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Abstract
In this work we present a computational study of the nature of a Single Atom Catalyst (SAC) consisting of a  Pt1 atom 
anchored on a  C3N4 support, and of its reactivity in the water splitting semi-reactions, the Hydrogen Evolution (HER) and 
Oxygen Evolution (OER) Reactions. The work is motivated by the intense research in designing catalytic materials for water 
splitting characterized by a low amount of noble metal species, maximization of active phase, and stability of the catalyst. 
 C3N4-based SACs are promising candidates. The results indicate that the chemistry of a single atom is complex, as it can 
be anchored to the support in different ways resulting in a different stability. The reactivity of the most stable structure in 
HER and OER has been considered, finding that  Pt1@C3N4 is more reactive than metallic platinum. Furthermore, uncon-
ventional but stable intermediates can form that differ from the intermediates usually found on extended catalytic surfaces. 
The work highlights the importance of considering the complex chemistry of SACs in view of the analogies existing with 
coordination chemistry compounds.
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1 Introduction

Converting water into molecular hydrogen and oxygen via a 
water splitting process stimulated by light (photocatalysis) 
or electricity (electrocatalysis) is one major challenge in 
the general frame of the energy transition, since the process 
provides a valuable fuel (and chemical), that can be used 
without emissions of greenhouse gases.[1–4] Unfortunately, 
the thermodynamic cost of the process is rather high. The 
reaction  2H2O →  2H2 +  O2 is an uphill process with a Gibbs 
free energy of 4.92 eV, which in real experiments is even 
higher due to overpotentials.

Among the best catalysts for this reaction are noble met-
als, such as Pd and Pt. The latter shows a nearly zero over-
potential for the Hydrogen Evolution Reaction (HER)[5] and 
a value of about 0.4 eV for the Oxygen Evolution Reaction 
(OER).[6] The need to reduce the amount of noble metal 
loading or to replace it with other earth-abundant elements, 
as well as the need to improve the catalytic performances 

of existing catalysts has triggered an intense research activ-
ity aimed to design a new generation of catalytic materials.
[7–12].

In the last few years, Single-Atom Catalysts (SACs) 
gained an increasing attention in the catalysis community. 
SACs are paradigmatic of single-site dispersion of metal 
species on a support, allowing in principle to maximize the 
active surface and therefore requiring a lower metal load-
ing.[13–19] Furthermore, the activity of SACs can be sub-
stantially different from that of extended metals, opening in 
principle the possibility to optimize the catalysts through a 
rational design of the metal species and their local coordina-
tion.[20–25].

The chemical nature of SACs is inherently atomistic and 
hard to access based exclusively on experimental measure-
ment. First principles simulations can be helpful to identify 
the structural geometry of SACs, their stability and activ-
ity, and in general for understanding their behavior. In this 
respect, theoretical models can assist and complement the 
experimental design of new active materials.

Transition metal atoms can bind in many different ways 
to the support that can be an oxide, a metal, a carbon-based 
nanomaterial, a sulfide, etc. The nature of the coordina-
tion is essential, since this largely affects the stability and 
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resistance against sintering hence deactivation of the SAC.
[26] And of course, the way the metal binds to the support 
determines its charge state, electronic configuration, and its 
reactivity in water splitting. Another interesting aspect is 
that SACs can be considered analogs of coordination chem-
istry compounds,[27–31] implying that HER and OER can 
occur via the formation of very stable intermediates that 
usually do not form on extended metal electrodes.[32–34] 
The description of all these aspects is essential to provide 
a fundamental understanding of the catalysts activity and 
eventually to provide reliable predictions about the reactivity 
of new catalysts.

In this work we investigate the complex nature and the 
properties of a specific SAC consisting of a Platinum atom 
embedded in a carbon nitride matrix and of its reactivity in 
the water splitting process.

