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HIGHLIGHTS

• Bifunctional electrode and electrolytic cell configuration for electrochemical water splitting are reviewed.

• The different green energy systems powered water splitting are summarized and discussed.

• An outlook of future research prospects for the development of green energy system powered water splitting in practical application 

process is proposed.

ABSTRACT Hydrogen  (H2) production is a latent feasibility of renewable clean energy. 

The industrial  H2 production is obtained from reforming of natural gas, which consumes 

a large amount of nonrenewable energy and simultaneously produces greenhouse gas 

carbon dioxide. Electrochemical water splitting is a promising approach for the  H2 pro-

duction, which is sustainable and pollution-free. Therefore, developing efficient and 

economic technologies for electrochemical water splitting has been an important goal for 

researchers around the world. The utilization of green energy systems to reduce overall 

energy consumption is more important for  H2 production. Harvesting and converting 

energy from the environment by different green energy systems for water splitting can 

efficiently decrease the external power consumption. A variety of green energy sys-

tems for efficient producing  H2, such as two-electrode electrolysis of water, water split-

ting driven by photoelectrode devices, solar cells, thermoelectric devices, triboelectric 

nanogenerator, pyroelectric device or electrochemical water–gas shift device, have been 

developed recently. In this review, some notable progress made in the different green energy cells for water splitting is discussed in detail. 

We hoped this review can guide people to pay more attention to the development of green energy system to generate pollution-free  H2 

energy, which will realize the whole process of  H2 production with low cost, pollution-free and energy sustainability conversion.
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1 Introduction

With the gradual intensity of global energy crisis, hydrogen 

 (H2) is one of the most sustainable and clean energies for 

replacing fossil fuel energy [1, 2]. Reforming natural gas 

to produce  H2 not only consumes a large amount of natural 

resources but also produces undesired carbon dioxide, which 

causes greenhouse effect [3–5]. Splitting water into  H2 and 

oxygen  (O2) was from more than 200 years ago. It is very 

important to develop an environmental-friendly and low-cost 

technology for large-scale production of  H2 [6]. As a mature 

energy conversion technology, electrolysis of water provides 

a simple, efficient and promising method for the hydrogen 

evolution reaction (HER) [7–10]. However, an external 

power supply to deliver oxidation or reduction reactions of 

 H2O is necessary for electrolysis, leading to economically 

inefficient application of energy. Alternatively, harvesting, 

storing and converting energy from the environment (such 

as wind, thermal, sunlight, tidal and self-powdered energy) 

[11, 12] can be directly utilized for electrolysis with using a 

lower or no external power supply.

Sunlight is an inexhaustible renewable energy source 

that can meet humanity’s needs. Effective utilization of 

solar energy can reduce the overall energy consumption of 

water splitting [13, 14]. For example, constructing a photo-

electrode to absorb sunlight can provide a photovoltage to 

effectively reduce the external energy supply for electrolysis 

of water [15, 16]. In addition, solar cell is also an effective 

technology of solar energy conversion, which can directly 

absorb sunlight to transform output voltage instead of exter-

nal electric energy, thus effectively realizing the minimum of 

external energy consumption. The utilization of heat energy 

from sunlight in nature for thermoelectric (TE) device can 

generate power to provide the voltage of water splitting 

[17]. There are also vast amount of wind and tidal energy in 

nature, which can be captured by triboelectric nanogenerator 

(TENG) to generate electricity, which can also effectively 

reduce the input of external energy. Therefore, it is of great 

significance to establish a suitable externally driven sys-

tem of water splitting to reduce external consumption and 

improve  H2 production capacity.

For the past few years, many researchers have devel-

oped a variety of green energy system for efficient produc-

ing  H2, such as two-electrode electrolysis of water, water 

splitting driven by a photoelectrode device, solar cells, TE 

device, TENG and other devices including pyroelectric and 

water–gas shift (WGS) reaction and so on (Fig. 1). These 

green energy systems can efficient drive water splitting for 

 H2 production. Some notable matters and challenge in the 

different green energy system for water splitting are dis-

cussed in detail in this review.

2  Two-Electrode Electrolysis of Water

Electrochemical water splitting is a prospective method to 

produce environmentally friendly hydrogen fuel [18]. Elec-

trochemical water splitting requires a voltage of 1.23 V in 

theory; however, over 1.8 V is needed in practice to over-

come the activation barrier of the reaction [19]. The large 

overpotential is from the slow four-electron transfer kinetics 

of the anodic oxidation reaction and the easy two-electron 

transfer kinetics of the cathode reduction reaction [20, 21]. 

In addition, it is difficult to establish a water splitting system 

of different cathode and anode because different catalysts are 

active and stable in different pH ranges. Moreover, the use of 

different catalysts in the same system often needs different 

equipment and methods, which increases the complicacy and 

cost of the system. And also, the wettability of the electro-

catalyst with electrolyte and the rapid desorption of bubbles 

generated on the electrodes are very important in the process 
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Fig. 1  Water splitting driven by different green energy systems
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of water splitting [22–24]. If the generated gas bubbles are 

difficult to break away from the surface of electrode, the 

active site of electrocatalyst will be covered as well as the 

electrolyte will be difficult to diffuse to access the interface 

of catalyst/electrolyte [25]. Therefore, the hydrophilicity and 

aerophobicity of the electrode is very significant to promote 

the efficiency and stability of the water splitting process [26, 

27]. Hence, the development of a high active, stable and 

low-cost bifunctional electrocatalyst for water splitting is 

imperative [28].

2.1  Electrocatalysts for Overall Water Splitting

For overall water splitting, an ideal bifunctional electro-

catalyst should be a low-cost, highly active and economical 

preparation method, which can provide long-term stability 

for both HER and oxygen evolution reaction (OER) in the 

electrolyte [29]. The employment of suitable catalyst will 

be critical to develop electrolysis of water. Hence, it is an 

urgent desire for researchers to develop many different kinds 

of bifunctional electrocatalysts with different performance 

to promote the development of  H2 fuels [30].

Transition metal oxide [31, 32], transition metal sulfides 

[33–39] and selenides [40–43], transition metal phosphides 

[44–49], transition metal nitrides [50–52] become poten-

tial candidates as non-noble metal electrocatalysts for elec-

trolysis of water. The  Ni3S2/MnS–O nanosheets on Ni foam 

(NF/T(Ni3S2/MnS–O)) were employed as anode and cathode 

for overall water splitting (Fig. 2a), which was required a 

voltage of 1.54 V at a current density of 10 mA cm−2 [33]. 

