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Abstract: The moisture sorption isotherm of pea starch films prepared with various glycerol

contents as plasticizer was investigated at different storage relative humidities (11%–96% RH)

and at 5 ˘ 1, 15 ˘ 1, 25 ˘ 1 and 40 ˘ 1 ˝C by using gravimetric method. The results showed

that the equilibrium moisture content of all films increased substantially above aw = 0.6. Films

plasticized with glycerol, under all temperatures and RH conditions (11%–96%), adsorbed more

moisture resulting in higher equilibrium moisture contents. Reduction of the temperature enhanced

the equilibrium moisture content and monolayer water of the films. The obtained experimental

data were fitted to different models including two-parameter equations (Oswin, Henderson,

Brunauer–Emmitt–Teller (BET), Flory–Huggins, and Iglesias–Chirife), three-parameter equations

Guggenhiem–Anderson–deBoer (GAB), Ferro–Fontan, and Lewicki) and a four-parameter equation

(Peleg). The three-parameter Lewicki model was found to be the best-fitted model for representing

the experimental data within the studied temperatures and whole range of relative humidities

(11%–98%). Addition of glycerol increased the net isosteric heat of moisture sorption of pea

starch film. The results provide important information with estimating of stability and functional

characteristics of the films in various environments.
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1. Introduction

There has been an increased effort to reduce environmental impacts by using biodegradable

polymers for packaging purposes, where edible coatings and films from renewable materials have

been developed to improve the quality and shelf life of fresh and processed fruits and vegetables [1,2].

A main role of edible films is to decrease water loss between the food and the environment [3].

The macromolecular structure and permeability characteristics of most biodegradable films change

with alterations in the relative humidities (RH) of the storage atmosphere [4]. The water binding

capability of the films at a specific environmental relative humidity can be analyzed by water

sorption isotherms [5]. Water sorption isotherm explains the equilibrium moisture content as a

function of water activity (aw) at a constant temperature and pressure [6].
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In most hydrophilic films, water functions as a plasticizer, and the relative humidity of

environment determines water adsorption and desorption of films [7]. The moisture sorption

behavior of foods is described by several mathematical models, some of them are according to

principles of the sorption mechanism and others categorized into empirical and semi-empirical

models [8,9]. There is no unique sorption isotherm model for different foods, since the single

components of food products have particular hydroscopic characteristics and may change the

structure or composition of the food effect on the moisture sorption isotherm [10]. Consequently,

it is essential to seek for the most suitable isotherm equation for a particular biopolymer film. Several

studies have investigated the sorption isotherms of starch biodegradable films [3,4,11–18]. However,

there is still a lack of information on the effects of water and glycerol on the moisture sorption

isotherm of pea starch films, which provides better understanding of the role of water in edible

biopolymer films. The information of moisture sorption properties of edible films would assure to

appropriately identify the circumstances of storage and packaging, to forecast shelf life, and to predict

the physicochemical modifications in the processing of product.

This research aimed to study the moisture sorption isotherm of pea starch films with various

glycerol concentrations (0%, 15%, 25% and 35% w/w) at different storage temperatures, and to fit the

experimental data with prediction models.

2. Experimental Section

2.1. Materials

Canadian non-GMO yellow pea starch with 13.2% moisture, 0.2% protein, 0.5% fat and 0.3% ash,

was used in all experiments (supplied by Yantai Shuangta Food Co., Jinling Town, China). All other

chemicals were purchased from Merck Millipore Pty. Ltd., Victoria, Australia.

2.2. Preparation of Film

Aqueous dispersion (5%, w/w) of pea starch was prepared, and glycerol (plasticizer) was added

to the dispersions at 0%, 15%, 25% and 35% (w/w, plasticizer/starch). The dispersions were heated

in a water bath at 90 ˝C for 20 min with agitation to allow complete gelatinization of the starch.

After gelatinization, the starch solutions were cooled to 50 to 60 ˝C. All the films were obtained

by casting method; approximately 20 g of filmogenic suspensions were poured onto Petri dishes

(10 cm in diameter). Films were formed by drying at 25 ˝C in an oven until reaching constant weight

(about 24 h) [19].

