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Abstract Water scarcity is a global risk that could arguably be mitigated by using water more efficiently,

that is, increasing water's productivity. However, the effects of water productivity on water stress have not

been empirically tested or validated across countries. Evidence from other natural resource sectors suggests

that improving productivity may, in fact, lead to “rebound” effects that exacerbate resource exploitation. An

econometric analysis is used to evaluate the relationship between water stress and productivity at the

country level. A 1.0% increase in productivity is associated with a 0.81% decrease in water stress through time

within a country, on average, and accounts for 75% of the variance of water stress. This suggests that

targeting improvements in productivity have the ability to lower water stress. Analysis of trends in stress and

productivity demonstrates that several developed countries are starting to exhibit decreasing trends in stress.

Conversely, stress is low in developing countries, but rising. Productivity is generally increasing across

all countries. Fixed effects panel regressions demonstrate that population, cultivated land, and political

stability are also related to a variance in stress within a country. Differences in gross domestic product and

precipitation explain variations in stress when looking across countries. The results of this analysis show that

as a country develops, water stress is initially likely to increase. Increasing water productivity, which

typically occurs later in a country's development pathway, is linked to decreasing stress, so water stress has

the potential to be mitigated if a “productivity transition” were to take place sooner.

1. Introduction

Water scarcity is a lack of water or the inability to meet human, economic, and environmental needs for

water (Damkjaer & Taylor, 2017). It is estimated that more than 4 billion people face blue water scarcity

at least 1 month a year, with scarcity occurring if withdrawals exceed availability (Mekonnen &

Hoekstra, 2016). This statistic is a metric of water stress, as it measures the amount of water used versus

the available amount. By capturing the stress placed on the resource, it is possible to highlight areas of water

scarcity. In the coming decades, scarcity is expected to increase in locations such as continental Europe, the

Middle East and North Africa (MENA), regions of the American Southwest, and central Asia (Wada

& Bierkens, 2014).

Policymakers have several options when attempting to assuage water scarcity. There is the option of

increasing the supply by incorporating desalinization, new reservoirs, or facilities to treat water for reuse.

In addition, policies may be adopted to reduce demand for water. This could include shifting away from

water intensive agriculture in favor of virtual water imports (Kummu et al., 2017) or implementing other

policies such as regulating water withdrawals, pricing mechanisms, and enhancing the efficiency of water

use (Dilling et al., 2019). It has been found that an increase in efficiency can lead to a rise in productivity

(Playán & Mateos, 2006). There is some confusion within the literature as to the difference between

efficiency and productivity. We attempt to disentangle this below, but essentially, efficiency is a measure

of utilized input relative to total input, while productivity is the ratio of output to total input.

One aim of policy instruments that target efficiency and productivity could be to reduce overall water usage.

Many authors imply that one might expect a negative relationship between water stress and efficiency or

productivity (Khair et al., 2019; Mekonnen & Hoekstra, 2016; Scheierling & Treguer, 2016). For example,

Khair et al. (2019) suggest “that competition for scarce resources will lead to greater efficiency.” However,

there have been few studies that empirically test this relationship. A 2017 article asserted that “improve-

ments in water productivity would reduce the requirement for additional freshwater by an estimated 16%

against a business as usual baseline” (Unver et al., 2017). However, the same article goes on to question
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this by saying, “improvements in water productivity do not necessarily mean more water for others … farm-

ers might use the water they save due to increased efficiency to expand production” (Unver et al., 2017).

Zheng et al. (2018) showed that by increasing water productivity (yield/m3), water usage went down.

There have also been studies that look at specific subsectors of water usage and how their efficiency or pro-

ductivity affects scarcity. For example, Porkka et al. (2016) studied changes in green‐blue water scarcity and

found that “by 2009 the same food supply could be produced with half of the water it took a century earlier.”

This gives evidence that productivity (in terms of agricultural yield) has increased. In Wada et al. (2016), the

authors compare three global water models and focus specifically on domestic and industrial water usage

projections. The results show an increase in domestic and industrial water usage by 2050, but the actual

estimates are sensitive to underlying assumptions regarding socioeconomic drivers such as economic growth

(Wada et al., 2016). They also find that the industrial estimates vary across models partially due to the

differences in projections of efficiency improvements (Wada et al., 2016). So it is understood in these global

models that variations in efficiency have the ability to alter future industrial water usage.

As documented in the energy literature, increasing efficiency or productivity may result in a “rebound

effect,” meaning that overall resource use does not reduce as much as anticipated (Jekins et al., 2011;

Sorrell, 2009). The exact strength of this rebound effect is debated and likely varies by case (Greening

et al., 2000). There have been several studies on the rebound effect in the water literature with a specific

focus on the relationship of withdrawals to efficiency, but none of a global nature. Pfeiffer and Lin (2014)

found an increase in groundwater withdrawal after efficiency measures were put in place in Kansas.

Freire‐González (2019) found a minor rebound effect in his analysis of Spain. Given both the potential for

a rebound effect and the possible benefits that could be achieved by increasing water efficiency and produc-

tivity, it is essential to obtain more empirical evidence of the extent to which increasing productivity leads to

lower water stress.

Many different methods have been proposed for measuring stress and productivity. They have been grouped

as the UN Sustainable Development Goals (SDG) Target 6.4: “water use and scarcity” (UN‐Water, 2019). For

this analysis, we use the equations associated with SDG Target 6.4. Before we empirically test the relation-

ship between productivity and stress, we first take a more in‐depth look and water stress and productivity.

Water stress, in terms of SDG indicator 6.4.2, is readily reported on (FAO Aquastat, 2019; World Bank

Databank, 2019). It has been mapped with country‐level mapping showing higher water stress in western

countries along with MENA and Asia (FAO, 2018a). The most recent UN summary report on SDG 6.4.2

found that water stress “increased for most countries in the world” but “that it had decreased in 44 countries

half of which are in Europe” (FAO, 2018a). This report did not map trends or analyze if trends were signifi-

cant. Little work has been done on SDG indicator 6.4.1, as it develops a new calculation for water‐use effi-

ciency. The most recent UN report only listed the most recent value for each country (FAO and

UN‐Water, 2018). A recent article by Giupponi et al. (2018) estimated water‐use efficiency using the same

equations, but only for South and South‐East Asia from 1980 to 2100. Thus, this new metric, which we

believe is a better measure of water productivity, as discussed below, has yet to be created in a time series

for all countries. Therefore, a global trend analysis of this metric has yet to be developed.

In addition to water productivity, several other variables have the potential to affect water stress. These

include socioeconomic drivers such as population growth and a country's wealth (Fant et al., 2016), as well

as physical drivers such as climate (Le Blanc & Perez, 2008; Wada & Bierkens, 2014). These variables, among

others, are included in our exploratory analysis to control for their effect and to understand their impact on

water stress. Several studies have been done in this regard. When looking across potential drivers of

increased water stress, Fant et al. (2016) find that socioeconomic drivers are more important than the climate

in the future of water scarcity. Veldkamp et al. (2015) find that hydro‐climatic variability contributes to the

variation in global water scarcity in the short term, whereas socioeconomic drivers become more important

after 6 to 10 years.

Ultimately, we aim to answer three main research questions: (1) Are there significant trends in water pro-

ductivity and water stress? (2) What is the relationship between water productivity and water stress? (3)

What are the main drivers of water stress? Significant trends in water productivity and water stress have

yet to be mapped. In this paper, we use an econometric analysis to verify whether or not a relationship

between water stress and water productivity is present. It is important to note that even though we may
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find a relationship between stress and productivity, there may be multiple mechanisms that lead to a rela-

tionship. Playán and Mateos (2006) indicate that productivity can be increased by incorporating

high‐value crops, increased yield, or reduced water application. So even though productivity is rising, it does

not necessarily mean that withdrawals are decreasing. We then continue our econometric analysis to look at

how multiple variables affect stress. This is, therefore, also novel since this combination of productivity and

drivers of stress has yet to be studied. Ultimately, this research aims to understand the water productivity

and water stress metrics better, how they interact, and what drives stress. The results of this research can

affect policymakers since they can take this evidence into account when evaluating the implementation of

policies to improve productivity based on its relationship with water stress.

Before going further, it is important to have an understanding of the concepts used in this analysis due to

their ambiguity. This includes water stress, water efficiency, water productivity, and what we consider a

driver. Next, we discuss how water stress and productivity were calculated and describe the methods used

to analyze trends and relationships. The results are then presented and discussed, followed by

concluding remarks.

2. A Review of Metrics

2.1. Water Stress

Water stress measures the amount of water withdrawn relative to the amount of water available. It essen-

tially captures the pressure on a water resource and is one way to measure water scarcity. There are at least

150 indicators of water scarcity (Damkjaer & Taylor, 2017). Several review articles specifically highlight the

evolution of these indicators (Brown & Matlock, 2011; Chenoweth, 2008; Damkjaer & Taylor, 2017). These

review articles list the Falkenmark indicator that measures the amount of renewable freshwater per capita,

as the first water scarcity indicator (Brown & Matlock, 2011; Chenoweth, 2008; Damkjaer & Taylor, 2017).