Dai and Liu et al. prepared NiCo-nitrides/NiCo2O4/GF as 

both anode and cathode in two-electrode system; the whole 

voltage for electrochemical water splitting was 1.68 V to 

achieve 20 mA cm−2 in 1.0 M KOH (Fig. 2b) [53]. He and 

Sun et al. synthesized a bifunctional catalyst for electrolysis 

of water based on three-dimensional (3D) self-supported Fe-

doped  Ni2P nanosheets on NF. An two-electrode electrolyzer 

composed of the  (Ni0.33Fe0.67)2P||(Ni0.33Fe0.67)2P electrodes 

required a low cell voltage of 1.49 V to achieve 10 mA cm−2 

in 1.0 M KOH [45]. Wang et al. reported that the nanostruc-

tured porous  Ni3FeN nanosheet was obtained by annealing 

process the  Ni3Fe LDHs precursor in  NH3 atmosphere. The 

porous  Ni3FeN used as both anode and cathode in two-

electrode system for overall water splitting in 1.0 M KOH 

required a voltage of 1.495 V at 10 mA cm−2, which could be 

driven by a battery with rated voltage of 1.5 V [50]. Metal-

free electrocatalysts also show high activity, good stability 

and low cost to replace metal-based electrocatalysts for long-

term water splitting [54, 55]. Yu, Chen, Dai et al. reported 

a novel metal-free bifunctional electrocatalyst with the 

ultrathin exfoliated black phosphorus (EBP) nanosheets on 

N-doped graphene (EBP@NG). EBP@NG possessed excel-

lent performance of HER and OER in 1.0 M KOH. The volt-

age of an optimized two-electrode cell with EBP@NG used 

as anode and cathode was 1.54 V to achieve 10 mA cm−2 

[54]. The voltage of most reported bifunctional non-noble 

metal electrocatalysts is lower than that of benchmarking 

 IrO2||Pt electrodes (1.57 V at 10 mA cm−2) and standard 

coupled Ni and stainless steel (1.73 V at 10 mA cm−2) in 

the industrial application [56]. A detailed comparison of the 

HER and OER activities of recently reported electrocatalysts 

for overall water splitting are listed in Table 1.

(a)

HER e−

H2 O2
H2 O2

− +
e− OER

(b)

HER OER

HER OER

Fig. 2  a Schematic diagram of two-electrode configuration for overall water splitting with NF/T(Ni3S2/MnS–O) as anode and cathode. Repro-

duced with permission from Ref. [33]. Copyright 2019 Elsevier Inc., b photographs showing the NiCo-nitrides/NiCo2O4/GF||NiCo-nitrides/

NiCo2O4/GF couple electrolyzer. Reproduced with permission from Ref. [53]. Copyright 2019 John Wiley and Sons



 Nano-Micro Lett. (2020) 12:131131 Page 4 of 29

https://doi.org/10.1007/s40820-020-00469-3© The authors

2.2  Electrolytic Cell

Conventional water electrolysis usually utilizes transition 

metal catalysts and diaphragms in alkaline electrolytes (alka-

line water electrolysis, AWE) or noble metal catalysts and 

a proton exchange membrane in acidic media (PEM water 

electrolysis) [57, 58].

2.2.1  Alkaline Water Electrolysis

Since Troostwijk and Diemann first found the phenomenon 

of electrolysis of water in 1789, alkaline water electroly-

sis has been an established technique for  H2 production. 

Therefore, alkaline electrocatalysis is the most widely used 

electrolysis technology on a business level in the world 

[59–64]. In the AWE, the electrolyte is made up of a caustic 

potassium solution with a concentration of 20–30% KOH 

[65–67]. The configurations of alkaline electrolyzer con-

tain the conventional alkaline electrolyzer, the “zero-gap” 

alkaline electrolyzer and the membraneless or decoupled 

alkaline electrolyzer.

In conventional alkaline electrolyzer, the anode and cath-

ode immersed in the electrolyte are located on either side 

of the flat current collector to facilitate a serial connection 

between cells [68].  H2 and  O2 bubbles are formed in two 

electrolyte chambers; meanwhile, a membrane avoids the 

mixture of them (Fig. 3a). This method is easy to scale up to 

the massive volume production of  H2. However, the result-

ing bubbles decrease the effective area of the electrodes 

and improve the resistance of the electrolytes, leading to 

low current densities. Another issue of AWE of Ni-based 

Table 1  Summary of the HER and OER activities of recently reported electrocatalysts for overall water splitting

Catalysis Electrolytes ƞ for HER 

at j (mV@

mA cm−2)

ƞ for OER 

at j (mV@

mA cm−2)

Tafel slope 

for HER (mV 

 dec−1)

Tafel slope 

for OER (mV 

 dec−1)

Overall volt-

age at j (V@

mA cm−2)

References

Co3O4@C@NF 1.0 M KOH 42@10 96@10 56 89 1.40@10 Ha et al. [31]

NF/H–CoMoO4 1.0 M KOH 295@10 – 91 – 1.56@10 Chi et al. [32]

NF/T(Ni3S2/MnS–O) 1.0 M KOH 116@10 228@10 41 46 1.54@10 Zhang et al. [33]

N–CoS2/NF 1.0 M KOH 28@10 200@20 42.6 55 1.50@10 Yao et al. [34]

MoS2/NiS 1.0 M KOH 244@10 370@11 97 108 1.64@10 Qin et al. [35]

MoS2–Ni3S2 HNRs/

NF

1.0 M KOH 98@10 314@10 61 57 1.50@10 Yang et al. [36]

Ni3S2/NF 1.0 M KOH 189@10 296@10 89.3 65.1 1.55@10 Li et al. [37]

MoS2/NiS2 1.0 M KOH 62@10 278@10 50.1 91.7 1.59@10 Lin et al. [38]

Ni3Se4@NiFe LDH/

CFC

1.0 M KOH 85@10 223@10 98.6 55.5 1.54@10 Zhang et al. [40]

CoSe@NiFe LDH/

NF

1.0 M KOH 98@10 201@10 89 39 1.53@10 Sun et al. [41]

Co–Ni–Se/C/NF 1.0 M KOH 90@10 275@30 81 63 1.6@10 Ming et al. [42]

MoSe2/MXene 1.0 M KOH 95@10 340@10 91 90 1.64@10 Li et al. [43]

CoP2/RGO 1.0 M KOH 88@10 300@10 50 96 1.56@10 Wang et al. [44]

(Ni0.33Fe0.67)2P 1.0 M KOH 214@50 230@50 – 55.9 1.49@10 Li et al. [45]

NF@Fe2–Ni2P/C 1.0 M KOH 39@10 205@10 30 52 1.57@100 Sun et al. [46]

NiCoP@NC NA/NF 1.0 M KOH 37@10 305@50 53.9 70.5 1.56@20 Cao et al [47]

CoFeP TPAs/Ni 1.0 M KOH 43@10 198@10 65.3 42 1.47@10 Zhang et al. [48]

Mo–NiCoP 1.0 M KOH 76@10 269@10 60 76.7 1.61@10 Lin et al. [49]

Ni3FeN 1.0 M KOH 45@10 223@10 75 40 1.495@10 Wang et al. [50]

Ni3N–NiMoN 1.0 M KOH 31@10 277@10 64 118 1.54@10 Wu et al. [51]

CoAl–Fe2N/Fe3N 1.0 M KOH 145@10 307@10 54 69 1.67@10 Hu et al. [52]

NiCo-nitrides/

NiCo2O4

1.0 M KOH 71@10 183@10 41 54 1.68@20 Liu et al. [53]

EBP@NG 1.0 M KOH 125@10 265@10 76 89 1.54@10 Yuan et al. [54]
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electrodes is the sustaining attenuation of the activity for 

HER and OER. The deposition of metal cations mainly from 

electrolyte impurities can generate a surface coating with 

low catalytic activity, leading to reducing the activity for 

HER. Therefore, Schuhmann and Ventosa et al. creatively 

brought forward a method based on in situ self-assembly 

of catalyst particles in the electrolytic process to obtain 

exceptionally stable catalytic films with the capability of 

self-healing (Fig. 3b, c). They showed that the passivation 

of cathode by zinc impurities from the electrolyte could be 

surmounted by immobilizing catalyst with self-assembly and 

self-healing films. In the electrolytic process, zinc impurities 

deposited on the cathode electrode in the form of a dendritic 

film increased the HER overpotential, but the continued self-

assembling and self-healing of the catalyst films following 

obscured the zinc dendrites that restored the favorable over-

potential of the HER [69].

