in water samples taken from the surficial aquifer were less than 25 mg/L.

The quality of water from wells in the surficial aquifer is influenced by the proximity of the water table to land surface. Recharge may be induced from nearby streams, ponds, and swamps. Land-use practices such as waste disposal, the use of agricultural chemicals, and recycling of irrigation water, may affect the quality of surficial aquifer water. In addition, there is the potential for local upward leakage of more mineralized water from the confining bed.

Confining bed.—Most recharge to the confining bed occurs as downward percolation of water from the surficial aquifer. Water-yielding zones in the confining bed are calcareous, and percolation through them to streams or to the Floridan aquifer is slow in most places. The distribution of dissolved-solids concentrations and hardness shown by figures 22 and 23, respectively, is believed to be related to a large extent to the rate of circulation of water through these water-yielding zones. Sulfate concentrations in water samples taken from water-yielding zones in the confining bed were less than 10 mg/L.

Wells completed in water-yielding zones in the confining bed are, in most places, presumed less likely to be contaminated by manmade waste products than are wells in the surficial aquifer or in the unconfined part of the Floridan aquifer. The presence of a confining bed over an aquifer or water-yielding zone retards downward movement of contaminants.

<u>Floridan aquifer.</u>—Water in the upper part of the Floridan aquifer is mostly of the calcium-magnesium bicarbonate type. The most common undesirable characteristic of this water is hardness. Concentrations of sulfate exceeding drinking water standards of 250 mg/L are found generally below the upper 200 feet of the aquifer. The source of the sulfate is believed to be gypsum in the lower part of the Floridan aquifer.

The relation between sulfate concentrations and circulation of ground water has been discussed in the section on Recharge and Discharge of the Floridan aquifer. The lower part of the Santa Fe River, from its mouth upstream nearly to the mouth of Olustee Creek, and the entire length of the Ichetucknee River, constitute the principal discharge area of the Floridan aquifer within the Santa In the vicinity of these streams the hydraulic gradient within the Floridan aquifer is upward, and some water from deep circulation can discharge Figures 24, 25, and 26 show high dissolved-solids, hardness, and sulfate concentrations, respectively, along these streams. Another significant area of mineralized water occurs as a northwest-southeast trending zone in north-central Alachua County. It, too, could be the result of the upward movement of deeply circulating sulfate waters in the Floridan aquifer rather than the consequences of man's waste products. As discussed in the section on Recharge and Discharge, water samples collected by Clark and others (1964a), prior to industrial development in the area, were found to contain high concentrations of dissolved solids, hardness, and sulfate. And samples more recently collected by the Suwannee River Water Management District in the same area, and upgradient of the industrial development, contained high concentrations of the same constituents.

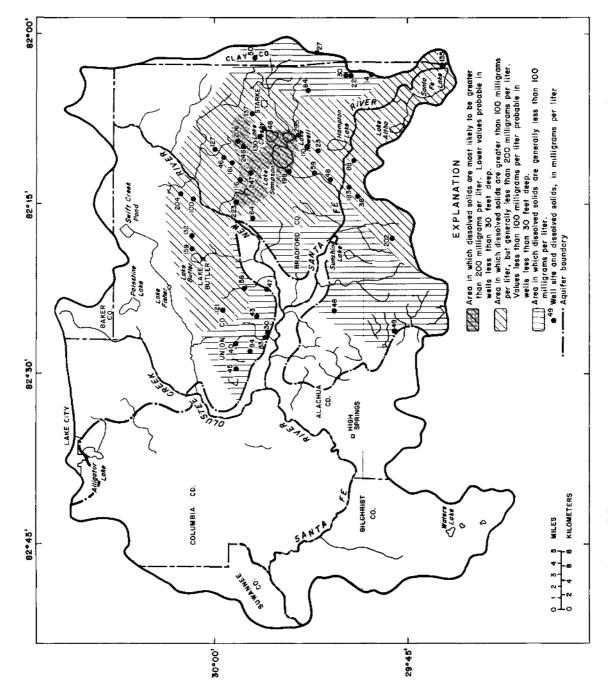


Figure 20. -- Dissolved solids in water of the surficial aquifer.

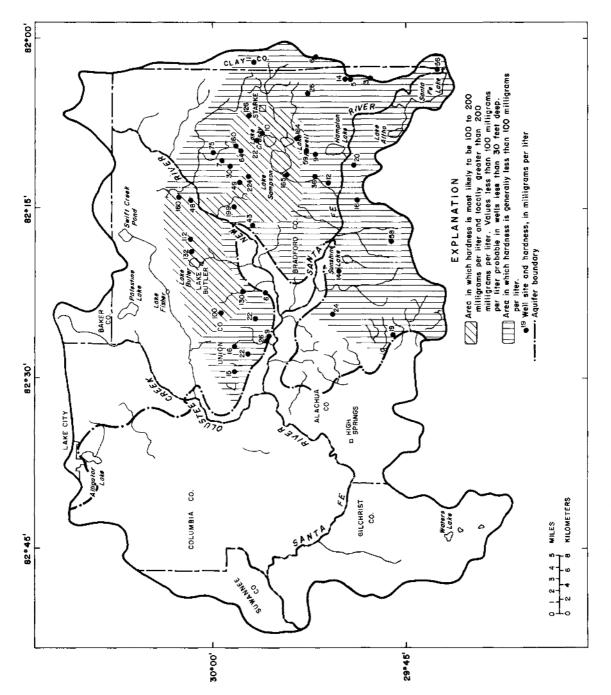


Figure 21. -- Hardness of water of the surficial aquifer.



Figure 22. -- Dissolved solids in water of the confining bed.

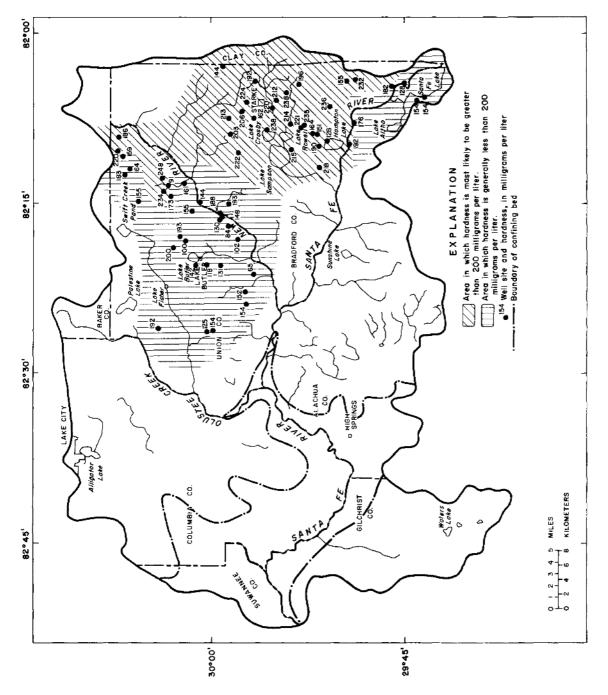


Figure 23. -- Hardness of water of the confining bed.

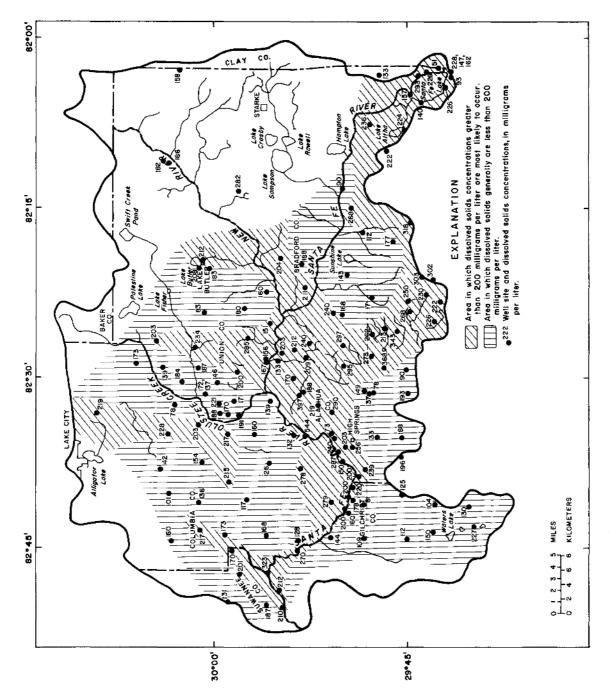


Figure 24. -- Dissolved solids in water in the upper 200 feet of the Floridan aquifer,

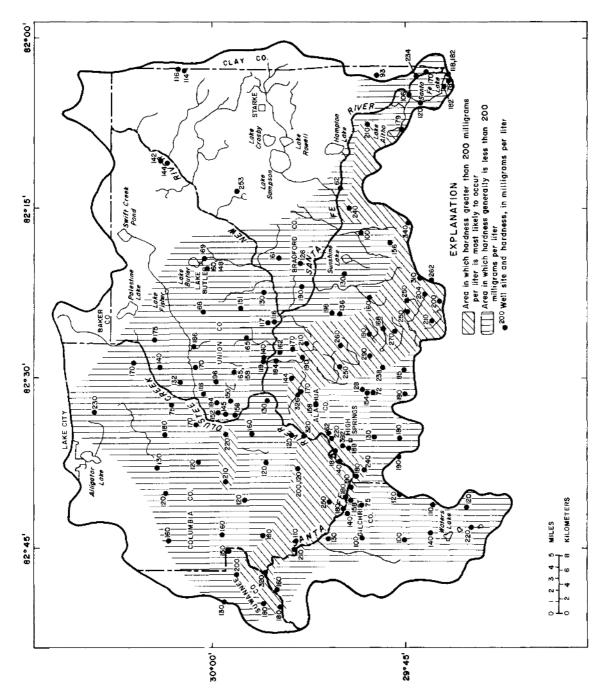


Figure 25. -- Hardness of water in the upper 200 feet of the Floridan aquifer.