Many metrics have been created since with the literature expanding in two different directions; one toward

the human development side (Ohlsson, 2000; Sullivan, 2002) and the other toward a more physical

measurement (Chaves & Alipaz, 2007; Raskin et al., 1997). On the physical side, the “use‐to‐resource ratio”

was a precursor for the water stress metric that is widely used today (Raskin et al., 1997). This indicator looks

at the withdrawals compared to the total amount of renewable supply, and a country is highly stressed if they

are using more than 40% of their renewable water (Raskin et al., 1997). This indicator has been adapted in

several different metrics, such as the watershed sustainability index (Chaves & Alipaz, 2007).

Given the number of water scarcity metrics available, there is little consensus as to which is best. Particular

articles have chosen to focus on what is lacking from current metrics or what an ideal measurement should

include. Wada and Bierkens (2014) listed items missing from current indicators: nonrenewable water usage,

lack of environmental flows, and foresight into future water needs. Vanham et al. (2018) set out seven cri-

teria for a holistic water stress metric to measure water stress: (1) gross versus net water use; (2) environmen-

tal flows; (3) temporal scale saying the finer, the better; (4) spatial scale meaning the finer, the better;

(5) surface and groundwater use; (6) alternative water sources; and (7) water storage or reuse.

It is useful to compare the SDG indicator 6.4.2 to these criteria. This SDG indicator is titled “water stress,”

and its purpose is to “ensure sustainable withdrawal and supply of freshwater to address water scarcity”

(FAO, 2018c). This indicator meets several of the above criteria: it incorporates water usage across sectors,

environmental flow needs, and includes both renewable surface and groundwater usage. However, the

SDG indicator fails to capture nonrenewable water use, alternative water use, and water storage values.

There is also an issue with the quantity and quality of water resource data available to measure and monitor

the indicator at the national scale. Nevertheless, this indicator is widely reported in country‐level statistics

(FAO Aquastat, 2019; World Bank Databank, 2019) and will, therefore, be used in our analysis.

2.2. Water Productivity and Water Efficiency

Water productivity and water efficiency are both system performance metrics that are often used inter-

changeably. In an article focused on a review of water productivity, 55 of the 59 articles assessed also men-

tioned efficiency (Clement, 2013). Efficiency can be thought of as getting themost out of each unit of input. It

is typically a unitless quantity or represented by a percentage. Productivity can be thought of as getting the

greatest value for your work, so typically has units of output per unit input. These basic system definitions
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have not translated fully to water resources, so in the water literature, a variety of sometimes inconsistent

definitions and measurements are found. For example, Lankford (2013) deems irrigation efficiency as the

ratio of “beneficial water consumption to total water withdrawals (m3/m3 or %).” He calls productivity, a

form of “dimensional efficiency” that measures “economic output per input (USD/m3).” Lankford (2013)

distinguishes between dimensionless efficiency, which is typically referred to as “efficiency” and a dimen-

sional efficiency called “productivity.”He also classifies them both as performance metrics. Even with these

definitions, water efficiency and water productivity are still measured in many different ways.

In the biological sciences, water‐use efficiency is typically defined as gross primary production over evapo-

transpiration (Sun et al., 2016, 2018; Xue et al., 2015). Essentially, this is how well a plant and or leaf utilizes

the water available to it. Pereira et al. (2012) discuss how efficiency is typically considered the beneficial

water used versus the water applied in percentage terms. This water‐use efficiency is dimensionless. These

metrics refer to efficiency in terms of the amount of water used for a task compared to the total amount of

water supplied for the task. Van Halsema and Vincent (2012) cite a similar explanation as

Lankford (2013) but show that this is more of an engineering term for efficiency. Finally, there are cases

where water‐use efficiency is defined in terms of dollars per water used ($/m3) (Long & Pijanowski, 2017),

that is, in terms that are closer to the conventional definition of productivity.

Water productivity is referred to as crop yields per water use or dollars generated per water used (Molden

et al., 2010). The first type of productivity is typically referred to as physical or agricultural water productivity

(Molden et al., 2010). Agricultural water productivity is regarded as an indicator of farm water management,

but its usefulness is debated (Wichelns, 2014). The second type of productivity is most often referred to as

economic water productivity and refers to the amount of value in monetary terms that is gained from the

water used (Molden et al., 2010). Economic water productivity can either use total gross domestic product

(GDP), gross value added (GVA), or be broken down by sectors, that is, agriculture, industry, or services.

As a quick note, GVA measures the amount of output (USD) of a good minus the input(s) used to produce

it (World Bank Databank, 2019). GDP is the total GVA plus taxes and minus subsidies (World Bank

Databank, 2019). Currently, the total economic water productivity, in terms of GDP, is the only productivity

or efficiency metric reported on the country scale. It can be found in the World Bank's Databank, and the

data are available back to 1960. However, it becomes increasingly intermittent the further back one looks.

Select studies have mentioned that water productivity is a better metric to report on than efficiency, since

it implies an incentive for users such as farmers, with the incentive being higher profit or yields, and also that

it is easier to target and measure across scales (Unver et al., 2017). Additional authors agree, citing the

suitability of productivity rather than efficiency since efficiency is hard to account for at larger scales

(Molden, 1997; Van Halsema & Vincent, 2012).

The creation of SDG indicator 6.4.1 has further complicated matters by defining water‐use efficiency as the

amount of GVA gained from water withdrawals by sector (FAO, 2018b). The units are in (USD/m3). This,

therefore, is closer to previous definitions of economic productivity. The UN website for the indicator

explains,

“The indicator differs from water productivity as it does not consider the productivity of the water

used in a given activity as an input to production, or even better the marginal productivity of the extra

dose. Instead, this indicator will show how much the growth of the economy is linked to the exploita-

tion of natural water resources, indicating the decoupling of economic growth from water use. In

other terms, if the value added (VA) produced by the economy doubles, how much will the water

use increase?” (FAO, 2018b)

This indicator makes methodological strides in calculating the monetary value gained from water because it

is broken down by economic sectors and factors in the proportion of water used by each respective sector.

Thus, it has the potential to offset high productivity values from countries that have a large service sector

GVA but only use a small proportion of their water budget on services. This helps to give a more accurate

depiction of total economic water productivity. However, based on the discussion above, we argue that it

is an indicator of productivity rather than efficiency. Pereira et al. (2012) explicitly state that “water use effi-

ciency should only be used to measure the water performance of plants and crops, irrigated or non‐irrigated,
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to product assimilates, biomass and/or harvestable yield.” Ultimately, SDG 6.4.1 is a measure of output

(USD) over input (m3), which is the definition of productivity. Hence, the remainder of this article will refer

to SDG 6.4.1 as a measure of water productivity.

2.3. Drivers

A driver is an item that can affect the state of a system or its performance. For example, as population

increases (driver), water stress (system performance) may increase due to more demand for water, even if

per capita consumption remains the same. Drivers give us an idea of what is happening within the overall

system and indicate where it might be headed in the future. Social‐ecological system theory highlights four

“settings” that have the potential to influence an social‐ecological system, andwe adopt these four settings as

our categories of drivers: social, economic, political, and environmental (Ostrom, 2009). We selected a pri-

mary indicator for each category based on the second‐tier variables in Table 1 of Ostrom's (2009) framing:

S2, S1, S3, and ECO1. GDP was used as a proxy of economic development corresponding to the (S2) variable

and population as an indicator for demographic change corresponding to (S1). Temperature and precipita-

tion indicate changing climate patterns (ECO1). In Ostrom's (2009) framing, (S3) is categorized as political

stability. The Fragile States Index is a comprehensive indicator and a top choice to measure stability since it

measures state vulnerability across 12 metrics (The Fund for Peace, 2019). However, data reporting on this

indicator only began in 2006, and this would detrimentally affect the size of our time series. The political sta-

bility indicator from the World Bank World Governance Indicators was ultimately chosen as a proxy. The

World Governance Indicators measures governance across six separate categories, and political stability

was selected since it is closest in meaning to the (S3) variable set out in Ostrom's (2009) framing, as well

as being the main indicator out of the six that specializes in government stability (World Bank, 2019).

Finally, we add one additional driver regarding the amount of agriculture within a country, the percent of

cultivated land, since it consumes a large part of a country's water budget. As of 2012, 99 out of 159 countries

(62%) had agricultural water usage that accounted for over 50% of their total usage (Liu et al., 2016; FAO

Aquastat, 2019). The amount of cultivated land is used as a proxy for the actual amount of land irrigated,

as the later has substantial data gaps. In this instance, cultivated land includes both arable and permanent

crops, which include annual and perennial crops (FAO Aquastat, 2019).