2.3. Moisture Sorption Isotherm

Water sorption isotherms were measured through a gravimetrical method by exposing samples

in the presence of different saturated salt solutions, which have recognized relative humidity at each

specific temperature. Their aw at 5, 15, 25 and 40 ˝C were taken from Labuza et al. [20] and Rizvi [21]

and were presented in Table 1. Each film (40 ˆ 15 mm2) was pre-dried for 20 days over 0% RH at

25 ˝C to begin the sorption experiment. Samples of pre-dried sheets of 40 ˆ 15 mm2 were put in

small plastic cups and placed on mesh inside plastic jars containing the selected saturated solutions.

The jars were then tightly closed and placed in a temperature-controlled chamber at 5, 15, 25 and

40 ˝C. The weight of each sample was checked using an analytical balance (with the precision of

0.0001 g) firstly after three days and then at one-day intervals until constant weight was achieved.

Equilibrium was considered to be achieved when the difference between three consecutive sample

weights was <1.0 mg per g of dry solid. The moisture content of the equilibrated samples was

calculated after drying at 105 ˝C during 4 h. All tests were conducted in triplicate.
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Table 1. The water activities (aw) of saturated salt solutions at 5, 15, 25 and 40 ˝C.*

Salt 5 ˝C 15 ˝C 25 ˝C 40 ˝C

LiCl 0.113 0.113 0.113 0.112
CH3COOK 0.291 0.234 0.225 0.216

K2CO3 0.431 0.432 0.432 0.423
Mg(NO3)2 0.589 0.559 0.529 0.484

NaNO2 0.693 0.693 0.654 0.628
NaCl 0.757 0.756 0.753 0.747
KCl 0.876 0.859 0.843 0.823

KNO3 0.963 0.954 0.936 0.890

* Source: Labuza, Kaanane and Chen [20] and Rizvi [21].

2.4. Mathematical Modeling

In this study the recognized Brunauer–Emmitt–Teller (BET) (Equation (1)), Guggenhiem–

Anderson–deBoer (GAB) (Equation (2)), Peleg (Equation (3)), Oswin (Equation (4)), Ferro–Fontan

(Equation (5)), Henderson (Equation (6)), Lewicki (Equation (7)), Iglesias–Chirife (Equation (8)) and

Flory–Huggins (Equation (9)) equations were employed to fit the experimental data. These models

are explained and rearranged as given below [3,18,22–24]:

M “
M0.C.aw

p1 ´ awq p1 ` C.aw ´ awq
(1)

M “
M0.C.K1.aw

p1 ´ K1. awq p1 ´ K1.aw ` C.K1.awq
(2)

M “ K1a
n1
w ` K2an2

w (3)
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aw
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q
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M “ A

„

aw
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` B (8)

M “ A exp pBawq (9)

where M is the equilibrium moisture content (% db); M0 is the monolayer moisture content; aw is the

water activity; and C, K1, K1, K2, n1, n2, K0, γ, α, r, n0, A, B, F, G and H are model constants. Fitting

of experimental data into the above equations was done using regression analysis MS Excel software

(Microsoft Office, 2010) [3].

The suitability of the equations was estimated and compared using the correlation coefficient

(R2) and the mean relative percentage deviation modulus (Me) [25]:

Me “
100

n

ÿn

i“1

ˇ

ˇMi,exp ´ Mi,pre

ˇ

ˇ

Mi,exp
(10)
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where Mi,exp is the experimental value, Mi,pre is the predicted value, and n is the population of

experimental data.

2.5. Determination of the Net Isosteric Heat of Sorption

The net isosteric heat of sorption is a differential molar quantity based on the temperature

dependence of the isotherm, which displays the energies for water molecules binding at a

particular hydration level [26]. The net isosteric heat of sorption pqs
nq, represents the difference

between the isosteric heat (Qs) and pure water vaporization energy (Lr), was determined using the

Clausius–Clapeyron equation:
„

dln pawq

dT



w

“
qs

n

RT2
(11)

where aw is the water activity at the absolute temperature T (in kelvins) and R is the universal gas

constant (8.314 J/mol K). Through Equation (11), qs
n may be established by plotting ln(aw) at a specific

moisture content vs. 1/T and measuring the slope [27].