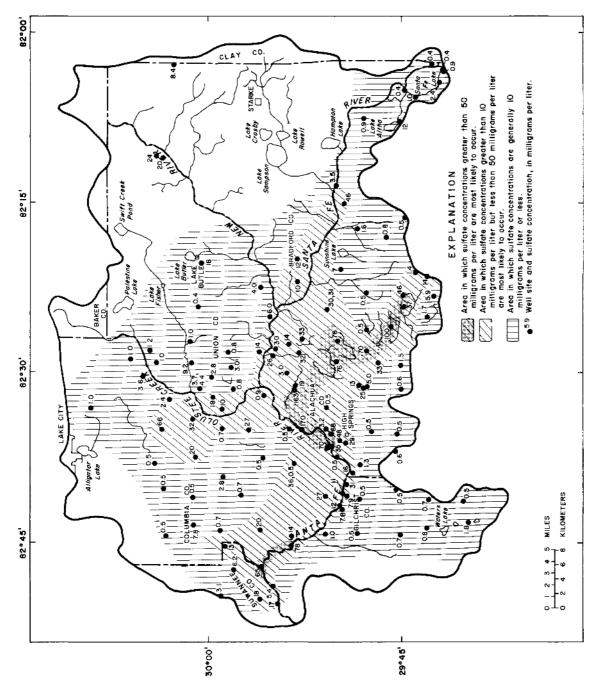


Figure 26.--Sulfate in water in the upper 200 feet of the Floridan aquifer.

The unconfined part of the Floridan aquifer, like the surficial aquifer, is vulnerable to contamination from manmade waste deposited on the land surface or in streams. Few contamination problems have occurred in the past because of the low population density, but as the basin develops some are likely to occur.

Surface-Water Quality

The quality of water in the lakes of the basin is influenced mostly by ground-water inflow, overland flow, swamp discharge, and direct rainfall. Water in the swamps consists of rainwater and discharge from the surficial aquifer. Decay of vegetation in swamp areas is considered to be the principal source of dissolved organic material in the surface water of the basin. The quality of water in the Santa Fe River is influenced by outflow from the lakes and swamps plus additional ground-water discharge and overland flow.

Clark and others (1964b) present the results of extensive collection and analysis of water-quality data for the streams and lakes of the basin from 1957 through 1960. The discussion below emphasizes the relations between water quality and the sources of water in the Santa Fe River. Water samples collected since 1960 indicate that the quality of surface water in the basin has not noticeably changed since that time. The locations of all the surfacewater stations in the Santa Fe River basin for which water-quality data are available are shown in figure 13.

Santa Fe Lake is located at the headwaters of the Santa Fe River. lake has a very small drainage area and receives some inflow from swamps. water quality of Santa Fe Lake has remained relatively constant, based on 32 samples collected from July 1957 to October 1976. The specific conductance has ranged from 50 to 78 micromhos per centimeter (umho/cm) at 25°C. The lake water is predominantly sodium chloride type, but with moderate amounts of hardness, bicarbonate, and sulfate. Chloride concentrations have varied little, from 9.0 to 13 mg/L. Color has ranged from 10 to 50 platinum-cobalt (Pt-Co) units. The dissolved-solids concentration average of 43 mg/L, determined from residue on evaporation (ROE) at 180°C, exceeded the sum of inorganic constituents (mineral matter) average of 30 mg/L, indicating that moderate amounts of organic material are dissolved in the water. The outflow from the lake is the beginning of the Santa Fe River, which flows through a large swamp north of the lake before reaching the gaging and sampling site, Santa Fe River near Graham (fig. 13, station 23).

Dissolved solids (ROE) in the Santa Fe River near Graham averaged 94 mg/L, which is more than 2 times the dissolved solids (ROE) in Santa Fe Lake. Flow from lakes and swamps accounts for most of the surface-water inflow to the Santa Fe River upstream from Graham. The average concentration of mineral matter is about the same at Graham as in Santa Fe Lake (41 and 30 mg/L, respectively), however, the range in concentration of mineral matter is much greater in the river, 132 mg/L as compared to 30 mg/L in Santa Fe Lake, indicating that the river has received ground-water inflow. Color at Graham averaged 242 Pt-Co units, more than 7 times the color in the lake, a result of inflow from swamps.

The calcium plus magnesium hardness and the dissolved mineral matter tend to increase in direct proportion to increases in specific conductance for the Santa Fe River near Graham (fig. 27). Although dissolved solids (ROE) generally increase with increased specific conductance, the relation is not linear. A logarithmic best fit is shown in figure 28. This is true because dissolved solids (ROE) represent the total of inorganics (which vary directly with conductance) plus organics (which are unrelated to conductance).

As shown in figure 27, dissolved solids (ROE) for the Santa Fe River near Graham usually are about 2 times the sum of inorganics, indicating the presence of large amounts of organics. The dissolved solids, organic matter, iron concentrations, and hardness are the factors most likely to affect water use.

The average concentration of iron in the Santa Fe River near Graham was 396 micrograms per liter (ug/L), or about $2\frac{1}{2}$ times the concentration in Santa Fe Lake. The higher iron concentrations are probably associated with the higher concentrations of organic substances. Organic matter tends to hold iron in solution by chelation, complexing, and reduction of ferric to ferrous iron.

The relation of specific conductance to discharge for the Santa Fe River near Graham is shown in figure 28. In general, specific conductance is less at high than at low flow, because the ground-water component of discharge is diluted or nonexistent at high flows. Because the availability of soluble minerals depends on conditions antecedent to a particular rainfall or storm, such as season, rainfall intensity, and other climatic factors, there is some variability in the conductance-discharge relation. After the initial flushing, storm runoff that is relatively free of dissolved solids, and therefore low in specific conductance, dilutes the water in the stream; thus, with increased discharge there is a decrease in conductance.

The cumulative frequency of various quality parameters is shown in figures 29 and 30. A cumulative frequency curve shows the percentage of samples having a characteristic equal to or greater than the indicated amount.

The average concentration of dissolved solids (ROE) in the Santa Fe River is about the same at Worthington Springs (station 56) and at Graham (station 23), but at Worthington Springs the water contains slightly more mineral matter and less organic matter than at Graham. The sulfate and silica concentrations at Worthington Springs are almost 3 times and 2 times, respectively, those at Graham. The average chloride is 1.0 mg/L less at Worthington Springs than at Graham.

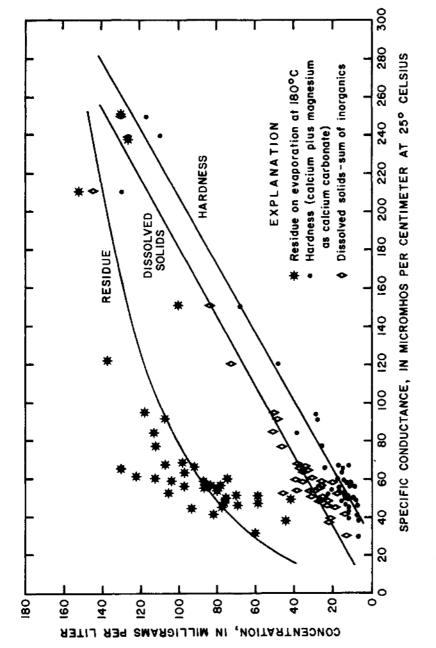


Figure 27. -- Hardness and dissolved solids (residue on evaporation and sum) in relation to specific conductance of the Santa Fe River water near Graham (station 23).

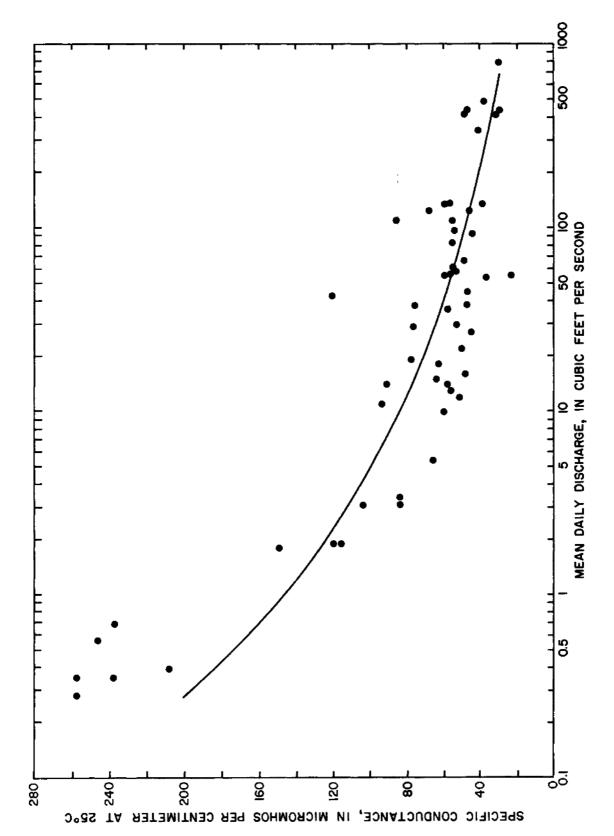


Figure 28.--Relation of specific conductance to discharge for the Santa Fe River near Graham (station 23).

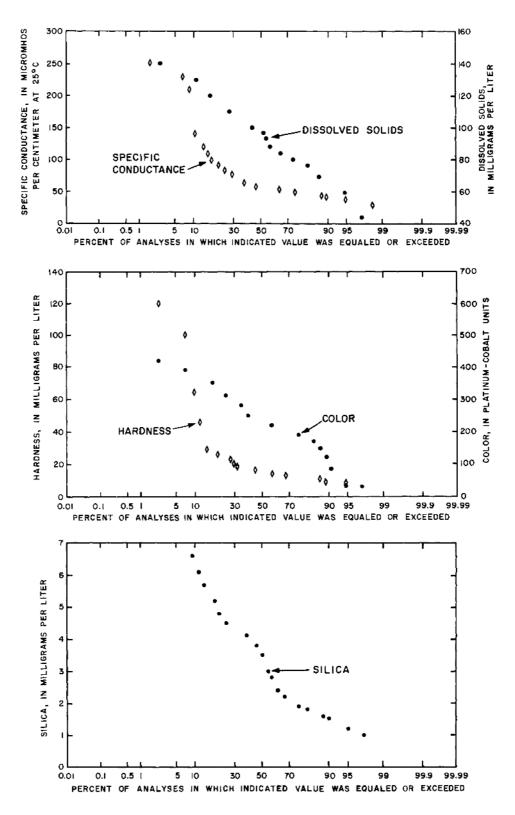


Figure 29.—Cumulative frequency of specific conductance, dissolved solids (residue on evaporation), hardness, color, and silica for the Santa Fe River at Graham (station 23).