Previous studies have already analyzed several of these relationships. It has been found that population

growth increases water stress (Chenoweth, 2008; Mekonnen & Hoekstra, 2016). Fant et al. (2016) find that

population and GDP both have the ability to increase stress. Studies show that as precipitation goes down,

stress will increase in sub‐Saharan African (Le Blanc & Perez, 2008), and higher temperatures are found

to increase water stress (Wada & Bierkens, 2014). One dimension that has not been studied as readily is

the effect of governance and political stability on water stress. However, there is ample literature that cites

the importance of good governance and strong institutions for water security (Gupta et al., 2013; Klümper

et al., 2017; Pahl‐Wostl et al., 2013). In terms of agriculture and water stress, Mancosu et al. (2015) find that

several already stressed basins are expected to have increased water stress due to increasing crop

irrigation demands.

3. Methods

The research design employed in this study was an exploratory empirical analysis done through panel

regressions and does not attempt to discern causation. Panel regressions can also be referred to as longitu-

dinal regressions and allow for the added insight of changes through time, whereas ordinary least squares

(OLS) regression does not. A panel analysis allows us to account for changes both within a country (how

stress changes over time for each country) and across countries (how stress differs by country) through time.

To the best of our knowledge, this is the first econometric study of water stress and water productivity. For

the analysis, we have a strongly balanced panel with data gaps, which are discussed below. It is also a short

panel since N (number of countries) is greater than T (time steps).

3.1. Data

Data were collected from secondary sources for all countries (Table 1). The first five variables in Table 1 were

used to calculate water stress and water productivity (see section 2.2.) and were, therefore, not included in

any of the regression models. The last six variables in Table 1 were considered drivers and used in specific
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regression models. All data listed in Table 1 have been compiled and are publicly available (Doeffinger

& Hall, 2019).

The first limiting factor in this study was the water withdrawal data. FAO Aquastat currently reports this

data in 5‐year windows, broken down into the agricultural, domestic, and municipal sectors. These 5‐year

windows start with 1958–1962 and run through to 2013–2017. The data entered for each country can be

listed for any of the years within the 5‐year window, so this creates gaps and inconsistencies within the with-

drawal data. A study in 2016 generated a new water withdrawal data set reporting data across countries on a

5‐year time step from 1973 to 2012 and then 2013 (Liu et al., 2016). The data set created by Liu et al. (2016)

was created through interpolation and inverse distance weighting to fill in gaps from the FAO Aquastat data

and has been used in this study for the calculations of water stress and water productivity. It was cross refer-

enced with the current FAO database to update any new data entries. Based on these updates, adjustments in

interpolations and extrapolations were made.

The second limiting factor for this analysis was the political stability indicator used as a proxy indicator for

the political driver category. Since this metric was not created until 1996, it limited our study to five time

steps (1997, 2002, 2007, 2012, and 2013). In the beginning, these data were only collected every 2 years. So

data for 1997 were linearly interpreted from the 1996 and 1998 data points. The data were normalized to a

0–100 scale.

A third limiting factor was the list of countries that varied across sources and many countries that contained

missing data. Countries were removed from the sample for the following reasons: no water withdrawal data

available, missing data for two or more drivers, and South Sudan was removed due to its formation in 2011.

The resulting panel data set used in this study contains values for a maximum of 179 countries, with data

gaps being present. These gaps can be better understood by looking at the summary statistics in Tables 2

through 4. Table 2 lists the descriptive statistics for the six drivers. Population and GDP are both right

skewed, so the log transform was used to normalize them.

3.2. Calculating Metrics

Water stress and water productivity were calculated values based on the first five variables of Table 1. Water

stress is currently reported in FAO Aquastat (2019) but was calculated for this study based on the water

withdrawal data from Liu et al. (2016). This creates a more complete water stress data set. In addition, a time

series of water productivity based on SDG 6.4.1 was generated for the majority of countries for the first time.

3.2.1. Water Stress

Water stress was calculated using equation 1 as provided by UN SDG 6.4.2 (FAO, 2018c).

Table 1

Main Data and Their Sources

Variable Unit Years available Source

Data for calculations

Water withdrawals
a

(total and by sector)

m
3

1973–2012 (5‐year time step), 2013 Liu et al., 2016; FAO Aquastat, 2019; USGS, 2019

Total renewable freshwater m
3

1958–2017 (5‐year time step) FAO Aquastat, 2019

Environmental flow require m
3

1958–2017 (5‐year time step) IWMI via FAO Aquastat, 2019

Proportion of irrigated land
a

ratio 1958–2017 (5‐year time step) FAO Aquastat, 2019

Gross value added by sector

(Ag, industry, and services)

constant 2010 US$ 1960–2017 World Bank Databank, 2019

Drivers

Population inhabitants 1960–2017 World Bank Databank, 2019

GDP constant 2010 US$ 1960–2017 World Bank Databank, 2019

Cultivated land % 1958–2017 (5‐year time step) FAO Aquastat, 2019

Avg yearly precipitation mm 1950–2015 CRU TS v 4.02 from Harris et al., 2014

Avg yearly temperature °C 1950–2015 CRU TS v 4.02 from Harris et al., 2014

Political stability Adjusted Scale (0–100) 1996–2018 World Bank, 2019

aHave large data gaps that were accounted for through interpolation, extrapolation, and inverse distance weighting.
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WS ¼
TWW

TRWR−Env
*100; (1)

where

WS = water stress (%)

TWW = total freshwater withdrawal (not including desalinization or reuse; m3)

TRWR = total renewable freshwater resources (m3)

Env = environmental water requirements (m3)

The total water withdrawal does not include water from desalinization or water that has been reused.

Nonrenewable abstraction is included in water withdrawals such as groundwater usage, but not in the over-

all water availability. This results in countries having over 100% water stress. The total renewable freshwater

has not changed in the FAO Aquastat database between 1958 and 2017. So the water stress metric does not

account for interannual variability in renewable freshwater. The descriptive statistics water stress can be

seen in Table 3. Water stress is skewed to the right, so it is log transformed for the analysis. Water stress also

exhibits large between and within country variance—with the largest being between countries.

3.2.2. Water Productivity

Water productivity was first calculated based on the formula set out by the UN for SDG 6.4.1 (FAO, 2018b)

and seen in equations 2–6. Water productivity “wp” is substituted for water use efficiency “we” in

equations 2–6 and thus differs in terminology from the UN calculation (FAO, 2018b).

WP ¼ Awp × PA þMwp × PM þ Swp × Ps; (2)

where

WP = water productivity

Awp = irrigated agriculture water productivity (USD/m3)

PA = proportion of water used by the agricultural sector over the total use

Mwp = mining and quarrying; manufacturing; electricity, gas steam, and air conditioning supply; and

constructions (MIMEC) water productivity (USD/m3)

PM = proportion of water used by the MIMEC sector over the total use

Swp = services water productivity (USD/m3)

Ps = proportion of water used by the service sector over the total use

Awp ¼
GVAa × 1−Crð Þ

Va

; (3)

where

GVAa = gross value added by agriculture (excluding river and marine

fisheries and forestry; USD)

Cr = proportion of agricultural GVA produced by rainfed

agriculture

Va = volume of water used by the agricultural sector (m3)

Table 2

Descriptive Statistics for Drivers

Mean Median SD Min Max No. of countries No. of obs

Population (inhabitants) 3.68E+07 8.18E+06 1.35E+08 4.38E+04 1.36E+09 179 893

GDP (Constant 2010 USD) 3.43E+11 2.61E+10 1.29E+12 1.25E+08 1.58E+13 175 867

Cultivated land (%) 17.83 13.86 14.93 0.04 64.60 179 888

Precipitation (mm) 96.62 83.19 68.11 2.8 331.94 178 890

Temperature (°C) 19.29 22.80 8.15 −4.9 29.00 178 890

Political stability (0–100) 62.52 64.33 19.90 0 100 179 892

Table 3

Descriptive Statistics for Water Stress

Water stress (%)

Mean 75.97

Median 8.48

SD 371.35

Min 0.01

Max 5,157.78

Between variance 349.09

Within variance 123.99

Number of countries 179

Number of observations 886
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Cr ¼
1

1þ Ai

1−Aið Þ*:375

� � ; (4)

where

Ai = proportion of irrigated land on the total cultivated land, in

decimals

.375 = generic default ratio between rain and irrigated yields

Mwp ¼
GVAm

Vm

; (5)

where

GVAm = gross value added by MIMEC (including energy; USD)

Vm = volume of water used by MIMEC (including energy; m3)

Swp ¼
GVAs

V s

; (6)

where

GVAs = gross value added by services (USD)

Vs = volume of water used by the service sector (m3)

While the UN (FAO, 2018b) relates specifically to agriculture (GVAa), global data typically report forestry

and fisheries in the same sector as agriculture, but the UN calculation calls for these subsectors to be

excluded from the calculation. Alternative methods were considered to disaggregate agriculture from fish-

eries and forestry, such as a global input‐output model (Lenzen et al., 2012). Past studies have listed the

World Bank as the primary data source for all GVA data (FAO and UN‐Water, 2018; Giupponi et al., 2018).

