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Water supply network pollution source identification

by random forest algorithm

Luka Grbčić, Ivana Lučin, Lado Kranjčević and Siniša Družeta
ABSTRACT
A novel approach for identifying the source of contamination in a water supply network based on the

random forest classifying algorithm is presented in this paper. The proposed method is tested on two

different water distribution benchmark networks with different sensor placements. For each

considered network, a considerable amount of contamination scenarios with randomly selected

contamination parameters were simulated and water quality time series of network sensors were

obtained. Pollution scenarios were defined by randomly generated pollution source location,

pollution starting time, duration of injection and the chemical intensity of the pollutant. Sensor

layout’s influence, demand uncertainty and imperfect sensor measurements were also investigated

to verify the robustness of the method. The proposed approach shows high accuracy in localizing the

potential sources of pollution, thus greatly reducing the complexity of the water supply network

contamination detection problem.

Key words | machine learning, pipe network pollution, pollution source identification, random forest

algorithm, water supply system contamination
HIGHLIGHTS

• In case of a water network contamination event, the random forest machine learning algorithm

trained on a great number of simulated contamination scenarios can provide rapid localization of

contamination sources.

• With a greater number of inputs, greater model accuracy is achieved, and the only limit on the

number of inputs are computational resources since the prediction model is prepared before a

contamination event.

• It is shown that in most cases, around 10% of network nodes have a sum of 99.99% probability

prediction, thus a considerable reduction of suspect nodes in the range of 90% can be achieved.

• Influence of different networks, sensor layouts and demand uncertainty showed that small

variation in accuracy is present; however, in case of Boolean sensor imperfections, the

prediction model significantly decreases in accuracy.
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Siniša Družeta
Faculty of Engineering,
University of Rijeka,
Vukovarska 58, 51000, Rijeka,
Croatia
E-mail: lgrbcic@riteh.hr

Luka Grbčić
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GRAPHICAL ABSTRACT
INTRODUCTION
The occurrence of contamination in water distribution net-

works presents a great concern due to potential major

effects on human health and safety. Accidental or deliberate

contamination of a water supply network with heavy metals

or water-borne pathogenic organisms presents a danger

which can cause serious health problems. A review of

public health risks of such events is given in Besner et al.

(). It is important to localize the potential source of pol-

lution in case of such an event since the outcome could be

dangerous for the human population. A number of recent

studies investigated emergency reactions needed in case of

such events (Shafiee et al. ; Strickling et al. ).

Contamination transport in water network distribution

systems is a complex phenomenon due to diffusive processes

of the contaminant and the eddying flow patterns created by

various pipe network elements such as junctions and valves.

Piazza et al. () showed with experimental analysis that

when fluid flow in the network is less turbulent, the contami-

nant diffusion is greatly enhanced and it was found that a

transport model which incorporates these effects is more

accurate than pure advection models. Grbčić et al. ()

showed that complex contamination mixing which requires

specific numerical models occurs in double-Tee junctions

which are common building blocks of water distribution

pipe networks. A solution to this problem was proposed in
om http://iwaponline.com/jh/article-pdf/22/6/1521/781928/jh0221521.pdf
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works by both Braun et al. () and Grbčić et al. (a)

where a combination of computational fluid dynamics

with statistical and machine learning methods were applied

for incomplete mixing modeling in double-Tee junctions.

An optimal placement of water quality sensors in a pipe

network is essential for finding the source and dynamics of

the water supply network pollution. Preis & Ostfeld (b)

explored an optimal sensor placement in a water supply net-

work in order to maximize the detection rate and minimize

the detection time of contamination sources using Non-

Dominated Sorted Genetic Algorithm-II (NSGA-II). In

Ung et al. (), an adjoint source identification method,

based on a backtracking algorithm, was used in conjunction

with the Monte Carlo and optimization methods (greedy

algorithm) in order to obtain the optimal sensor placement

with maximizing the contamination source identification.

The data gathered by sensors coupled with optimization

algorithms can be used to determine the most probable

source of pollution, the pollution starting time, duration

and the chemical concentration of the pollutant (Zechman

& Ranjithan ; Kranjčević et al. ). A number of

studies considered imperfect sensor measurements and

uncertainty of water demand to more accurately mimic a

realistic contamination scenario since the events are simu-

lated by hydraulic and mixing models (Xuesong et al. ;
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Yan et al. ). A detailed overview of optimization

methods and general approaches for the identification of

contamination sources is presented in Adedoja et al. ().

The approach where optimization algorithms are

employed usually requires a significant amount of time to

detect a contamination source, starting time and pollutant

concentration, especially if a real size water distribution net-

work is considered where a greater amount of suspect nodes

increase the complexity of the optimization problem and in

turn affect how fast the source is localized. This presents a

problem since reaction time in case of contamination scen-

ario is of the greatest importance.