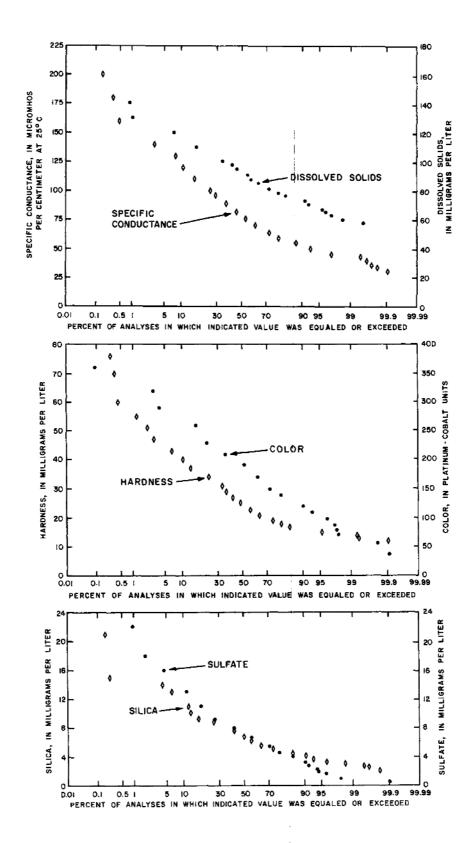


Figure 30.—Cumulative frequency of specific conductance, dissolved solids (residue on evaporation), hardness, color, silica, and sulfate for the Santa Fe River at Worthington Springs (station 56).

The average concentration of mineral matter dissolved in the water at Olustee Creek near Providence (fig. 13, station 76) is about 35 percent less than that of Santa Fe River at Worthington Springs (station 56). The concentration of dissolved solids (ROE) in Olustee Creek water averaged 86 mg/L, of which 31 mg/L was inorganic matter and 55 mg/L was organic matter. Nitrate, nitrite, organic nitrogen, and chloride concentrations were about the same at both sites, but sulfate and silica were about 53 and 29 percent less, respectively, for Olustee Creek than for the Santa Fe River.

The Santa Fe River goes underground about 4 miles downstream from the mouth of Olustee Creek, and emerges again about 3 miles farther downstream. From the river's emergence to the gaging and sampling station near High Springs (fig. 13, station 84) the river water is more mineralized than at any place upstream or downstream. The average concentration of inorganic and organic substances dissolved in the Santa Fe River water at High Springs is 171 and 18 mg/L, respectively. Calcium plus magnesium bicarbonate and, to a lesser extent, calcium sulfate account for most of the dissolved solids. Organic matter, however, is considerably less concentrated in the river at High Springs (station 84) than at Graham (station 23) and Worthington Springs (station 56).

The changes in Santa Fe River quality are due almost entirely to differences in quality of ground-water inflow and overland runoff. Natural factors are sufficiently different within the basin to cause most of the water-quality variations observed.

Color is the most esthetically objectionable characteristic of surface water in the basin. Iron content and hardness, locally, may be problems.

SUMMARY

The availability of water in the Santa Fe basin is more than adequate for present needs. Estimated water use in the basin was 17 Mgal/d in 1977, a very small part of the estimated average discharge of the Santa Fe River at its mouth of 1,400 Mgal/d. Important sources of water in the basin are the Floridan aquifer, water-yielding zones in the confining bed, the surficial aquifer, and the stream system.

The western part of the basin is a karst area containing the greatest potential supplies of ground water and surface water. The principal source of ground water is the Floridan aquifer, a sequence of limestone units as much as 1,000 feet thick. The Floridan aquifer is overlain in much of the western part of the basin by the confining bed that, except in part of Gilchrist County, does not function effectively as a confining layer because it is commonly thin and breached by sinkholes. Where the Floridan aquifer is unconfined, rainfall percolates directly into the aquifer. Recharge is estimated to be 18 in/yr. Aquifer transmissivity is estimated to range from 33,000 to 500,000 ft²/d; individual wells may be pumped as much as 5,000 gal/min. The Floridan aquifer discharges naturally to the Santa Fe and Ichetucknee Rivers, the main surface drainage features of the basin. Cow Creek, a small tributary to the Santa Fe River, drains the area in Gilchrist

County where the Floridan aquifer is confined. Several large springs contribute to the flow of the Santa Fe and Ichetucknee Rivers. The average discharge of Ichetucknee Springs, measured in the river below the springs, is about 360 ft³/s. The average discharge of the Santa Fe River at Fort White, about 9 miles upstream from the mouth of the Ichetucknee River, is about 1,640 ft³/s. The base flow of both streams is sustained by discharge from the Floridan aquifer, which conveys ground water from most of the Santa Fe basin and adjacent parts of Suwannee and Alachua Counties which are outside the basin. The two rivers are used extensively for recreation.

In the eastern part of the basin, the Floridan aquifer is overlain by the confining bed, which effectively confines the aquifer. The confining bed, in turn, is overlain by a surficial aquifer. The transmissivity of the Floridan aquifer in this area is estimated to range from 21,000 to 36,000 ft²/d. Recharge to the Floridan aquifer percolates through the overlying confining bed at a rate estimated to be 1.8 in/yr. Discharge from the Floridan aquifer to streams is small, occurring only to the Santa Fe River downstream from Worthington Springs. Ground-water discharge is mostly to the western part of the basin, but also northeast to the St. Johns River basin.

The confining bed over the Floridan aquifer consists of interbedded clay, sand, sandstone, and limestone becoming more than 300 feet thick in the northeastern part of the basin. It contains water-bearing limestone layers that supply less than 100 gal/min to wells, mostly in Bradford and Union Counties. Water in the confining bed is derived from the overlying surficial aquifer and by seepage from streams. Where it crops out, the confining bed receives recharge from rainfall, especially in Gilchrist County. Natural discharge from the confining bed is directly to streams and into the Floridan and surficial aquifers.

The surficial aquifer is composed mostly of very fine to mediumgrained silty sand with interbedded layers of clay and silt. sediments overlie the entire basin but have a perennially saturated zone only where underlain by less permeable constituents of the confining Saturated thickness of the surficial sediments increases toward the east, reaching about 80 feet near the Clay County line. Recharge to the surficial aquifer is derived from local rainfall and from streams during high flows. Natural discharge consists of evapotranspiration, seepage to streams, and percolation to or through the underlying confining bed. The water table of the surficial aquifer generally lies within 10 feet of land surface, commonly intersecting the surface with the resultant occurrence of ponds, lakes, streams, and swamps. aquifer supplies water to many wells for domestic purposes, mostly in Bradford and Union Counties. Well yields, large enough for commercial and some industrial use, could be developed by unconventional methods such as large-diameter dug wells and water collectors, especially near the eastern boundary of the basin.

Streams in the eastern part of the basin are numerous, but small. Average discharge of the Santa Fe River at Worthington Springs is about 450 ft³/s, representing discharge from most of the eastern part of the basin. Streams in this area are used mostly for irrigation of crops and livestock watering.

Quality of water in the Santa Fe basin is generally satisfactory for most uses. Water from the surficial aquifer is for the most part not highly mineralized, but locally may contain high concentrations of iron, calcium, and magnesium. Water percolating from the surficial aquifer through the confining bed becomes more highly mineralized with calcium, magnesium, and bicarbonate. The Floridan aquifer also contains water of the calcium-magnesium bicarbonate type. Streams in the western part of the basin, because of the large inflow from the Floridan aquifer, contain more calcium, magnesium, and bicarbonate, and less color than the streams in the eastern part of the basin.

SELECTED REFERENCES

- Applin, P. L., and Applin, E. R., 1944, Regional subsurface stratigraphy and structure of Florida and southern Georgia: American Association of Petroleum Geologists Bulletin, v. 28, no. 12, p. 1673-1753.
- Briel, L. I., 1976, An investigation of the U²³⁴/U²³⁸ disequilibrium in the natural waters of the Santa Fe River basin of north-central Florida: Tallahassee, Florida State University, Ph. D. dissertation.
- Causey, L. V., and Leve, G. W., 1976, Thickness of the potable-water zone in the Floridan aquifer: Florida Bureau of Geology Map Series 74.
- Clark, W. E., Musgrove, R. H., Menke, C. G., and Cagle, J. W., Jr., 1962, Interim report on the water resources of Alachua, Bradford, Clay, and Union Counties, Florida: Florida Geological Survey Information Circular 36, 92 p.
- _____1963, Hydrology of Brooklyn Lake near Keystone Heights, Florida: Florida Geological Survey Report of Investigations 33, 43 p.
- 1964a, Water-resources data for Alachua, Bradford, Clay, and Union Counties, Florida: Florida Geological Survey Information Circular 43, 154 p.
- ______1964b, Water resources of Alachua, Bradford, Clay, and Union Counties, Florida: Florida Geological Survey Report of Investigations 35, 170 p.
- Cooke, C. W., 1945, Geology of Florida: Florida Geological Survey Bulletin 29, 339 p.