2.6. Statistical Analysis

Glycerol was used in four levels of 0%, 15%, 25%, and 35% and replicated three times.

All experiments were performed in a randomized design. Analysis of variance was carried out and

the results were separated using the Multiple Ranges Duncan’s test (p < 0.05) using statistical software

of Statistical Package for Social Science 16 (SPSS, Inc., Upper Saddle River, NJ, USA). All tests were

performed at least in triplicate.

3. Results and Discussions

3.1. Moisture Sorption Isotherm

Moisture absorption is an important indicator of the sensitivity of material to moisture.

The physical and barrier characteristics of starch-based films can be significantly affected by moisture

content [15]. The moisture sorption curves of the pea starch films at 5, 15, 25 and 40 ˝C are presented

in Figures 1–4. The results show that these responses were a sigmoidal shape (Type III) consistent

with the classification of Al-Muhtaseb et al. [28]. The J-shaped isotherm of glycerol-plasticized films

has been reported by Enyinnaya Chinma et al. [29] and Coupland et al. [30]. The slope of the isotherms

for pea starch films was smaller at lower aw (less than 0.60), with the raising in aw the slope increased

quickly, which brought about large moisture adsorption with any increase in relative humidity [30].

At lower relative humidities, water strongly adsorbed to the binding sites of the film surface, while

by increasing moisture content, owing to the swelling of the hydrophilic network of films [31], more

new sites for water were available to bind, causing higher moisture content (MC) [32]. This is typical

behavior of hydrophilic substances and is shown in water sorption isotherms of pea starch films,

where similar results have been reported for other starch edible films [3,5,14–16,18,33,34].

Starch films are often semicrystalline, containing both amorphous and crystalline phases, similar

to starch granules [35]. Hydrogen-bonding of water molecules to the accessible hydroxyl groups

in the amorphous areas and on the surfaces of the crystallites, are responsible for starch sorption

isotherm [36]. The amorphous regions show more inclination to water diffusion than the crystalline

regions. Therefore, water influences the structure acting as a plasticizer of the amorphous regions.

At low water activity, the plasticizing effect is very small and the movement of the amorphous

regions is limited. While, at higher water activity, the accessibility of the hydroxyl groups to the

water molecules increases due to the swelling of the biopolymer and reduction of crystallinity degree,

so there is a rise in accessibility of the polar groups to the water molecules [22].
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Figure 1. Equilibrium moisture sorption isotherm of pea starch film with different glycerol content

(w/w) at 5 ˝C. The symbols are experimental data and the lines are from the equations obtained by

fitting the experimental data to Lewicki (A), Ferro–Fontan (B) and PELEG (C) equations.
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Figure 2. Equilibrium moisture sorption isotherm of pea starch film with different glycerol content

(w/w) at 15 ˝C. The symbols are experimental data and the lines are from the equations obtained by

fitting the experimental data to Lewicki (A), Ferro–Fontan (B) and PELEG (C) equations.



Foods 2016, 5, 1 7 of 18

Figure 3. Equilibrium moisture sorption isotherm of pea starch film with different glycerol content

(w/w) at 25 ˝C. The symbols are experimental data and the lines are from the equations obtained by

fitting the experimental data to Lewicki (A), Ferro–Fontan (B) and PELEG (C) equations.
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Figure 4. Equilibrium moisture sorption isotherm of pea starch film with different glycerol content

(w/w) at 40 ˝C. The symbols are experimental data and the lines are from the equations obtained by

fitting the experimental data to Lewicki (A), Ferro–Fontan (B) and PELEG (C) equation.
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The results also showed that the MC decreased with increasing temperature, at the same aw,

for each film, indicating that the starch films become less hygroscopic. At higher temperatures,

the attraction forces between molecules reduce owing to an increase in kinetic energy of water

molecules. So, at low temperatures, water molecules with lower energy levels are easily bound

to available binding sites of the surface [22]. In addition, the incorporation of glycerol improved

the capacity of films to absorb more water. In the absence of glycerol, the crystalline fraction

of starch films holds a specific amount of water linked by hydrogen bonds, while amorphous

regions have capacity to absorb relatively high amount of water molecules [37]. By incorporation

of glycerol, the crystallization development may be partially prevented, because it can disturb the

configuration of polymeric chains by interfering with amylose packing through the formation of

glycerol–starch and glycerol–water interactions [38]. The increase of glycerol content resulted in

weakening the cohesiveness of the polymer structure, creating the polymer network with greater

interchain distances [39], thus facilitating more water molecules immobilizing into the pea starch

film matrix [40]. The strong tendency of glycerol to water was associated with its high polarity [41].