In the “zero-gap” configuration, a thin cellulose felt 

occupied the intra-electrode space can absorb the electro-

lyte, which is confined and clamped between two hydro-

philic separators that are tightly pressed on the anode and 

cathode. The anode and cathode ought to be polyporous to 

permeate the liquid electrolyte. Therefore, the bubbles from 

the inner space of the electrode can be efficiently excluded 

[68]. For instance, Dunnill et al. reported that employing 

a zero-gap cell configuration could reduce 30% in ohmic 

resistance in comparison with the traditional a 2-mm gap 

in alkaline electrolyte (Fig. 4a, b). At all current densities, 

especially over 500 mA cm−2, the performance of zero-gap 

configuration cell was better than the standard cell. In addi-

tion, the foam electrodes with high surface area allowed for 

a low ohmic resistance compared to the coarse mesh elec-

trodes. Therefore, the zero-gap configuration will permit 

low cost and high-efficiency alkaline electrolysis [70]. The 

anode and cathode also can be fabricated on the separators 

to further decrease the distance of the gap [71]. For instance, 

Tour et al. used the laser-induced graphene (LIG) to form 

HER and OER catalysts on each side of a polyimide (PI) 

film to assemble high-efficiency electrodes for electrolysis 

of water. In this alkaline electrolyzer, LIG was patterned on 

each side of a PI film and subsequently assembled LIG-Co–P 

and LIG-NiFe on opposite sides by electrochemical deposi-

tion (Fig. 4c, d). The hydroxide ions could migrate through 

a small pinhole at the end of the film that may be covered 

by ion exchange membranes for large-scale applications. As 

expected, the device of LIG-Co–P and LIG-NiFe for water 

splitting required 1.66 V to achieve a current density of 

10 mA cm−2 in 1.0 M KOH [72].

In alkaline water electrolysis, the conductivity of liquid 

electrolyte is much higher than that of the ion exchange 
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(c)
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Fig. 3  a Schematic diagram of conventional alkaline electrolyzer. Reproduced with permission from Ref. [68]. Copyright 2012 Elsevier Inc., 

b schematic diagram of the formation of the catalyst film, c schematic diagram of cathode deactivation caused by the deposition of trace metal 

impurities and the change of the overall voltage in the electrolytic cell. Reproduced with permission from Ref. [69]. Copyright 2018 Elsevier Inc
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membrane leading to significant ohmic losses [73, 74]. 

Therefore, Gillespie and Kriek constructed a membraneless 

DEFT alkaline electrolyzer for the gainful production of  H2. 

The electrolyzer could overcome the limitation of current 

density threshold in the existing technology and was an ideal 

choice for  H2 generation (Fig. 5a). The scale-up of the tech-

nology represented a difference from the design of original 

tested stack, which encapsulated many slender electrodes 

in a pressure filter assembly (Fig. 5b, c). The operation 

parameters of the pilot plant were limited to low flow rate, 

and the electrode gap was 2.5 mm. The performance of the 

pilot plant is consistent with the previous acquired results. 

The geometric area of mesh electrodes used for the perfor-

mance test of plant was 344.32 cm2. Under the conditions of 

0.04 m s−1, 30% KOH, 2 V direct current (VDC) and 80 °C, 

the best performance of the NiO anode and Ni cathode com-

bination reached to 508 mA cm−2. Unfortunately, due to the 

nature of the gas–liquid separation system, the gas mass was 

insufficient in comparison with previous results [75].

To further promote the purities of the produced gas in 

the DEFT electrolyzer, Gillespie and Kriek developed an 

extensible and simple mono-circular filter press (MCFP) 

reactor for the DEFT alkaline electrolysis (Fig. 5d). Under 

the condition of the flow rate (0.075 m s−1) and electrode 

gap (2.5 mm), the utilized gas/liquid separation methodol-

ogy improves the gas purities of  H2 to 99.81 vol% and  O2 to 

99.50 vol%. Each round mesh electrode pair of 30 mm has 

independent pressurized chamber and indirect injection of 

the electrolyte. By incorporating a gas purge, the high gas 

purity could be kept for a long running time. Using a Ni/Ni 

catalyst, the current density was 1.14 A cm−2 (2.5 VDC) 

at a flow rate of 0.075 m s−1, 60 °C and 2.5-mm electrode 

gap. Under the same condition except the utilization of a 

double-layer mesh electrode, a current density reached to 

1.91 A cm−2 at 2.5 VDC was realized, confirming that the 

multilayer microporous electrodes for the DEFT principle 

were available [76].

(a)

(c) (d) For HER For OER

Device

Clip

e−

H2O OH−

H2 O2

LIG-Co-P LIG-NiFe

pinhole

(b)

Porous electrodes

Electrolyte

Gas out

Electrolyte In

Gas Separator
Interelactrode Gap

+−

Zero Gap Cell

Fig. 4  a Schematic diagram for reducing the gap between electrodes by using a zero-gap cell, b components for the zero-gap cell, including the 

machined flow field plates, silicone gaskets, mesh electrodes and Zirfon gas separator. Reproduced with permission from Ref. [70]. Copyright 

2017 Elsevier Inc., c schematic diagram and d a photograph of an integrated LIG electrolyzer. Reproduced with permission from Ref. [72]. 

Copyright 2017 American Chemical Society
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Utilizing decoupled the two half-reactions of water split-

ting by redox mediators can completely avoid the mixture of 

produced  H2 and  O2, which is promising for large-scale prac-

tical application [77–82]. Grader et al. proposed a two-step 

electrochemical-thermally activated chemical (E-TAC) cycle 

for overall water splitting.  H2 was produced by a HER at the 

cathode. The traditional OER was replaced by two steps. In 

the first step, the Ni(OH)2 anode was oxidized to NiOOH 

by four one-electron oxidation reactions. In the second step, 

the oxidized NiOOH could be spontaneously reduced to 

Ni(OH)2 in an exergonic chemical reaction to simultane-

ously achieve  O2 production and anode regeneration. As 

shown in Fig. 5e, they also assumed a multicell system with 

fixed anodes and cathodes in each cell for practical appli-

cation to produce pure  H2 and  O2 gas. A low-temperature 

electrolyte flew through cell A, driving the produced  H2 to 

the  H2 separator. Meanwhile, a high-temperature electrolyte 

flew through cell B to regenerate the anode, driving the gen-

erated  O2 to the  O2 separator. In this multicell system, only 

hot and cold electrolyte moved in the operation process [83].