SELECTED REFERENCES--Continued

- Cooper, H. H., Jr., Kenner, W. E., and Brown, Eugene, 1953, Ground water in central and northern Florida: Florida Geological Survey Report of Investigations 10, 37 p.
- Ellis, M. M., Westfall, B. A., and Ellis, M. D., 1948, Determination of water quality: U.S. Fish and Wildlife Service, Research Report 9, 122 p.
- Ferguson, G. E., Lingham, C. W., Love, S. K., and Vernon, R. O., 1947, Springs of Florida: Florida Geological Survey Bulletin 31, 196 p.
- Fisk, D. W., and Rosenau, J. C., 1977, Potentiometric surface of the Floridan aquifer in the Suwannee River Water Management District, north Florida, May 1976: U.S. Geological Survey Water-Resources Investigations Open-File Report 77-1, 1 sheet.
- Hem, J. D., 1970, Study and interpretation of the chemical characteristics of natural water: U.S. Geological Survey Water-Supply Paper 1473 (2d ed.), 363 p.
- Leve, G. W., 1968, Reconnaissance of the ground-water resources of Baker County, Florida: Florida Geological Survey Report of Investigation 52, 24 p.
- Maier, F. J., 1950, Fluoridation of public water supplies: American Water Works Association Journal, v. 42, pt. 1, p. 1120-1132.
- Matson, G. E., and Sanford, Samuel, 1913, Geology and ground water of Florida: U.S. Geological Survey Water-Supply Paper 319, 445 p.
- Maxcy, K. F., 1950, Report on the relation of nitrate concentrations in well waters to the occurrence of methemoglobinemia: National Research Council Bulletin, Sanitary Engineering and Environment, Appendix D, 271 p.
- Meyer, F. M., 1962, Reconnaissance of the geology and ground-water resources of Columbia County, Florida: Florida Geological Survey Report of Investigations 30, 74 p.
- Miller, J. A., Hughes, G. H., Hull R. W., Vecchioli, John, and Seaber, P. R., 1978, Impact of proposed phosphate mining on the hydrology of Osceola National Forest, Florida: U.S. Geological Survey Water-Resources Investigations 78-6, 159 p.
- Mitchell, A. J., 1902, Florida section of the climate and crop service: Weather Bureau, U.S. Department of Agriculture Bulletin 01.

SELECTED REFERENCES--Continued

- Parker, G. G., Ferguson, G. E., and Love, S. K., 1955, Water resources of southeastern Florida, with special reference to the geology and ground water of the Miami area: U.S. Geological Survey Water-Supply Paper 1255, 965 p.
- Pirkle, E. C., 1956, The Hawthorn and Alachua formations of Alachua County, Florida: Journal of the Florida Academy of Science, v. 19, no. 4, p. 197-240.
- Pride, R. W., 1958, Floods in Florida--magnitude and frequency: U.S. Geological Survey Open-File Report FL58002, 136 p.
- Puri, H. S., 1957, Stratigraphy and zonation of the Ocala Group: Florida Geological Survey Bulletin 38, 248 p.
- Puri, H. S., and Vernon, R. O., 1964, Summary of the geology of Florida and a guidebook to the classic exposures, revised: Florida Geological Survey Special Publication 5, 312 p.
- Puri, H. S., Yon, J. W., and Oglesby, W. R., 1967, Geology of Dixie and Gilchrist Counties, Florida: Florida Division of Geology Bulletin 49, 155 p.
- Rainwater, F. H., and Thatcher, L. L., 1960, Methods for collection and analysis of water samples: U.S. Geological Survey Water-Supply Paper 1454, 301 p.
- Riggs, H. C., 1966, Frequency curves: U.S. Geological Survey Techniques of Water Resources Investigations, Book 4, Chapter A2, 17 p.
- _____1972, Low-flow investigations: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 4, Chapter B1, 18 p.
- Rosenau, J. C., Faulkner, G. L., Hendry, C. W., Jr., Hull, R. W., 1977, Springs of Florida: Florida Bureau of Geology Bulletin 31, revised, 461 p.
- Searcy, J. K., 1960, Graphical correlation of gaging-station records: U.S. Geological Survey Water-Supply Paper 1541-C, p 67-100.
- Stringfield, V. T., 1936, Artesian water in the Florida Peninsula: U.S. Geological Survey Water-Supply Paper 773-C, p 115-195.
- 1966, Artesian water in Tertiary limestone in the southeastern states: U.S. Geological Survey Professional Paper 517, 226 p.
- Swenson, H. A., and Baldwin, H. L., 1965, A primer on water quality: U.S. Government Printing Office, Washington, D. C., 27 p.

SELECTED REFERENCES--Continued

- Thomas, D. M., 1967, Extending streamflow records in time: U.S. Geological Survey Techniques of Water Resources Investigations, Book 4, sec. B, Preliminary Report, 21 p.
- U.S. Department of Commerce, 1975, Climatological data, Florida, annual summary, 1975: National Oceanic and Atmospheric Administration, Environmental Data Service, Asheville, N. C.
- U.S. Environmental Protection Agency, 1975, National interim primary drinking water regulations: Federal Register, v. 40, no. 248, December 24, p. 59566-59588.
- U.S. Geological Survey, 1976, Water resources data for Florida, water year 1975, v. 1, northern Florida: U.S. Geological Survey Water-Data Report FL-75-1, 769 p.
- U.S. Water Resources Council, 1967, A uniform technique for determining flood flow frequencies: Water Resources Council Bulletin 15, 15 p.
- University of Florida, 1980, Florida population; a summary of 1980 census results: University of Florida, Bureau of Economics and Business Research, Population Program, 47 p.
- Vanlier, K., Leach, S. D., Leve, G. W., and Rosenau, J. C., 1975, Water resources information needs for the Suwannee River Water Management District: Suwannee River Water Management District Information Circular 1, 65 p.
- Vernon, R. O., 1951, Geology of Citrus and Levy Counties, Florida: Florida Geological Survey Bulletin 33, 256 p.
- Vernon, R. O., and Puri, H. S., compilers, 1965, Geologic map of Florida: Florida Geological Survey Map Series 18.
- White, W. A., 1958, Some geomorphic features of central peninsular Florida: Florida Geological Survey Bulletin 41, 92 p.

Table 2. -- Well and test hole data

Site number: Number used for U.S. Geological Survey automatic data processing

This Well-numbering system used in older reports and figure 5 of this report. system is explained in figure 6. Local well number:

Use: D, domestic; In, industrial; Ir, irrigation; N, none; P, public supply; O, observation; St, stock;

G, Florida Bureau of Geology; SR, Suwannee River Water Management District; U, U.S. Geological Survey [Clark and others (1964a), Meyer (1962), and later data] Source of well record:

Source of water analysis: SR, Suwannee River Water Management District; U, U.S. Geological Survey

Water-yielding unit: F, Floridan aquifer; C, confining bed; S, surficial aquifer

Water yield- ing unit	
ce of Water anal- ysis	
Source of Well Water record anal- ysis	ი ი გ გ გ გ
Use	T L L L L L L L L L L L L L L L L L L L
of Top of Flor- idan aqui- fer (feet)	78
Altitude of Top of Top of con- Flor- fining idan) bed aqui- (feet) fer (feet)	counties 112 83 87 84 66
and ur- ace	hrist C 112 83 87 87 94 66
Casing L Diam- Depth s eter (feet) f (inches) (f	Alachua and Gilchrist Counties 112 112 83 83 4 74 87 87 4 40 94 84 66 66
Casi Diam- eter (inches)	Alachus 4 4
Depth (feet)	59 49 100 103 45
Local well number	937-242-1 937-243-1 938-241-1 939-231-1 939-246-1
Site number	293722082422001 293731082430001 293825082413001 293931082312001 293957082464501

Table 2. -- Well and test hole data -- Continued

Water yield- ing unit			芹公公芹芹	C O C H H
Source of Well Water record anal-	S S S S S S S S S S S S S S S S S S S	11111		SR SR U
Sour Well record	SR SR SR SR SR SR SR	G SR G		u u u
Use	ir ir D	ннаан	N N N N N N N N N N N N N N N N N N N	D, Ir D T T
of Top of Flor- idan aqui- fer (feet)	67 104 67	51 113 -22	11111	11111
Altitude of Top of T con- fining bed (feet)	137 162 85 86 86	86 97 153 	<130 <137 <137	11111
Land sur- face (feet)	157 162 95 86 85	86 97 163 89 88	160 147 161 155	145 146 170
ng Depth (feet)	63 122 63 158	63	105	110 125 60 24
Casing Diam- Dueter (inches)	444 4	 4 16-10	44 ¹¹ 40	2 4 F T T T T T T T T T T T T T T T T T T
Depth (feet)	152 170 123 170	40 102 202 125 3,753	111 17 10 365 136	154 162 60 24 82
Local well number	940-222-1 940-222-2 940-226-1 940-241-1 940-243-1	940-246-1 940-246-2 941-227-1 941-232-1 941-248-1	942-203-1 942-203-2 942-203-3 942-203-4 942-203-5	942-203-6 942-203-9 942-206-1 942-207-1 942-210-1
Site number	294011082223601 294010082225001 294015082261101 294036082412401 294006082430701	294050082461501 294031082462101 294150082270301 294153082324901 294145082482701	294250082031001 294231082034601 294233082034301 294240082032504 294240082032505	294240082032506 294247082033201 294252082063001 294240082071501 294215082101501

Table 2. -- Well and test hole data -- Continued

150 150 150 160 161		eter (feet) (inches) (10 175 12 160 20 153 24 173 24 190	(inches) (feet) f (inches) (f 10 175 12 160 20 153 24 173 24 190
161 164 164 165 165		77 77 77 77 77 77	475 24 540 24 540 24 521 24 538 24
106 175 133 92 82	97 120 110	111 4 4	111 4 4 1
88 155 171 	95 70	81 160 2 150 4 95 79 2 70	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Table 2, -- Well and test hole data -- Continued

Water yield- ing unit	on កោ កោ កោ	দে দে দি দি দি	a υμυ	[뉴 [뉴 [뉴 [뉴
ce of Water anal- ysis	U U U SR SR	11818	u SR U	SRU
Source of Well Water record anal- ysis	U U U SR G,SR,U	U U SR U SR	U U SR	U SR SR SR
Use	r D D L	D Ir D	0 6 6 6 6	1 D D,0
of Top of Flor- idan aqui- fer (feet)	 94 143	1 2 2 2 1	113	66 29
Altitude of Top of T con- fining bed (feet)	147	95 95 76	85 90 157 142	129
A Land sur- face (feet)	165 160 191 177 173	128 95 90 76	85 90 140 162 182	177 169 189 91 90
ng Depth (feet)	15 195 121 83	103	55 142 40	143 100 73 75
Casing Diam- De eter (f	134		34 17 2 6	16 4 4 4
Depth (feet)	18 270 230 165 175	125 207 79 235	101 107 58 180 60	802 200 165 100
Local well number	943-215-1 943-215-2 943-221-1 943-223-1 943-225-1	943-228-1 943-232-1 943-241-1 943-241-2 943-241-2	943-244-1 943-248-1 944-205-1 944-205-2	944-219-1 944-221-1 944-222-1 944-232-1
Site number	294320082155001 294355082154502 294340082213001 294311082233901 294318082250301	294304082283101 294322082322501 294307082411101 294331082412701 294323082434601	294330082445001 294343082482801 294410082055501 294456082055901 294445082061501	294440082200201 294446082211601 294410082224501 294448082320601 294428082362901