However, GVA data for the industrial and service sectors from the global input‐output model did not match

World Bank estimates. So we chose to obtain our GVA data from theWorld Bank to remain consistent in our

calculations, even though fisheries and forestry are included in the overall agriculture GVA.

There was an additional issue with calculating irrigated agricultural water productivity (Awp) since irrigation

data at the country level are intermittent. Again, additional sources were considered, including satellite data.

The World Bank data on irrigated agriculture land were evaluated since it was used in other studies (FAO

and UN‐Water, 2018; Giupponi et al., 2018). However, we chose to use data from FAO since it better aligned

with the definition laid out by FAO and UN‐Water (2018). These data were limited, so interpolation was

used, and extrapolation was also used on countries with three ormore data points. It is also important to note

that the final agricultural water productivity value includes water from desalinization and water reuse, as

these are included in sector withdrawal values from FAO Aquastat (2019).

Ultimately, three versions of water productivity were calculated, and their summary statistics can be seen in

Table 4. The first water productivity metric calculated is based on equations 2–6 and is simply referred to as

Productivity in Table 4. The second metric calculated is referred to as Productivity_no_CR, and it excluded

equation 4 and removed Cr from equation 3, thus no longer taking into account the amount of irrigated agri-

culture. Stated another way, Productivity_no_CR includes the GVA from both rainfed and irrigated agricul-

ture. We then calculated a productivity metric based on the World Bank definition of water productivity,

which is simply GDP divided by total water withdrawals. This is listed as WB_Productivity in Table 4.

These additional metrics were calculated due to limited irrigation data resulting in a low number of observa-

tions for the analysis. Moving forward, we chose to use the Productivity_no_CR value as a proxy for water

productivity. This metric gives us more accuracy than the World Bank productivity measure.

Productivity_no_CR accounts for the fraction of water used by each sector, thus lowering the potential for

Table 4

Descriptive Statistics for Water Productivity Metrics

Productivity

($/m
3
)

Productivity_no_CR

($/m
3
)

WB_Productivity

($/m
3
)

Mean 29.66 37.02 52.54

Median 11.09 14.08 17.21

SD 56.66 84.54 115.73

Min 0.14 0.14 0.19

Max 644.14 1,163.46 1,307.62

Between variance 78.29 96.32 108.84

Within variance 7.75 22.12 38.44

Number of

countries

149 166 175

Number of

observations

475 729 857
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total water productivity to be skewed by a high service sector GVA. The productivity_no_CRmetric also gave

us more observations to work with than the full productivity metric from generated from equations 2–6.

Table 4 shows that the data for all metrics are skewed right. Therefore, the log transformation was used. In

addition, Table 4 shows that productivity varies both between countries (between variance) and within each

country (within variance)—the largest variance occurring between countries.

3.3. Trend Analyses

OLS regression was used for trend detection rather than nonparametric tests such as Mann Kendall. This is

based on the characterization of our sample, since there are only five time steps and several countries oscil-

late between increasing and decreasing stress. Nonparametric tests tend to underperform in the presence of

cyclical trends or small sample sizes (Helsel & Hirsch, 2002; Hess et al., 2001). Additionally, OLS was chosen

over generalized least squares regression with AR errors, since there is no expected autocorrelation within

the water stress or water productivity metrics given that they are a short time series and lack seasonality.

A t test for the difference was not used due to it being a small time series. Using OLS, we sought to determine

the presence of a significant trend in both water stress and water productivity metrics. Equation 7 shows the

model used to estimate a trend in water stress. A similar model was used for water productivity. The results

were then mapped.

Y i ¼ β0 þ β1X1 þ εi; (7)

where

Yi is the dependent variable, that is, water stress,

β0 is the y intercept,

β1 is the slope or coefficient,

X1 is the independent variable (time), and

εi is the error term.

3.4. Panel Regressions

We first used the panel data set to explore if water productivity had any influence on water stress. The benefit

of the panel data set is that it compounds the effects of each cross section through time. Panels show how

changes in the independent variable(s) affect the dependent variable not just in one instance but also over

several instances. The panel regression models used were based on country fixed effects and time fixed

effects. The fixed effects account for the change in the dependent variable based on individual country

features, whereas the time fixed effects account for any factors that occurred during the time period that

could have similarly affected all countries (Khan et al., 2017). We tested for the need to include time fixed

effects within the models, and it was needed in some cases and not in others. To remain consistent, we chose

to include time fixed effects in all models. In addition to fixed effects models, there are also random effects

models. Random effects are typically used if estimating effects on a population from a random sample of data

(Khan et al., 2017).

Various diagnostic tests were run to determine the validity of each model. We used the Breusch‐Pagan

Lagrange multiplier to test whether there are any effects present within the country(s) or whether a simple

OLS regression would be more appropriate. Each model showed the presence of fixed effects, so fixed effects

and random effects regressions were used. However, OLS regressions were also run for all models based on

equation 7. These multiple regression types allow us to show the strength of the fixed or random effects. The

test for serial correlation, a unit root, and cross‐sectional dependence could not be run due to gaps in the

data. The test for a unit root and cross‐sectional dependence were deemed unnecessary since we are using

a short panel (N > T). All models showed the presence of heteroscedasticity. The clustered robust standard

error approach was used for all models to correct the heteroscedasticity and the potential of serial correla-

tion. It is important to note that we found no presence of multicollinearity within these models. All had a

mean variance inflator factor below 3.0.

The first regression model focused solely on the relationship between water productivity and water stress.

The model specification can be seen in equation 8, which is similar to a model used by Khan et al. (2017).
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We first ran the regression for all countries. The panel regression differs from the standard OLS model in

equation 7, by adding in the fixed effects (ai) and time fixed effects (ρt). We then looked at the outcome

based on different income levels: high, upper middle, low middle, and low. The country income levels are

from the World Bank (2018), and changes over the period are included. OLS, fixed effect, and random

effect regressions were run in all cases. A Hausman test was performed after each regression to indicate

which model was more appropriate: fixed effects or random effects, and the fixed effects model was

deemed appropriate in this case.

Y it ¼ βX it þ ai þ ρt þ εit; (8)

where

1. Yit represents the dependent variable (water stress) for the ith country during the year t,

2. β is the coefficient for the independent variable (water productivity),

3. Xit represents the independent variable (water productivity) the ith country in year t,

4. ai is the country fixed effect,

5. ρt is the time fixed effect, and

6. εit is the error term.

We then ran several regression models exploring possible relationships between water stress and its poten-

tial drivers. The first model included all potential drivers of water stress, including water productivity. The

second model we created included all potential drivers, excluding water productivity, in order to determine

the overall effect of the additional drivers. We then proceeded to create additional models based on a back-

ward stepwise elimination method. Essentially, drivers that were not statistically significant were removed

from the analysis. We ran OLS, fixed effects, and random effects regressions in all cases. Based on the

Hausman test, the fixed effects regressions were more appropriate in all cases; thus, we only report the

results of the OLS and fixed effect regressions.

4. Results and Discussion

4.1. Trends

Figure 1 shows the trends in water stress from 1997 to 2013. Trends shown are those significant to a p value

<0.05. Several developed countries show a decline in water stress while developing countries show an

increase. Most notably, countries in Eastern Europe and Australia exhibit this trend. Countries in Latin

America, Africa, the Middle East, and Southeast Asia are generally showing an increase in water stress.

The largest increases can be found in Saudi Arabia and Kuwait, where the highest declines are seen in

Belgium, Uzbekistan, Kyrgyzstan, and Thailand. A few of the trends might not be as meaningful such as

the increase in water stress in Argentina, Columbia, and Venezuela since these countries have relatively

low values of water stress.

Figure 1. Map of significant trends in water stress from 1997 to 2013.
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We find a total of 29 countries with a significant negative trend in water stress, with close to half coming

from Western and Eastern European countries. Nineteen of the countries with a decreasing trend are

categorized as high or upper‐middle‐income countries. This finding is in contrast to the 44 countries the

UN reported on with half coming from Western countries (FAO, 2018a). It is, therefore, crucial to continue

to measure this trend, to accurately determine if developed countries are indeed decreasing water usage and

when as this could inform policymaking for developing countries.

Figure 2 shows the trends in water productivity from 1997 to 2013. The figure includes total water produc-

tivity as well as agricultural, industrial, and services productivity trends. Total water productivity trends

were first mapped for a p value <0.05, with only 28 countries showing a significant trend. To highlight

the possible existence of trends in water productivity, the presented results show a p value <0.1 in all cases.

In this first study tomap global water productivity trends, we find that all categories of water productivity are

generally increasing, as seen in Figure 2. The largest increases in total water productivity can be found in

Eastern Europe, Australia, and the United States.