2.2.2  PEM Water Electrolysis

In 1960s, General Electric firstly proposed a concept of 

solid polymer electrolyte (SPE) concept for water elec-

trolyzer, which predicted to conquer the disadvantages of 

alkaline electrolyzers. Grubb idealized the above concept 

by using solid sulfonated polystyrene membranes as the 

electrolytes, also known as PEM water electrolysis, rarely 

called SPE water electrolysis [84, 85]. The polymer elec-

trolyte membrane could provide higher proton conductiv-

ity, lower gas exchange, the compact design of system and 

operate under high pressure [86–90]. The advantages of 

solid polymer electrolyte were lower membrane thickness 

(~ 20–300 μm thick).

First of all, the catalyst layer was coated on a glossy 

polytetrafluoroethylene (PTFE) sheet; then, the coating 

consisted of catalyst and Nafion ionomer on the surface 

of a Nafion 117 membrane was flat when the PTFE sheet 

was removed after being pressed against the membrane. 

The edge between the catalyst coating and membrane was 

(a) (b) (d)

(c)

(e)
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Fig. 5  a Schematic diagram of filtration mesh electrode encapsulated in a single injection assembly, b a photograph of the horizontal filter press 

DEFT electrolyzer stack, and c a diagram of a cross section of the electrolyzer stack assembly. Reproduced with permission from Ref. [75]. 

Copyright 2017 Elsevier Inc., d cross section of the DEFT electrolyzer stack in a MCFP configuration. Reproduced with permission from Ref. 

[76]. Copyright 2018 Elsevier Inc., e schematic diagram of the multicell system by the E-TAC process. Reproduced with permission from Ref. 

[83]. Copyright 2019 Springer Nature
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obvious on the surface of membrane. The thickness of the 

coating could change by adjusting the amount of catalyst 

ink [91]. In commercial PEM water electrolyzer, a layer 

consisted of Pt/C and Nafion ionomer, similarly a layer of 

made up of  IrO2 or  RuO2 catalyst and Nafion ionomer, was 

coated on the opposite side of a Nafion 117 membrane, 

respectively (Fig. 6a).

The anode side of the PEM water electrolyzer was filled 

with water. Water successively passed through the sep-

arator plates and current collectors. When water got to 

the surface of catalyst layer, the molecules of water were 

broken up into protons, electrons and diatomic oxygen. 

Subsequently, the generated protons left the anode through 

the ionomer and the membrane, passing through the side 

of the cathode, where they coupled with electrons to form 

 H2 after they arrived the catalytic layer. Then the  H2 must 

flow through the cathode collector and the barrier, away 

from the cell. At the same time, the electrons left the cath-

ode catalytic layer via the current collector, the separator 

plates, then departured to the side of the cathode.  O2 must 

flow back via the catalyst layer and current collector to 

the separator plates then go out of the cell (Fig. 6b) [65].

The PEM electrolyzers could work at high current densi-

ties of over 2 A cm−2, reducing the operating cost and the 

potential total cost of water electrolysis. The ohmic losses 

confined the maximum value of current densities. The thin 

membrane capable of providing good proton conductivity 

and high current densities could be achieved. The low gas 

crossover rate of the polymer electrolyte membrane allowed 

for the PEM electrolyzer to operate at a wide range of power 

input.

The phenomenon of cross-permeation enlarged along 

with high operational pressure in PEM electrolysis [92]. 

High pressures (over 100 bar) required thicker membranes 

to reduce the mixture of  H2 and  O2, which kept the marginal 

concentrations below the safety threshold (4 vol%  H2 in  O2) 

[92]. The corrosive acidic regime in the PEM electrolysis 

required distinct materials, which needed the resistance to 

severe corrosive low pH corrosion (pH ~ 2) and kept at high 

overvoltage (~ 2 V).

2.2.3  Seawater Electrolysis

Water electrolysis systems usually consist of two half-reac-

tions: HER at the cathode and OER at the anode. Compared 

to the limited pure water, seawater is the most abundant 

aqueous electrolyte on earth for the utilization in the process 

of water electrolysis. Seawater electrolysis was investigated 

by Bennett [93], which was composed of HER at the cathode 

and chlorine evolution reaction (ClER) at the anode [66]. 

ClER is a two-electron process, and chlorine or hypochlorite 

is the value-added product [94]. Four years later, Trasatti 

used different anodes for seawater electrolysis to investigate 

the selectivity for anodic process [95]. In 2016, Dionigi et al. 

proposed the chemical limitations of seawater electrodes and 
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presented the design criterion for selective seawater splitting 

catalysts [96].

In the seawater electrolysis system, the membrane (such 

as Zirfon) should be physically robust and insusceptible 

to blockages, because largely block either anions or cati-

ons (such as  H+,  Na+,  OH− and  Cl− and so on) are able 

to migrate through the membrane [66]. A commercial 

ruthenium oxide-coated titanium electrode  (RuO2/Ti) and 

Pt electrode were served as the working electrode and the 

counter electrode, respectively, to achieve ClER at the anode 

and HER at the cathode (Fig. 7a). The FE of hypochlorite 

increased linearly with the applied potential on the anode, 

which could achieve 99% at the applied potential of 1.5 V 

vs. RHE on the  RuO2/Ti electrode (Fig. 7b) [97].

3  Water Splitting Driven by a Photoelectrode 

Device

Electrolyzed water can effectively generate  H2 through a 

two-electrode system. However, it takes a large amount of 

electrical energy to conquer the thermodynamic barrier 

in the electrolysis of water. In the photoelectrochemical 

(PEC) electrolysis cell [98, 99], the photoanode absorbs 

the solar energy to generate the photovoltage to effectively 

drive water splitting, which can effectively decrease the 

external energy consumption [100–102]. To minimized 

utilization of the external energy consumption and realize 

unassisted overall light-induced water splitting, a possible 

way is using a tandem structure to generate a total photo-

voltage through complementary light absorption between 

different semiconductor electrodes [103–113].

Mathews et al. constructed that a  Fe2O3 photoanode in 

tandem with an organic–inorganic  CH3NH3PbI3 perovskite 

solar cell (PSC) (Fig. 8a) could achieve overall unassisted 

water splitting at air mass 1.5 global (AM 1.5G) irradia-

tion with a solar-to-hydrogen (STH) conversion efficiency 

of 2.4%. The total potential produced by this tandem sys-

tem reached to 1.87 V, which was surpassed the required 

thermodynamic and kinetic potential of 1.6 V, deliver-

ing water splitting with no external energy consumption 

[114]. Jun and Lee et al. reported that cobalt carbonate-

catalyzed, H and 3 at% Mo dual-doped  BiVO4 (Co–Ci/H, 

3% Mo:BiVO4) device in series with  CH3NH3PbI3 single-

junction PSC could realize wireless solar water splitting 

under AM 1.5G without external energy supply (Fig. 8b). 

The STH efficiency of the device exhibited STH effi-

ciency was 3.0%, which could be even higher along with 

the improvement of the photoanode performance [115]. 

Luo et al. reported that a semilucent  CH3NH3PbBr3 PSC 

as the top absorber pairing with a  CuInxGa1−xSe2 (CIGS) 

multilayer photocathode as the bottom absorber could 

panchromatic harvest of the solar spectrum for effective 

overall water splitting (Fig. 8c). For this PV-PEC system 

employing a single-junction PSC as the bias source at AM 

1.5G irradiation, a STH efficiency was reached to over 6%. 