Glycerol molecules, therefore, entrapped a large amount of water molecules inside the starch polymer

matrix by increasing the free volume of the starch molecular network and flexibility of the polymeric

chains [18]. Glycerol as a water-holding agent contributes to the formation of more hydrogen bonds

in the film matrix and increases the MC in the film.

3.2. Modeling of Sorption Isotherms

The constants of the sorption models for pea starch films with different contents of glycerol,

together with the correlation coefficient (R2) and the mean relative percentage deviation modulus

(Me) are shown in Tables 2–5.

Table 2. Estimated model constants and values of coefficients and mean relative percentage deviation

moduli for different pea starch films at 5 ˝C.

Model Constants
Glycerol

0% 15% 25% 35%

BET (0.11–0.50)

m0 0.061 0.086 0.123 0.149
C 6.228 4.276 3.159 3.090

Me 17.813 17.014 12.910 11.407
R2 0.914 0.939 0.976 0.978

GAB (0.11–0.96)

m0 0.105 0.128 0.153 0.200
C 2.096 1.825 1.779 0.632
K 0.893 0.888 0.848 0.670

Me 9.688 9.669 7.352 2.273
R2 0.993 0.992 0.989 0.999

PELEG (0.11–0.96)

k1 0.641 0.725 0.898 0.986
k2 0.500 0.666 0.794 0.808
n1 2.699 2.547 2.339 1.971
n2 42.861 44.040 64.782 53.221
Me 2.980 4.108 3.363 2.433
R2 1.000 1.000 0.999 0.999

Oswin (0.11–0.96)

K0 0.165 0.194 0.259 0.331
n0 0.410 0.411 0.371 0.317
Me 36.746 34.435 34.668 36.267
R2 0.970 0.975 0.965 0.934

Ferro–Fontan (0.11–0.96)

γ 0.070 0.108 0.098 0.125
α 1.162 1.124 1.248 1.291
r 0.844 0.958 0.791 0.796

Me 5.464 6.662 6.739 1.908
R2 0.994 0.992 0.989 0.998

Henderson (0.11–0.96)

A 11.349 12.828 20.319 37.910
B 0.418 0.408 0.411 0.426

Me 39.758 38.581 40.850 42.510
R2 0.970 0.973 0.957 0.917

Lewicki (0.11–0.96)

F 0.489 0.513 0.761 1.484
G 0.198 0.221 0.168 0.058
H 3.146 2.675 2.467 3.105

Me 1.908 1.465 2.107 0.895
R2 1.000 1.000 0.999 1.000

Iglesias–Chirife (0.11–0.65)

A 0.096 0.115 0.148 0.181
B 1.572 1.933 3.378 5.340

Me 13.622 11.033 5.988 5.072
R2 0.987 0.992 0.997 0.996

Flory–Huggins (0.11–0.96)

A 0.999 1.210 2.655 4.270
B 4.462 4.428 3.752 3.097

Me 14.833 15.236 8.319 4.775
R2 0.985 0.981 0.984 0.998
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Table 3. Estimated model constants and values of coefficients and mean relative percentage deviation

moduli for different pea starch films at 15 ˝C.