Table 2.--Well and test hole data--Continued

, 1, 1	[
Water yield- ing unit	1 22 12 12 12	***	मसमसम	FFONS
Source of 11 Water ord anal- ysis	U U	U SR SR	SR SR SR I	1 , 1 ,
Sour Well record	G U U SR SR	U SR SR SR	SR SR SR SR SR,U	
Use	T Ir D	In D D D,0	0,0	D D,Ir D T
Top of Flor- idan aqui- fer (feet)	59	104	18111	11111
Altitude of Top of T con- fining bed (feet)	86 136 131	176	97	 > 90 < 137 < 145
Land sur- face (feet)	86 144 156 149 169	184 176 166 133 90	92 94 97 70 170	159 155 150 155 159
ng Depth (feet)	20 195 160	185	120 65 141	165 60 15
Casing Diam- D eter ((inches)	 11% 4 4	14 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 1 1 4	4 2 1 1 2 4 2 4
Depth (feet)	40 22 448 180 220	440	140 137 65 154	199 210 60 18 14
Local well number	944-244-1 945-205-1 945-212-1 945-213-1 945-216-1	945-223-1 945-224-1 945-229-1 945-229-2 945-231-1	945-235-1 945-237-2 945-240-1 945-244-1 946-206-1	946-206-2 946-208-1 946-210-1 946-211-1 946-218-1
Site number	294423082442801 294542082-54401 294510082121501 284500082132201 294530082163201	294534082232101 294531082241401 294541082292901 294533082294401 294530082313901	294552082352501 294553082370001 294550082403101 294519082442201 294640082064501	294647082063201 294605082081501 294650082105001 294624082112601 294650082181501

Table 2. -- Well and test hole data -- Continued

Water yield- ing unit	[24 CV [24 [24 [24	Dec (See (See)	тооор	154 154 154 154
Source of 11 Water ord anal-	U U,SR U	11111	n n	n n n
Sour Well record	U U,SR U G,SR G,SR	u S.R. G	u u u SR	מממממ
Use	o D In In In	ZQQHH	P D D,Ir	D P P In
of Top of Flor- idan aqui- fer (feet)	11111	61 61 64 44	11119	11111
Altitude of Top of T con- fining bed (feet)	<141		 >116 >100	11111
Land sur- face (feet)	154 158 152 151 151	104 90 90 64 66	157 154 155 160	145 76 70 80 85
ng Depth (feet)	98 17 87 190 180	1 1 8 1 1	175 43 89	65 100 214
Casing Diam- D eter ((inches)	4 4 12 12	∞44	6 3 2 10	4 8 8 10 10 12 12 12 12 12 12 12 12 12 12 12 12 12
Depth (feet)	140 17 427 422 430	142 120 100 38 29	255 60 39 60 277	134 378 363
Local well number	946-218-2 946-226-1 946-226-2 946-226-3 946-226-4	946-228-1 946-229-1 946-233-1 946-242-1 946-244-1	947-210-1 947-210-2 947-210-6 947-210-7 947-223-1	947-225-1 947-229-1 947-229-2 947-229-3 947-229-4
Site number	294655082181502 294640082263001 294632082255301 294625082260503 294646082260801	294622082290801 294635082194001 294631082334801 294609082425301 294656082442601	294726082101001 294710082101002 294724082100301 294750082105007 294751082231101	294720082255501 294714082294401 294720082292002 294706082291001 294720082292004

Table 2. --Well and test hole data--Continued

Water yield- ing unit			HOFF	দি দৈ দি ও দি
Source of 11 Water ord anal- ysis	SR	11111	S S S	SR SR SR
Sour Well record	SR G SR C	0 0 0 0	U SR U SR	SR SR U
Use	D T D,0	нонн	I I I I	D,0 D T F
Top of Rlor- idan aqui- fer (feet)	44 58 38	30 37	1 4	79 107
Altitude of Top of T con- fining bed (feet)	11119	65 61 70 65	74 120	164 144 <140
Land sur- face (feet)	73 66 75 82 67	65 61 70 65	74 142 156 140 160	164 147 140 153 92
ng Depth (feet)	11111	36 1,106	92 80	162 162 10
Casing Diam- D eter ((inches)	4	16-8	u 448	4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Depth (feet)	29 25 94 34	25 59 3,366 35 74	95 210 116 120 400	180 220 13 238
Local well number	947-235-1 947-239-1 947-240-1 947-240-2 947-242-1	947-243-1 947-244-1 947-246-1 947-246-2 947-247-1	947-247-2 948-207-1 948-210-1 948-218-1 948-223-1	948-223-2 948-226-1 948-228-1 948-229-1 948-231-1
Site number	294752082352401 294702082393001 294703082405301 294701082402201 294702082424201	294700082435601 294721082443001 294750082462501 294713082462001 294713082472501	294714082473401 294859082074701 294856082101101 294820082185701 294832082230001	294839082230702 294813082263301 294828082282301 294829082294901 294830082313501

Table 2. -- Well and test hole data -- Continued

Water yield- ing unit		U w w t=		CINHH
ce of Water anal- ysis	U SR SR SR	u u u SR	11111	n
Source of Well Water record ana	U SR SR SR	G Ir U U LU SR		nnn
Use	St La	T D,St,I D,Ir D,St	HZOPP	In I I D,Ir
Top of Flor- idan aqui- fer (feet)	11111	11111	1111	1 38 88 1
Altitude of Top of T con- fining bed (feet)	111155	79 × 105 × 110 × 139		50 444
Land sur- face (feet)	99 134 70 72 55	79 145 150 157 100	158 65 72 70 70	43 74 50 44 135
ng Depth (feet)	109 60 40 	40	1,673 250 238 365	90
Casing Diam- D eter (inches)	4	30 2 2 4	16 6 12 16-10	10 10 2
Depth (feet)	129 90 70-80 	74 67 40 18 140	3,219 75 300 243 500	250 300 49 77 65
Local well number	948-231-2 948-231-3 948-238-1 948-241-1 948-244-1	948-249-1 949-208-1 949-211-1 949-214-1	949-225-1 949-235-1 949-235-2 949-235-3	949-236-1 949-236-2 949-244-1 949-245-1 950-210-1
Site number	294850082312002 294812082313901 294847082381201 294841082412801 294841082441401	294810082495501 294935082081001 294955082113001 294935082144001 294923082174501	295001082245801 294928082355302 294928082355301 294928082355303 294928082355304	294950082363001 294950082363002 294946082443101 294950082455501 295010082102001

Table 2. -- Well and test hole data -- Continued

7 0 7	1			
Water yield- ing unit	ಬಕನಕಕ	는 는 는 는 는	市市公市市	####
Ce of Water anal- ysis	U SR U SR	SR SR U	u SR U U,SR	SR U SR
Source of Well Water y record anal-ysis	ļ		U SR U U,SR	
Use	D, SR, I D P D In	D IN I	D D T Ir	0,0
of Top of Flor- idan aqui- fer (feet)	17111	69	0	46
Altitude of Top of To con- F fining i bed a (feet) (feet)	147 < 119	163	<pre> 120</pre>	11111
Land sur- face (feet	150 147 137 146 148	163 156 67 65 65	55 53 137 135 150	66 43 46 61 40
ng Depth (feet)	 	98 135 1 1 58	 15 144 119	58 43 42
Casing Diam- Depth eter (feet) (inches)	14 11/4 10	4 044	2 1½ 4 10	440
Depth (feet)	180 180 18 125 223	160 165 148 70 85	72 18 175 350	85 225 235
Local well number	950-213-2 950-215-1 950-220-1 950-221-1 950-224-1	950-227-1 950-229-1 950-235-1 950-236-1	950-236-3 950-237-1 951-224-1 951-224-2	951-233-1 951-235-1 951-235-2 951-235-3 951-244-1
Site number	295015082135002 295009082152301 295050082205901 295026082210301 295040082244001	295037082273501 295028082290701 295000082354001 295015082362001 295015082362002	295050082364503 295031082374601 295115082244501 295145082244002 295136082253601	295129082332601 295110082354001 295106082353702 295121082350301 295118082443301

Table 2. -- Well and test hole data -- Continued

Water yield- ing unit	[E4] [E4	፟ ፞ ፞ ፞ ፞	pa, pa,	Ex Ex Ex Ex Ex
Source of 11 Water ord anal- ysis	SS I I	SR SR	n SS I I I	n n n n
Sour Well record	S S S S S S S S S S S S S S S S S S S	SR SR U U SR	S G G G	
Use	аннан	e e i i i	ааннн	In D D St Ir
of Top of Flor- idan aqui- fer (feet)	30 37 49	102	32 47	11111
Altitude of Top of T confining bed (feet)	11 62 79	65 162	67 52 36	
Land sur- face (feet)	39 34 62 160 79	65 177 173 156 168	158 142 67 52 36	155 137 160 65 135
ng Depth (feet)	11111	76 81	8	11111
Casing Diam- Deter (inches)	4	44001	4	বৰবৰ
Depth (feet)	10 40 171 70	83 165 230 	171 150 40 45 30	165 156 162 110 156
Local well number	951-244-2 951-245-1 951-246-1 952-232-1 952-247-1	952-248-1 953-227-1 953-228-1 953-228-2 953-228-3	953-231-1 953-231-2 953-248-1 953-250-1	954-227-1 954-228-1 954-230-1 955-228-1
Site number	295108082443401 295122082452201 295132082461101 295225082324001 295245082474701	295213082482301 295314082271401 295258082282201 295352082285301 295332082283801	295350082315001 295341082312501 295328082485001 295327082501501 295327082513501	295415082275001 295454082283801 295420082302001 295515082281001 295530082285002

