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Abstract. The sensitivity of ground-based instruments mea-

suring in the infrared with respect to tropospheric water

vapour content is generally limited to the lower and mid-

dle troposphere. The large vertical gradients and variabili-

ties avoid a better sensitivity for the upper troposphere/lower

stratosphere (UT/LS) region. In this work an optimised re-

trieval is presented and it is demonstrated that compared to

a commonly applied method, it improves the performance of

the FTIR technique. The reasons for this improvement and

the possible deficiencies of the method are discussed. Only

by applying the method proposed here and using measure-

ments performed at mountain observatories can water vapour

variabilities in the UT/LS be detected in a self-consistent

manner. The precision, expressed as noise to signal ratio,

is estimated at 45%. In the middle and lower troposphere,

precisions of 22% are achieved. These estimations are con-

firmed by a comparison of retrieval results based on real

FTIR measurements with coinciding measurements of syn-

optical meteorological radiosondes.

1 Introduction

The composition of the Earth’s atmosphere has been pro-

foundly modified throughout the last decades mainly by hu-

man activities. Prominent examples are the stratospheric

ozone depletion and the upward trend in the concentration

of greenhouse gases. While studies about the stratospheric

composition have progressed rather well, there still exists a

considerable deficiency for data from the free troposphere.

Knowing the composition and evolution of these altitude re-

gions is essential for the scientific verification of the Kyoto

and Montreal Protocols and Amendments and for global cli-

mate modelling. Water vapour is the dominant greenhouse
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gas in the atmosphere, and in particular its concentration and

evolution in the upper troposphere and lower stratosphere

(UT/LS) are of great scientific interest for climate modelling

(Harries, 1997; Spencer and Braswell, 1997). Currently

there is no outstanding routine technique for measuring wa-

ter vapour in the UT/LS. The quick changes of atmospheric

water vapour concentrations with time, their large horizontal

gradients, and their decrease of several orders of magnitude

with height makes their accurate detection a challenging task

for any measurement technique. Traditionally tropospheric

water vapour profiles are measured by synoptical meteoro-

logical radiosondes. However, this method has some defi-

ciencies at altitudes above 6–8 km, which are mainly due to

uncertainties in the pre-flight calibration and temperature de-

pendence (Miloshevich, 2001; Leiterer et al., 2004). Other

applied techniques are remote sensing from the ground by

Lidar or Microwave instruments. Both are limited in their

sensitivity: the Lidar generally to below 8–10 km, and the

microwave measurements to above 15 km (SPARC, 2000).

Satellite instruments also struggle to reach below this alti-

tude. In this context the suggested formalism of retrieving

upper tropospheric water vapour amounts from ground-based

FTIR measurements aims to support efforts to obtain qual-

ity UT/LS water vapour data for research. To our knowl-

edge, it is the first time that water vapour profiles measured

by this technique are presented. A great advantage is that

high quality ground-based FTIR measurements have already

been performed during the last 10–15 years within the Net-

work for Detection of Stratospheric Change (Kurylo, 1991,

2000; NDSC, web site). Therefore a long-term record of wa-

ter vapour could be made available, with both temporal and

to some extent, spatial coverage.

The structure of the article is as follows: first it is ar-

gued how the suggested optimisation acts in the context of

inversion theory. Its advantages and deficiencies compared

to a method, commonly used for trace gas retrievals, are dis-

cussed. In the third section an error assessment adds precise
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Fig. 1. Description of a-priori state. Left panel: correlation matrix.

Right panel: black line: mean state; red line: standard deviation of

mean state.

quantitative estimations about the expected improvements to

these qualitative considerations. It is also shown how possi-

ble deficiencies of the optimised method can be eliminated.

Finally, these estimations are validated by a comparison of

retrieval results based on real measurements with coinciding

in-situ measurements.

2 Optimised water vapour retrieval

An inversion problem is generally under-determined. Many

state vectors (x) are consistent with the measurement vector

(y). If one also considers measurement noise (ǫy), there is

an even wider range of possible solutions within ǫy , in ac-

cordance to the measurement vector: in the equation,

ŷ = y + ǫy = Kx (1)

the matrix K is ill-conditioned. Its effective rank is smaller

than the dimension of state space, i.e. it is singular and cannot

be simply inverted. To come to an unique solution of x, the

state space is constrained by requiring:

Bx = Bxa (2)

where xa is a “typical” or a-priori state and the matrix B

determines the kind of required similarity of x with xa . This

equation constrains the solution independently from the mea-

surement, i.e. before the measurement is made. Therefore B

and xa contain the kind of information known about the state

prior to the measurement. Subsequently, assuming Gaussian

statistics for the error term in Eq. (1) and the a-priori distri-

bution in Eq. (2) leads to the cost function:

σ−2(y − Kx)T (y − Kx) + (x − xa)
T BT B(x − xa) (3)

The most probable state is the one which minimises Eq. (3).