The choice of the metal is motivated by the large interest 
in creating Pt-based catalysts for water splitting using small 
amounts of precious metals.[35, 36] The selection of the 
support is justified by the growing interest in carbon nitride 
for SACs,[37–39] given the capability of this material to 
stabilize single-site metal species.  C3N4 has been used with 
promising results in a broad spectrum of catalytic reactions 
such as water splitting, but also  CO2 reduction,  N2 reduc-
tion, C-C coupling, and other relevant chemical processes.
[37, 40–42].

The paper is organized as follows. Below we report the 
computational framework. Then we discuss the structure, 
stability and electronic properties of the  Pt1@C3N4 SAC 
focusing on the presence of several possible binding sites. 
Once the catalyst has been characterized, we will test it in 
HER and OER analyzing the possibility to form complexes 
in analogy to coordination chemistry compounds. Last, we 
will discuss the role played by solvation.

It is important to mention that the aim of the work is 
not that to predict how good or bad a specific catalyst is. 
Rather, we want to discuss some key ingredients that need 
to be included in the modeling of these systems. A reliable 
prediction of the catalytic activity in fact requires to address 
the experimental complexity, and to take into account effects 
such as solven, pH, applied voltage effects, [43–45]. Also, 
highly sophisticated but computationally expensive methods 
beyond DFT may be necessary in some cases.

2  Computational Details

We performed spin polarized DFT calculations as imple-
mented in the VASP code.[46–48] The Perdew-Burke-Ernzer-
hof parametrization of the exchange and correlation functional 
was adopted [49]. The following valence electrons were treated 
explicitly: H (1s), C (2s,2p), N (2s, 2p), O (2s, 2p), Pt (6s, 
5d). They have been expanded on a set of plane waves with 

a kinetic energy cutoff of 400 eV, whereas the core electrons 
were treated with the projector augmented wave approach 
(PAW).[50, 51] Dispersion forces have been included by the 
Grimme’s D3 parameterization [52]. The threshold criteria for 
electronic and ionic loops were set to  10− 5 eV and  10− 2 eV/Å, 
respectively. It must be mentioned that the prediction of the 
electronic structure of the catalyst can be improved by adopt-
ing hybrid functionals, [53] that however are computationally 
more demanding. Since the goal of this work is not to provide 
absolute numbers of the activity but rather to investigate the 
complex chemistry of a SAC and its implications in HER and 
OER, we restrict the study to the level of PBE.

The support was modeled by considering a corrugated 
 C3N4 nanosheet characterized by heptazine pores.[54] The 
optimized lattice parameters are a = 13.846 Å, b = 6.923 Å, 
γ = 120º [40]. The sampling of the reciprocal space was done 
according to a (1 × 2) Monkhorst-Pack grid.[55].

The binding energy of the metal atom was calculated by 
taking as a reference the support and the free atom. The Gibbs 
free energy of chemical intermediates was evaluated by cal-
culating the binding energy from DFT total energies (ΔE), 
and considering thermodynamic corrections by including 
entropic (TΔS), and zero-point energy contributions (ΔEZPE), 
as reported in Eq. 1 where n the number of electron-exchange 
involved and V is the applied voltage with respect to the 
Reversible Hydrogen Electrode (RHE), according to the semi-
nal approach of Norskov and co-workers [56–58].

ΔS was calculated by taking gas-phase values from the lit-
erature and neglecting that of solid-state species. A possible 
way to improve the estimate is to evaluate the entropy of solid-
state species through the formalism of the partition function 
within the harmonic approximation, although one should keep 
in mind that such approximation can be quite crude for vibra-
tions involving hydrogen atoms. The neglection of the entropy 
contribution of solid-state species results in an error of the 
Gibbs free energies of about 0-1-0.2 eV. The zero-point energy 
contribution was estimated in a harmonic fashion, allowing the 
atoms of the chemical intermediate of interest and the metal 
atom to vibrate.[34] Table 1 reports the entropic and zero-point 
energy corrections. Relevant equations are reported in the SI.