An alternative to optimization algorithms for pollution

source identification would be data mining. Data mining

based searchof contaminationevent source relies onaprecom-

piled database of simulated contamination events results,

unlike simulation-optimization methods. Optimization and

statistical algorithms can be applied with data mining in

order to search through the precompiled database for the

most compatible contamination event parameters (source,

concentration and duration), while simulation-optimization

methods simultaneously run contamination event scenarios

in conjunction with optimization algorithms and repeatedly

evaluate a fitness function in order to detect the previously

mentioned parameters. Huang & McBean () developed

a data mining approach in conjunctionwith amaximum likeli-

hoodmethod on awater distribution networkwith five sensors

and showed that it is possible to reduce the search space of

potential pollution sources. A drawback of this method

would be that it is not a model and requires a large database

of contamination scenario results. Similarly, in Shen &

McBean (), an offline database was built by contamination

simulation mining to correctly identify the pollution sources.

A model approach based on logistic regression was pre-

sented in Liu et al. () and was coupled with an

evolutionary algorithm for contaminant source detection.

In Eliades et al. (), a parallel Monte Carlo based

model in order to detect the source of pollution was devel-

oped. In studies by De Sanctis et al. () and Perelman

& Ostfeld (), a probabilistic approach based on Bayesian

belief networks is explored for detecting the source of con-

tamination in water supply networks.

A machine learning model presents another solution

which would provide a fast prediction of possible
://iwaponline.com/jh/article-pdf/22/6/1521/781928/jh0221521.pdf
contamination sources. In Kim et al. (), an artificial

neural network (ANN) was trained on data from a small

pipe network with five sampling locations to find the

source of E. coli pollution. Even though the approach was

tested on a small network where the complexity of the pro-

blem is reduced, a success rate of 87% was achieved. In

Rutkowski & Prokopiuk (), a learning vector quantiza-

tion (LVQ) neural network was used to find a sub-zone in

a water supply network where a potential source of pol-

lution would be located. It was found that the success of

the LVQ data-driven model greatly depends on the

number of monitoring stations in the water supply network.

Applying machine learning tools and testing their efficiency

have already been researched in groundwater pollution

source identification (Singh & Datta ; Bashi-Azghadi

et al. ; Rodriguez-Galiano et al. ); however, appli-

cation in pollution source identification in water supply

networks is open to be researched. In this study, we present

a pollution source identification approach which utilizes the

random forest (RF) classifying algorithm. The RF method

belongs to the decision tree (DT) family of machine learning

algorithms, and DTs were previously used in Eliades &

Polycarpou () for the purpose of contamination source

area isolation. The RF model approach was explored in

Lee et al. () where it was applied for identifying the

source of contamination based on sensor network obser-

vations in a river system. The contamination events were

simulated, and with obtained data, an RF model was trained

in order to detect the source location. In Rodriguez-Galiano

et al. (), the RF method was applied (trained with

measured data) for predictive modeling of vulnerable areas

which are prone to groundwater nitrate pollution. Wang

et al. () also trained RF models with measured data for

the purpose of identifying multi-source heavy metal pol-

lution. Recently, Grbčić et al. (b) developed a dynamic

learning algorithm for massively parallel systems which

couples ANNs in a tournament style selection for search

space reduction and the RF model regression analysis

which ranks the potential contamination source nodes in

water supply networks.

Data for the RF training were obtained by simulating

randomly generated contamination scenarios on two bench-

mark networks in the pipe network hydraulic and water

quality analysis software EPANET2. In this work, due to
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large distances between double-Tee junctions in the pipe

networks, and due to dominantly turbulent flow in the

pipes, the EPANET2 (Rossman ) complete mixing

model is used for contaminant transport modeling. The com-

plete mixing model calculates the chemical concentration at

a pipe network junction with flow weighted chemical con-

centration at the junction inlet pipes. The calculated

chemical concentration is then equally distributed at all

junction outlet pipes. The randomized variables for each

scenario were the pollution source location (network

node), contamination start time, contamination duration

and the chemical concentration value. The sensor measure-

ments were the input data for the RF classifier, while the

output was the location of the pollution source. For both

benchmark networks, different sensor placements were

considered to investigate the source identification ability of

the proposed method on different network configurations.