Table 2.--Well and test hole data--Continued

Water yield- ing unit	Er Er		លម្មល	ပေနှလလလ	N C C C N
Source of 11 Water ord anal- ysis	n		n n		
Sour Well record	n			ממממ	
Use	99		1 1 1 1 1 1 1 1	HHHAN	z z z z z
Top of Flor- idan aqui- fer (feet)			°	11111	11111
Altitude of Top of T con- fining bed (feet)	1 1	nties	1 ₉₀ 1 <	111 111	<pre><124 <117</pre>
Land sur- face (feet)	135 135	ford Cou	174 180 129	144 155 154 150 152	147 147 143 145 146
ng Depth (feet)	11	and Bradford Countles	17 124 204 134 20	25 50 30 141	52 64 147
Casing Diam- D eter (inches)	4 4	Clay	15 17 17 17 17	5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 7 7 7 7 7
Depth (feet)	166 145		20 159 259 160 22	27 52 32 186 83	23 30 85 98 154
Local well number	955-228-3 955-228-4		943-202-1 943-202-2 943-202-3 944-203-1 945-203-1	945-203-2 945-203-3 945-203-4 945-203-5 945-204-1	945-204-2 945-204-3 945-204-4 945-204-5 945-205-2
Site number	295530082285003 205530082285004		294320082024501 294335082025502 294313082024601 294420082031001 294551082031301	294531082032601 294513082034801 294500082020004 294520082042801 294540082041701	294531082041201 294539082042901 294540082045401 294555082045005 294545082051502

Table 2. -- Well and test hole data -- Continued

Water yield- ing unit	OOOFF	N # 8 C C	တ က က မေ တ	ပေလလလမ
ce of Water anal- ysis	11111			, ,
Source of Well Waterecord analysis				מממממ
Use	D, Ir N D, Ir P D, Ir	D,Ir N D,Fr	N N N,Ir N,Ir	OZZZĄ
Top of Flor- idan aqui- fer (feet)	61	× 1 1 × 21	11111	1111
Altitude of Top of T con- fining bed (feet)	<pre></pre> <pre>< 119 < 69 </pre> <pre></pre>	×61 	<pre><99 <119 <91 <</pre>	1 < 73 6 < 83
Land sur- face (feet)	145 145 115 158 115	145 145 145 150 125	128 140 131 119 135	135 130 145 135 165
ng Depth (feet)	26 42 250 154	84 	38 167	106 57 198
Casing Diam- D eter (inches)	2 2 10 2	00004	7 7 7 7 7 7 7	2 2 3 10
Depth (feet)	84 26 46 400 160	94 71 31 186 25	29 21 40 173 28	126 57 14 52 474
Local well number	945-205-3 945-205-5 946-202-5 946-202-6 946-202-7	946-204-1 947-202-4 947-202-7 947-203-1 947-203-2	947-203-3 947-203-4 948-203-1 948-203-2 948-203-3	948-203-4 948-203-5 948-203-6 948-203-7 949-202-1
Site number	294545082051503 294538082051101 294622082505702 294659082030101 294619082025801	294655082045501 294726082024901 294705082020407 294739082032601 294755082032602	294759082030801 294746082034601 294805082032401 294857082032702 294808082031203	294812082030904 294825082032301 294846082033806 294801082032401 294955082300201

Table 2.--Well and test hole data--Continued

Water yield- ing unit	ပပမႈဖဖ	OFOOF	ပေဖဖဖပ	တေရာပ္ပပ
Source of 11 Water ord anal- ysis		n n n	n	n n
Sour Well record	a a a a		. 	
Use	D, Ir, St P, Ir, St I D, Ir	D, Ir O D D	D, Ir, St N I I	T O N In D,Ir
of Top of Flor- idan aqui- fer (feet)	1	-11	11111	17 1 1 1
Altitude of Top of T con- fining bed (feet)	> 60 <145	>106 130 -120	> 95 (124 (134 (115) 95 (115) 95	<pre><164 139 >72 </pre>
Land surface (feet)	170 160 180 173 173	160 142 160 160 145	145 149 145 142 150	181 177 162 148 150
ng Depth (feet)	152 100 243 26	54 172 40 105	50 23 55	15 234
Casing Diam- Do eter (inches)	2 2 1 1 4 1 8 8 1 8 8 8 8 8 8 8 8 8 8 8 8 8	04000	2 1 1 2 1 3	1½ 2 2 2 2
Depth (feet)	174 128 535 28 18	74 206 64 70 228	70 25 11 27 55	17 284 90 89 93
Local well number	949-203-1 949-204-1 950-202-1 950-203-1 950-203-2	950~204~1 950~213~1 951~206~1 951~206~2 951~208~1	951-209-1 951-209-2 951-213-1 951-214-1	952-201-1 952-204-1 952-206-1 952-209-1 952-209-2
Site number	294857082034501 294930082042001 295010082024001 295050082035001 295010082035502	295010082043001 295055082130801 295130082064501 295130082064502 295144082081701	295135082094501 295124082092001 295140082131001 295142082141501 295145082142001	295245082015501 295257082045701 295250082061101 295218082090301 295250082090502

Table 2 .-- Well and test hole data -- Continued

Local site number well number number number self-self-self-self-self-self-self-self-	Depth (feet)	Casing	ing	Land	Top of T	ot Top of		Sour	Source of	Water
		Diam- eter (inches)	Depth (feet)	sur- face (feet)	con- fining bed (feet)	Flor- idan aqui- fer (feet)	Use	Well record	Water anal- ysis	yield- ing unit
	-1 13	36		143	<130		z	n	p	S
	-2 66	$1\frac{1}{2}$!	141	>75	!	N	D	n	ပ
		5	48	150	>102	1	Д	n	n	ပ
		1,4	1	137	< 88	1	D, Ir, St	n :	Ω	S
		7	63	175	> 112	i		b :	n	Ü
		1%	18	175	<155	ŀ	Н	n	Ω	ß
	-1 95	2	09	153	> 93	į	D,P	n	n	ပ
		2	1	152	1	ì	Z	n	n	ပ
	-1 25	14	23	154	ł	1	H	Þ	Þ	S
	4	∞	120	124	! !	1	In	Ω	Ω	[z ₄
	-2 200	4	66	124	ł	!	}	Ω	ł	Έų
295346082221101 953-222-1	-1	ļ	127	111	ļ	1	Ω	SR	SR	Þτ
295437082044001 954-204-1		7	58	172	>114	!	Z	ņ	1	ပ
295450082053501 954-205-1	-1 70	2	70	170	> 100	ł	D, Ir	n	Ω	ပ
295430082082001 954-208-1	-1 80	2	1	145	> 65	!	D, Ir	Ω	Ω	ပ
	-1 60	11%	i	152	<92	ł	D,Ir	Þ	n	တ
		2	ł	150	09<	1	D,Ir,St		Ω	ບ
	7	4	176	151	l '	-57	Ω	SR	ł	드
	-1 72	14	1	141	69>	1	Ð	n	Ω	လ
295524082044101 955-204-1		7	!	172	> 97	ì	D,Ir	n	!	ပ

Table 2. -- Well and test hole data -- Continued

			Casing	й 8	Land	Altitude of Top of T	of Top of		Source	Source of	Water
Site number	Local well number	Depth (feet)	Diam- eter (inches)	Depth (feet)	sur- face (feet)	con- fining bed (feet)	Flor- idan aqui- fer (feet)	Use	Well record	Water anal- ysis	yield- ing unit
295535082062001	955-206-1	100	2 5	60	162	> 102	! !	D, Ir	D I	D	o c
295525082194501	955-219-1	175	1 21	117	141	<u> </u>	>-24	D, Ir	ם	9 0) <u>(-</u> 4
295659082052101	956-205-1	25	1%	23	165	<140	1	` :- -	Ω	1	S
295634082062501	956-206-1	610	10	170	167	1	1	ы	Ω	1	Œ
295634082062502	956-206-2	529	5	200	170	ł	ł	z	n	ł	Ē
295634082062503	956-206-3	280	10	166	! i	ŀ	¦	N	D	ļ	[±4
295634082062504	956-206-4	06	7	09	166	> 106	1	Z	n	ł	ပ
295634082062505	956-206-5	99	9	!	166	!	!	Z	n	!	ပ
295649082064201	956-206-6	503	10	278	169	¦	1	д	n	}	ഥ
295646082064302	956-206-7	607	18	280	165	ļ	1	Д	Ω	1	ĮΞų
295650082085001	956-208-1	17	$1\frac{1}{2}$!	142	<125	!	Ir	n	Ω	S
295615082085502	956-208-2	98	1,4	ļ	152	99≮	ł	D, Ir, St	r 0	n	ပ
295623082111001	956-210-1	350	10	1	175	1	1	1	Ω	ł	ĹΉ
295725082004501	957-200-1	309	5	209	203		-106	Д	Ω	Ω	၁
295725082004502	957-200-2	100	4	1	203	<103	1	Z	D	ł	ပ
295725082004503	957-200-3	12	1%	10	203	ļ	1	Е	Ω	ł	S
295730082022301	957-202-1	20	1½	18	221	ł	1	ы	Ω	Ω	S
295752082035901	957-203-1	80	2	99	175	> 109	1	N	Ω	1	ບ
295715082043001	957-204-1	9/	2	65	178	>113	ļ	D, Ir	Ω	Ω	ပ