Moreover, the efficiency could attain over 20% by further 
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optimizing the performance of the perovskite top absorber 

[116]. Qiu et al. constructed a single PSC in tandem with 

nanoporous Mo-doped  BiVO4 (Mo:BiVO4) photoan-

ode PEC cell device by using a beam splitter to divide a 

standard sunlight beam into two light beams (Fig. 8d). The 

PSC-PEC serial system achieved unassisted water splitting 

with a STH efficiency of 6.2% and long-term stability over 

10 h (only 5.8% decay) [117].

Owing to the energy supply is efficient and the materi-

als (e.g.,  TiO2) are cheap, abundant and environmentally 

friendly, dye-sensitized solar cell (DSSC) in tandem with 

photoelectrodes are prospective system for unassisted water 

splitting [118]. Herein, Sivula et al. constructed a device 

based on an oxide  (WO3 or  Fe2O3) photoanode in series 

with a DSSC for unassisted water splitting. In this device, 

the light was incident on the photoanode before the under-

lying DSSC. The  WO3/DSSC serial system reached a STH 

conversion efficiency of 3.10%, while that of 1.17% in the 

 Fe2O3/DSSC tandem device. For the two tandem cells, the 

optical transmittances and spectral responses matched with 

the bandgaps of oxide, determining the photocurrent and 

performance of devices. The performance of  Fe2O3/DSSC 

PEC tandem cells was retained 80% after more than 8 h, 

which attributed to the degradation of DSSC. Therefore, the 

layout relied on chosen redox mediators and catalysts for the 

DSSC and photoanodes, respectively [119]. Wang and Park 

et al. demonstrated a 5.7% STH without any external bias 

unassisted monolithic tandem system, which was combined 

the high transparency of  BiVO4-sensitized mesoporous  WO3 

films/Pt with a single DSSC (Fig. 8e). On one hand, the 

 BiVO4 coating on the porous  WO3 films maintained the high 

transparency, allowing enough photons to enter the dye-sen-

sitized photoanode. On the other hand, the porphyrin-dye-

sensitized photoanode with a cobalt electrolyte produced 

enough potential to achieve wireless solar water splitting 

in the tandem system [120]. Mora-Sero and Gimenez et al. 

established a tandem device combined a CdS quantum dots 

modified  TiO2 photoanode connected with a DSSC for 

water splitting with no external bias (Fig. 8f). This device 

showed a STH conversion efficiency of around 0.78% and 

high stability. Designing hybrid photoanodes with different 

light absorbers was important for developing efficient water 

splitting devices [121].
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4  Water Splitting Driven by Solar Cells

As energy storage systems, solar cells, including Si solar 

cells, CIGS solar cells, PSCs, organic solar cells (OSCs) and 

DSSCs [104, 122–124], are able to transform surplus solar 

energy into storable and distributable energy carriers. The 

photovoltage of series connected solar cells can drive water 

electrolysis [125].

4.1  By Conventional Solar Cells

For photovoltaic (PV)-driven water splitting, several con-

nected crystalline conventional solar cells (such as Si and 

CIGS solar cells) are prospective because of the high STH 

efficiency and solar-driven durability for  H2 production [60, 

104, 126].

Gan and Zhang et al. proposed a bimetallic compound 

NiFeSP on the commercial NF (NiFeSP/NF) in series with 

a Si solar cell to implement overall water splitting (Fig. 9a). 

The voltage of combination of the Si solar cell and the 

bifunctional NiFeSP/NF electrodes for water splitting in 

the tandem system was 1.58 V to reach a current density 

of 10 mA cm−2, corresponding to a STH conversion effi-

ciency of ~ 9.2% [127]. Shen et al. also reported that three 

Si solar cells in series (entire area of 3 cm2) were combined 

with the double-layer Ni–Co–S/Ni–Co–P electrocatalyst on 

NF (NCS/NCP/NF) electrodes for unassisted water splitting 

(Fig. 9b). When using NCS/NCP/NF as a bifunctional cata-

lyst for water splitting, the current density of 10 mA cm−2 

can be obtained with only 1.49 V. Finally, the whole solar 

water splitting was realized with the efficiency of STH 

reached to 10.8% [122]. Oh, Ryu and Kim et al. combined 

four Si heterojunction solar cells in series with a bifunc-

tional NiFe nanostructures electrocatalyst to realize water 

splitting (Fig. 9c). The overpotential of NiFe inverse opal 

electrolyzer for water splitting was ~ 160 mV, achieving a 

STH conversion efficiency of 9.54% more than 24 h with no 

bias condition [128].

Compared to Si solar cell, the outstanding advantage 

of CIGS is that the band gap energy can be modulated to 

effectively absorb the solar spectrum, so it is also widely 

used to achieve water splitting [129–131]. For purpose of 

overcoming the problem of low energy to drive overall water 

splitting, connected series into a monolithic device can be 
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adopted to supply enough to drive the whole reaction. For 

example, Jacobsson et al. reported that three series-inter-

connected compound semiconductor CIGS PV electrolysis 

could efficiently realize solar water splitting at AM 1.5G 

irradiation (Fig. 9d). The current density was centered at 

8.5 mA cm−2 and a STH conversion efficiency reached to 

10.5% [132]. Jacobsson et al. demonstrated CIGS solar cell 

could be applied to water splitting into  H2. They used a p–n 

junction for separating the charge and a catalyst deposited 

on the surface to significantly improve the performance in 

the configuration of a PEC cell (Fig. 9e). In this device, 

the efficient charge separation production from the cataly-

sis improved the durability of CIGS in the light irradiation. 

Furthermore, photocurrents in this device could reach to 

over 20 mA cm−2. The full potential of CIGS as a highly 

efficient absorbent material for water cracking was dem-

onstrated. They confirmed the full potential of CIGS as a 

highly effective absorbent material could be used for water 

splitting [133].

4.2  By Perovskite Solar Cells

In the above tandem system for water splitting in Sect. 4.1, 

owing to the low open-circuit voltages of Si solar cells, at 

least three to four connected cells in series must be utilized 

to achieve reasonable efficiency. In contrast, PSCs have 

achieved open-circuit voltages at 0.9 V and up to 1.5 V 

[134–139], which is sufficient for efficient water splitting 

by connecting just two in series [123]. Grätzel reported 

that the tandem PSC could be used to drive electrolytic 

(a)

+ −

+−

O2

H2

H2O

OH−

(b)

(c)
(d)

N
F

-8
/C

F
P

Duckweed Electrolyzer

PerovskiteSolar cell

N
F

-8
-A

/C
F

P

sp
iro

-M
eO

TA
D

/A
u

C
H

3 N
H

3 P
b
I
3

F
T
O

/T
iO

2

N
iF

e-L
D

H

e−

e−

h+

O2/OH−

All-inorganic

perovskite solar cells

O2 H2

H2OOH−

N
iF

e-L
D

H

h+

(−)

(+)

0

V
RHE

η
HER

η
OER

+1.23

H2O/H2

1
.5

 e
V

H
2 O

H2O
H2 O2

OH
−

Fig. 10  a Schematic diagram and b a generalized energy of the tandem PSC for water splitting. Reproduced with permission from Ref. [140]. 

