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WATER STRESSINDUCES THE UP-REGULATION
OF A SPECIFIC SET OF GENESIN PLANTS:
ALDEHYDE DEHYDROGENASES AS AN EXAMPLE.

S. O. Kaotchoni, D. Bartels’
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Summary. The deleterious effect of osmotic stressis often caused by the ac-
cumulation of reactive molecules e.g. aldehydes. These molecules can cause
lipid peroxidation and modifications of proteins and nucleic acids. Aldehydes
can be converted to non-toxic carboxylic acids by different aldehyde de-
hydrogenases (ALDH). ALDHs occur in all organismsimplicating their im-
portance in general biological functions. Aldehydes do not only represent
toxic molecules but they are also intermediate products in the synthesis of
osmolytes which have been shown to be protective molecules in osmotic
stress. For this reason a careful balance of aldehydes is required. Evidence
emergesthat ALDH enzymes are involved in maintaining this balance, and
the investigation of the physiological role of plant-ALDHs beginsto attract
attention. This review tries to summarize the current knowledge of stress-
regulated ALDHs in plants. It describes how ALDHSs can be used to obtain
more stress tolerant plants by overexpressing ALDH genes. ALDH genes
have been used in two ways: 1. to obtain increased accumul ation of osmolytes
e.g. glycine betaine, 2. to detoxify aldehydes.

Key words: Aldehyde dehydrogenase, Genetic engineering, Stresstolerance,
Water stress.

I ntroduction

Availability of water isone of the most important factors, which determine geograph-
ical distribution and productivity of plants (Bartels, 2001a). Water stressis perceived
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aswater deficit and can occur with different severity (Ramanjulu and Bartels, 2002).
A continuation of amild water deficit leads to drought and even desiccation (loss of
most of the protoplasmic free or bulk water). The response and adaptation of plantsto
such conditions are very complex and highly variable. Being sessile organisms, plants
have devel oped various strategies to acquire stress tolerance. These strategiesinclude
changesin metabolic processes, structural changes of membranes, expression of speci-
fic genes and production of secondary metabolites (Thomashow, 1994; Shinozaki and
Yamaguchi-Shinozaki, 2000; Ramanjulu and Bartels, 2002). To date, there have been
many reports on the molecular mechanisms involved in the response of plants to
changesin environmental conditions. Oneimportant area of molecular studies on water
stress has been the identification and characterization of the late-embryogenesis-abun-
dant (LEA) proteins (Ingram and Bartels, 1996). The hydrophilic proteins, present in
seeds during maturation and in vegetative plant tissues in response to water stress,
have been proposed to protect tissues from stress damage (Ingram and Bartels, 1996).

In extreme stress conditions, key metabolic systems such as photosynthesis are
among the most affected. The capacity of the electron transport chain in such condi-
tions exceeds the consumption of reduction equivalents delivered to the stroma side
of the thylakoid membranes (Niyogi et a., 1997). Duration of thisconstraint is harmful
to plants, because it triggers the production of reactive oxygen species (ROS), such
as hydroxyl radicals, singlet oxygen, superoxide and hydrogen peroxide (Lamb and
Dixon, 1997; Bolwell, 1999; Bartels, 2001b). Plants have evolved mechanismsto protect
themselves against the accumulation of these molecules (Pastori and Foyer, 2002).

Aldehyde dehydrogenases (ALDH, EC 1.2.1.3) represent a group of enzymes,
which may play arolein stress relevant detoxification processes. Here we will review
some aspects of plant-ALDH genes under stress conditions and their relative functions
associated with abiotic stresstolerance. Aldehydes and their intermediates are common
by-products of a number of metabolic pathways (Schauenstein et al., 1977; Bartels,
2001b). They arereferred to asagroup of highly reactive and often toxic molecules,
which can easily attack cellular nucleophiles such as nucleic acids, proteins and carbo-
hydrates (Skibbe et al., 2002). Therefore the removal of aldehydes and their intermedi-
atesisessentia for cellular survival. ALDHSs catalyze the oxidation of toxic aldehydes
to their non-toxic corresponding carboxylic acids (Perozich et al., 1999). Various dis-
tinct ALDHs have been studied and widely characterized especially in humans
(Lindahl, 1992; Yoshidaet a., 1998). Limited characterizations have been carried out
on the corresponding plant-ALDHSs. Often in tandem with alcohol dehydrogenase,
ALDHSs act in detoxifying a variety of organic compounds, toxins and pollutants.
Recently, it has been reported that various plant-ALDH transcripts accumulatein res-
ponse to environmental stresses (Barclay and McKersie, 1994; Kirch et al., 2001).
Understanding the processes by which plant-ALDH activitieslimit the cellular damage
caused by toxic aldehydes may represent a critical protective strategy for surviving
osmotic and even oxidative stressin plants.
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Aldehyde dehydrogenases (ALDH), multifunctional enzymes