3  Results and Discussion

3.1  Structure of  Pt1/C3N4 SAC

We started by anchoring the Pt atom on  C3N4. We performed 
a global minimum search by starting geometry optimizations 
with the Pt atom on top of several N and C atoms, putting the 
Pt atom in bridge positions, and embedding the metal atom 

(1)�G(V) = �E − T�S + �E
ZPE

− nV
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in the heptazine pore. The Pt atom can be embedded in the 
heptazine pore of the structure (Fig. 1a),[40] it can bind to 
C—N atoms and assume a bridge conformation (Fig. 1b), or 
it can go on-top of a nitrogen atom (Fig. 1c). In the first case 

the metal is coordinated to three nitrogen atoms with a bond-
distance of about 2.1 Å. When Pt assumes a bridge position, 
the coordination number decreases to two, with  dPt-N 1.95 
Å and  dPt-C 2.16 Å. In the last case,  Ntop configuration, Pt is 
coordinated to a single nitrogen atom with a calculated bond 
distance of 1.91 Å.

The global minimum structure is the pore site, while  Ntop 
and bridge have similar stabilities. The calculated bond-
distances and adsorption energies are reported in Table 2.

We observe that the metal is rather stable when is embed-
ded in the heptazine pore, as shown by the large negative 
binding energy (− 2.97 eV). The analysis of the metal mag-
netization indicates that in all cases there is no residual spin 
density on the metal. This information can be combined with 
the calculated atomic charge within the Quantum Theory of 
Atoms in Molecules (QTAIM), [59] see Table 2. Atomic 

Table 1  Entropic contribution at 298 K from international tables and calculated zero-point energies of various species. Values are in eV

eV H2 O2 H2O OH* O* OOH* OH*OH* O*OH* O2*

T�S 0.41 0.64 0.67 / / / / / /
ΔEZPE 0.27 0.13 0.56 0.31 0.12 0.43 0.69 0.39 0.12

Table 2  Calculated relevant bond distances, binding energy of the 
metal, number of unpaired electrons, and atomic charge from the 
QTAIM.

Structure dM-N / Å dM-C / Å ΔEads / eV N° unpaired qPt / |e|

Pore 2.05 / − 2.97 0 0.41
2.28
2.16

Bridge 1.95 2.16 − 1.88 0 0.00
Ntop 1.91 / − 2.11 0 0.11

Fig. 1  Local coordination of  Pt1 species anchored on  C3N4 assuming different configurations. From the left to right: a Pore, b Bridge and c  Ntop 
position
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charges are not physical observable, and the results are 
strongly dependent on the partitioning criterion of the space 
in atomic basins.[60, 61] Therefore, absolute number must 
be taken with care. However, we can make some qualitative 
observation, in particular the stronger is the metal binding, 
the higher is the metal charge.

3.2  Reactivity in HER

We now investigate the reactivity of  Pt1@C3N4 in HER. We 
consider the global minimum structure, i.e. the metal atom 
embedded in the heptazine pore. Norskov and co-workers 
demonstrated that, on metals and oxide materials, the cata-
lytic activity can be described by means of single descriptor, 
the Gibbs free energy of an adsorbed hydrogen atom.[56, 
58, 62] This is based on the assumption that this species is 
the only reaction intermediate in the semi-reaction  H+ + 
 e−  → ½  H2. According to the Sabatier principle, the ideal 
catalyst corresponds to a system where the adsorption of the 
intermediate is thermoneutral with respect to the reference 
catalyst and the  H2 molecule. Both experimental and theo-
retical evidence indicate that the catalytic activity follows 
the Trasatti’s volcano plot.[63].

SACs are analogs of coordination chemistry compounds.
[27, 28] This can have sizeable implications on their cata-
lytic activity in HER. In particular, the mechanism of the 
reaction of a single atom bound to a support can differ sub-
stantially from that of an extended metal surface. In this 
respect, we recently showed that dihydrogen and dihydride 
complexes can form on several SACs, showing that a new 
intermediate, HMH, can exists beside the classical MH one. 
When this is the case, it implies that the additional inter-
mediate needs to be included in the kinetic modeling of the 
reaction.[32].