Additionally, the RF model was trained with input data

that include demand uncertainty to investigate the robust-

ness of the method in a more realistic case. Imperfect

sensor measurements were also separately considered to

assess the accuracy of the proposed method.
Table 1 | Net3 network RF model results

Model accuracy

Sensors placement
Number of
model inputs Top 3 Top 5 Top 10

117, 143, 181, 213 3,422,803 91.70% 96.80% 99.60%

115, 119, 187, 209 2,687,695 91.00% 96.40% 99.0%

117, 181, 213 3,043,055 90.80% 96.20% 99.50%

117, 143, 213 106,188 88.00% 94.20% 98.50%

115, 187, 209 2,686,223 90.90% 95.70% 99.00%

115, 119, 209 2,681,045 90.50% 95.40% 98.90%

117, 213 2,726,280 86.40% 93.10% 98.00%

119, 209 2,666,258 90.20% 95.10% 98.80%
MATERIALS AND METHODS

Data generation

Two benchmark networks, Net3 EPANET2 example and

Richmond network (Van Zyl ), are selected for testing

the RF classifier for the purpose of water supply pollution

source identification. Contamination scenarios are simu-

lated in EPANET2 with a single contamination injection

node. The flow paced method was used for contaminant

injection, and the contaminant is modeled as non-reacting

constituent. In order to train the RF model and achieve

significant accuracy, a great number of contamination

scenarios are simulated to cover all marginal possibilities.

The benchmark network Net3 consists of 92 nodes.

Simulation time is set as 24 h with a hydraulic time step of

1 h, quality time step 5 min and pattern time step 10 min.

Two different water quality sensor layouts in the Net3

benchmark network are considered. The first sensor layout

was taken from the study by Preis & Ostfeld () (sensors
om http://iwaponline.com/jh/article-pdf/22/6/1521/781928/jh0221521.pdf
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positioned in nodes 117, 143, 181 and 213), while the other

from Zechman & Ranjithan () (sensors at nodes 115,

119, 187 and 209). For both layouts, the investigation of

different number and sensor placements was conducted. A

summary of all investigated combinations is given in

Table 1. The Net3 network layout with both sensor place-

ments can be seen in Figure 1.

The Richmond network with 865 nodes is obtained from

the Centre for Water Systems (CWS) at the University of

Exeter CWS (CWS, U.o.E.). Simulation time is 72 h with a

hydraulic time step of 1 h, quality time step 5 min and pattern

time step 1 h. Two different sensor layouts with several differ-

ent combinations are considered. The first considered sensor

layout was taken from Preis & Ostfeld () with five sensors

which are positioned in nodes 123, 219, 305, 393 and 589.

The second sensor layout was taken from Preis & Ostfeld

(a) (sensors at nodes 93, 352, 428, 600 and 672). A sum-

mary of all investigated combinations of both sensor layouts

can be found in Table 7. The Richmond network layout

with a marked detail can be seen in Figure 2(a), and both

sensor placements can be seen in Figure 2(b).

For each considered network, contamination scenarios

are simulated with randomly chosen pollution source

location, contamination start time, contamination duration

and chemical concentration value. Pollution source location

is randomly selected from the set of all network nodes, con-

tamination start time is randomly defined from 0 to 24 h for

both Net3 and Richmond network, and contamination dur-

ation is randomly chosen from 10 min to 24 h for Net3 and



Figure 1 | Net3 network layout with sensor positioning. Net3 Layout 1 (layout by Preis &

Ostfeld (2007)) and Net3 Layout 2 (layout by Zechman & Ranjithan (2009)).
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10 min to 24 h for the Richmond network. The possible

chemical concentration value of the contaminant is chosen

from the range 0–1,000 mg/L for both networks and is kept

constant during the contamination duration time.

For the Net3 benchmark network, the sensors recorded

the quality of water every hour for a total of 24 h (25

measurements per sensor) which equals a total of 100

measurements per simulation for four sensors in the
Figure 2 | Richmond network layout with Richmond Layout 1 (layout by Preis and Ostfeld (2007

marked detail. (b) Richmond network detail with sensor positioning.

://iwaponline.com/jh/article-pdf/22/6/1521/781928/jh0221521.pdf
network. For the Richmond network simulation, the sensors

recorded the quality every hour for 72 h (a total of 73

measurements per sensor) even though the contamination

was only set to start in the period of the first 24 h of the

pollution scenario, resulting in 365 measurements per

simulation for five sensors in the network.
RF classifier

The RF algorithm was introduced by Breiman (), and it

is an ensemble learning algorithm that uses multiple

decision trees for training which are constructed with

random subsets of features. Bootstrap aggregation or bag-

ging technique was used for the RF model training

procedure which greatly enhances the de-correlation of

each randomly constructed DT.

A great feature of the RF algorithm is that with the intro-

duced randomness, it manages to create decision trees with

low variance, and hence, the possibility of model overfitting

is reduced. Generally, the most important RF algorithm par-

ameter is the number of trees used for model training. The

bigger the number of trees is, a more robust prediction is

achieved. Each DT constructed with random features
)) and Richmond Layout 2 (layout by Preis and Ostfeld (2008a)). (a) Richmond network with



Figure 3 | Flowchart of the RF model creation.
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generates a prediction, and the final outcome or result of the

RF model is the prediction that was achieved by the majority

of the random decision trees. The RF implementation in the

Python ML library Scikit-learn 0.23 (Pedregosa et al. )

was used, and it should be noted that in that implemen-

tation, the probabilistic prediction of each classifier (DT) is

averaged instead of using a vote counting approach where

each class is counted to form a final prediction.