Copyright 2014 American Association for the Advancement of Science, c schematic diagram of the solar energy-driven overall water splitting 

device with a PSC. Reproduced with permission from Ref. [141]. Copyright 2018 Royal Society of Chemistry, d configuration of the electro-

lyzer with the  Ni0.5Co0.5P/CP bifunctional electrocatalyst and all-inorganic PSCs under irradiation. Reproduced with permission from Ref. [123]. 

Copyright 2018 Royal Society of Chemistry



Nano-Micro Lett. (2020) 12:131 Page 13 of 29 131

1 3

splitting of water. The configuration was a water splitting 

system combing with a solution-processed tandem PSC and 

NiFe LDH used as anode and cathode electrodes in alka-

line electrolyte (Fig. 10a, b). A photocurrent density of the 

tandem two-electrode system was around 10 mA cm−2, cor-

responding to a STH efficiency of 12.3% [140]. Bhattachar-

yya et al. developed NiFe-alloy nanoparticles supported by 

N, S-doped mesoporous carbon matrix from duckweed as 

efficient electrocatalysts (Fig. 10c). For overall water split-

ting, only 1.61 V was required to attain a current density of 

10 mA cm−2 for over 200 h. Combining with PSCs, the elec-

trolyzer for overall water splitting showed a STH efficiency 

of 9.7%, which is completely powered by solar energy [141]. 

Jin et al. reported that bifunctional bimetallic phosphide 

 (Ni0.5Co0.5P/CP) in tandem with all-inorganic PSCs (based 

on a  CsPb0.9Sn0.1IBr2 light absorber and a nanocarbon elec-

trode Fig. 10d) realized efficient overall water splitting. The 

water splitting electrolyzer could achieve a current density 

of 10 mA cm−2 at only 1.61 V. Driven by stabilized all-

inorganic PSCs, the electrolyzer delivered a STH conversion 

efficiency of 3.12% and good durability [123].

5  Water Splitting Driven by Thermoelectric 

Device

Water splitting driven by solar cell is a common energy-

driven water splitting strategy. However, the utilization effi-

ciency of sunlight by the solar cell is relatively low because 

solar cells are chiefly effective in the range of ultraviolet 

and visible light. Conventional semiconductor solar energy 

conversion technology cannot efficiently utilize the infrared 

light, which occupies nearly half of the sunlight. The com-

bination of TE device and infrared-active materials supplies 

a particular approach to transform infrared sunlight to the 

electricity, which improves the solar energy utilization effi-

ciency [142–147]. Thus, the study of water splitting driven 

by TE device is extensively performed.

5.1  By Surface-Modified Thermoelectric Device

The infrared light usually delivers the energy in the form of 

heat through photothermal effect [148, 149]. Transforming 

the released heat into available energy (e.g., electricity) is a 

distinct method to utilize the infrared light. This conversion 

can be probable realized by TE device [150–152]. It is a pity 

that the surface of commercial TE device is unserviceable to 

absorb the infrared light. In order to improve the efficiency 

of TE devices, it is necessary to expand the absorption of 

infrared light by TE devices [151]. This requirement enlight-

ened us to develop the probability of integrating photother-

mal materials on the TE device to promote the efficiency of 

photo-thermoelectric conversion [153]. Generally, materials 

with higher photothermal conversion efficiency include the 

Group VIII metal materials, graphene oxide (GO) [154], 

carbon nanomaterials, transition metal oxides (e.g.,  MoO2, 

 WO3,  Fe2O3) and chalcogenides (e.g.,  Cu2S) [155]. In 2014, 

the photothermal effect of GO had been demonstrated for the 

first time for TE devices [153]. The GO drop-coated on the 

surface of the TE device could transform the infrared light 

to the electricity, which was directly utilized to carry out 

photoelectrocatalytic process in the case of no applied volt-

age. As could be seen from the infrared thermal image, the 

conclusion that the surface coating of GO could significantly 

increase the response of TE devices can be drawn. Our group 

employed carbon nanoparticles (CNP) light absorbent layer 

on the top to increase the absorption efficiency of STEGs. A 

very easy candle flame preparation method was employed to 

synthesize the black CNP layer on the hot end of the com-

mercial TE device (CNP generator). The synthesized CNP 

layer had a 3D porous structure which was conducive to 

capture light, and the power produced by this STEG device 

could drive an electrolyzer for splitting water to produce 

 H2 (Fig. 11a, b). In this water splitting system driven by 

TE device, 6 sets of CNP coated thermoelectric generator 

devices were series connection to supply adequate voltage 

for electrolysis of water. After connecting the TE generator 

with the electrochemical cell, the cathode and anode imme-

diately generated plenty of bubbles under the sunlight irra-

diation. The production of  H2 and  O2 was at an average rate 

of 20 and 10 μmol h−1, respectively, and the rate at the time 

between 11:40 and 12:40 was highest on account of the max-

imum sunlight intensity (Fig. 11c). This study demonstrated 

that the output voltage of TE device was able to drive the 

 H2 production from water splitting by coating nanomaterials 

with photoabsorbing and photo-to-heat conversion proper-

ties on the hot end of TE devices [156]. Inspired by the dual 

model effects of surface plasmon resonance (SPR) photo-

thermal conversion and efficient electrocatalytic activity for 

group VIII metals, our group then proposed Ni nanosheets 

array grown on the surface of TE device for electroly-

sis of water. In the integrated device, Ni nanosheets array 
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was served as electrocatalysts and light absorption layer. 

Replacing the conventional power supply, the output volt-

age of this integrated system could be immediately applied 

for electrolysis of water. It was demonstrated that the Ni 

nanosheets array was utilized as an effective photothermal 

conversion layer to generate temperature difference (ΔT) for 

TE, and as an efficient electrocatalysts for HER (Fig. 11d, 

e). The electrolyzer-TE complex devices were constructed 

for overall water splitting in a two-electrode system, with 

a  H2 and  O2 production rate of 1.818 and 0.912 mmol h−1, 

respectively (Fig. 11f). The integrated TE device provided 

great advantages for constructing the water splitting system, 

which were conducive to utilize the solar thermal energy and 

the waste heat in the prospective applications [157].

5.2  By Integrated Photoelectrochemical-Thermoelectric 

Device

The parameters that effect TE conversion efficiency are 

the Seebeck coefficient (or thermopower), the electrical 

conductivity and the thermal conductivity [158]. Consid-

ering these factors, the energy conversion efficiency of 

TE device (5–10%) is low, compared to PVs (up to 46%) 

[159]. Therefore, several researches have demonstrated 

that by combing TE and PEC reaction, the utilization 

efficiency for both solar energy harvest and water split-

ting can reach a high content [160]. The first proposed the 

combination of PEC and photothermal-electrochemical 

cycles for  H2 production by solar energy was by Nikola 

Getoff in 1984 [161], which was in acid aqueous solution 

using  I2 and  I3
− acting as a sensitizer with the existence of 

ferrous ions. With the introduction of the TE device, the 

unabsorbed light was collected to provide heat for partly 

converting into electricity by the TE device. Hence, the 

efficiency of  H2 production increased of 30% compared 

with that of single PEC cycle. However, no research for 

photothermal-electrochemical water splitting was con-

ducted for a long time since then, until 2015, Lee’s group 

[126, 162] continuously published two articles to study 

the integrated PEC-TE device for water splitting by using 
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solar energy and waste heat energy to generate storable 

and transportable  H2 fuel. By using the hybrid water split-

ting device water splitting system, the power generation 

for  H2 evolution of 55 mW cm−2 was achieved, which was 

almost 4 times higher than that of a sole PEC cell. Accord-

ing to the total charge transferred, the measured volume 

of  H2 was well consistent with the theoretical value of 

100% Faraday efficiency (FE), indicating that the gener-

ated charge was completely involved in promoting  H2 evo-

lution. Furthermore, this hybrid operation did not need to 

use noble metals (e.g., platinum or iridium) because the 

thermovoltage sole could counteract the kinetic overpoten-

tial [126]. Meanwhile, the author explained the enhance-

ment of water splitting in terms of adjusting the Fermi 

level of the counter electrode with ΔT (Fig. 12a–c). As we 

all known, band edge potentials of semiconductors must 

straddle the redox potentials of  H2 and  O2 for full PEC 

operation without external bias. However, since the mini-

mum valence band of silicon was not enough positive to 

oxidize water, silicon was not suitable as a semiconductor 

material for spontaneous water splitting (Fig. 12b) [162]. 