It isnot the purpose of thisreview to cover the whole subject of stressinducible genes.
We focus on the up-regulation of ALDH genes under abiotic stress and how they can
be used to improve stress tolerance. ALDHSs represent a group of enzymes divided
in diverse subfamilies with different functionsincluding detoxification, intermediary
metabolism, osmotic protection, and NADPH generation (Perozich et al., 1999).
ALDH genes are present in genomes of all organisms analyzed to date, implicating
the importance of these enzymesin general biological functions. The ALDH super-
family includes the NAD(P)*-dependent enzymes that oxidize a wide spectrum of
endogenous and exogenous aldehydes (Lindahl, 1992). ALDHs are divided into clas-
ses based on their substrate specificity. Some ALDHSs, known as non-specific ALDHS,
react with awide range of substrates and oxidize a variety of aliphatic and aromatic
aldehydes. Thisgroup includesthe cytosolic and mitochondrial tetrameric class 1 and
2 ALDHsand the dimeric class 3 ALDHSs. They were reported to be associated with
carcinogenesis and genetic disordersin human (Yoshidaet al., 1998). Substrate speci-
fic ALDHSsinclude the semialdehyde dehydrogenases (SemiALDHSs) such as glutam-
ate SemiALDH, succinate SemiALDH, aspartate SemiALDH, 2-amino-adipate-6-
SemiALDH and others such as betaine ALDH (BALDH), or phenylacetaldehyde de-
hydrogenase (Perozich et al., 1999; Sophoset al., 2001). Complete genome sequences
of various species revealed 331 ALDH genes of which only eight were found in
archaea, 165 in eubacteriaand 158 in eukaryota (Sophos et al., 2001). A nomenclature
based on sequence similarity has been developed for eukaryotic ALDH genes, and
this can be accessed in www.uchsc.edu/sp/sp/al cdbase/aldhcov.html (Vasiliou et al.,
1999). Taking a human ALDH1A1 as an example for the nomenclature, ALDH
indicates the root; the first digit (1) indicates a family and the first letter (A) a sub-
family, while the final number (1) identifies an individual gene within a subfamily
as illustrated by Vasiliou et al. (1999) (see Table 1). A complete list of all ALDH
sequences known to date along with the evolutionary analysisin eukaryotesis present-
ed by Sophos et al. (2001).

Although ALDHs have been studied extensively in various organisms, the mol-
ecular and physiological involvement of these enzymesin plant stress tolerance has
to be elucidated. They are proposed to beinvolved in ROS scavenging processes (Op
Den Camp and Kuhlemeier, 1997). During environmental challenges, the generation
of ROS leads to extensive cellular damage including lipid peroxidation of cellular
membrane (Hasegawa et & ., 2000). One of the common by-products of lipid peroxida-
tion ismalondialdehyde (MDA), ahighly toxic messenger for ROS-induced damage
(Esterbauer et a., 1991). It has been proposed that a continuous detoxification of such
an aldehyde and its intermediate by relevant ALDHs would reduce the oxidative
damage. Theresurrection plant Craterostigma plantagineum and the desi ccation-tol er-
ant moss Tortula ruralis are important experimental systemsfor studying the molecu-
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lar basis of desiccation tolerance (Phillips et a., 2002). Kirch et al. (2001) reported
the molecular characterization of a novel class of plant-ALDHs: Cp-ALDH from
Craterostigma plantagineum and Ath-ALDH3 from Arabidopsis thaliana showing
70% similarity to each other. Transcripts of Cp-ALDH and Ath-ALDH3 accumulate
in response to dehydration and ABA-treatment. It was shown that the recombinant
Cp-ALDH protein oxidized nonanal, propional dehyde and acetal dehyde. Furthermore,
Chen et a. (2002b) have also characterized a stress-responsive Tortula ruralis gene
ALDH21A1 described asanovel eukaryotic aldehyde dehydrogenase protein family.
ALDH21A1 ismost closely related to members of the non-substrate specific ALDH11
(i.e. non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase, GAPDH).
Transcripts of ALDH21A1 accumulate in response to desiccation, ABA, UV, and
NaCl. The molecular study suggests that ALDH21A1 plays an important role in the
detoxification of aldehydes generated in response to desiccation and salt stress; its
expression could represent a unique stress tolerance mechanism (Chen et al ., 2002b).