Figure 2. Map of significant trends in water productivity from 1997 to 2013: (a) total water productivity, (b) agricultural

water productivity, (c) industrial water productivity, and (d) services water productivity.
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However, several countries are experiencing a decline in total productivity: Belize, Cameroon, Colombia, El

Salvador, Eswatini, Guatemala, Gabon, Guinea‐Bissau, Paraguay, The Republic of the Congo, Timor‐Leste,

UAE, and Venezuela. Countries such as Columbia, Guinea‐Bissau, and Venezuela have had massive

increases in their industrial water withdrawals and show a decline in industrial productivity, as seen in

Figure 2c. Cameroon and the UAE have had large increases in their agricultural withdrawals and show a

decline in their agricultural water productivity, as seen in Figure 2b. The rest of the countries have either

significant withdrawal increases or a mix of withdrawal increase coupled with declining GVA, which could

be causing the decline in total productivity.

The water service productivity metric shows 88 countries having a statistically significant trend, with 78 coun-

tries showing an increasing trend. Industrial productivity has trends increasing for 47 out of 64 statistically

significant countries, and agricultural productivity has 45 out of 74 countries with a rising trend. As far as

trends in agriculture, Porkka et al. (2016) found that water requirements needed to generate a referenced food

yield decreased in East Asia, North America, Western Europe, and Southeast Asia. We show similar findings

in Figure 2b. However, Porkka et al. (2016) found increasing water requirements for food in Northern Africa,

Southern Africa, and the Middle East. We do find a few instances of decreasing agricultural productivity in

Africa, but we find that the majority of countries in Africa and the Middle East either show no trend or show

an increase in agricultural productivity. There are twomain reasons for the differences in these findings. First,

Porkka et al. (2016) used a longer time period of analysis 1901–2009 and would thus have a better opportunity

of discovering long‐term trends. Second, the measures of productivity are different. This study focused on

productivity in terms of ($/m3), whereas Porkka et al. (2016) focused on yield. Our measure is tied to value

added and is thus subject to commodity prices. So even though yield may decrease, a crop could have a high

and or rising commodity price, which would result in a rise in productivity in terms of ($/m3).

It may appear that the services water productivity is driving the overall total water productivity trend, but it

is important to remember the calculation for total water productivity factors in the proportion of water used

by each sector. Thus, since services water use is typically low, the overall effect of the services water

productivity is mitigated within the total productivity calculation. Ultimately, for the majority of countries

that exhibit a statistically significant trend, all productivity metrics are rising. However, some countries

are experiencing an increase in productivity even though they see an increase in withdrawals. An example

of this is China, which has seen a rise of total water productivity from $3.4/m3 to $13/m3. However, China's

water withdrawals have increased from 525 to 598 billion cubic meters. This example illustrates the

importance of investigating the reason behind a change in productivity. We see here that an increase in

productivity does not necessarily amount to a decrease in overall withdrawals.

4.2. Water Stress and Water Productivity

Results for the panel regressions of water stress and water productivity can be found in Table 5. The global

model was run for all available countries (166). Based on the Hausman test, the fixed effects model is more

appropriate here (Prob > chi2 = 0.00). Reading through the global fixed effects result, if water productivity

increases by 1%, we would expect stress to decrease by 0.81%. This example of a 1% difference is one instance

from the log‐log relationship identified in the regressions. For example, a 10% increase in productivity would

Table 5

Regression Results for Water Stress Versus Water Productivity

Global High income Upper middle Lower middle Low

OLS Fixed OLS Fixed OLS Fixed OLS Fixed OLS Fixed

Coefficient −0.23
***

−0.81
***

−0.51
**

−0.96
***

−0.68
***

−0.85
***

−0.98
***

−0.92
***

−0.96
***

−0.69
***

Robust errors
a

0.05 0.05 0.2 0.08 0.16 0.11 0.10 0.04 0.07 0.10

R2 0.03 0.75 0.04 0.81 0.12 0.82 0.32 0.94 0.46 0.71

No. of countries 166 47 60 79 64

Avg. no. of tears 4.4 3.1 2.7 2.7 3.3

Note. Each column represents a different model specification, that is, high‐income countries versus low‐income countries. The top row shows whether OLS or
fixed effects regressions were used. The dependent variable is the natural log of water stress. The independent variable is the natural log of Productivity_no_Cr.
aRobust errors for OLS regressions and clustered robust errors for fixed effects regressions. ***p < 0.01. **p < 0.05.
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result in an 8.1% decrease in stress. A 10% increase in productivity would be going from $10/m3 to $11/m3.

The coefficient remains similar across all models, as does the negative relationship. This robust relationship

is in contrast to evidence against the usefulness of productivity found in more localized case studies

(Wichelns, 2014). Lankford (2013) also suggested that there could be adverse side effects to increased pro-

ductivity, such as a rebound effect. Given that the relationship remained negative both across the OLS

and fixed effects regressions as well as globally and the four different economic levels, the results robustly

support the negative relationship for the sample and time steps used here. For a comparison of how these

results change based on the other two productivity metrics found in Table 4, please see the supporting

information.

We found a much higher variation of water stress to water productivity within a country through time com-

pared to between countries. This relationship can be seen by looking at the R2 values for the fixed effects

regression versus the OLS regressions. All models showed this relationship. The OLS shows variance

between countries or howwater stress differs by country, while the fixed effect regressions show the variance

within a country or how stress changes over time for each country. For example, the global model explains

that 75% of the variance in water stress within countries is attributed to productivity. However, only 3% of

the variation in water stress between countries can be attributed to productivity. The largest variance within

countries can be found in lower‐middle income countries at 94%. These findings show that productivity does

not explain why Zambia may have less water stress than the United Kingdom. However, if we were looking

at how water stress has changed within Zambia, we could expect that as their productivity increases, there,

in turn, would be a decrease in water stress. This validates the negative relationship and allows policymakers

to understand that by targeting productivity, they could have the potential to lessen water stress (assuming

that this effect dominates over the impact of stress on productivity).

4.3. Water Stress and Drivers

This analysis shows how drivers are related to water stress and is based on a backward stepwise removal pro-

cess across five separate models. These model results can be found in Table 6. Model (1) incorporates all dri-

vers, including water productivity. Model (1) accounts for 62% of the variance in water stress between

countries, but 96% of the variation within countries. The results show a positive statistically significant rela-

tionship between water stress and GDP and the percent of cultivated land, and a negative association with

population and productivity for the OLS version. It also shows a positive relationship with temperature

and a negative relationship with precipitation, as was expected (Le Blanc & Perez, 2008; Wada &

Bierkens, 2014). As for the fixed effects results, water stress exhibits statistically significant relationships

with productivity, GDP, and temperature.

We remove water productivity in Model (2) in order to determine the effects of the remaining drivers. Model

(2) accounts for 41% of the variance in water stress between countries. However, the variance within coun-

tries now drops to 27%, solidifying the impact water productivity has on the stress within a country. As far as

the OLS results for Model (2), the nature and significance remain the same as Model (1). For the fixed effects

results of Model (2), GDP is now no longer significant. This indicates a form of overlap between productivity

and GDP, which could be explained by the inclusion of a country's wealth in its productivity calculation.

Models (3)–(5) were generated by removing drivers that showed low statistical significance based primarily

on the fixed effects regression results. In Model (3), GDP is removed due to its lack of statistical significance

in the fixed effects regression results in Model (2). Model (3) accounts for 31% of the variation in stress

between countries and 27% of the variance in water stress within countries. Model (3) fixed effects results

show a statistically significant relationship between water stress and population, cultivated land, political

stability, temperature, and precipitation. However, precipitation is not as significant as the other three dri-

vers, so it is removed in Model (4). Once precipitation is removed from the analysis, the variance between

countries drops to only 5%, highlighting its importance. Finally, temperature is removed in Model (5), since

it is not significant in the OLS regression. When excluding temperature in Model (5), the OLS and fixed

effects R2 values change by only 1%.

There are several interesting results from these findings. There is a negative relationship between population

and water stress in the OLS regressions for both Models (1) and (2). Once GDP is removed from the analysis,

the relationship turns positive. A possible reason for this could be due to the large water stress values found
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in MENA, such as Bahrain, Israel, Kuwait, Oman, Qatar, United Arab Emirates, and also

Singapore. Each of these countries has a relatively high GDP, coupled with a lower popula-

tion. The reason why these countries could sway the relationship in the OLS regression and

not the fixed effects is due to the OLS looking at all values as a single cross section of data. So

essentially, each of these countries is represented five times within the OLS regression

model. It is important to note that the positive relationship between stress and population

that we had expected is seen across all models for the fixed effects regressions.

We find a positive and statistically significant relationship between temperature and water

stress in the OLS version of Models (1) – (3). This corroborates a finding that an “increase in

irrigation water consumption is primarily driven by rising regional temperature” (Wada &

Bierkens, 2014). However, the fixed effect regressions across all models show a negative rela-

tionship. When Models (1)–(4) were run across subregions, the only two regions to exhibit

this similar relationship were found in Eastern Europe and Latin America. Specific

Eastern European countries, such as Belarus, Bulgaria, the Czech Republic, Hungary,

Moldova, Poland, Romania, Russia, Slovakia, and Ukraine, were found to have some

decline in water stress between 1997 and 2013, coupled with a decrease in average

temperature (albeit a small one). This seems to have influenced the relationship between

temperature and water stress in the fixed effect regression models. This could potentially

be improved by adding more data points in order to generate a longer time series.