Model Constants
Glycerol

0% 15% 25% 35%

BET (0.11–0.50)

m0 0.044 0.061 0.083 0.116
C 13.807 8.780 8.314 7.480

Me 8.785 13.334 6.840 5.579
R2 0.952 0.932 0.977 0.993

GAB (0.11–0.96)

m0 0.079 0.098 0.102 0.180
C 6.223 2.680 2.510 3.144
K 0.918 0.922 0.912 0.869

Me 10.344 7.961 7.089 5.042
R2 0.990 0.995 0.989 0.993

PELEG (0.11–0.96)

k1 0.549 0.679 0.706 0.900
k2 0.782 0.827 1.083 1.519
n1 2.837 2.826 2.445 2.210
n2 50.955 78.354 46.823 44.471
Me 4.353 4.217 4.270 3.349
R2 1.000 0.999 0.998 0.999

Oswin (0.11–0.96)

K0 0.127 0.157 0.187 0.268
n0 0.479 0.466 0.458 0.396
Me 25.312 24.900 17.415 23.917
R2 0.984 0.981 0.989 0.977

Ferro–Fontan (0.11–0.96)

γ 9.082 13.138 25.611 13.993
α 1.077 1.076 1.052 1.193
r 1.052 1.101 1.265 0.901

Me 7.906 6.875 6.225 4.475
R2 0.991 0.994 0.993 0.993

Henderson (0.11–0.96)

A 7.431 9.028 10.555 18.236
B 0.404 0.397 0.390 0.397

Me 29.147 29.615 22.422 31.165
R2 0.984 0.979 0.986 0.968

Lewicki (0.11–0.96)

F 0.237 0.352 0.296 0.569
G 0.344 0.297 0.367 0.246
H 0.450 2.162 0.981 2.180

Me 1.664 2.624 2.133 1.708
R2 0.999 1.000 1.000 1.000

Iglesias–Chirife (0.11–0.65)

A 0.071 0.085 0.095 1.426
B 1.893 2.662 4.612 5.622

Me 11.114 8.512 4.613 1.998
R2 0.991 0.992 0.995 0.999

Flory–Huggins (0.11–0.96)

A 0.579 0.874 1.095 2.954
B 4.910 4.649 4.569 3.684

Me 20.798 18.667 21.679 11.052
R2 0.977 0.972 0.972 0.987
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Table 4. Estimated model constants and values of coefficients and mean relative percentage deviation

moduli for different pea starch films at 25 ˝C.

Model Constants
Glycerol

0% 15% 25% 35%

BET (0.11–0.50)

m0 0.040 0.051 0.072 0.086
C 12.081 11.562 10.276 8.791

Me 9.321 11.223 6.201 7.380
R2 0.942 0.928 0.978 0.974

GAB (0.11–0.96)

m0 0.057 0.082 0.097 0.158
C 4.354 4.166 2.838 2.099
K 0.937 0.927 0.922 0.881

Me 6.643 8.005 4.774 5.993
R2 0.997 0.997 0.996 0.997

PELEG (0.11–0.96)

k1 0.377 0.518 0.617 0.801
k2 0.558 0.561 0.641 0.749
n1 2.375 2.505 2.361 2.426
n2 25.021 24.454 27.416 24.179
Me 4.860 2.913 4.451 5.396
R2 1.000 1.000 0.998 0.998

Oswin (0.11–0.96)

K0 0.099 0.132 0.166 0.218
n0 0.525 0.517 0.490 0.450
Me 15.811 20.650 16.138 21.559
R2 0.992 0.988 0.989 0.976

Ferro–Fontan (0.11–0.96)

γ 7.551 7.566 12.186 8.768
α 1.060 1.088 1.083 1.195
r 1.081 0.961 1.047 0.811

Me 3.543 5.231 3.581 4.556
R2 0.998 0.998 0.996 0.997

Henderson (0.11–0.96)

A 5.654 6.870 8.716 12.130
B 0.402 0.387 0.384 0.385

Me 18.286 24.909 21.403 26.724
R2 0.994 0.989 0.988 0.973

Lewicki (0.11–0.96)

F 0.198 0.301 0.308 0.587
G 0.365 0.324 0.351 0.231
H 3.256 3.703 2.590 3.357

Me 3.364 2.682 1.054 2.841
R2 1.000 1.000 1.000 1.000

Iglesias–Chirife (0.11–0.65)

A 0.059 0.081 0.096 0.117
B 1.925 1.929 3.405 4.565

Me 8.090 10.807 3.505 3.961
R2 0.993 0.986 0.990 0.996

Flory–Huggins (0.11–0.96)

A 0.382 0.557 0.966 1.846
B 5.170 5.043 4.611 4.085

Me 26.223 23.089 21.889 14.115
R2 0.978 0.983 0.981 0.992
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Table 5. Estimated model constants and values of coefficients and mean relative percentage deviation

moduli for different pea starch films at 40 ˝C.