Table 2.--Well and test hole data--Continued

Water yield- ing unit	ပအပအအ	0 0 0 C 0	N N 4 N	ပ က က ပ ပ
Source of 11 Water ord anal-			n n n	n n n
Sour Well record			99999	
Use	D, Ir D, Ir D, Ir D	D,St,Ir D,Ir Ir Ir Ir D,Ir	D, Ir, St D, Ir T D, Ir, St T	D,Ir,St D,Ir,St D,Ir D,Ir
of Top of Flor- idan aqui- fer (feet)	11111		174	11111
Altitude of Top of confining bed (feet)	 98 132 121 128 491 	1 05 1 05 1 05 1 06	1 1 1	1 03 1 03 1 05
Land sur- face (feet)	168 152 165 145	147 165 150 150 145	148 154 152 160 130-140	188 160 152 152 143
ng Depth (feet)	70 44	31 31 35 64	140 15 3,167	85 20 1
Casing Diam- D eter ((inches)	2 14 14 2	7 7 7 7	- 4 11 10	27 17 7 7 7 7 7 7
Depth (feet)	85 20 60 17 51	42 75 36 40 69	20 200 18 50 50 3,167	115 55 58 65 94
Local well number	957-206-1 957-207-1 957-207-2 957-209-1 957-212-1	957-216-1 958-207-1 958-209-1 958-209-2 958-210-1	958-210-2 958-213-1 958-213-2 958-215-1 958-217-1	959-203-1 959-205-1 959-206-1 959-207-1 959-209-1
Site number	295755082062501 295755082071001 295720082075002 295710082092001 295750082124001	295740082164001 295815082071501 295850082095001 295842082095201 295830082105001	295825082102002 295845082135501 295835082131002 295855082151501 295812082170601	295945082031501 295932082054301 295950082065401 295917082075001 295910082091001

Table 2. -- Well and test hole data -- Continued

Water yield- ing unit	အ အပပအ	N H O H H	೬ 0000	0 000
ce of Water anal- ysis				1111
Source of Well Wate record anal				
Use	D, Ir, St D, Ir, St D, Ir D, Ir D, Ir	T O D, Ir In In	9 9 9	9999
of Top of Flor- idan aqui- fer (feet)	11111	-117	11111	1111
Altitude of Top of Top of Confining bed (feet)	<116 >65 	< 110 105		×65
A Land sur- face (feet)	145 142 145 144 144	140 139 121 200 195	129 158 159 147	170 185 210 192
ng Depth (feet)	11111	28 247 330 442	275 95 92 71 104	105 155 98
Casing Diam- Doeter (inches)	114 2 114 30	13 ₄ 4 2 16 16	12 2 2 14 14	0000
Depth (feet)	25 26 80 130 12	30 294 75 725 774	700 102 100 85 104	111 129 189 140
Local well number	959-211-1 959-211-2 959-215-1 959-216-1 959-216-2	000-210-1 000-210-2 001-215-1 002-203-1 003-203-1	003-211-1 004-204-1 004-204-2 004-205-1 004-205-2	005-203-1 005-203-2 006-203-1 007-203-1
Site number	295915082114501 295955082111502 295915082152001 295950082162001 295955082155201	300035082103001 300020082103001 300135082154001 300256082025901 300319082025901	300340082111301 300424082041001 300455082040001 300500082050901 300452082052001	300527082032901 300557082304401 300626082030001 300724082032401

Table 2. -- Well and test hole data -- Continued

Water er yield-1- ing s unit		፫- ፫- የን ፫- የን	E O E E O	ပပမယ္အ	FFFOO
Source of 11 Water ord anal- ysis		p p p p	U SR	99 P9	
Sou Well record		99999	u U SR		SR U U
Use		o o o o	ir D D D D,St	NDIL	D,0 D,St Ir D
of Top of Flor- idan aqui- fer (feet)		14/111	1	1 0 1 0 1	1 2 1 1 1
Altitude of Top of T con- fining bed (feet)		× 1 × 23 × 80 × 86 × 86	11111		>56 -127 >75
Land sur- face (feet)	County	113 100 105 110 110	124 108 88 105 88	88 120 141 135 150	 142 132 152 117
lng Depth (feet)	Union County	60 48 25 78	270 12 53 82	88 103 	105 86 125 25 42
Casing Diam- D eter ((inches)		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	8 11 ³ / ₄	2 10 4 1½	4 6 10 13 2
Depth (feet)		110 53 25 126 15	350 12 65 93 112	79 120 291 125 18	130 147 330 25 85
Local well number		955-225-1 955-225-3 956-222-1 956-225-1	956-226-2 956-227-1 956-228-1 956-228-2	957-221-2 957-223-1 957-223-2 957-224-1 957-225-1	957-225-2 957-226-1 957-227-1 957-228-1 958-218-1
Site number		295545082252501 295532082252001 295630082225001 295610082253001 295615082264801	295648082261001 295625082271001 295629082285501 295643082283801 295710082214501	295715082213502 295755082231001 295715082232601 295750082241501 295710082251201	295701082253001 295752082264901 295722082274301 295750082282001 295830082183001

Table 2. --Well and test hole data--Continued

Site number	Local well number	Depth (feet)	Casing Diam- De eter (inches)	ng Depth (feet)	Land sur- face (feet)	Altitude Top of confining bed (feet)	of Top of Flor- idan aqui- fer (feet)	Use	Source of Well Water record analysis	Water anal- ysis	Water yield- ing unit
295815082225001 295815082225002 295810082241201 295807082250001 295855082274001	958-222-1 958-222-2 958-224-1 958-225-1 958-225-1	10 52 128 309 30	12 4 10 12 12	7- 96 138 30	98 98 121 145	<pre></pre>	11,11	NOUL	ממממ		SOMES
295855082283401 295845082295501 295847082295002 295848082301901 295805082314101 295857082322101 295835082334501 295831082272801 295997082173201	958-228-1 958-229-1 958-229-2 958-230-1 958-231-2 958-232-1 959-216-4 959-217-1	112 22 22 15 90 130 205 60 225 61	7 ¹ 1 ² 1	112 211 15 84 84	150 139 148 148 92 124 89 104 116	1117	127	D D,St P D D D D D	SR U U U U U U	SR U U I I I I I I I I I I I I I I I I I	CHCCH HOOHH
295912082172103 295950082205001 295922082223601 295955082244501 295929082320401	959-217-3 959-220-1 959-222-1 959-224-1 959-231-1	56 88 450 87 28	74 ¹ 44	25 70 25	112 123 135 154 135	×87	11111	9999	u SR U	o U U U	O O F4 O W

Table 2. -- Well and test hole data -- Continued

Water yield- ing unit	计计计计	റ റ [്] ചേര റ		о Бинти С
Source of 11 Water ord anal- ysis		n n	ا ما	u sr
Sour Well record	SR U U			U U SR
Use	0,000	D,St D D	DAAAO	D 0 D D
of Top of Flor- idan aqui- fer (feet)	⁶⁶	^ 40 ^ 1 4 ^ 7 55 .	11111	1 2 2 1 1
Altitude of Top of T confiing bed (feet)	11	×139 ×85	>63 >115	>104 144 >55
Land sur- face (feet)	137 130 134 135 138	148 146 156 145	118 153 145 145 142	146 152 125 115 131
ng Depth (feet)	98 80 78 84	86 17 60	1 8 1 8 1	42 198 70
Casing Diam- D eter ((inches)	44440	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 4 12 10 2	04m 4
Depth (feet)	150 106 131 265 95	108 69 142 120	113 165 357 402 71	60 256 110 115 145
Local well number	959-231-2 959-233-1 959-233-2 000-220-1	000-226-1 000-226-2 000-227-1 000-230-1	000-232-2 000-232-2 001-219-1 001-219-2	001-220-2 001-224-1 001-227-1 001-229-1 001-231-1
Site number	295932082311701 295921082333501 295955082333002 300050082205501 300051082205002	300050082264001 300030082265002 300010082274501 300010082305001 300011082322701	300034082322101 300005082324003 300110082195501 300108082204301 300145082205501	300124082200201 300101082245201 300155082274501 300148082292401 300105082315501

Table 2, -- Well and test hole data -- Continued

Water yield- ing unit	O 14 O 8 O	လပပလ	FFOSO	လပမှာလလ
Source of Il Water ord anal- ysis	U SR U U	1 ,,,,	1 , , , ,	
Sour Well record	SR U U U			
Use	9999	94999	ZDDDD	P II D
of Top of Flor- idan aqui- fer (feet)	11111	11111	11118	11111
Altitude Top of con- fining bed (feet)	V 87	<pre><108</pre>	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	4 131
Land sur- face (feet)	119 139 122 124 151	151 134 142 133 148	146 130 130 132	148 150 134 164 138
ng Depth (feet)	60 90 35 42	23 78 60 45	58	17 70 20 20
Casing Diam- D eter ((inches)	7 F	7 7 7 7 7	6 7 1 1 2 2	22 8 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Depth (feet)	98 145 75 55 99	96 26 78 70 47	175 136 100 53 165	17 396 20 25
Local well number	001-231-2 001-231-3 002-213-1 002-214-1 002-216-1	002-216-2 002-218-1 002-218-2 002-218-3 002-219-1	002-223-1 002-230-1 003-213-1 003-214-1 003-214-2	003-215-1 003-219-1 003-224-1 003-229-1 003-231-1
Site number	300105082315501 300135082312502 300235082133501 300215082145501 300200082216004	300244082161800 300219082181101 300230082184002 300255082181803 300210082191501	300254082235501 300255082305001 300348082134501 300310082143001 300340082145002	300312082152401 300325082191501 300322082245001 300348082292001 300328082313601

Table 2. -- Well and test hole data -- Continued

Local
(leet)
612
430
175 2
18 1%
35 13
51 2
140 65

Table 2. -- Well and test hole data -- Continued

Water yield- ing unit	000 H W	12. 12. 12. 12. 12.	194 194 194 194	[파 [파 [파 [파 [파
Source of 11 Water ord anal- ysis	n n n	SR SR	S S S S S S S S S S S S S S S S S S S	SR
Sour Well record	פטמממ	SR U U SR	SR SR SR U	u u u
Use	расона	D III		0,000
Top of Flor- idan aqui- fer (feet)	-38	11111	2	11111
Altitude of Top of T con- fining bed (feet)	>94 113 <109	11111	11111	11111
Land sur- face (feet)		65 45 72 62	92 72 46 68 105	146 77 138 126 143
ng Depth (feet)	48 142 142 74 146 694 153 2,760 175 35 144	103 40 42	37	1 1 8 0 0 8
Casing Diam- Deeter (inches)	2 2 2 8 10-8 1½ Columbia	4 1001	4 4	04444
Depth (feet)	62 180 135 724 3,171	140 200 200	70 125	147 86 156 120 140
Local well number	007-210-1 007-211-1 007-212-1 007-222-1 008-203-1	951-239-1 951-241-1 952-237-1 952-238-1 953-235-1	953-238-1 953-238-2 953-244-1 954-235-3	956-232-1 956-232-2 956-233-1 956-236-2 956-237-1
Site number	300750082104501 300725082111501 300715082125001 300747082225801 300815082034501 300806082101101	295114082393801 295113082410201 295257082372601 295225082381101 295304082351301	295341082381501 295310082381501 295357082444801 295409082352101 295528082393301	295703082324401 295600082321601 295600082332501 295635082362701 295638082373301