Here (ǫT
y ǫy)−1 was identified by σ−2. It is obvious that

the applied a-priori information (B and xa) influences the

solution. For water vapour the large amount of synopti-

cal meteorological sonde (ptu-sonde) data allows a detailed

study of the a-priori state. In the following it is discussed

whether the extensive a-priori information can be used to op-

timise the performance of the retrieval. The study of a-priori

data is done for the island of Tenerife, where ptu-sondes are

launched twice daily (at 00:00 and 12:00 UT) within the

global radiosonde network and where an FTIR instrument

has been operating since 1999 at a mountain observatory

(Izaña Observatory, Schneider et al., 2005).

2.1 Characterisation of a-priori data

The study is based on the daily 12:00 UT soundings per-

formed from 1999 to 2003. It has been observed that an

in-situ instrument – located at the mountain observatory –

and the sonde, when measuring at the observatory’s alti-

tude, detect quite different humidities because of their dif-

ferent locations, i.e. on the surface and in the free tropo-

sphere (see Sect. 4). For this reason the analysed profiles are

built up by a combination of the in-situ measurements at the

instrument’s site (for the lowest grid point; applied sensor:

Rotronic MP100H), and sonde measurements (for all other

grid points below 16 km). For higher altitudes a mean mix-

ing ratio of 2.5 ppmv and covariances like those at 16 km are

applied. The left panel of Fig. 1 shows the correlation matrix

Ŵa determined from these a-priori profiles. Here correlation

matrices are presented instead of the commonly shown co-

variance matrixes. The reason is that they can be more eas-

ily presented. Their elements are all of the same order of

magnitude (between −1 and 1), whereas in the case of water

vapor the elements of the covariance matrices extend over 8

orders of magnitude. Figure 1 demonstrates how variabili-

ties at different altitudes typically correlate with each other.

In the real atmosphere the mixing ratios for different alti-

tudes show correlation coefficients of at least 0.5 within a

layer of around 2.5 km. The a-priori covariance matrix Sa

is calculated from Ŵa by Sa=6aŴa6a
T , where 6a is a di-

agonal matrix containing the a-priori variabilities at a certain

altitude. These variabilities are depicted as a red line in the

right panel of Fig. 1. The black line shows the mean mixing

ratios. The determined mean and covariances only describe

the whole ensemble completely if mixing ratios are normally

distributed. This is generally assumed and often justified by

the fact that entropy is then maximised: if only the mean and

the covariance are known a supposed normal distribution is

thus the least restricting assumption about the a-priori state

(Sect. 10.3.3.2 in Rodgers, 2000). However, this does not

necessarily reflect the real situation!

A further examination of the sonde data reveals that the

mixing ratios at a certain altitude are not normally but log-

normally distributed. Their pdf is:

Px = 1

xσ
√

2π
exp − (ln x − ln xa)

2

2σ 2
(4)

with a shape parameter σ ranging from 1.15 ppmv in the

middle troposphere to 0.55 ppmv above 10 km, and a median
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xa between 5000 ppmv close to the surface and 1.5 ppmv in

the stratosphere. The only exception of this distribution is the

first ≈100 m above the surface, where the mixing ratios are

more normally distributed. It is possible to sample all this

additional information in a simple mean state vector and a

covariance matrix. This is achieved by transforming the state

on a logarithmic scale, which transforms the log-normal pdf

to a normal pdf. A normal pdf can be completely described

by its covariance and its mean. A χ2-test reveals how the

description of the a-priori state is improved by this transfor-

mation. This test determines the probability of a particular

random vector of belonging to an assumed normal distribu-

tion. If a vector x is supposed to be a member of a Gaussian

ensemble with the mean xa and covariance S the quantity

considered is:

χ2 = (x − xa)
T S−1(x − xa) (5)

The χ2 test clearly rejects a normal distribution of the mixing

ratios. This can be seen by comparing the theoretical cumula-

tive distribution function (cdf) of χ2 with the one determined

by Eq. (5). Figure 2 demonstrates that the theoretical χ2

cdf differs clearly from the cdf obtained from the ensemble’s

state vectors if they are assumed to be normally distributed

(difference between black line and black squares). More than

95% of the ensemble’s state vectors are not consistent with

this assumption. On the other hand, a prior log-normal pdf is

well confirmed. If the mixing ratios and the covariances are

transformed to a logarithmic scale, only approximately 10%

of the ensemble’s states fail the test (compare black line and

red circles).

2.2 Discussion of two retrieval methods

This section discusses the differences between an inversion

performed on a linear scale, which is the method commonly

used for trace gas retrievals, and one performed on a logarith-

mic scale. The logarithmic retrieval is occasionally applied

as a positivity constraint, since it avoids negative components

in the solution vector. In the case of water vapour it has

a further advantage. It converts the state for which Eq. (3)

minimises in a statistically optimal solution: on a logarith-

mic scale the a-priori state can be described correctly in the

form of a mean and covariance. Under these circumstances,

substituting BT B and xa in Eq. (3) by the inverse of the loga-

rithmic a-priori covariance (Sa
−1) and the median state vec-

tor, leads to a cost function, which is directly proportional to

the negative logarithm of the a-posteriori probability density

function (pdf) of the Bayesian approach. This posterior pdf

is the conditional pdf of the state given the measurement, or

in other words, the a-priori pdf of the state updated by the

information given in the measurement. The minimisation of

Eq. (3) thus yields the maximum a-posteriori solution, i.e. it

is the most probable state given the measurement.