Model Constants
Glycerol

0% 15% 25% 35%

BET (0.11–0.50)

m0 0.036 0.045 0.060 0.079
C 11.613 10.907 10.774 9.746

Me 8.712 9.245 5.241 3.756
R2 0.956 0.939 0.988 0.988

GAB (0.11–0.96)

m0 0.050 0.068 0.082 0.121
C 1.175 0.816 0.793 0.483
K 0.916 0.899 0.866 0.862

Me 6.474 5.899 6.447 5.112
R2 0.995 0.996 0.998 0.996

PELEG (0.11–0.96)

k1 0.168 0.171 0.184 0.203
k2 0.550 0.731 0.911 0.946
n1 1.297 0.911 0.764 0.633
n2 8.568 7.502 7.945 6.300
Me 7.920 5.338 4.309 4.200
R2 0.997 0.998 1.000 0.998

Oswin (0.11–0.96)

K0 0.092 0.121 0.139 0.189
n0 0.561 0.553 0.564 0.503
Me 17.298 22.958 13.425 17.766
R2 0.978 0.973 0.986 0.971

Ferro–Fontan (0.11–0.96)

γ 3.411 3.579 5.613 6.280
α 1.153 1.204 1.120 1.202
r 0.731 0.649 0.813 0.735

Me 5.078 5.677 5.719 4.493
R2 0.998 0.998 0.999 0.996

Henderson (0.11–0.96)

A 5.016 6.034 6.422 9.177
B 0.393 0.378 0.367 0.372

Me 19.361 26.530 17.221 22.929
R2 0.982 0.976 0.988 0.970

Lewicki (0.11–0.96)

F 0.682 0.948 0.717 0.515
G 0.102 0.087 0.175 0.222
H 9.002 8.227 9.130 2.671

Me 3.778 5.264 1.486 1.308
R2 0.999 0.998 1.000 1.000

Iglesias–Chirife
(0.11–0.65)

A 0.057 0.075 0.75 0.102
B 1.541 1.652 3.370 4.311

Me 7.160 9.439 2.473 3.329
R2 0.980 0.979 0.996 0.993

Flory–Huggins
(0.11–0.96)

A 0.303 0.452 0.449 1.196
B 5.381 5.232 5.414 4.504

Me 27.921 24.716 28.821 20.898
R2 0.988 0.991 0.989 0.990

The most recognized models for calculation of monolayer moisture content (m0) of foods

materials are BET and GAB. The monolayer value is evidence of the quantity of water that can

be bound to a single layer per gram of dry film [42]. Since the GAB model is associated with the

water sorption in the multi-layer and the BET model in the first layer region, it is expected that the

GAB model results in higher values of monolayer moisture content than those measured by the BET

model [32]. The results showed that the water content associated to the monolayer of pea starch

film without plasticizer analyzed in the range of 5–40 ˝C, varied from 0.061 to 0.036 g water/g dry

solids, when the BET model was considered and from 0.105 to 0.050 g water/g dry solids for the GAB

model. Comparing with pea starch film content 15% and 35% w/w glycerol, the monolayer moisture

content varied from 0.086 to 0.045 g water/g dry solids and 0.149 to 0.079 g water/g dry solids,
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respectively. When the BET model was considered for the pea starch film content 15% and 35% w/w

glycerol, the results were from 0.128 to 0.068 g water/g dry solids and 0.200 to 0.121 g water/g dry

solids for the GAB model, all in the range of 5 to 40 ˝C, respectively. It is proposed that the higher

plasticizer content, the more active sites were available to bind water molecules [43]. In addition,

the m0 values for all pea starch films showed an affinity to reduce with an increase in temperature

because at higher temperatures some water molecules can escape from their sorption sites [44]. The

reduction in the monolayer moisture content with increasing temperature has also been observed by

Su et al. [45], Perdomo, Cova, Sandoval, García, Laredo and Müller [25], Peng et al. [46], [22], and

McMinn, Al-Muhtaseb and Magee [23].