The case of  Pt1@C3N4 shows a clear example of the 
unique reactivity of SACs and the role of hydrogen com-
plexes. The adsorption of the first hydrogen atom leads to a 
rather stable chemical intermediate (H*), ΔG = − 0.60 eV, 
and consequent large overpotential. The same process on 
metallic Pt has ΔG ~ 0.0 eV, indicating that  Pt1 embedded in 
 C3N4 binds hydrogen atoms much more strongly than metal-
lic Pt. The adsorption of a second hydrogen atom leads to a 
very stable dihydride complex, ΔG = − 1.37 eV, see Fig. 2. 
The relevant bond distances and free energies are reported 
in Table 3. The H-H distance in the HMH complex  (H2*) 
is 1.98 Å, indicating a dihydride character.[32] Notice also 
that when the second H atom is bound to PtH the complex 
changes completely its geometrical structure, with the Pt 
atom leaving the pore of  C3N4 and assuming a nearly square 
planar coordination, Fig. 2. It is interesting to observe that if 
we assume the same chemistry of the Pt SAC as for Pt metal, 
thus including in the modeling only the MH intermediate, 
one completely neglects the formation of the very stable 

HMH chemical species. This example further demonstrates 
the rich chemistry of SACs and the importance of account-
ing for the formation of intermediates that usually do not 
form on extended metal surfaces.

3.3  Reactivity in OER

The complex chemistry of SACs, and the need to include 
reaction intermediates that are usually not taken into 
account in the modeling of water splitting on metal elec-
trodes becomes even more evident looking at the OER. The 
reaction is modeled on extended systems considering the 
formation of three key reaction intermediates, OH*, O*, and 
OOH*, according to the following chemical reactions, see 
also Fig. 3:

The thermodynamic cost of this four-electron transfer 
process is 4.92 eV, therefore an ideal catalyst should bind all 
the intermediates with a free energy equal to zero assuming 
to apply a voltage V = 1.23 V vs. RHE. The calculated Gibbs 
free energy path is reported in Fig. 4. It should be mentioned 
at this point that the binding energy of  O2 molecule is sig-
nificantly overestimated with the PBE functional. We used 
as a reference for the calculation of the free energies the bare 
catalyst and the experimental energy  O2 molecule.[34, 57, 
64] More specifically, the experimental Gibbs free energy 
for the reaction  2H2O →  O2 + 4  H+ +  4e– is 4.92 eV, and 
the corresponding Gibbs free energy of  O2 at V = 1.23 eV 
is equal to ΔG = 4.92 eV –  4e– · 1.23 V = 0.00 eV, Fig. 4.

As we mentioned above, on SACs other intermediates 
can form. This is the case also of the OER, and we recently 
demonstrated that superoxo and peroxo species can form on 
SACs.[34] In general, the metal atom can increase its coordi-
nation by binding more than one oxygenate species, leading 

(2)H
2
O + ∗

→ OH
∗ + H

+ + e
−

(3)OH
∗
→ O

∗ + H
+ + e

−

(4)H
2
O + O

∗
→ OOH

∗ + H
+ + e

−

(5)OOH
∗
→ O

2
+ ∗ + H

+ + e
−

Table 3  Calculated bond distances and Gibbs free energy of H* and 
 H2* intermediates

System dM-H / Å dH-H / Å ΔG / eV

H* 1.55 / − 0.60
H2* 1.56 1.98 − 1.37

1.57
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to a series of unconventional chemical intermediates.[33, 
34] For instance, after the adsorption of OH*, a second OH* 
can bind on the same site, forming a OH*OH* complex.[33] 
The formation of this species implies a total release of two 
electrons, as well as for the O* species.