For both networks, the number of estimators (trees) was

set to 250, the minimum number of samples required to split

an internal node was set to 20, and all other parameters

were set to default. The maximum number of random fea-

tures used for constructing a single DT was set to be as the

square root of the total number of features or trees in the

forest. All RF model parameters were defined with the grid

search hyperparameter optimization. The selected number

of trees was the most influential parameter in accurate pre-

diction of the class. A bigger number of trees enhanced

the success rate of the model, but after the tuned value of

250 trees, the success rate remained unchanged.

The input data for the RF classifier were the results from

a large number of Monte Carlo simulations, where sensor

water quality readings through a period of time described

in the previous subsection are input features. For both net-

works, contamination scenarios where the sensors did not

detect any pollution (0 mg/L of contaminant through the

measurement period) were removed. The number of input

features varied due to the number of sensors considered

for the prediction model, where for the Net3 network it

was 25 features per sensor and for the Richmond network

73 features per sensor.
om http://iwaponline.com/jh/article-pdf/22/6/1521/781928/jh0221521.pdf
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In Figure 3, the steps of creating the RF model can be

seen. After the randomized simulation parameters with

pollution source node Ni ∈ {N1, ::, Nn} (Nn ¼ 92 for Net3

and 865 for Richmond), contamination duration

di ∈ {0, 1, . . . , 24}, contamination start time

Ii ∈ {0, 1, . . . , 24} and a continuous contaminant chemical

concentration Ci ∈ {0, . . . , 1000} were set, an EPANET2

network water quality and hydraulic analysis simulation

was done. The sensor measurements Si ∈ {S1, ::, Sn} through

time were recorded. From all of the obtained measured data,

70% was used for the RF model training and 30% for model

testing, both testing and training data were randomly

selected. The output of the RF model is the prediction

where every network node has been assigned a probability

of being the true contamination source node.

Demand uncertainties

To examine the proposed approach for a more realistic

water supply network case, network nodes demand uncer-

tainties have been taken into account. Node demand

uncertainties have been introduced to this whole procedure

through generating new machine learning (ML) model train-

ing input and output data for both studied networks.

In Figure 4, the flowchart of the algorithm for adding

demand uncertainties into the Monte Carlo simulation pro-

cess can be seen. For each network node, a random Boolean

value (True, False) is generated. If the network node has

been assigned a False Boolean value, the base demand of

the original network for that certain node remains

unchanged (original demand is used). If a True Boolean



Figure 4 | Flowchart of contamination event hydraulic demand uncertainty generation.
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value has been generated for a node, then for that node, a

random number Ri ∈ {�r, ::, r} is generated and a new

base demand Binew is calculated based on the term

Binew ¼ Bi � (Ri þ 1), where Bi is the original demand value.

It can be observed that for the nodes with greater base

demand, a greater demand variation will be achieved. This

whole procedure was incorporated into the process of gener-

ating an EPANET input file along with random simulation

parameters such as contamination source node, contami-

nation duration and start time (as seen in Figure 3).

RF model accuracy was tested on for both networks

with r ¼ 0:05 which entails a possible maximum deviation

of ±5% from the base demand. Additionally, a higher devi-

ation value of r ¼ 0:2 was investigated. For both values of

r and networks, a total of 3 million input was generated

for model training and testing.

Imperfect sensor measurements

A perfect sensor measurement of a chemical contaminant in

a case of a water supply contamination event would mean

acquiring an accurate value of concentration through a cer-

tain time interval. Boolean and fuzzy sensors which make

imperfect measurements (Preis et al. ) are also con-

sidered in this study.

Boolean sensors set a value of 0 if there is no detected

contamination or they set a value of 1 in case there is a regis-

tered contamination through a time interval. This entails

that the input features (sensor measurement data) for the

RF model would be a set of zeroes and ones.

Fuzzy sensors detect either low, medium or high con-

taminant concentration. Since the maximum set value of
://iwaponline.com/jh/article-pdf/22/6/1521/781928/jh0221521.pdf
chemical concentration was set to 1,000 mg/L, a low con-

tamination was considered if the measured chemical

concentration value Ci was 0< Ci < 100mg/L, medium

contamination was 100 � Ci < 500mg/L and high if

Ci � 500mg/L. RF model input features for the fuzzy sen-

sors were defined as 0 if no contaminant was detected, 1

for low measurements, 2 and 3 for medium and high

measurements.
RESULTS AND DISCUSSION

Net3 network

The pollution source detection problem is a multimodal pro-

blem, where multiple different contamination parameters

can give similar sensor measurements. Since it is critical

to localize the source of pollution, it is necessary to assure

that there is no possibility that a true contamination

source node is eliminated from further examination. Due

to this, multiple suspect contamination source nodes, with

the greatest probabilities to be the true source nodes, are

considered. For the Net3 network model with the most sen-

sors (layout by Preis & Ostfeld ()), 73 out of 92 nodes

were potential contamination sources (all tanks, rivers and

lakes were included as sources) after scenarios where con-

tamination was not detected were removed, which means

that the RF classifier had to predict 1 of 73 classes. It is

observed that for layouts with a smaller number of sensors,

a smaller number of classes (potential contamination

sources) remain after removing scenarios in which contami-

nation was not detected. This is consistent with the fact that
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a greater number of sensors usually provide a greater detec-

tion rate of contamination events.