In addition to m0, the sorption energy constant, C, is also related to the monolayer heat sorption

in the BET and GAB models [47]. The difference in heat of sorption between the monolayer (E1)

and the multilayer or bulk water (EL) is related to CBET [48]. A reduction in the CBET means a

decrease in the value of E1 (for monolayer), while EL (bulk liquid) would remain constant. In other

words, the high value of this energy constant demonstrates that water molecules more strongly

adsorbed in the active sites of the matrix [49]. Comparison of the pea starch films with different

glycerol concentrations showed a decrease in this parameter when the glycerol content increased,

suggesting that this polyol might occupy some of the sorption sites of the polymer. The difference

in C from GAB and BET is mostly due to the fitting process; in terms of GAB it contains another

parameter KGAB, contributing equally to CGAB in the model fitting. Theoretically, the GAB equation

considers the sorption energies in both monolayer and multilayer domains in comparison with BET,

which examines only the sorption heat for the monolayer, supposing similar energies linked to the

multilayer. So, it is expected to achieve smaller values for CGAB compared to CBET [49]. Another

energy constant of the GAB model is K. An increase in KGAB toward a value of 1 would suggest a

smaller difference between the energy associated with the heat of sorption of the multilayer and the

heat of condensation of pure water [49]. It is possible that hydroxyl groups of glycerol, on the sorption

sites of the matrix, could increase the interaction energies between the water molecules, on the second

and higher water layers, and the polymer. In this experiment, this value in all films formulations was

near to 1 and independent of composition.

The Me of the GAB and the BET model changed between 2.3%–10.3% and 3.8%–17.8%,

respectively. The BET was not considered as an appropriate model for fitting the data due to its

restriction to aw below 0.5. GAB model has been recognized for predicting the sorption behavior of

different starchy products [4,25,50–53]. However, in this case, the modeling showed that the GAB

model was not the best model for describing the sorption isotherm experimental data.

The Peleg model can be applied as an alternative to the classic BET and GAB models to correctly

represent sorption isotherms, due to the presence of an extra parameter in the equation. The lack

of a theoretical background in its development is the drawback of using this model to represent

a fundamental prediction of the differences in sorption isotherm behavior. In this model, k1 is a

constant associated with mass transfer, the lower k1, the higher the initial water adsorption rate; k2

is a constant connected to maximum water adsorption capability and the lower the k2, the higher

the adsorption capacity [54]. Unplasticized pea starch film had lower k1 values, indicating that this

film adsorbed water at a higher initial rate with increasing % RH. Pea starch films with higher values

of glycerol adsorbed water slower at low values of % RH (higher k1 value) and showed higher k2

values (indicating higher water adsorption capacity), which was probably due to the plasticizing

effect [13,24,54]. As it can be observed, the Peleg model provided a good fit to the experimental data

in the temperature range studied with as evidenced by high R2 and low Me values.

The Oswin and Henderson models were inadequate to describe the experimental data providing

an average Me value above 25% and 29%, respectively. The similar results have been observed

by Al-Muhtaseb, McMinn and Magee [22] and Perdomo, Cova, Sandoval, García, Laredo and

Müller [25]. The Flory–Huggins model also failed to represent the experimental data with Me value

ranging from 4.8% to 28.8%, and an average value of 16.8%. In the range of water activity 0.11< aw <
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0.65, the Iglesias–Chirife model was displayed a satisfactory fit to the experimental data, providing an

average Me value of 7.8% for adsorption data. The results were in agreement with sorption isotherm

of polyethylene oxide-corn starch blended films [3].

Among the two other models (Ferro–Fontan and Lewicki) which were applied throughout the

whole range of water activity (0.11–0.96), the smallest Me value (0.9%–5.3%) and higher values of R2

(0.999–1.000) at all the temperatures were achieved for the Lewicki model. Figures 1–4 also confirmed

that the Lewicki equation provided the best fit to the experimental data at all the investigated

temperatures, followed by the Ferro–Fontan model. The mean relative percentage deviation modulus

(Me), with a modulus value below 10% was indication of a close fit for experimental values [25].