Table 2. -- Well and test hole data -- Continued

e of Water Water yield- anal- ing ysis unit	SR FF SR FF	SR F F F F F F F F F F F F F F F F F F F	SR F	SR F F SR F F F F F F F F F F F F F F F
Source of Well Water record ana	SR U SR SR SR	SR SR U SR	U U SR SR	SR SR SR U
Use	0,0	0 0 0 0	99999	0,0
Top of Flor- idan aqui- fer (feet)	153111		11111	11115
Altitude of Top of T con- fining bed (feet)	11111	11111	11111	1 103
Land sur- face (feet)	108 147 61 28 25	48 150 146 100 88	77 179 117 57 80	55 60 77 103
ng Depth (feet)	88 50 42	1 098	69	107
Casing Diam- D eter ((inches)	144 14	44	444	11142
Depth (feet)	150 75 50 55 55	68 150 130	186 212 142 80	100 100 65 120 87
Local well number	956-237-2 956-238-1 956-244-2 956-247-1	956-250-1 957-235-2 957-236-2 957-239-1 957-241-1	958-234-1 958-237-1 958-237-2 958-247-1 959-235-2	959-239-1 959-244-1 959-250-1 000-235-1
Site number	295605082375401 295630082380001 295618082440901 295618082473601 295615082475401	295603082500801 295711082351301 295723082361901 295707082393701 295744082410401	295809082335401 295803082371201 295801082374301 295819082474301 295911082351101	295914082393501 295927082440901 295906082501201 300019082355401 300037082370501

Table 2. -- Well and test hole data -- Continued

Water or yield- l- ing		ቻ	14 14 14 14 14 14	হিন হৈন <u>হি</u> ন হৈন
rce of Wate anal ysis	SR SR SR	SR	SR	SR SR -
Source of Well Water record anal- ysis	U SR SR SR	SR SR U U	SR U SR U	U SR U SR
Use	ir D D	0,101	D D St	10000
of Top of Flor- idan aqui- fer (feet)	7 1 1 1 8	1 8 8 1 1 1	12111	42
Altitude of Top of T con- fining bed (feet)	11118	118	132	 146
Land sur- face (feet)	95 100 85 90 88	63 126 159 152 152	137 144 112 130 143	83 75 60 80 147
ing Depth (feet)	90	100 15 63 111	86 86 120	85 43 110
Casing Diam- De eter (f	91116	- 4 T 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4 44	10 7 4
Depth (feet)	235	120 15 140 126	100 150 105 173	150 46
Local well number	000-238-1 001-234-1 001-237-1 001-241-1 001-242-1	001-243-2 002-233-1 002-236-1 002-237-1	003-232-1 003-234-1 003-235-1 003-235-3 003-236-1	003-238-1 003-240-1 003-242-1 003-244-1 004-234-1
Site number	300022082375301 300131082234301 300115082375701 300131082412001 300114082423301	300124082435401 300221082332601 300302082360101 300238082372001 300238082372002	300317082325301 300324082342701 300354082352901 300349082355501 300355082360801	300338082381001 300348082404001 300331082420401 300333082443701 300427082343901

Table 2. -- Well and test hole data -- Continued

Water yield- ing unit	Ex Ex Ex Ex	Er Er Er SO Er	计计计计计	Fr Fr Fr Fr
Source of 11 Water ord anal- ysis	11111	SR SR	1 g 1 1	11111
Sour Well record	0 0 0 0 0 0	SR U SR SR	u u u	0 0 0 0
Use	T D D,St	D,0 D,0	o d d l H	T Ir D D
Top of Flor- idan aqui- fer (feet)	4	62	7	30 70 35
Altitude of Top of T con- fining bed (feet)	11118	~106 138	11111	140
Land sur- face (feet)	130 109 100 157 171	 57 96 121 143	142 157 124 136 92	86 121 150 140 105
ing Depth (feet)	1,376 55 62 80 88	50 48 	64 120 80 135	1,316 90 102 74
Casing Diam- Dieter (7 5/8	44 4	4 400	10 4 4 4
Depth (feet)	2,929 125 101 165 180	80 156 156	128 53 140 102 280	3,050 150 135 167
Local well number	004-235-1 004-236-3 004-236-5 004-237-1 004-238-1	004-238-2 004-241-1 004-246-1 005-230-1 005-233-1	005-234-1 006-229-3 006-234-1 006-236-1 006-239-1	006-241-1 006-247-1 007-235-1 007-235-2 007-237-1
Site number	300401082352901 300455082360701 300428082360201 300402082371601 300412082375501	300429082382701 300409082415001 300429082462601 300525082305901 300542082332101	300523082341801 300628082293001 300658082343501 300610082362801 300647082390501	300648082413901 300626082465701 300755082352001 300748082353601 300759082374301

Table 2. -- Well and test hole data-- Continued

Water yield- ing unit	54 E4 E4 E4 E4	ফি দি দি দি	H H C H H	দি দি দি দি
Source of 11 Water ord anal- ysis	11111	11111	%	11111
Sour Well record	U U SR U		SR U U G	
Use	o d d d d d	D,St D,St D D,St	St D	١١١١
of Top of Flor- idan aqui- fer (feet)	49 47 10	8 4	1 \$ 67 9	-10 35 45 35 35
Altitude of Top of T con- fining bed (feet)	90 92 71 	107	144	9
Land sur- face (feet)	91 92 80 102 162	146 105 103 108 104	184 164 167 167 167	109 105 130 130 130
ng Depth (feet)	105 63 82 95	84 73 130 84	84 90 768	180 96 105
Casing Diam- D eter (inches)	4444	ববববব	14040	4 & 9 4 4
Depth (feet)	185 143 100 148 150	185 109 175 137 254	205 88 225 2,827	305 250 320 145 160
Local well number	007-237-4 007-239-2 007-239-4 007-240-1 007-243-1	008-234-1 008-236-1 008-236-3 008-238-1 008-242-1	009-233-1 009-235-1 009-235-2 009-235-3	009-237-1 009-237-2 009-238-2 009-238-3
Site number	300735082372601 300730082391001 300751082391801 300741082401901 300743082431401	300809082345601 300821082365401 300815082365201 300842082381601 300826082422301	300920082333401 300948082354901 300950082354801 300948082354902 300930082354301	300950082370001 300910082374001 300940082381501 300929082382001 300929082382002

Table 2. -- Well and test hole data -- Continued

Water yield- ing unit	[24 [24 [24 [24 [24	मिम्यम् २० म्य १० म्य	. 444444
Water anal- ysis	11111		11111
Source of Well Waterecord analysis		S B C C C C C C C C C C C C C C C C C C	
Use	99 9	d d d d d d d d d d d d d d d d d d d	D,St
of Top of Flor- idan aqui- fer (feet)	59 46 67	23 23 58 -74	103
Altitude of Top of T con- fining bed (feet)	118	99	11111
Land sur- face (feet)	167 120 126 118 118	102 183 190 189 175 190 144 101	165 159 147 162 155
Depth (feet)	108 84 112 115	95 162 104 110 19 120 650 180 84	84 100 93 110 64
Casing Diam- Deter (;	4444	10 10 4 4 112 4 4	444004
Depth (feet)	158 168 150 148 198	140 372 115 225 225 19 350 836 360 225	225 138 137 200 358
Local well number	009-238-6 009-238-9 009-241-1 009-241-3	009-241-7 010-234-1 010-235-2 010-235-3 010-235-4 010-235-6 010-238-1 010-238-2 010-238-4	010-240-2 010-240-5 010-241-2 010-242-1 010-243-2
Site number	300937082384801 300901082385901 300955082415101 300934082415101 300925082412101	300916082415201 301016082340901 301101082355601 301046082352001 301045082351601 301103082360901 301031082381001 301028082380901 301028082380901	301043082402601 301018082402801 301045082413901 301059082423901 301059082430501

Table 2. -- Well and test hole data -- Continued

Water yield- ing unit	ပတနာလပ	ኮፑፑፑኮ	ፑፑሪህፑr	타 타 타
ce of Water anal- ysis	1111		11111	111
Source of Well Water record analysis		מטטממ	טמממט	n n
Use	o In In	0 0 0 0 0		9,4 0
Top of Flor- idan aqui- fer (feet)		48 55	65 75 108 103	117 80 69
Altitude of Top of Top of Tining bed (feet)	<176 	 148 175 151	155 159 155 	146
Land sur- face (feet)	192 192 200 200 200	195 197 188 185 186	185 163 190 190 198	185 180 147
Casing iam- Depth ter (feet) ches)	16 110 110	147 150 145 . 157	130 35 127 105	110 78 121
Casi Diam- eter (inches)	747 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4 4 16–12 12 12	4 4 4 15	444
Depth (feet)	167 16 265 97 110	205 305 300 275 310	125 175 35 255 400	225 139 165
Local well number	011-233-2 011-233-3 011-234-1 011-235-1 011-235-2	011-236-1 011-236-2 011-237-1 011-237-2	011-237-4 011-237-5 011-238-1 011-238-2	011-239-1 011-239-2 011-242-5
Site number	301119082333301 301119082333302 301131082345201 301126082353201 301113082351801	301114082362401 301115082351901 301107082374701 301108082372401 301102082373201	301104082372701 301101082370501 301156082381701 301159082381901 301148082381001	301117082390701 301104082392401 301044082421001