Thus, since a TE device was concatenated to a PEC cell, 

the Fermi level of counter electrode could be adjusted 

by the applied  VTE. When the working electrode (p-Si) 

and counter electrode (Pt) were linked to the positive and 

negative terminal of the TE device, respectively, electrons 

injected from the Pt counter electrode flew through the 

wire to the anode of the TE device. It was worth noting 

that the Fermi energy level moved downward to a more 

positive potential until the Fermi energy level of Pt was 

in alignment with that of the TE device (Fig. 12c). Since 

the Fermi level of the metal was lower than the oxida-

tion potential of the water, the water would spontane-

ously oxidize under the action of the VTE [162]. Wang 

et al. proposed a novel PV-TE hybrid device consisted of 

a serial DSSC, a solar selective absorber (SSA) and a TE 

generator, providing some inspiration for the development 

of high-performance PV-TE hybrid devices. The author 

proposed that the sunlight could be separated into two 

beams, and UV–visible light was absorbed by a solar cell 

and infrared light was absorbed by a TE generator to con-

vert into electricity in this hybrid device, which improve 

the overall conversion efficiency greater than 13%. And 

thereafter, water splitting driven by TE device integrated 
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PV cell or other electric generation system was widely 

studied by researchers [163]. Wang’s group manufactured 

a hybrid energy cell integrated by a TENG, a solar cell and 

a TE device, which could be utilized for concurrently/sep-

arately harvesting mechanical, solar and/or thermal ener-

gies. The output power of the hybrid energy cell could be 

immediately utilized to split water with no external power 

supply (Fig. 12d–f). The volume of the  H2 production 

was linearly related to the splitting time at a generating 

rate of 4 × 10−4 mL s−1 (Fig. 12f). As shown in Fig. 12e, 

there were two ways to water splitting. After the point “1” 

was concatenated to the point “3,” this hybrid energy cell 

could be immediately utilized for water splitting, in which 

the solar cell is in parallel with the rectified TENG. For 

another way, after the point “1” connecting to the point 

“2,” the generated energy could be stored in the Li-ion 

battery and then utilized for electrolysis of water [164].

Intensive research has been conducted to combine PEC 

cell and TE device for improved solar  H2 production. How-

ever, all of these studies adopt the strategy of connecting PV 

cells, TE devices and water splitting electrodes together in 

series. The resulting structure is very complex and not inte-

grated. Therefore, it is a qualitative leap to study how to real-

ize the integration of photodriving components and water 

splitting components, no matter for effective use of solar 

energy or for water splitting. The research for integrated 

device will offer enormous advantages in the aspect of 

designing the overall water splitting system with integrated 

structure which are conducive to the practical applications. 

In addition, the development of an excellent hybrid device 

which can realize long-term durability of solar water split-

ting will also become a top priority in the further studies.

6  Water Splitting Driven by a Triboelectric 

Nanogenerator

As depicted in Sects. 4 and 5, water splitting driven by a 

hybrid energy cell including a PV cell or a TE cell (Fig. 12) 

paves the way for water splitting driven by other energy 

devices. Ever since the discovery of TENG by Wang’s group 

in 2012, TENG had been utilized as an external power sup-

ply for water splitting [165, 166]. In terms of energy con-

version of TENG, the transfer of contact-induced charges 

between two triboelectric materials with opposite polarity 

produced a potential difference during the separation of them 

[167–171]. Then the produced potential difference would 

prompt the flow of electrons/ions in the external circuit; 

hence, it could be utilized as power source [168, 172–178]. 

In 2014, Tang et al. [172] developed a self-powered hybrid 

system by combining a water-driven TENG with a water 

splitting cell (Fig. 13a). The circuit diagram of the split-

ting system and the structure of disk TENG are shown in 

Fig. 13b. When the rotated speed of the assembled TENG 

was 600 rpm, the formation rate of  H2 in the system reached 

to 6.25 × 10−3 mL min−1 in the 30 wt% KOH solution. This 

research provided a strategy of TENG-driven water splitting 

for  H2 generation without external power source. In 2017, 

the same group prepared a connected TENG-PEC hybrid 

cell based on a  TiO2 photoanode, utilizing a flexible TENG 

to collect environmental dynamic energy, and then charging 

the Li-ion battery to drive water splitting (Fig. 13c, d) [173]. 

In the meanwhile, this research proved that the electric field 

provided by TENG-charged battery played an important role 

in electrolysis, as well as improved the utilization efficiency 

of solar energy by boosting the photocurrent (Fig. 13e). 

Therefore, the TENG-PEC hybrid cell provided an easy and 

effective method to synergistically transform mechanical and 

solar energy into chemical energy. Coincidentally, Zhong 

et al. also developed a self-powered PEC water decomposi-

tion system that was combined with a rotatory disk-shaped 

TENG (RD-TENG), while a titanium modified hematite 

(Ti–Fe2O3) was used as the photoanode [168]. It is noted 

that different rotation speed of TENG had different effects 

on the output peak current change under illumination and in 

dark. When at a low rotation speed, the peak current under 

illumination prominently increased in comparison with that 

in the dark, while no significant variety at a high rotation 

speed, indicating the direct electrolysis of water at a high 

speed.

Besides the water-driven TENG, wind-driven TENG 

was also widely investigated [179–183]. For example, Fan 

et al. demonstrated a coaxial rotatory freestanding TENG 

(CRF-TENG) for collecting wind energy using electrospin-

ning polyvinylidene fluoride (PVDF) nanofiber membrane 

as triboelectric material (Fig. 14a–c) [12]. And on this 

basis, a fully self-powered system based on CRF-TENG 

for water splitting to produce  H2 was proposed. When the 

wind speed was 10 m s−1, the  H2 production rate reached 

6.9685 μL min−1 in 1.0 M KOH solution (Fig. 14d, e).



Nano-Micro Lett. (2020) 12:131 Page 17 of 29 131

1 3

7  Water Splitting Driven by Other Devices

Recently, water splitting driven by pyroelectric element 

attracts much attention for it provides an alternative 

approach to generate  H2 from instantaneous low-grade 

waste heat or natural temperature variations [184–188]. 