An analysis of the influence of a number of inputs on

model accuracy is conducted for the Net3 network with

four sensors (sensor layout by Preis & Ostfeld ()). In

Figure 5, the relationship between the number of RF

model inputs and the number of top suspect nodes needed

for achieving a success rate or RF model accuracy of 99%

is shown. For 10,000 simulation results or RF model

inputs, 99% accuracy of true contamination source detec-

tion is achieved with the top 25 nodes which means that

there is a 99% chance that one of the 25 suspect nodes is

the true contamination source. Naturally, when the

number of data inputs is increased, the accuracy of 99% is

achieved with a smaller number of top suspect nodes.

With 3 million inputs, a 99% accuracy is achieved with a

top 8 set of suspect nodes, and for further model studies,

this was a targeted number of inputs.

Model accuracy was assessed from 30% of the testing

data, and the model prediction was deemed successful if

the true contamination source node was in the top (3, 5

and 10) of the predicted contamination source nodes.

To ensure that the RF training was stable and that the

success rate does not greatly deviate after each trained

model prediction run, the Net3 network model (with a
Figure 5 | Net3 network (sensor layout by Preis and Ostfeld (2007)) number of RF model inpu

om http://iwaponline.com/jh/article-pdf/22/6/1521/781928/jh0221521.pdf
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randomly selected 70% testing and 30% training input

data split) was repeatedly run 50 times and the success

rate standard deviation for top 5 nodes prediction

was 0.003

In Table 1, the Net3 network model results for differ-

ent sensor layouts can be observed. The number of sensors

and their placement are varied, and consequently, the

number of model inputs is also different for each sensor

layout. The total number of Monte Carlo obtained input

and output data was 4.9 million for both sensor network

layouts presented in Figure 1. The number of model

inputs shown in Table 1 are the ones for which the

placed sensors successfully detected the transported con-

taminant. With a reduced sensor number in the

network, there is a smaller contamination detection rate,

thus model inputs decrease since there is a greater

number of scenarios that do not detect contamination

and are removed. Naturally, it can be seen that with

more data inputs, the model accuracy is higher with the

true contamination source node being in the top 10 sus-

pect nodes for 99.6% of the testing data for the four

sensor layouts of Net3, while the two sensor layouts

achieved the top 10 for 98% of the testing data. It can

also be observed that the data obtained by the sensor

layout (and all combinations) proposed by Zechman &
ts needed for 99% accuracy.



Figure 6 | Net3 network predicted suspect source nodes probabilities with the true

source marked.
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Ranjithan () are similar in accuracy as the layout by

Preis & Ostfeld () even though the number of model

inputs is smaller for the latter. Table 2 shows the

number of top suspect nodes that contain the true con-

tamination source with a certainty of 99% for each

sensor placement. It can be observed that regardless of

the sensor layout, the accuracy of the model is similar

for all considered cases. To achieve 99% probability that

the true source node is recognized, it is necessary to

include top 8 suspect nodes for layout with 4 sensors

(Preis & Ostfeld ) and top 14 suspect nodes for

layout with 2 sensors. It is a reduction of 92 and 86% of

the total number of nodes, respectively. This fact shows
Table 2 | Net3 network RF model with the indicated number of potential source nodes for

99% accuracy and the total number of remaining suspect nodes

Sensors placement

Suspect nodes

Top nodes for 99% accuracy Total number

117, 143, 181, 213 8 73

115, 119, 187, 209 9 57

117, 181, 213 8 64

117, 143, 213 12 67

115, 187, 209 10 57

115, 119, 209 11 57

117, 213 14 58

119, 209 11 57

://iwaponline.com/jh/article-pdf/22/6/1521/781928/jh0221521.pdf
that a considerable reduction of search space can be

achieved with the proposed method.

It must be noted that with different sensor layouts (Preis

& Ostfeld ), different number of classes or total number

of suspect nodes is distinguished, i.e. for some source nodes,

no contamination scenario is detected whatsoever, therefore

the number of remaining classes is smaller than the total

number of network nodes. With a greater number of sen-

sors, a greater number of model output classes is present

(for 2 sensors 58 classes and for 4 sensors 64 classes).