The reaction can proceed with the release of a third electron 
forming the O*OH* intermediate, a species which is com-
petitive with OOH*:

The release of another electron can give raise to the forma-
tion of a peroxo or superoxo complex,  O2*:

(6)2H
2
O + ∗

→ OH
∗
OH

∗ + 2H
+ + 2e

−

(7)2H
2
O + ∗

→ O
∗
OH

∗ + 3H
+ + 3e

−

that finally can release molecular oxygen to the gas-phase.
To show the importance of these intermediates, we 

reported the corresponding Gibbs free energy profile, 
Fig. 4, and we compared the resulting reaction path with 
that derived considering the classical OH*, O*, and OOH* 
intermediates only. We first observe that the SAC is once 
again more reactive than metallic platinum, forming stable 
intermediates. For instance, the calculated free energy of 
OH* is − 0.45 eV, to be compared with the same values 
at the same level of theory of metallic platinum, 0.97 eV 
[66]. Table 4 also reports the relevant bond distances 
and the calculated Gibbs free energies. Interestingly, 
the reactivity of  Pt1@C3N4 is high, and the unconven-
tional intermediates are substantially more stable than 
the conventional ones. This result suggests that  Pt1/C3N4 
prefers to form these unconventional complexes. Once 
again, the peculiar chemistry of SACs at variance with 
extended materials is apparent, as well as the importance 
of considering the formation of unconventional chemical 
intermediates.

These results imply that, at this level of modeling, 
 Pt1@C3N4 is not an ideal catalyst for OER, because of 
the very strong binding of some intermediates. As men-
tioned above, the purpose of this study is not to identify 
a potentially good catalyst for HER or OER, but rather to 
highlight the complex chemistry of SACs, the analogies 
with coordination chemistry, and how the behavior can 
substantially differ from that of extended metal surfaces.

(8)2H
2
O + ∗

→ O
∗

2
+ 4H

+ + 4e
−

Fig. 2  Structure of H* a and  H2* b on  Pt1/C3N4 and the resulting Gibbs free energy profile c assuming to apply a voltage V = 0 V with respect to 
RHE. The reference is the bare catalyst and the  H2 molecule

Fig. 3  Conventional OER reaction path on  Pt1/C3N4
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3.4  Role of Solvation: Microsolvation Model

One relevant aspect when dealing with the reaction of water 
splitting is the role of solvation, since the reaction occurs 
in a liquid phase and the solvent (water in this case) can 
affect the stability of the intermediates and modify reaction 
free energy profiles. The treatment of solvent effects is chal-
lenging, since one must simulate solid/liquid interfaces and 
account for dynamical effects, for instance by making use 
of ab-initio molecular dynamics simulations.[65–68] Alter-
native approaches have been proposed such as the implicit 
solvent model,[70] or models where the water molecules are 
explicitly considered. One of these latter approaches approx-
imates the solvation environment with a static framework 
of water molecules, often referred to as the water bilayer 
model, [69–71] However, also this approach is computa-
tionally rather demanding. Recently, Calle-Vallejo et al. 
proposed a much simpler approach, where the role of solva-
tion is approximated by considering only a small solvation 

shell characterized by an optimum number of water mol-
ecules. This number was established to be equal to three.[72] 
According to some estimates, the method provides results 
comparable to those of the water bilayer model.

Here we considered the role of the solvent adopting this 
latter model, also called microsolvation model. The aim is 
to find if the solvent has a sizable effect on the stability of 
the various intermediates found in the reactions studied. We 
restrict the analysis to the OER, and we simulated the OER 
intermediates in the presence of three water molecules. The 
corresponding Gibbs free energy profiles have thus been 
determined. Figures S1 and S2 show the structure of the 
intermediates in the presence of water, where the formation 
of a local solvation environment held together by hydro-
gen bonding can be observed. These energy profiles are 
calculated as the difference between the free energy of the 
intermediate in the presence of water and the same profile 
obtained in vacuum condition. Not surprisingly, solvation 
stabilizes all the species. In particular, OH*, O*, and OOH* 
intermediates undergo a nearly systematic stabilization of 
about − 0.3/− 0.4 eV. This applies also to the unconventional 
intermediates, with the only exception of the OH*OH* com-
plex where the stabilization is larger. The free energy pro-
files, Fig. 5, show that while solvation stabilize all species 
involved to a different extent, it does not alter the energetic 
ordering, which remains the same found with calculations 
done in vacuum conditions. Of course, one should be careful 
in generalizing this result to other reactions or other catalysts 
involved in OER.