We found several statistically significant relationships between the drivers and water stress

in terms of both the variation in stress between countries but also within a country. The

main drivers in this analysis that are related to variation in water stress by country are a

combination of productivity, GDP, population, percent of cultivated land, temperature,

and precipitation. This is based on the OLS findings in Model (1) found in Table 6.

However, we found that water productivity only accounts for 3% of the variation in water

stress based on the OLS findings in the global model found in Table 5. Based on Models

(4) and (5) found in Table 6, we also find that the combination of population, cultivated

land, temperature, and political stability result in only a 4 to 5% variation in water stress.

Thus, based on our model specifications, we can reasonably say that the variation in water

stress across countries is associated with GDP and precipitation. We also see that some

developing countries are exhibiting an increase in water stress, whereas 19 high or

upper‐middle‐income countries are starting to show signs of decreasing stress (Figure 1).

Adding this to our finding of the positive association of GDP with stress across countries

might suggest the presence of a Kuznets curve. However, studies that have previously

looked at water usage and income have yet to definitively prove its existence

(Duarte et al., 2013).

Across time, within a country, precipitation does not play as large of a role, while GDP also

becomes insignificant when water productivity is removed from the model. This leaves

population as a principal driver of the variation in water stress within a country. We negate

temperature here since the variation in water stress does not change with its removal in

Model (5) found in Table 6. There is also a statistically significant relationship between

water stress and cultivated land as well as political stability in Models (3)–(5) found in

Table 6. This shows an increase in cultivated land and an increase in political stability are

related to an increase in stress. The positive relationship between stress and cultivated land

was expected (Mancosu et al., 2015). However, the positive relationship with political

stability is in contrast to our initial hypothesis. This could be explained since countries with

higher GDP may be associated with higher political stability, even though we tested for

collinearity between these two drivers.

4.4. Limitations

Conducting analysis on the scale reported in this paper has been challenging because of sev-

eral data limitations. FAO Aquastat (2019) provides time series data on country level water

resource availability, water withdrawals, environmental flow requirements, irrigation, and
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several other water resource categories. However, data are only reported on 5‐year time steps and becomes

increasingly intermittent the further back one goes in time. Currently, around half of the countries in FAO

Aquastat (2019) have data on whether water withdrawals come from surface or groundwater. However, no

data are reported on sectoral water usage in regard to whether or not water is withdrawn from surface or

groundwater sources. This would be a useful analysis as it could show whether groundwater reserves or

surface water is bearing the brunt of water stress, and how it varies by sector. Water quality is another

important factor that would be useful to factor in but was excluded due to limited data. Poor water quality

limits the amount of water available for use. Thus, water stress values may actually be higher than reported.

Quality could also affect stress and productivity based on the intended use; that is, water for irrigation is held

to a different standard than drinking water (U.S. Department of Agriculture, 2011). Hot spots of water stress

based on water quality issues could occur due to increasing salinization, such as in coastal Bangladesh (Chen

& Mueller, 2018; Vineis et al., 2011).

Because the analysis has been done using national data, subnational spatial heterogeneity has not been

analyzed, though it can be significant, particularly in large countries. For example, there are several hot

spots of water stress in the United States, such as the American Southwest, where groundwater is relied

on more heavily (Wada & Bierkens, 2014). However, the overall water stress value for the United States

may be relatively low due to areas such as the Northeast that have low water stress (Wada &

Bierkens, 2014). The same holds true for water productivity, which is likely to have spatial ambiguities such

as reliance on irrigated agriculture.

The results of some of the regressions to identify the effect of drivers raised questions about plausible

mechanisms, such as the negative relationship between water stress and population in the OLS Models

(1) and (2) found in Table 6. A negative relationship between temperature and stress was identified across

the fixed effects models in Table 6. These show the limitations of the given models and their sensitivity to

abnormal conditions, such as a decrease in temperature and an increase in stress found in some Eastern

European countries. Certain drought conditions may also have a nonlinear effect with water stress, as at a

certain point, agriculture may no longer be viable, and irrigation water needs could decline or be curtailed,

which occasionally happens in the United States (Stubbs, 2016). Thus, these models could be greatly

improved by adding more time steps, gathering new and updated information on all metrics, and incorpor-

atingmultiple scales of analysis. In addition, global watermodels such as those reviewed inWada et al. (2016)

separate their analyses into the subsectors of water usage: domestic, industrial, and agricultural. This offers a

more nuanced approach to understanding the specific drivers and mechanisms for each of these subsectors

instead of total water usage and or total water stress. Moving forward, it would be useful to conduct analyses

looking at what drives water stress in these three water usage sectors and how productivity has the ability to

assuage each sector's stress.

Finally, there are some concerns around the usefulness of the productivity indicator and its ability to

help alleviate water scarcity conditions (Lankford, 2013; Wichelns, 2014). Clement (2013) also warns

of the unintended consequences of increasing productivity, mentioning that switching to more produc-

tive crops could price poorer farmers out of the market. This same argument was made by Boelens

and Vos (2012), who warn of applying normative productivity and efficiency ideals on countries because

it might harm the poor. It is also important to note that the primary rationale behind increasing water

productivity could be for profit rather than a reduction in water usage. This is also subject to

spatial heterogeneity.

5. Conclusions

We found that water stress is increasing in developing countries such as Latin American and Africa as well

as countries in the Middle East. However, we only found evidence of 29 countries out of 179 with a signifi-

cant decreasing trend, which is in contrast to 44 countries found to show a decrease in a recent report

(FAO, 2018a). Water productivity was found to be generally increasing worldwide, with a few notable excep-

tions in South American and Africa. On the whole, we expect that as a country becomesmore developed (i.e.,

its GDP rises), it will become more productive in its use of water. We are now able to understand whether or

not a country's rising water productivity is solely related to the growing economy, or if it is due to a growing

economy and a decline in water usage. This key piece of information is essential since the panel regression
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analysis showed an overall negative relationship between water stress and water productivity. This relation-

ship is based on global data that is imperfect, but the negative relationship across both OLS and fixed effect

regression models for five different cases (global and four economic tiers) strengthens the case that a

negative relationship is present. These results give substantive evidence to implement policies targeted to

increase productivity to lower water stress and overall water scarcity.

We also find that water productivity plays a far greater role in water stress within a country than differentiat-

ing between levels of stress across countries. This research intuits that the leading cause of water stress

between countries is based more on a country's climate, in terms of precipitation, and development stage.

However, productivity plays a much higher role in the change in water stress within a country, giving

strength to the argument that productivity should be a policy target to reduce stress. In addition to produc-

tivity, we find that population, cultivated land, and political stability are related to water stress levels within

a country.

Overall this study gives evidence to the intuition that improving productivity can decrease water stress. As

more reliable data and metrics become available, additional studies should be conducted to explore the rela-

tionship and causality of not only water productivity and water stress across the three primary sectors but

also water efficiency. There is also a need to understand how and what types of efficiency techniques to

incorporate to increase productivity and lower stress and how the effects of these techniques can promote

sustainable use of water resources. An example of this could be to study the specific drivers of each

subproductivity metric, that is, agriculture, industry, and services, to target specific mechanisms to enhance

productivity. As water scarcity becomes more frequent due to climate change and increased pressure from

anthropogenic forces, it becomes even more imperative to understand how to implement these performance

metrics to obtain the greatest reduction in water scarcity.

References
Boelens, R., & Vos, J. (2012). The danger of naturalizing water policy concepts: Water productivity and efficiency discourses from field

irrigation to virtual water trade. Agriculture Water Management, 108, 16–26. https://doi.org/10.1016/j.agwat.2011.06.013

Brown, A. & Matlock, M. (2011). A review of water scarcity indices and methodologies. Fayetteville, Arkansas: The Sustainability Consortium.

Chaves, H., & Alipaz, S. (2007). An integrated indicator based on basin hydrology, environment, life and policy: The watershed sustain-

ability index. Water Resource Management, 21, 883–895. https://doi.org/10.1007/s11269‐006‐9107‐2

Chen, J., & Mueller, V. (2018). Coastal climate change, soil salinity and human migration in Bangladesh. Nature Climate Change, 8(11),

981–985. https://doi.org/10.1038/s41558‐018‐0313‐8

Chenoweth, J. (2008). A re‐assessment of indicators of national water scarcity. Water International, 33(1), 5–18. https://doi.org/10.1080/

02508060801927994

Clement, F. (2013). From water productivity to water security: A paradigm shift? In B. Lankford, et al. (Eds.), Water security: Principles,

perspectives and practices (pp. 148–165). New York, NY: Routledge.