To the contrary, on a linear scale setting BT B as Sa
−1 and

xa as mean state in Eq. (3) does not lead to a statistically
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Fig. 2. χ2 test for different of a-priori assumptions. Black line:

theoretical χ2 cumulative distribution function (cdf); black filled

squares: χ2 cdf of ensemble for assumed normal pdf on a linear

scale; red circles: χ2 cdf of ensemble for assumed normal pdf on a

logarithmic scale.

optimal solution. It is not related to the a-posteriori pdf in

the Bayesian sense. On a linear scale the a-priori state is log-

normally distributed. Therefore, seen from a statistical point

of view, the second term of the cost function over-constrains

states above the mean and under-constrains states below the

median. As a consequence, the probability of states above the

mean is underestimated and below the median overestimated

– the overestimation is greater the further away it is from the

centre of the a-priori distribution. Thus, if compared to a

correct maximum a-posteriori solution, the retrieval tends to

underestimate the values of the real state both far above and

far below the mean state.

However, the transformation on a logarithmic scale in-

troduces some other problems: it significantly increases the

non-linearity of the forward model, which requires decreas-

ing the differences between each iteration step, thus lower-

ing the speed of convergence. This difficulty is overcome

within the inversion code PROFFIT by using a refined min-

imisation scheme. A further drawback is that, in the retrans-

formed linear scale the constraints now depend on the solu-

tion, which may cause misinterpretations of the spectra. To

assess whether the linear or logarithmic retrieval performs

better both retrieval approaches are extensively examined

first by a theoretical (Sect. 3) and second by an empirical

validation (Sect. 4).

2.3 Applied inversion code and spectral region

PROFFIT (Hase et al., 2004) is the inversion code used. It ap-

plies the Karlsruhe Optimised and Precise Radiative Trans-

fer Algorithm (KOPRA, Höpfner et al., 1998; Kuntz et al.,

1998; Stiller et al., 1998) as the forward model, which was

developed for the analysis of MIPAS-Envisat limb sounder

spectra. PROFFIT enables the inversion on a linear and log-

arithmic scale. Hence, in the case of water vapour, it enables

the correct application of prior information to obtain a statis-

tically optimal solution. PROFFIT does not employ a fixed

www.atmos-chem-phys.net/6/811/2006/ Atmos. Chem. Phys., 6, 811–830, 2006
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for a real measurement taken on 10 March of 2003 (solar elevation

angle 50◦). Black line: measured spectrum; red line: simulated

spectrum; green line: difference between simulation and measure-

ment.

a-priori value for the measurement noise (σ of Eq. 3). This

value is taken from the residuals of the fit itself, performing

an automatic quality control of the measured spectra. Fur-

thermore, if the observed absorptions depend on tempera-

ture, PROFFIT allows the retrieval of temperature profiles.

For both the linear and logarithmic retrieval, the same re-

trieval setup is applied: three microwindows between 1110

and 1122 cm−1 are fitted. Figure 3 shows a typical situa-

tion for an evaluation of a real measurement. The black line

represents the measurement, the red dotted line the simulated

spectrum and the green line the difference between both. The

H2O signatures are marked in the Figure. One can observe

that two stronger lines (at 1111.5 and 1121.2 cm−1) and two

relatively weak lines (at 1117.6 and 1120.8 cm−1) lie within

these spectral regions, where additionally O3 is an important

absorber (numerous thin strong signatures). The profile of

this species is thus simultaneously retrieved. Other interfer-

ing gases are CO2, N2O, and CH4, whereby the latter two

are also simultaneously retrieved by scaling their respective

climatological profiles, the former is kept fixed to a climato-

logical profile. Spectroscopic line parameters are taken from

the HITRAN 2000 database Rothman et al. (2003), except

for O3, where parameters from Wagner et al. (2002) are ap-

plied.

3 Error analysis and sensitivity assessment

Assuming linearity for the forward model F and the inverse

model I within the uncertainties of the retrieved state and the

model parameters it is (Rodgers, 2000):

x̂ − x =
(∂I [F (x̂, p̂), p̂]

∂y

∂F (x̂, p̂)

∂x
− I

)

(x − xa)

+ ∂I [F (x̂, p̂), p̂]
∂y

∂F (x̂, p̂)

∂p
(p − p̂)

+ ∂I [F (x̂, p̂), p̂]
∂y

(y − ŷ)

= (Â − I)(x − xa) + ĜK̂p(p − p̂) + Ĝ(y − ŷ)

(6)

i.e. the difference between the retrieved and the real state

(x̂−x) – the error – can be linearised about a mean profile

xa , the estimated model parameters p̂, and the measured

spectrum ŷ. Here I is the identity matrix, Â the averaging

kernel matrix, Ĝ the gain matrix, and K̂p a sensitivity matrix

to model parameters:

Â = ĜK̂

Ĝ = ∂I [F (x̂, p̂, p̂]
∂y

K̂ = ∂F (x̂, p̂)

∂x

K̂p = ∂F (x̂, p̂)

∂p
(7)

whereby K̂ is the Jacobian. Equation (6) identifies three prin-

ciple error sources. These are the inherent finite vertical res-

olution, the input parameters applied in the inversion proce-

dure, and the measurement noise. This analytic error estima-

tion may be applied if the inversion is performed on a linear

scale. In this case, the constraints and consequently Ĝ are

constant within the uncertainty of x̂. However, if the inver-

sion is performed on a logarithmic scale the constraints are

constant on this scale, but variable on the retransformed lin-

ear scale. Changes of the state vector towards values above

the a-priori value are only weakly constrained, while changes

towards smaller values are more strongly constrained. As

a consequence Ĝ cannot necessarily be considered constant

within the uncertainty of the retrieved state and some model

parameters. The latter is particularly problematic for water

vapour. The phase error of the instrumental line shape and

the temperature profile have a large impact on the spectra.

This is due to the broad and strong absorption signatures of

water vapor. Consequently, all these errors can only be es-

timated by a full treatment. Two forward calculations are

performed for each error estimation and for all profiles of the

large ensemble of the a-priori profiles: a first calculation with

correct parameters and a second with erroneous parameters.

Subsequently both spectra are retrieved with the correct pa-

rameter as input data. The parameter error is then given by

the difference of the two retrievals. The smoothing error is

the difference between the correct parameter retrieval and the

a-priori profile. In this work, all errors are estimated by this

full treatment for consistency reasons for both the linear and

the logarithmic retrieval.

Together with the error estimation a sensitivity assessment

is performed. Generally the averaging kernels (columns of

Atmos. Chem. Phys., 6, 811–830, 2006 www.atmos-chem-phys.net/6/811/2006/
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Â) are used to estimate the sensitivity of the retrieval at cer-

tain altitudes. They document by how much ppmv the re-

trieved solution will change due to a variability of 1 ppmv in

the real atmosphere. They may inform that 1 ppmv more at

5 km is reflected in the retrieval by an extra of 0.1 ppmv at

8 km. However, the typical real atmospheric variabilities at

different altitudes are not considered and hence to what ex-

tent the typical variability as retrieved at 8 km is disturbed by

typical variabilities at 5 km. This is a minor problem if the

mixing ratio variabilities have the same magnitude through-

out the atmosphere. The variabilities of water vapour de-

crease by 3–4 orders of magnitude from the surface to the

tropopause (see Fig. 1), thus the interpretation of the averag-

ing kernels is quite limited. Alternatively, one may produce

adequately normed kernels to address this deficiency. Fur-

thermore the averaging kernels depend strongly on the ac-

tual water vapor content, i.e. there is no typical kernel and

non-linearities play an important role. For all these reasons

here a full treatment, consisting of forward calculation of as-

sumed real states and subsequent inversion, is used to esti-

mate the response of the retrieval on real atmospheric vari-

abilities. Therefore, the real state vectors are correlated lin-

early to their corresponding retrieved vectors. The correla-

tion coefficient (ρ) considers the different magnitudes of the

variabilities. For instance, ρ between the real state at 5 km

and the retrieved state at 8 km gives the typical fraction of the

retrieved variabilities at 8 km due to disturbances from 5 km.

These correlation matrices give a good overview of the rela-

tion between real atmospheric variabilities and the retrieved

variabilities.

Error estimation and sensitivity assessment are performed

for the whole ensemble (the ensemble used for calculat-

ing the a-priori mean and covariances), and for two sub-

ensemble of selected conditions, when especially good upper

tropospheric sensitivity and even sensitivity in the tropopause

region are expected. Sensitivity in the UT and tropopause re-

gion requires the strong absorption lines to be unsaturated.

Furthermore, the signal to noise ratio, which at Izaña is oc-

casionally decreased by high aerosol loading owing to Sa-

haran dust intrusion events, should be acceptable (above

200 at 1100 cm−1). In 30% of all measurement days the

lower tropospheric water vapour slant column amounts (slant

column amounts between surface and 4.3 km) are below

10×1021 cm−2 (LT slant <10×1021 cm−2 criterion), which

means that the strong absorption lines are unsaturated. On

these days, good sensitivity for the UT can be expected. The

observing system should perform even better if the lower tro-

pospheric slant column amounts are below 5×1021 cm−2 (LT

slant <5×1021 cm−2 criterion). This is however only the

case for 10% of all possible observations.