Stress-inducible ALDHs

In order to detoxify the cell during stress conditions, the level of metabolic aldehydes
and their intermediates must be strictly regulated. The specific pathway(s) in which
plant-ALDHSs act in stress-tolerance is therefore an area of considerable interest.
Skibbe et a. (2002) have used computation approachesto identify amino acid residues
likely to beresponsible for functional differences between mitochondrial and cytosolic
ALDHs of Zea mays and Arabidopsis thaliana. They reported on the mitochondrial
plant-ALDHs such as ZmRF2A, ZmRF2B, OsALDHZ2a, NtALDH2A, AtALDH2b,
AtALDH2a, and the cytosolic plant-ALDHs such as OsALDH1a, ZmRF2C,
ZmRF2D, AtALDH1A. Some of these enzymes were confirmed to be related to os-
motic stresstolerance, dehydration and salt stress tolerance including members of the
ALDH10 family from sorghum (Wood et al., 1996).

Much attention has focused on betaine dehydrogenase genes, wich have been isol-
ated from various plant species. They may also have a dual role in stress response:
They areinvolved in the synthesis of the osmolyte glycine betaine (see later) and they
are responsible for the detoxification of betaine aldehyde which is toxic at elevated
levels. Velasco et al. (1994) have described aprotein family of ALDH11 (GapC-Crat)
a cytosolic GAPDH from the resurrection plant Craterostigma plantagineum. The
MRNA and enzymatic activity of GAPDHc increased in response to dehydration and
exogenous application of ABA. From a proteomic study of the Arabidopsis seed, a
cytosolic GAPDH peptide was identified to be associated to the desiccation process
of the seed, implicating the importance of these enzymes as a conserved biochemical
featurefor desiccation tolerance (Gallardo et a ., 2001). Furthermore, characterization
of cODNAs encoding the GAPDH from adesert halophyte Atriplex nummularia L. has
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been shown to play acrucial rolein osmatic stresstolerance (Niu et al., 1994). Wood
et a. (1999) have used expressed sequence tags (EST) analysisto discover genes that
control vegetative desiccation tolerance in the moss Tortula ruralis and characterized
several cDNAsat the transcriptional level including ALDH7B6 (Chen et al., 20023).
Table 1 summarizesthe different ALDH genes described from plants and their involve-
ment in environmental stress responses.

Over-expression of glycine betaine and proline

Several reports show that plants use various strategies ranging from stomatal closure,
slow leaf growth, changes in root morphology and physiology, osmoatic adjustment
to phenotypic readjustment to cope with stress conditions (Smirnoff, 1998; Pastori
and Foyer 2002). Osmotic adjustment is an effective mechanism used by plants in
such conditions. Compatible solutes known as osmoprotectants such as glycine betaine
and proline accumulate in the cytoplasm of stressed plants and mediate the osmotic
adjustment leading to turgor maintenancein plant tissues. Glycine betaineis synthesiz-
ed through oxidation of choline. Thisis atwo-step reaction where cholineis oxidized
by choline monooxygenase (CMO) to betaine aldehyde, which is converted to glycine
betaine by BADH. Therefore, up-regulation of plant-BADH genes and production of
BADH protein during stressis among the target pathwaysto acquire stresstolerance.
Two Sorghum bicolor cDNA clonesBADH1 and BADH15, putatively encoding beta-
ine aldehyde dehydrogenase, were isolated and characterized by Wood et al. (1996).
BADH1 and BADH15 mRNA were both induced under water deficit and their expres-
sion coincided with the accumulation of glycine betaine. The accumulation of this
compatible solute significantly contributed to an increased osmotic potential and al-
lowed amaximal osmotic adjustment of 0.405 MPa (Wood et al., 1996). Glycine beta-
ine biosynthesis occursin the chloroplast (Hanson et al., 1985) but BADH isencoded
by anuclear gene (Weretilnyk and Hanson, 1988), and the enzymeislocalized in the
chloroplast (Weigel et al., 1986). Rathinasabapathi et al. (1994) demonstrated that
transgenic tobacco plants expressing either spinach or sugar beet BADH produce a
chloroplastic BADH indicating the correct compartmentalization of the process. The
engineering of BADH genes has been used to produce transgenic plants which exhibit
stresstolerance. Table 2 summarizes examples of improved stress tolerance obtained
through overexpressing ALDH genes.