For instance, Xie and Brown et al. proposed to apply pyro-

electric effect to produce a large enough electric potential 

between two electrodes for water splitting into  H2 and  O2 

gas. The materials utilized in the pyroelectric water split-

ting system were lead zirconate titanate (PZT-5H) and 

PVDF thin film [184]. Zhang et al. proposed a pyroelec-

tric water splitting system by utilizing bulk lead PZT as 

an external charge supply that underwent hot–cold thermal 

cycles. The schematic diagram of the device was utilized 

to realize the water splitting with the externally positioned 

pyroelectric materials (Fig. 15a). As known, the change of 

ferroelectric polarization with time during thermal cycling 

was the driving force for the generation of pyroelectric 

charge during hot–cold fluctuations. Thus, the influences 

of the electrolyte concentration and heating–cooling fre-

quency on the performance of pyroelectric  H2 generation 

were studied (Fig. 15b–d). As demonstrated, the thickness 

and the area of PZT sheet played an important role in driv-

ing water splitting, where the thickness could be used to 

guarantee an enough potential to initiate water splitting 

and the area should be maximized to collect the maximal 

amount of available surface charge [185]. Therefore, future 
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work could concentrate on the formation of pyroelectric 

nanostructures to enlarge the surface area of the pyroelec-

tric element or exploring the high heat transfer rates of 

other pyroelectric materials to increase the magnitude and 

speed of temperature changes [189–192].

WGS reaction was a main way for industrial  H2 pro-

duction [193–199]. For the traditional WGS reaction, 

high temperatures and high pressures were essential, and 

 H2 contamination containing  CO2,  CH4 and residual CO 

was inevitable [200–204]. Herein, Bao et al. reported a 

novel electrochemical water–gas shift (EWGS) process for 

directly producing  H2 with the purity of over 99.99% and 

the FE of approximately 100% under mild conditions. In 

contrast to the electrocatalytic water splitting, this WGS 
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reaction afforded a promising alternative way to produce 

with very low operating voltage, which was realized by the 

rational design of electrolytic cell and electrocatalysts. In 

the WGS reaction process of electrolytic cell, CO was oxi-

dized on the anode and  H2 was produced from  H2O reduc-

tion on the cathode (Fig. 16a). Meanwhile, anion exchange 

membrane was used to separate the cathode and anode, 

maintain the balance of electrolyte ion concentration and 

prevent the cross-contamination of the anodic  (CO2) and 

cathodic  (H2) reaction products in the system. Through 

optimization of the anode structure by the hydrophobic 

PTFE layer on catalyst and design of the anode  Pt3Cu cata-

lyst, the water-free compartments at the interface of PTFE 

and catalyst to facilitate the diffusion of CO and weaken 

interaction between CO and anode catalyst surface by Cu 

were performed (Fig. 16b–d). Finally, directly producing 

 H2 with the purity of over 99.99% and the FE of approxi-

mately 100% under mild conditions by this novel electro-

lytic cell was realized [205].

8  Outlook and Future Challenges

H2 is one of the most sustainable and environmental-friendly 

energies for replacing fossil fuel energy to mitigate the 

growing serious energy crisis. In this review, a variety of 

green energy systems developed for efficient  H2 production 

are summarized. The matured two-electrode electrolysis of 

water system can realize overall water splitting with a high 

performance at a low cell voltage and long-term stabilities, 

due to the massive efforts on designing and developing of 

the bifunctional electrocatalysts with excellent electrocata-

lytic performance. And many green systems containing 

photoelectrodes, solar cells, TE devices, TENG devices, 
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pyroelectric devices, and EWGS devices can efficiently uti-

lize renewable energy for water splitting with lower or even 

no external power source. Therefore, the development of 

green energy system is significant for utilizing the renewable 

energy for water splitting.

Although many important developments have been made 

for green energy systems powered water splitting, this field 

also faces some challenges. Firstly, most non-noble metal 

bifunctional catalysts for water splitting show excellent 

performance only in the alkaline electrolytes, while rare 

low-cost catalysts for water splitting can work well in the 

acidic electrolytes. With the introduction of PEM in acidic 

electrolytes, the utilization of low-cost catalysts for water 

splitting is attractive. Therefore, the development of highly 

active non-noble metal catalysts for HER and OER in PEM 

water electrolyzer is the key thing that needs to be strength-

ened. Secondly, many developed low-cost catalysts for alka-

line water splitting are unable to meet the requirements of 

high current density and long-term stability in industrial 

applications. As a consequence, the development of high 

stability, abundant active sites and large size of electrode 

for HER and OER is crucial for industrial applications. 

Thirdly, utilizing the photovoltaic device/TE devices/pyro-

electric devices/TENG devices to convert solar energy/ther-

mal energy/wind energy/water energy to electrical energy 

for delivering water splitting is a promising way to achieve 

renewable energy driven  H2 production. However, the pho-

tovoltaic device/TE devices/pyroelectric devices/TENG 

(a)

(b)
(c) (d)

Hydrophobic

PTFE surface

Water

CO

Pt Surface

CO H2O

CO3

CH4 H2O

H2 mixture 99.99% H2

180~250 °C

1~6 MPa

25 °C

0.1 MPa

H2

CO2CO OH−

CO

PTFE
Anion exchange

membrane
WGS EWGSVS.

Catalyst

Ni wire

H2

Cathode
Anode CO

2−

Without PTFE

With PTFE

Pt@CNTs

Pt2.7Cu@CNTs

0.11

0.07

0.5

0.4

0.3

0.2

0.1

0.0

150

120

90

60

30

0

H
2
O

 a
d
s
o
rp

ti
o
n
 (

m
m

o
l 
g

−
1
)

H
2
 p

ro
d
u
c
ti
o
n
 (

m
m

o
l 
h

−
1

 g
c
a

t−
1
)

Pt/C Pt@CNTs 0.4 0.6 0.8
Potential (V versus RHE)

100

80

60

40

20

0

F
a
ra

d
ic

 e
ff
ic

ie
n
c
y
 (

%
)

Fig. 16  a Schematic illustration of the EWGS process in comparison with the traditional WGS process, b schematic diagram of solid/liquid/gas 

interfaces on the PTFE-decorated Pt surface, c adsorption of  H2O at 25 °C on Pt/C and Pt@CNTs with and without PTFE treatment detected by 

intelligent gravimetric analyzer, d the rate of  H2 production and FE on the cathode at different potentials with the  Pt2.7Cu@CNTs and Pt@CNTs 

as the anode catalysts. Reproduced with permission from Ref. [205]. Copyright 2019 Springer Nature



Nano-Micro Lett. (2020) 12:131 Page 21 of 29 131

1 3

devices in tandem with an electrolyzer will obviously 

increase the cost for  H2 production. Therefore, improving 

the compatibility of devices and the integrity of systems by 

integrated the photovoltaic device/TE devices/pyroelectric 

devices/TENG devices with an electrolyzer into a single 

system will decrease the overall cost for  H2 production in 

future practical application.

During the past few years, the different driven systems 

for water splitting have made great progress and many 

exciting achievements. With the incessant efforts that are 

being devoted to this field, water splitting driven by green 

energy systems will make a significant contribution to 

large-scale practical applications of clean energy systems 

in the near future. We hope this review will encourage 

more efforts into the development of novel green energy 

system for hydrogen energy production to realize the 

whole process with low cost, pollution-free and energy 

sustainability conversion in practical applications.
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