3.1 Smoothing error

Figure 4 shows correlation matrices in the absence of param-

eter errors. They document the sensitivity of the retrieval

if the smoothing error alone is taken into account. The left

panels show the linear retrieval, the right panels the loga-

rithmic retrieval, the upper panels the whole ensemble, and

the middle and lower panels the LT slant<10×1021 cm−2

and LT slant<5×1021 cm−2 sub-ensembles. Considering

the whole ensemble the sensitivity is limited to altitudes be-

low 8–9 km. Furthermore, the upper tropospheric mixing

ratios of the linear retrieval tend to depend more on variabil-

ities at lower altitudes. For example, the value retrieved at

9 km is mainly influenced by the real atmospheric situation

at 7 km. This incorrect altitude attribution is less pronounced

in the logarithmic retrieval. For the LT slant<10×1021 cm−2

sub-ensemble the sensitivity is extended by 1–2 km towards

higher altitudes. In this case, the observing system provides

good information about the atmospheric water vapour vari-

abilities up to 10 km (ρ at the diagonal above 0.7). As before,

for the linear retrieval, the amounts at higher altitudes are

strongly disturbed by the real states at lower altitudes, while,

for the logarithmic retrieval, high correlation coefficients are

more concentrated around the diagonal of the matrix. If the

LT slant is smaller than 5×1021 cm−2, the logarithmic re-

trieval’s ρ values at the diagonal are still 0.7 at 11 km. The

ρ values of the linear retrieval are slightly lower (0.61 at

11 km). But the most pronounced difference between both

methods is the incorrect altitude attribution in case of the lin-

ear retrieval. For example, the mixing ratio retrieved by the

linear method at 11 km is strongly correlated to real values at

8 km (ρ of 0.9). These disturbances are significantly reduced

in case of the logarithmic retrieval (ρ of 0.63). Thus the error

of the state retrieved with the logarithmic method at 11 km

can already be sufficiently reduced by considering the distur-

bances originating from altitudes down to about 8 km only.

The linear method, on the other hand, should very likely take

into account values from further down in order to reach a

similar error level. This means that the correlation length of

the smoothing error is larger for the linear retrieval. To de-

termine the amount of a layer with a certain uncertainty the

layer must be broader for the linear retrieval if compared to

the logarithmic retrieval.

The smoothing error is commonly presented as a mean er-

ror and a covariance matrix. However, for a non-Gaussian

distribution this kind of error presentation is inappropriate.

For a pure log-normal distribution, errors might be presented

on a logarithmic scale as mean and covariance. This is not

possible for the linear retrieval, since it is expected to have

normal as well as log-normal characteristics. To overcome

this problem the errors are firstly assessed for layers and not

for a single altitude. Bearing in mind the modest vertical

resolution of trace gas profiles determined by ground-based

FTIR spectroscopy, the objective of this technique should

consist of retrieving the amount of a certain layer rather than

a concentration at a single altitude. Secondly, least squares

fits are applied to estimate the errors. This enables all sys-

tematic errors to be separated from the random errors. The

regression curves of the least squares fits demonstrate how

www.atmos-chem-phys.net/6/811/2006/ Atmos. Chem. Phys., 6, 811–830, 2006
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Fig. 4. Sensitivity of observing system in the absence of parameter error. Depicted are correlation matrices between assumed real profiles

and retrieved profiles. Left panels for retrieval on a linear scale, right panels for retrieval on a logarithmic scale. Upper panels for the whole

ensemble, middle panels for the LT slant<10×1021 cm−2 sub-ensemble, and lower panels for the LT slant<5×1021 cm−2 sub-ensemble.

Colors mark the values of the correlation coefficients (ρ) as given in legend.

the real atmosphere – as a mean – is mapped by the retrieval:

their difference from the diagonal describes the systematic

smoothing error. The scattering around the regression curve

describes its pure random error. For a linear least squares

fit the correlation coefficient (ρ) can be used to estimate this

pure random error. ρ2 is the ratio of the variance of the re-

gression line (σ 2
reg) to the variance of the retrieved amount

(σ 2
x̂

): ρ2=σ 2
reg/σ

2
x̂

. It gives the proportion of the variance

of the retrieved amount that is systematically linked to the

real atmospheric variance. The remaining variance of x̂ is

the scattering around the regression line (the random error:
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Fig. 5. Smoothing errors in the retrieved profiles. Left panel: linear

retrieval. Right panel: logarithmic retrieval. Colors as described in

legend.

σ 2
ǫreg

). It can be calculated from (e.g. Wilks, 1995):

σ 2
reg + σ 2

ǫreg
= σ 2

x̂
(8)

or

ρ2 +
σ 2

ǫreg

σ 2
x̂

= 1 (9)

Figure 5 depicts the random smoothing errors relative to

the variability of the retrieved value (noise to signal error:

σǫreg/σx̂) of several layers throughout the troposphere. The

altitude region of each layer is indicated by the error bars.

The left panel shows estimations for the linear retrieval and

the right panel for the logarithmic retrieval. The errors for

both retrieval methods are quite similar. The black squares

represent the error for the whole ensemble. It confirms the

observation made in Fig. 4 that above 8 km the retrieval

generally contains limited information about the real atmo-

sphere: the signal/noise ratio lies above 50%. The blue

crosses show the same but for the LT slant<10×1021 cm−2

sub-ensemble. Here the smoothing errors above 6 km are re-

duced, e.g. from 54% to 44% for the 7.6–10 km layer and

the logarithmic retrieval. The red circles show the situation

for the LT slant<5×1021 cm−2 sub-ensemble. Under these

conditions, the random smoothing error of the logarithmic

retrieval for the 8.8–11.2 km layer is as small as 36%. The

random errors calculated with Eq. (9) are similar for the lin-

ear and logarithmic retrieval.