Damkjaer, S., & Taylor, R. (2017). The measurement of water scarcity: Defining a meaningful indicator. Ambio, 46(5), 513–531. https://doi.

org/10.1007/s13280‐017‐0912‐z

Dilling, L., Daly, M. E., Kenney, D. A., Klein, R., Miller, K., Ray, A. J., et al. (2019). Drought in urban water systems: Learning lessons for

climate adaptive capacity. Climate Risk Management, 23, 32–42. https://doi.org/10.1016/j.crm.2018.11.001

Doeffinger, T. & Hall, J. (2019). Water stress, water productivity, and related drivers by country [data]. Oxford University. doi:https://doi.

org/10.5287/bodleian:bm69V2NJJ

Duarte, R., Pinilla, V., & Serrano, A. (2013). Is there an environmental Kuznets curve for water use? A panel smooth transition regression

approach. Economic Modeling, 31, 518–527. https://doi.org/10.1016/j.econmod.2012.12.010

Fant, C., Schlosser, C., Gao, X., Strzepek, K., & Reilly, J. (2016). Projections of water stress based on an ensemble of socioeconomic growth

and climate change scenarios: A case study in Asia. PLoS ONE, 11(3). https://doi.org/10.1371/journal.pone.0150633

FAO (2018a). Progress on level of water stress—Global baseline for SDG 6 Indicator 6.4.2 2018. FAO/UN‐Water, Rome.

FAO (2018b). SDG indicator 6.4.1—Water‐use efficiency. Retrieved from http://www.fao.org/sustainable‐development‐goals/indicators/

641/en/

FAO (2018c). SDG indicator 6.4.2—Water stress. Retrieved from http://www.fao.org/sustainable‐development‐goals/indicators/642/en/

FAO Aquastat (2019). [data]. Retrieved March, 27, 2019, from http://www.fao.org/nr/water/aquastat/data/query/index.html?lang=en

FAO and UN‐Water (2018). Progress on water‐use efficiency. Global baseline for SDG indicator 6.4.1: Change in water‐use efficiency over

time.

Freire‐González, J. (2019). Does water efficiency reduce water consumption? The economy‐wide water rebound effect. Water Resources

Management, 33(6), 2191–2202. https://doi.org/10.1007/s11269‐019‐02249‐0

Giupponi, C., Gain, A., & Farinosi, F. (2018). Spatial assessment of water‐use efficiency (SDG Indicator 6.4.1) for regional policy support.

Frontiers in Environmental Science, 6. https://doi.org/10.3389/fenvs.2018.00141

Greening, L., Greene, D., & Di, C. (2000). Energy efficiency and consumption—The rebound effect ‐ a survey. Energy Policy, 28, 389–401.

https://doi.org/10.1016/S0301‐4215(00)00021‐5

Gupta, J., Pahl‐Wostl, C., & Zondervan, R. (2013). ‘Glocal’water governance: A multi‐level challenge in the anthropocene. Current Opinion

in Environmental Sustainability, 5(6), 573–580. https://doi.org/10.1016/j.cosust.2013.09.003

Harris, I., Jones, P. D., Osborn, T. J., & Lister, D. H. (2014). Updated high‐resolution grids of monthly climatic observations—The CRU

TS3.10 dataset [data]. International Journal of Climatology, 34, 623–642. https://doi.org/10.1002/joc.3711

10.1029/2019WR025925Water Resources Research

DOEFFINGER AND HALL 16 of 18

Acknowledgments

Wewould like to thank Yaling Liu from

Columbia University for providing

water withdrawal data from her work

with the Pacific Northwest National

Laboratory. Metadata information, as

well as the compiled data set used in

this analysis, is publicly available

through the Oxford University

Research Archive (Doeffinger &

Hall, 20192019).

https://doi.org/10.1016/j.agwat.2011.06.013
https://doi.org/10.1007/s11269-006-9107-2
https://doi.org/10.1038/s41558-018-0313-8
https://doi.org/10.1080/02508060801927994
https://doi.org/10.1080/02508060801927994
https://doi.org/10.1007/s13280-017-0912-z
https://doi.org/10.1007/s13280-017-0912-z
https://doi.org/10.1016/j.crm.2018.11.001
https://doi.org/10.5287/bodleian:bm69V2NJJ
https://doi.org/10.5287/bodleian:bm69V2NJJ
https://doi.org/10.1016/j.econmod.2012.12.010
https://doi.org/10.1371/journal.pone.0150633
http://www.fao.org/sustainable-development-goals/indicators/641/en/
http://www.fao.org/sustainable-development-goals/indicators/641/en/
http://www.fao.org/sustainable-development-goals/indicators/642/en/
http://www.fao.org/nr/water/aquastat/data/query/index.html?lang=en
https://doi.org/10.1007/s11269-019-02249-0
https://doi.org/10.3389/fenvs.2018.00141
https://doi.org/10.1016/S0301-4215(00)00021-5
https://doi.org/10.1016/j.cosust.2013.09.003
https://doi.org/10.1002/joc.3711


Helsel, D., & Hirsch, R. (2002). Trend analysis. In Statistical methods in water resources (pp. 323–356). Reston, Virginia: USGS.

Hess, A., Iyer, H., & Malm, W. (2001). Linear trend analysis: A comparison of methods. Atmospheric Environment, 35, 5211–5222.

https://doi.org/10.1016/S1352‐2310(01)00342‐9

Jekins, J., Nordhaus, T., & Shellenberger, M. (2011). Energy and emergence: Rebound & Backfire as emergent phenomena. Breakthrough

Institute.

Khair, S., Mushtaq, S., Reardon‐Smith, K., & Ostini, J. (2019). Diverse drivers of unsustainable groundwater extraction behaviour operate in

an unregulated water scarce region. Journal of Environmental Management, 236, 340–350. https://doi.org/10.1016/j.

jenvman.2018.12.077

Khan, H., Morzuch, B., & Brown, C. (2017). Water and growth: An econometric analysis of climate and policy impacts. Water Resources

Research, 53, 5124–5136. https://doi.org/10.1002/2016WR020054

Klümper, F., Herzfeld, T., & Theesfeld, I. (2017). Can water abundance compensate for weak water governance? Determining and com-

paring dimensions of irrigation water security in Tajikistan. Water (Switzerland), 9(4). https://doi.org/10.3390/w9040286

Kummu, M., Fader, M., Gerten, D., Guillaume, J., Jalava, M., Jägermeyer, J., et al. (2017). Bringing it all together: Linking measures to

secure nations’ food supply. Current Opinion in Environmental Sustainability, 29, 98–117. https://doi.org/10.1016/j.cosust.2018.01.006

Lankford, B. (2013). Resource efficiency complexity and the commons. Oxford: Routledge.

Le Blanc, D., & Perez, R. (2008). The relationship between rainfall and human density and its implications for future water stress in

Sub‐Saharan Africa. Ecological Economics, 66(23), 319–336. https://doi.org/10.1016/j.ecolecon.2007.09.009

Lenzen, M., Kanemoto, K., Moran, D., & Geschke, A. (2012). Mappings the structure of the world economy. Environmental Science &

Technology, 46(5), 8374–8381. https://doi.org/10.1021/es300171x

Liu, Y., Hejazi, M., Kyle, P., Kim, S., Davies, E., Miralles, D., et al. (2016). Global and regional evaluation of energy for water [data].

Environmental Science and Technology, 50(17), 9736–9745. https://doi.org/10.1021/acs.est.6b01065

Long, K., & Pijanowski, B. (2017). Is there a relationship between water scarcity and water‐use efficiency in China? A national decadal

assessment across spatial scales. Land Use Policy, 69, 502–511. https://doi.org/10.1016/j.landusepol.2017.09.055

Mancosu, N., Snyder, R., Kyriakakis, G., & Spano, D. (2015). Water scarcity and future challenges for food production. Water, 7, 975–992.

https://doi.org/10.3390/w7030975

Mekonnen, M., & Hoekstra, A. (2016). Sustainability: Four billion people facing severe water scarcity. Science Advances,

2(2). https://doi.org/10.1126/sciadv.1500323

Molden, D. (1997). Accounting for water use and productivity. Columbo, Sri Lanka: International Irrigation Management Institute.

Molden, D., Oweis, T., Steduto, P., Bindraban, P., Hanjra, M., & Kijne, J. (2010). Improving agricultural water productivity: Between

optimism and caution. Agricultural Water Management, 97(4), 528–535. https://doi.org/10.1016/j.agwat.2009.03.023

Ohlsson, L. (2000). Water conflicts and social resource scarcity. Physics and Chemistry of the Earth (B), 25(3), 213–220. https://doi.org/

10.1016/S1464‐1909(00)00006‐X

Ostrom, E. (2009). A general framework for analyzing sustainability of social‐ecological systems. Science, 325(5939), 419–422. https://doi.

org/10.1126/science.1172133

Pahl‐Wostl, C., Vörösmarty, C., Bhaduri, A., Bogardi, J., Rockström, J., & Alcamo, J. (2013). Towards a sustainable water future: Shaping

the next decade of global water research. Current Opinion in Environmental Sustainability, 5(6), 708–714. https://doi.org/10.1016/j.

cosust.2013.10.012

Pereira, L., Cordery, I., & Iacovides, I. (2012). Improved indicators of water use performance and productivity for sustainable water con-

servation and saving. Agricultural Water Management, 108, 39–51. https://doi.org/10.1016/j.agwat.2011.08.022

Pfeiffer, L., & Lin, C. (2014). Does efficient irrigation technology lead to reduced groundwater extraction? Empirical evidence. Journal of

Environmental Economics and Management, 67(2), 189–208. https://doi.org/10.1016/j.jeem.2013.12.002

Playán, E., & Mateos, L. (2006). Modernization and optimization of irrigation systems to increase water productivity. Agricultural Water

Management, 80, 100–116. https://doi.org/10.1016/j.agwat.2005.07.007

Porkka, M., Gerten, D., Schaphoff, S., Siebert, S., & Kummu, M. (2016). Causes and trends in water scarcity in food production.