The Lewicki model provided the lowest Me values with average value of 3.1%, in comparison with

4.9% for the Ferro–Fontan model. McMinn, Al-Muhtaseb and Magee [23] also reported that the three

parameter Lewicki model is the most adequate model for predicting the sorption properties of raw

potato, potato starch, starch–sugar and starch–salt gels within the temperature studied and water

activity range.

3.3. Net Isosteric Heat of Sorption

The net isoteric heat of sorption examined by applying the Clasusius–Clapeyron equation for

pea starch films is exhibited in Figure 5. The net isoteric heat of sorption pqs
nq, values were calculated

from the slope of the plot between the values of ln(aw) and 1/T at a specific moisture content. It can

be seen that the heat of sorption showed similar trend for all pea starch films. The isosteric heat is

dependent on moisture content and on the energy required for sorption [55]. The amount of required

energy to remove water from the solid is considered the isosteric heat of sorption, so the more tightly

the water is bound, the higher is the isosteric heat of sorption [56]. The high value of the isosteric

heat of sorption is a sign of the intermolecular attractive forces between the sorption sites and the

water vapor at low moisture contents; this heat reduces with increase in the moisture contents [27].

At low moisture content, sorption happens on the most active sites, hydrophilic groups, while water

molecules bind with less active site in higher moisture content resulting in lower isosteric heats of

sorption [57,58]. The decreasing of net isosteric sorption heat with moisture content could be also

associated with the interaction energy of water molecules with surface, which is decreased when

coverage level of the surface is increased [59]. The net isosteric heat of sorption ranged from 8.23 kJ/mol

at moisture content of 0.07 g/g dry matter to 1.43 kJ/mol at a moisture content of 0.27 g/g dry matter

for control film and the corresponding value for pea starch film with 35% glycerol was 14.26 kJ/mol

at moisture content of 0.17 g/g dry matter and 4.22 kJ/mol at moisture content of 0.49 g/g dry

matter. The reducing behavior of the isosteric heat of sorption with increasing moisture content has

been also reported in other starchy products [22,26,60,61]. The incorporation of glycerol increased

the binding energy between water and the film surface led to increasing the isosteric heat of sorption.

The isosteric heats versus moisture content results are sufficiently represented as power function of

moisture content as follows:

Pea starch film : qs
n “ 124.77M´1.398

e , R2 “ 0.9912 (12)

Pea starch film ` 15% glycerol : qs
n “ 472.69M´1.653

e , R2 “ 0.9957 (13)

Pea starch film ` 25% glycerol : qs
n “ 213.07M´1.181

e , R2 “ 0.9972 (14)

Pea starch film ` 35% glycerol : qs
n “ 252.35M´1.029

e , R2 “ 0.9942 (15)
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Figure 5. Net isosteric heat of sorption of pea starch films as a function of MC: 0% is pea starch film,

15% is pea starch film content 15% w/w glycerol, 25% is pea starch film content 25% w/w glycerol,

and 35% is pea starch film content 35% w/w glycerol.

These mathematical relationships may be used to calculate the heat of sorption of pea starch

films for various moisture contents.

4. Conclusions

The moisture sorption of the pea starch films increased with increasing water activity at different

temperatures (5, 15, 25, and 40 ˝C) and represented a Type III isotherm. The equilibrium moisture

content and monolayer moisture contents (m0) reduced with increases in storage temperature at

constant water activity. The results showed that the glycerol concentration had a significant effect

on equilibrium moisture content and monolayer moisture content (m0) of films. Sorption isotherm

studies, with data fitted to theoretical, kinetic, semi-empirical and empirical models, showed that

high correlation coefficient of determination (R2) and the lowest average relative percentage deviation

modulus (Me) were obtained from the Lewicki model indicating that it fits the best to the experimental

data followed by Ferro–Fontan and Peleg equations for all films, at all temperatures, in the whole

range of water activity. The net isosteric heat of sorption of the films was measured. It was found

that this heat changed inversely with variation in the amount of the absorbed moisture. These

fundamental data are important in assessing applicability of starch-based edible films in food and

pharmaceutical industries, due to the influence of moisture content on water vapor permeability,

physical and mechanical properties of starch-based edible films.
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