The better performance of the logarithmic approach be-

comes visible in Fig. 6, which shows the real characteristics

of the correlations for four different layers representing the

lower troposphere (LT, 2.3–3.3 km), the middle troposphere

(MT, 4.3–6.4 km), the upper troposphere (UT, 7.6–10 km),

and the tropopause region (8.8–11.2 km). Depicted are all

single ensemble members and curves of linear least squares

fits (solid lines) and second order polynomial least squares

fits (dotted lines). The correlation coefficient (ρ) and the

slope (m) of the regression line are given in the panels. The

left panels show the linear and the right panels the logarith-

mic retrievals. Above ≈6 km the linear retrieval regression
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Fig. 6. Correlations between assumed real partial column amounts

and their corresponding retrieved amounts in the absence of

parameter errors. From the top to the bottom: lower tro-

posphere, middle troposphere, upper troposphere (for the LT

slant<10×1021 cm−2 sub-ensemble), and tropopause region (for

the LT slant<5×1021 cm−2 sub-ensemble). Left panels, black

squares and black lines: retrieval on a linear scale and correspond-

ing least squares fits. Right panels, red circles: retrieval on a log-

arithmic scale and corresponding regression line. Solid lines: lin-

ear least squares fit. Dotted lines: second order polynomial least

squares fit.

line slope always lies below the relevant logarithmic retrieval

slope: the linear method has a larger systematic error. Fur-

thermore, the amounts retrieved by the logarithmic method

are always linearly correlated to the real amounts. For the

linear retrieval this is only valid at low altitudes. At altitudes

above 6 km the linear retrieval is more sensitive at small

amounts than at large amounts. In these cases the systematic

behavior of the linear retrieval is insufficiently described by

a linear regression line. A linear regression line then system-

atically overestimates very low and very large amounts and

underestimates amounts between the median and the mean
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Table 1. Assumed uncertainties.

error source uncertainty

measurement noise S/N of 500

phase error 0.02 rad

modulation eff. 2%

T profilea up to 2.5 K at surface

1 K rest of troposphere

solar angle 0.1◦

line intensity 5%

pres. broad. coef. 1%

a detailed description see text

value. For a better description of this systematic behavior a

second order polynomial would be needed. This additional

characteristic of the linear retrieval’s smoothing error has im-

portant consequences: it limits the linear retrieval in correctly

detecting variabilities present in time series. It underesti-

mates alterations towards large amounts and overestimate al-

terations towards small amounts. For an analysis of water

vapour time series above 6 km the logarithmic retrieval is the

better choice!

3.2 Model parameter error

As for the smoothing error, the random and systematic errors

caused by parameter uncertainties are separated by means of

least squares fits. Therefore, the retrievals of spectra simu-

lated with correct parameters are correlated to the retrievals

of spectra simulated with erroneous parameters. In this sub-

section, errors due to measurement noise, uncertainties in so-

lar angle, instrumental line shape (ILS: modulation efficiency

and phase error Hase et al., 1999), temperature profile, and

spectroscopic parameters (line intensity and pressure broad-

ening coefficient) are estimated. The assumed parameter un-

certainties are listed in Table 1. Two sources are consid-

ered as errors in the temperature profile: first, the measure-

ment uncertainty of the sonde, which is assumed to be 0.5 K

throughout the whole troposphere and to have no interlevel

correlations. Second, the temporal differences between the

FTIR and the sonde’s temperature measurements, which are

estimated to be 1.5 K at the surface and 0.5 K in the rest of

the troposphere, with 5 km correlation length for the inter-

level correlations.

Random errors due to measurement noise, uncertainties in

the modulation efficiencies, the solar angle and the line inten-

sity are situated below or around 5%. They may be neglected

if compared to the errors caused by phase error, temperature

profile, or pressure broadening coefficient uncertainties. Fig-

ure 7 shows the latter errors for the whole ensemble (upper

panels) and for the sub-ensembles with low LT slant columns

(middle and lower panels). It should be remarked that, owing

to the aforementioned nonlinearity of Ĝ, it is impossible to

5

10

0 50 100

5

10

0 50 100

5

10

0 50 100

5

10

0 50 100

5

10

0 50 100

5

10

0 50 100

L
T

 s
la

n
t 

<
 5

x
1
0

2
1 c

m
-2
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
L

T
 s

la
n

t 
<
 1

0
x
1
0

2
1 c

m
-2
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
w

h
o

le
 e

n
s
e
m

b
le

noise/signal [%]

a
lt
it
u

d
e

 [
k
m

]  pressure 

      broadening

 phase error

 T profile

      (no retr. of T) 

 T profile 

      (simultaneaous 

      retrieval of T) 

noise/signal [%]

noise/signal [%]

a
lt
it
u

d
e

 [
k
m

]

linear retrieval                                               logarithmic retrieval

noise/signal [%]

noise/signal [%]

a
lt
it
u

d
e

 [
k
m

]

noise/signal [%]

Fig. 7. Parameter errors in the retrieved profiles. Upper

panels: for the whole ensemble. Middle panels: for the

LT slant<10×1021 cm−2 sub-ensemble Bottom panels: for LT

slant<5×1021 cm−2 sub-ensemble. Left panels: linear retrieval.