Many plants accumulate also free proline in response to osmatic stress (Delauney
and Verma, 1993). Proline may serve as a hydroxyl radical scavenger (Smirnoff and
Cumbes, 1989), via reducing the acidity of the cell (Venekamp et al., 1989), and it
may function as osmoprotectant at the same time (Kishor et al., 1995). The biosyn-
thetic pathway of proline has been well characterized in Escherichia coli. Glutamate
is phosphorylated to y-glutamyl phosphate by gama-glutamy! kinase (y-GK), which
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isencoded by the proB gene. Thisisthen reduced to glutamic-y-semialdehyde (GSA)
by GSA dehydrogenase (encoded by proA gene). GSA forms spontaneously delta 1-
pirroline-5-carboxylate (P5C), which is reduced to proline by delta 1-pirroline-5-car-
boxylate reductase (P5CR) encoded by the proC gene. Transgenic tobacco overexpres-
sing soybean P5CR shows improved salt tolerance (Szoke et al., 1992). The osmotic
potentials of leaf sap from transgenic plants were less decreased under water stress
conditions compared to those of control plants. Overexpression of proline also en-
hanced root biomass and flower development in transgenic plants under drought-stress
conditions (Kishor et al., 1995). Examples described here associate the plant-ALDH
protein family with strategies leading to stress tolerance (Yancey et a., 1982).

Various conventional research strategies have been used to improve plant tolerance
to water stress. Among the most used are the selection of species, which thrive well
under water deficit (Nageshawara Rao and Nigam, 2001), and screening for genotypes
for deep root systems. Plants with improved water-stress tol erance have been obtained
through these strategies. However, they suffer from a major draw back, namely the
timeit takesto breed for these lines. In contrast, plant biotechnology offers new ways
to improve plant-stress tolerance within a shorter time increasing thereby the number
of trials. One of the waysto engineer plants with improved water stresstolerance has
been the overexpression of genes leading to production of osmoprotectants. Itisnow
possible to improve plant tolerance to various abiotic stresses since cDNAs for both
enzymes of glycine betaine synthesis have been cloned from Chenopodiaceae (McCue
and Hanson, 1992; Rathinasabapathi et a., 1997). The enzyme mediating the last step
of glycine betaine synthesis (BADH) is an NAD-dependent dehydrogenase and also
known from Amaranthaceae and Gramineae (Ishitani et al., 1993; Valenzuela-Soto
and Munoz-Clares, 1994). Moreover, pairs of homozygous glycine betaine (Betl/Bet1)
lines of Zea mays L. exhibited less shoot growth inhibition under salinized conditions
in comparison to their near-isogenic glycine betaine deficient betl/betl sister lines
(Saneokaet al., 1995). Thisgrowth differences were associated with significantly high-
er leaf relative water content, higher rate of carbon assimilation and greater turgor
maintenance under salt stress. This suggeststhat asingle genetransfer conferring glyc-
ine betaine accumulation could play acrucial rolein osmotic adjustment and improves
plant tolerance to water and salt stress.

Conclusion and per spectives

Combinations of tools and approaches have offered unpredicted opportunitiesto gener-
ate transgenic plants with improved stress-tolerance. However, creativity, persever-
ance, and the use of simple organisms are still needed in order to have abreakthrough
in coping with everlasting environmental challenges. Studies carried out on Arabidop-
sis thaliana have made a major contribution to the current understanding of plant-
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ALDH functions and their crucial role in plant responses to environmental stresses
(Gallardo et a ., 2001; Skibbe et a., 2002). The identification and molecular charac-
terization of new plant-ALDH genes could have apotential to improve stresstolerance.
Biotechnology and traditional breeding can be used more effectively to produce stress
resistant plants once we understand the molecular mechanismsthat govern stresstoler-
ance.
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