Besides, a sensor placement also greatly contributes to the

detection rate, where 1 layout with 3 sensors (117, 143 and

213) detects 67 classes, which is 3 more than the other

layout with 3 sensors (117, 181 and 213). This does not influ-

ence the RF model efficiency, but it shows that the RF model

can indicate sensor layout detection rate and also completely

eliminate some nodes as possible sources of pollution. All

combinations of the sensor layout proposed by Zechman &

Ranjithan () create an RF model with the same number

of total output classes (57) which is ultimately less than all

values that were obtained by Preis & Ostfeld ().

An example of the chosen contamination scenario with

four sensors with a probability assigned to suspect nodes

can be seen in Figure 6. This prediction was made with the

RF model with 3.4 million inputs with data from all four sen-

sors of Net3. The true source node was assigned a 74.6%

probability of being the true source node by the RF model.

Other suspect nodes with the greatest probabilities are topo-

logically in the vicinity of the true source node which shows

that the RF model correctly localizes the broader contami-

nation source area. This is especially important when

several suspect nodes are assigned equal probabilities for

being the true contamination source. The RFmodel indicates

all probable source locations which need to be further con-

sidered narrowing down the suspect area.

An analysis was done on the Net3 network with the four

sensor layouts by Preis & Ostfeld () with a total of

3,422,803 RF model inputs in order to show the ranking

of the true source node for the 30% (1,026,841) of the RF

model testing data. Table 3 shows that the true source

node is dominantly ranked first for the RF model testing

data and it can be observed that for 88.38% of all the train-

ing data, the true source node is ranked in the top 4 of the

predicted source nodes.



Table 3 | Net3 network prediction of true source node for RF testing data

Rank Number of times %

1 729,283 71.02

2 147,482 14.36

3 64,768 6.31

4 30,837 3.00

5þ 54,471 5.31

Percentage indicates the number of times the true source node obtained the given rank.

Table 5 | Net3 network model predictions for both perfect and imperfect input data

(Boolean and fuzzy)

Sensor type

Model accuracy

Top 3 Top 5 Top 8 Top 10

Perfect 91.70% 96.80% 99.00% 99.60%

Fuzzy 81.90% 92.30% 97.90% 99.20%

Boolean 68.57% 84.40% 94.50% 97.50%

The number of model inputs was 3.4 million for all three sensor types.
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The investigation of demand uncertainty for the Net3

network with four sensors (layout by Preis & Ostfeld

()) can be found in Table 4. It can be observed that

the model accuracy decreases with the increase of demand

uncertainty, which is expected. However, for demand uncer-

tainty of ±5%, the model accuracy only slightly decreases

and for ±20%, which represents a variation range of 40%,

accuracy decreases by only several percent. Also, it must

be observed that when a greater number of top nodes is con-

sidered, the difference in model accuracy decreases. This

shows that the prediction model can be used in contami-

nation events when demand uncertainty is present to

indicate suspect nodes.

The influence of sensor imperfection for the Net3 net-

work with four sensors (layout by Preis & Ostfeld ())

can be found in Table 5. The number of inputs was 3.4

million. It can be observed that the influence of sensor

imperfection greatly influences model accuracy. For the

Boolean type of sensors, accuracy decreases by 23% and

for the fuzzy type of sensors, accuracy decreases by 10%.

However, same as in the case of demand uncertainty,

when a greater number of top nodes is considered, the

difference in model accuracy decreases, which indicates
Table 4 | Net3 network model predictions for input data with demand uncertainty

Demand uncertainty

Model accuracy

Top 3 Top 5 Top 8 Top 10

±0% 90.70% 96.40% 99.00% 99.57%

±5% 88.00% 95.50% 98.70% 99.30%

±20% 86.50% 94.28% 98.10% 99.00%

The number of model inputs was 2 million (out of 3 million Monte Carlo data) for all three

cases.
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that even with the Boolean type of sensors, the proposed

machine learning approach can successfully narrow down

the number of potential source nodes.

Richmond network

For the Richmond network (layout by Preis & Ostfeld

()), after scenarios where pollution is not detected were

removed, the number of output classes was 163 (out of

865) but also varied for different sensor placements. The

relationship between the number of inputs and the number

of top sources for 99% accuracy is shown in Figure 7. For

the Richmond network with an increase of input data, the

number of nodes to achieve 99% accuracy is reduced from

60 nodes for 10,000 inputs to 15 nodes for 1.5 million

inputs. The number of needed RF model inputs indicates

(both for Net3 and Richmond) that this is big data manipu-

lation and it is quite computationally demanding.

In Table 6, the number of top suspect nodes for 99%

accuracy is shown and it can be observed that all three

sensor placements had a total number of 163 (sensor

layout by Preis & Ostfeld ()) suspect nodes (or output

classes of the RF model). The potential source node search

space reduction is around 91% for both five and four

sensor layouts and 88% for the three sensor layouts which

is a significant reduction of problem complexity. The

sensor layout proposed in Preis & Ostfeld (a) is superior

to the one proposed in Preis & Ostfeld () due to the

fact that the total number of output classes of the RF

model is much higher (the maximum being 352 as seen in

Table 6).