Right panels: logarithmic retrieval. Symbols as described in the

legend.

separate the parameter errors completely from the smoothing

errors. As a consequence, even systematic error sources may

produce random errors (line intensity and pressure broaden-

ing parameter). Furthermore, the correlation plots are ex-

pected to show some of the characteristics of the smoothing

error: e.g. above 6 km the linear retrieval’s sensitivity to-

wards parameter uncertainties is expected to be smaller at

large amounts than at small amounts. This is the main reason

for the linear retrieval’s high random errors above 6 km for

the LT slant <5×1021 cm−2 sub-ensemble caused by the un-

certainties in the phase error parameter. The corresponding

errors of the logarithmic retrieval are smaller (at least for the

MT and UT).

Considering the whole ensemble, the temperature uncer-

tainty provides the largest errors (red crosses). The errors

are generally larger for the logarithmic retrieval, in particular

the temperature error. Here 23% at 6.5 km for the linear re-

trieval is much lower than 44% for the logarithmic retrieval.
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This is due to the retrieval’s misinterpretation of spectral sig-

natures arising from errors in the temperature profile. Since

ĜK̂p from Eq. (6) is generally not equal to zero, the parame-

ter error in the measurement space may be transformed into

the state space. This is a minor problem when the minimi-

sation of the cost function (Eq. 3) is performed on a linear

scale. Then changes of the state vector with respect to its

a-priori state and the magnitude of the constraining term are

linearly correlated. A misinterpretation would thus mean a

large value of the constraining term and consequently Eq. (3)

would never be minimised. On a logarithmic scale, however,

a linear increase of the constraining term is related to an ex-

ponential increase of the retransformed state vector. Hence,

a significant change of the state vector is not avoided by the

constraining term. The problem can be reduced by a simul-

taneous retrieval of the temperature profile, which adds two

terms to the cost function:

σ−2(y − Kx)T (y − Kx) + (x − xa)
T Sa

−1(x − xa)

+σ−2(y − Ktt)
T (y − Ktt) + (t − ta)

T Sǫt
−1(t − ta)

(10)

Here t and ta are the real and the assumed temperature state

vector, Kt the sensitivity (or Jacobian) matrix for the temper-

ature, and Sǫt the error covariance matrix for the tempera-

ture. Thus a temperature error does not lead to an adjustment

of the first term – a misinterpretation of spectral information

–, but to an adjustment of the third term in Eq. (10). This

reduces the probability of misinterpreting the temperature er-

ror. At 6.5 km, for example, the simultaneous fitting of the

temperature profile reduces the error from 44% to 13%. This

is seen by comparing the red crosses with the red squares in

Fig. 7. This strategy leaves the uncertainty in phase error and

pressure broadening coefficient as the most important error

sources.

For the LT slant<10×1021 cm−2 sub-ensemble (middle

panels of Fig. 7), the errors are much smaller (generally be-

low 30%). Except for the phase error, the errors for the linear

and logarithmic retrieval are now similar. A misinterpreta-

tion of spectral signatures is less probable for this ensemble.

Apparently, the condition of unsaturated absorption lines si-

multaneously eliminates days predestined for misinterpreta-

tion. However, a simultaneous retrieval of the temperature

further improves the retrievals by reducing the temperature

error to below 10% at all altitudes. The most important er-

rors are due to uncertainties in the phase error.

The lower panel of Fig. 7 depicts the errors for the LT

slant<5×1021 cm−2 sub-ensemble. This condition further

reduces all errors at altitudes above 5 km. A simultaneous

fit of the temperature limits all errors for the logarithmic re-

trieval to below 10%. The only exception is the error ow-

ing to phase error uncertainties. It still reaches 18% around

10 km.

3.3 Total random errors

Due to the strong non-linearity of Ĝ, the total error cannot be

deduced from the smoothing and parameter errors presented

above. It has to be simulated separately by a full treatment.

Figure 8 shows the correlation matrices for consideration of

parameter errors according to Table 1 and for retrievals with-

out simultaneous fitting of the temperature profile. It is the

same as Fig. 4 but in the presence of parameter errors. The

matrices for the whole ensemble (upper panels) show that

the parameter errors reduce the sensitivity of both retrievals

in the middle and upper troposphere. Additionally, the log-

arithmic retrieval performs poorly in the lower troposphere.

For the low LT slant sub-ensembles (middle and lower pan-

els), the differences to Fig. 4 are much smaller: The param-

eter errors are much more important for saturated than for

unsaturated absorption lines, which was already observed in

Fig. 7.