One major problem when treating solvation is the pres-
ence of several local minima very close in energy.[73, 74] 
A second problem is the size of the coordination shell. It 
was recently demonstrated that one should consider a larger 
solvation shell of about 20 water molecules to properly 
reproduce a solvation environment.[75] For these reasons, 

Table 4  Calculated bond distances and Gibbs free energy of OER 
intermediates. The latter are reported assuming to apply a voltage 
V = 1.23 V vs. RHE.

System dM-O / Å dO-O/ Å ΔG / eV

OH* 0.98 / − 0.45
O* 1.77 − 1.28
OOH* 1.99 1.46 0.27
OH*OH* 1.97 / − 2.09

1.97
O*OH* 1.83 / − 1.61

1.97
O2* 1.99 1.39 − 1.94

1.99

Fig. 4  Gibbs free energy profile of OER assuming the conventional 
path (red) and the unconventional one (light blue) assuming to apply 
a voltage V = 1.23 V vs. RHE. The reference experimental energy of 
 O2 molecule is used

Fig. 5  OER conventional and unconventional Gibbs free energy pro-
files (V = 1.23 V) in vacuum conditions (green) and including solva-
tion according to the microsolvation approach (light blue)
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a quantitative estimate of the role of solvation requires more 
elaborated approaches that should also include dynamical 
aspects.

4  Conclusions

In this work we presented a computational study of the activ-
ity of a  Pt1/C3N4 Single-Atom Catalyst in HER and OER by 
means of a Density Functional Theory approach. We first 
investigated the structure of the catalyst finding a complex 
picture where the metal can bind the catalyst in different 
ways. In particular, it can be anchored in the heptazine pore, 
it can occupy a bridge position between C and N atoms, or 
it can go on-top of N atoms. The pore structure is the global 
minimum, showing a significant binding energy close to 
-3 eV. This suggests that the system could be sufficiently 
stable to stay intact during the catalytic process.

This system was used for the investigation of the reactiv-
ity in HER and OER. When studying the first process, we 
found that the Pt atom is very reactive and binds hydrogen 
atoms more strongly than a Pt metal electrode. In addition, 
besides the classical MH intermediate where a single H atom 
is bound to the Pt catalytic center, we found that the forma-
tion of a stable dihydride complex is possible, providing a 
clear example of the analogy between SACs and coordina-
tion chemistry compounds. This result points to the impor-
tance of considering the formation unconventional species 
to properly account for the chemistry of SACs.

This aspect is even more relevant when looking at the 
OER. We simulated the conventional reaction path, based 
on the formation of OH*, O*, and OOH* intermediates, but 
we also considered the formation of other species where the 
Pt atom can coordinate two oxygenate species. The analy-
sis of the free energy profile shows that the formation of 
these “unconventional” intermediates is clearly preferred 
leading to a completely different reaction mechanism. We 
also observed that the SAC forms very stable intermediates, 
implying large overpotentials. This result motivates further 
investigation on the activation of very stable molecules such 
as  CO2 and  N2.

Finally, we estimated the role of solvation by means of 
the microsolvation approach. We found that the effect of 
solvation is sizeable, since the solvent stabilizes all the spe-
cies involved in the reaction, but that this does not alter the 
mechanism found with calculations done in vacuum.

The work provides a further proof of the peculiar reactiv-
ity of SACs when compared with extended metal surfaces, 
and it shows the crucial importance to explore the capability 
of SACs to form various complexes. Only if a full analysis 
of the possible intermediates is done a kinetic model can 
be built.
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