Environmental Research Letters, 11. https://doi.org/10.1088/1748‐9326/11/1/015001

Raskin, P., Gleick, P., Kirshen, P., Pontius, G., & Strzepek, K. (1997). Water futures: assessment of long‐range patterns and problems.

Stockholm: Stockholm Environment Institute.

Scheierling, S., & Treguer, D. (2016). Enhancing water productivity in irrigated agriculture in the face of water scarcity linking irrigated

agriculture and water scarcity. Choices, 31(3), 1–10.

Sorrell, S. (2009). Jevons' paradox revisited: The evidence for backfire from improved energy efficiency. Energy Policy, 37(4), 1456–1469.

https://doi.org/10.1016/j.enpol.2008.12.003

Stubbs, M. (2016). Irrigation in U.S. agriculture: On‐farm technologies and best management practices. Congressional research service.

Sullivan, C. (2002). Calculating a water poverty index. World Development, 30(7), 1195–1210. https://doi.org/10.1016/

S0305‐750X(02)00035‐9

Sun, S., Song, Z., Wu, X., Wang, T., Wu, Y., Du, W., et al. (2018). Spatio‐temporal variations in water‐use efficiency and its drivers in China

over the last three decades. Ecological Indicators, 94, 292–304. https://doi.org/10.1016/j.ecolind.2018.07.003

Sun, Y., Piao, S., Huang, M., Ciais, P., Zeng, Z., Cheng, L., et al. (2016). Global patterns and climate drivers of water‐use efficiency in ter-

restrial ecosystems deduced from satellite‐based datasets and carbon cycle models. Global Ecology and Biogeography, 25(3), 311–323.

https://doi.org/10.1111/geb.12411

The Fund for Peace (2019). Fragile States Index [data].

U.S.G.S. (2019). Water use in the United States [data]. Retrieved February 7, 2019, from http://waterdata.usgs.gov/nwis/

Unver, O., Bhaduri, A., & Hoogeveen, J. (2017). Water‐use efficiency and productivity improvements towards a sustainable pathway for

meeting future water demand. Water Security, 1, 21–27. https://doi.org/10.1016/j.wasec.2017.05.001

UN‐Water (2019). Target 6.4—Water use and scarcity. Retrieved September 30, 2019, from https://www.sdg6monitoring.org/indicators/

target‐64/

U.S. Department of Agriculture (2011). Assessing water quality for human consumption, agriculture, and aquatic life uses. United States

Department of Agriculture.

Van Halsema, G., & Vincent, L. (2012). Efficiency and productivity terms for water management: A matter of contextual relativism versus

general absolutism. Agricultural Water Management, 108, 9–15. https://doi.org/10.1016/j.agwat.2011.05.016

Vanham, D., Hoekstra, A., Wada, Y., Bouraoui, F., de Roo, A., Mekonnen, M., et al. (2018). Physical water scarcity metrics for monitoring

progress towards SDG target 6.4: An evaluation of indicator 6.4.2 “level of water stress”. Science of the Total Environment, 613‐614,

218–232. https://doi.org/10.1016/j.scitotenv.2017.09.056

10.1029/2019WR025925Water Resources Research

DOEFFINGER AND HALL 17 of 18

https://doi.org/10.1016/S1352-2310(01)00342-9
https://doi.org/10.1016/j.jenvman.2018.12.077
https://doi.org/10.1016/j.jenvman.2018.12.077
https://doi.org/10.1002/2016WR020054
https://doi.org/10.3390/w9040286
https://doi.org/10.1016/j.cosust.2018.01.006
https://doi.org/10.1016/j.ecolecon.2007.09.009
https://doi.org/10.1021/es300171x
https://doi.org/10.1021/acs.est.6b01065
https://doi.org/10.1016/j.landusepol.2017.09.055
https://doi.org/10.3390/w7030975
https://doi.org/10.1126/sciadv.1500323
https://doi.org/10.1016/j.agwat.2009.03.023
https://doi.org/10.1016/S1464-1909(00)00006-X
https://doi.org/10.1016/S1464-1909(00)00006-X
https://doi.org/10.1126/science.1172133
https://doi.org/10.1126/science.1172133
https://doi.org/10.1016/j.cosust.2013.10.012
https://doi.org/10.1016/j.cosust.2013.10.012
https://doi.org/10.1016/j.agwat.2011.08.022
https://doi.org/10.1016/j.jeem.2013.12.002
https://doi.org/10.1016/j.agwat.2005.07.007
https://doi.org/10.1088/1748-9326/11/1/015001
https://doi.org/10.1016/j.enpol.2008.12.003
https://doi.org/10.1016/S0305-750X(02)00035-9
https://doi.org/10.1016/S0305-750X(02)00035-9
https://doi.org/10.1016/j.ecolind.2018.07.003
https://doi.org/10.1111/geb.12411
http://waterdata.usgs.gov/nwis/
https://doi.org/10.1016/j.wasec.2017.05.001
https://www.sdg6monitoring.org/indicators/target-64/
https://www.sdg6monitoring.org/indicators/target-64/
https://doi.org/10.1016/j.agwat.2011.05.016
https://doi.org/10.1016/j.scitotenv.2017.09.056


Veldkamp, T. I. E., Wada, Y., de Moel, H., Kummu,M., Eisner, S., Aerts, J. C. J. H., &Ward, P. (2015). Changing mechanism of global water

scarcity events: Impacts of socioeconomic changes and inter‐annual hydro‐climatic variability. Global Environmental Change, 32, 18–29.

https://doi.org/10.1016/j.gloenvcha.2015.02.011

Vineis, P., Chan, Q., & Khan, A. (2011). Climate change impacts on water salinity and health. Journal of Epidemioloy and Global Health,

1(1), 5–10. https://doi.org/10.1016/j.jegh.2011.09.001

Wada, Y., & Bierkens, M. (2014). Sustainability of global water use: Past reconstruction and future projections. Environmental Research

Letters, 9(10). https://doi.org/10.1088/1748‐9326/9/10/104003

Wada, Y., Flörke, M., Hanasaki, N., Eisner, S., Fischer, G., Tramberend, S., et al. (2016). Modeling global water use for the 21st century: The

Water Futures and Solutions (WFaS) initiative and its approaches. Geoscientific Model Development, 9(1), 175–222. https://doi.org/

10.5194/gmd‐9‐175‐2016

Wichelns, D. (2014). Do estimates of water productivity enhance understanding of farm‐level water management? Water (Switzerland),

6(4), 778–795. https://doi.org/10.3390/w6040778

World Bank (2018). World Bank GNI per capita [data]. Retrieved February 4, 2019, from https://datahelpdesk.worldbank.org/knowl-

edgebase/articles/906519‐world‐bank‐country‐and‐lending‐groups

World Bank (2019). Worldwide Governance Indicators [data]. Retrieved March 28, 2019, from https://info.worldbank.org/governance/

wgi/#home

World Bank Databank (2019). World Development Indicators [data]. Retrieved February 4, 2019, from https://databank.worldbank.org/

data/

Xue, B., Guo, Q., Otto, A., Xiao, J., Tao, S., & Li, L. (2015). Global patterns, trends, and drivers of water‐use efficiency from 2000 to 2013.

Ecosphere, 6(10). https://doi.org/10.1890/ES14‐00416.1

Zheng, H., Bian, Q., Yin, Y., Ying, H., Yang, Q., & Cui, Z. (2018). Closing water productivity gaps to achieve food and water security for a

global maize supply. Scientific Reports, 8(1). https://doi.org/10.1038/s41598‐018‐32964‐4

10.1029/2019WR025925Water Resources Research

DOEFFINGER AND HALL 18 of 18

https://doi.org/10.1016/j.gloenvcha.2015.02.011
https://doi.org/10.1016/j.jegh.2011.09.001
https://doi.org/10.1088/1748-9326/9/10/104003
https://doi.org/10.5194/gmd-9-175-2016
https://doi.org/10.5194/gmd-9-175-2016
https://doi.org/10.3390/w6040778
https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups
https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups
https://info.worldbank.org/governance/wgi/#home
https://info.worldbank.org/governance/wgi/#home
https://databank.worldbank.org/data/
https://databank.worldbank.org/data/
https://doi.org/10.1890/ES14-00416.1
https://doi.org/10.1038/s41598-018-32964-4