The results of the RF model prediction for the Richmond

network with different sensor placements are presented in

Table 7. The total number of Monte Carlo input data for



Table 6 | Richmond network RF model with the indicated number of potential source

nodes for 99% accuracy and the total number of remaining suspect nodes

Sensors placement

Suspect nodes

Top nodes for 99% accuracy Total number

123, 219, 305, 393, 589 15 163

93, 352, 428, 600, 672 18 352

123, 219, 393, 589 15 163

93, 428, 600, 672 25 301

123, 393, 589 20 163

352, 600, 672 25 312

Figure 7 | Richmond network (sensor layout by Preis and Ostfeld (2007)) number of RF model inputs needed for 99% accuracy.

Table 7 | Richmond network RF model results

Sensors placement
Number of model
inputs

Model accuracy

Top 3 Top 5 Top 10

123, 219, 305,
393, 589

1,734,507 74.00% 84.00% 94.00%

93, 352, 428, 600,
672

3,785,650 80.20% 88.90% 96.30%

123, 219, 393,
589

1,729,783 73.00% 83.00% 94.00%

93, 428, 600, 672 3,205,674 79.60% 88.40% 95.70%

123, 393, 589 1,720,815 72.80% 83.00% 93.00%

352, 600, 672 3,299,763 79.80% 87.10% 94.40%
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both investigated layouts was 12 million, and the number of

model inputs is smaller than the one for the Net3 network.

The sensor layout proposed by Preis & Ostfeld (a) is

much more efficient in detecting contamination events

since the number of model inputs is greatly higher than

the one which was obtained by the sensor layout presented

in Preis & Ostfeld (). The RF model accuracy is

increased with the number of sensors and inputs even

though the discrepancy is not large for all investigated lay-

outs (around 8% maximum difference in prediction for a

different number of sensors and model inputs). The top sus-

pect nodes RF model accuracy varies greatly depending on
://iwaponline.com/jh/article-pdf/22/6/1521/781928/jh0221521.pdf
how many top nodes are selected, and this can be attributed

to the higher complexity of the network. For comparison, in

the Net3 model, the accuracy of the true source node being

in the set of the top 10 suspect nodes is 98% for the most

sparse layout, while in the Richmond model, the top 10 sus-

pect nodes include the true source node with an accuracy of

96% for the best possible sensor layout. Same as for Net3,

the RF model training and testing was repeated 50 times

(top 5 suspect nodes prediction) and it was found that the

standard deviation of the prediction was 0.0056, showing

that the model is stable.



Table 10 | Richmond network model predictions for both perfect and imperfect input

data (Boolean and fuzzy)

Sensor type

Model accuracy

Top 3 Top 5 Top 8 Top 10

Perfect 80.20% 88.90% 94.50% 96.30%

Fuzzy 52.00% 65.40% 77.91% 81.20%

Boolean 30.85% 42.40% 54.80% 60.00%

The number of model inputs was 3.7 million for all three sensor types.
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The true source node ranking for the Richmond net-

work with five sensor layouts by Preis & Ostfeld ()

with a total of 1,734,507 RF model inputs (30% was used

for testing) is given in Table 8. It can be seen that the true

source node is also mostly ranked first but not as dominantly

as for Net3 (Table 3). For 80.49% of the training data, the

true source node achieved the top 4 node ranking.

The results for the Richmond network with four sensors

(layout by Preis & Ostfeld ()) with added demand uncer-

tainty can be found in Table 9. Similar to the case for the

Net3 network, the model accuracy decreases with the

increase of demand uncertainty. When a greater number

of top nodes is considered, the influence of demand uncer-

tainty decreases, i.e. model accuracy is slightly decreased.

The results for imperfect sensors for the Richmond net-

work with five sensors (layout by Preis & Ostfeld (a))

can be found in Table 10. The number of inputs was 3.4

million. Same as in the case for Net3 network, it can be

observed that the sensor type greatly influences model accu-

racy. When the top 3 nodes are considered, model accuracy

decreases by 50% when sensor type changes from perfect

to Boolean. When a greater number of top nodes is con-

sidered, model accuracy increases. The fuzzy type of the
Table 8 | Richmond network prediction of true source node for RF testing data

Rank Number of times %

1 249,987 48.00

2 85,557 16.44

3 49,355 9.48

4 34,191 6.57

5þ 101,263 19.51

Percentage indicates the number of times the true source node obtained the given rank.

Table 9 | Richmond network model predictions for input data with demand uncertainty

Demand uncertainty

Model accuracy

Top 3 Top 5 Top 8 Top 10

±0% 64.36% 77.00% 87.05% 91.38%

±5% 60.40% 73.97% 84.00% 89.29%

±20% 58.30% 72.30% 83.60% 88.45%

Number of model inputs was 412,000 (out of 3 million Monte Carlo simulations) for all

three cases.
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sensor performs better than the Boolean type; however, a

considerable reduction in model accuracy can be observed

when comparing with perfect sensors. Results indicate that

with greater sensor imperfections, a greater number of sus-

pect nodes must be further considered to assure that the

true source node is included in the list of suspect nodes.

Efficiency of the RF classifier

The benefit of the proposedmethod is that the RFmodel can be

continually updated with the new simulation data. Although

model training requires a substantial amount of time and com-

puter resources, it must be noted that model training processes

are conducted prior to the contamination event. When con-

tamination occurs, the prediction of the source node can be

obtained in 0.1 s on average for both the Net3 and the Rich-

mond network. The Net3 RF model training was done using

the supercomputing resources at the Center for Advanced

Computing and Modelling, University of Rijeka. Training the

RF model for the Net3 network with around 3.4 million

inputs took 1 h on 1 Intel E7 fat node with 6 TB of RAM,

while the Richmond network RF model (with 1.7 million

inputs) training took 2 h. The Richmond RF model took

longer due to higher complexity (365 input features and 163

output classes). It was found that the major requirement for

both RF models was available RAM capacity, meaning that

training must be done in a high-performance computing

environment, while the RF model run can be performed on a

PC and the top suspect nodes can be quickly generated.

Limitation and extent of the method

It is shown that the proposed method has great robustness

since it can be applied for different networks and different
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sensor layouts. Also, a great accuracy is achieved even when

hydraulic demand uncertainties are taken into account.

However, uncertainties in the hydraulic model such as

pipe roughness, diameters and unknown valve states

should be explored in further work. The proposed approach

assumes a single contamination injection scenario, thus a

formulation that considers multiple contamination injec-

tions nodes should be explored in future work.

In the study for the Net3 benchmark network (92 nodes),

3.4 million inputs were used for model training, while for the

Richmond network (865 nodes), 1.7 million inputs, which is

around 37,000 and 2,000 times greater number of inputs than

the number of water supply network nodes, respectively.

While both RF models provided good accuracy even for a

smaller number of inputs, due to easy parallelization of

Monte Carlo simulations and usage of high-performance

computing, it is possible to obtain a greater number of

inputs to achieve greater accuracy. In realistic cases, water

supply networks can have many more nodes than the bench-

mark network presented in this paper, which could require a

greater amount of model training input data. However, it

must be noted that due to a sparse sensor placement, the

number of model output classes could be significantly smaller

than the number of network nodes in those cases. Therefore,

the methodology for obtaining the Monte Carlo simulation

results needs to be adjusted for such large water distribution

networks. Also, in such networks, a greater number of

remaining suspect nodes could be found due to very dense

node placement in some areas as the problem is of multi-

modal nature.
CONCLUSION

In this paper, a method for identifying the source of con-

tamination in a water supply network with a machine

learning prediction model was presented. The proposed

method was tested on two different water distribution

benchmark networks with different sensor placements.

For each considered network, a considerable number of

contamination scenarios with randomly selected contami-

nation parameters were simulated and water quality time

series of network sensors were obtained. The generated

big data were used as the input for the RF classifier to
://iwaponline.com/jh/article-pdf/22/6/1521/781928/jh0221521.pdf
predict the contamination source node. It is shown that

the RF model presents good accuracy in true contamination

source prediction, with the accuracy increase tendency as

the amount of input data grows. Since the RF model

inputs are simulation results, additional training data can

always be obtained with the only limiting factor being

computational resources. In this manner, the RF model

prediction accuracy can be improved.

The model is tested on two realistic complex benchmark

cases. Due to the multimodal nature of the problem, all poss-

ible contamination sources are sorted with the top suspect

nodes given the greatest probabilities. Although the training

of the model requires substantial computational resources,

in case of a contamination event, predicting the possible

contamination sources is rapid and for every investigated

case, 99% accuracy is obtained with a reasonable number

of top contamination source node candidates, thus greatly

reducing the overall time of the contamination source identi-

fication problem in the water supply network in urgent

situations. The proposed approach was tested with input

data which includes network nodes demand uncertainty

and it was shown that the RF method achieved good accu-

racy for both water supply networks when compared to

data with no demand uncertainty. Also, imperfect sensor

measurements were investigated and it was found that an

RF model trained with input data based on fuzzy sensors

can also achieve a significant reduction in search space for

both networks while input data based on Boolean sensors

require significantly more data for larger networks in order

to achieve a good reduction.

The proposed method must be coupled with an optimiz-

ation algorithm to identify other contamination parameters

– contamination start time, contamination duration and

contamination chemical concentration. With the massively

reduced search space when only top suspect nodes are

considered, independent optimization procedures can be

conducted for each of the suspect nodes to ensure that

the true source node is detected.
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