The total errors for this kind of retrieval are depicted in

Fig. 9. If the whole ensemble is considered (black squares)

even the retrieval of the 6.4–8.8 km layer becomes uncer-

tain (noise/signal of 62% and 75% for the linear and log-

arithmic retrieval). For the logarithmic retrieval the large

error in the lower troposphere also stands out. For the LT

slant<10×1021 cm−2 sub-ensemble, the error in the 6.4–

8.8 km layer is reduced to 45% and the retrieval of the 7.6–

10 km layer is possible with an uncertainty of 53%. The

condition of LT slant<5×1021 cm−2 further reduces the er-

rors: the logarithmic retrieval enables the 8.8–11.2 km layer

to be retrieved with an error of only 43%. This realistic error

scenario suggests that, considering the whole ensemble, the

linear retrieval performs better.

The reason for the poorer performance of the logarithmic

retrieval is due to the misinterpretations of spectral signatures

as discussed above. There it was shown that the misinterpre-

tation of a temperature error is strongly reduced by simulta-

neously fitting this parameter. Figures 10 and 11 show that

this strategy is also successful concerning the total error. For

the logarithmic retrieval the respective correlation matrices

(Fig. 10) are very similar to those without additional parame-

ter errors (Fig. 4). It should now be possible to retrieve water

vapour amounts up to at least 7–8 km under all conditions.

Figure 11 demonstrates that, for a realistic error scenario and

a simultaneous fit of temperature, both linear and logarithmic

retrieval yield similar random errors. Considering the whole

ensemble, LT and MT amounts can be determined with an

acceptable noise to signal ratio of around 22%.

Tables 2 and 3 summarize random errors for the total col-

umn amount and for partial column amounts of the LT, MT,

UT, and the tropopause region. Figure 12 depicts the corre-

lations between real amount and retrieved amount of the 4

representative layers. The left panels represent the linear and

the right panels the logarithmic retrieval. While correlation

coefficients are quite similar, the better performance of the

logarithmic retrieval manifests itself by the good linear cor-
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Fig. 8. Same as Fig. 4 but in the presence of parameter error as listed in Table 1.

relation with the real amounts at all altitudes, which finally

results in higher sensitivity (higher values of slopes), for al-

titudes above 6 km, if compared to the linear retrieval.

3.4 Systematic errors

Already in Sect. 3.1, compared to the logarithmic method,

the systematic smoothing error of the linear method is shown

to be larger. At the same time the linear retrieval’s error de-

pends on the retrieved amounts: at higher altitudes it is more

sensitive at small amounts than at large amounts. This incon-

sistency of the linear method complicates the interpretation

of the amounts obtained with the linear retrieval. Neglecting

this inconsistency and assuming linear correlation for both

the linear and logarithmic method gives only a mean situa-

tion of their systematic smoothing error. Compared to the

logarithmic retrieval the slope of the linear retrieval’s regres-

sion line is further from unity, i.e. as a mean the absolute

Atmos. Chem. Phys., 6, 811–830, 2006 www.atmos-chem-phys.net/6/811/2006/
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Table 2. Estimated noise/signal of linear retrieval with simultaneous fitting of temperature [%]. The values for the 7.6–10.0 km and 8.8–

11.2 km layers are for the LT slant<10×1021 cm−2 and LT slant<5×1021 cm−2 sub-ensembles, respectively.

error source total 2.3–3.3 km 4.3–6.4 km 7.6–10.0 km 8.8–11.2 km

smoothing 3 14 23 44 45

meas. noise <1 3 2 8 9

pha. err. 2 12 8 24 18

mod eff. <1 1 <1 <1 2

T. profile 1 4 2 6 5

solar angle <1 1 <1 <1 1

line int. <1 <1 <1 2 1

pres. coef. 1 7 7 7 5

total 4 21 24 50 47

Table 3. Same as Table 2, but for logarithmic retrieval.

error source total 2.3–3.3 km 4.3–6.4 km 7.6–10.0 km 8.8–11.2 km

smoothing 2 10 21 44 36

meas. noise 1 4 2 7 8

pha. err. 2 19 10 33 18

mod eff. <1 1 <1 <1 <1

T. profile 1 8 6 7 3

solar angle 1 <1 <1 <1 <1

line int. <1 1 1 1 1

pres. coef. 1 11 6 5 4

total 4 22 24 49 42
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Fig. 9. Same as Fig. 5 but in the presence of parameter error as

listed in Table 1.

variance of the linear retrieval’s regression line (σ 2
reg) agrees

less well with the real variance. According to Eq. (9) and

since ρ2=σ 2
reg/σ

2
x̂

is similar for both retrieval methods, the

absolute variance of the scattering around the regression line

(the random error) is then larger for the logarithmic retrieval.

However, this is a mean value for the whole ensemble. A

detailed analysis would reveal that the linear retrieval has in-

creased absolute systematic errors and reduced absolute ran-

dom errors only for large amounts. It is vice versa for small

amounts: the absolute systematic errors are increased and

the random errors reduced. This once again manifests the

dependency of the linear retrieval’s errors on the retrieved

amounts. On the other hand, the absolute errors of the log-

arithmic retrieval are practically independent from the re-

trieved amounts.

Additionally, systematic uncertainties of the spectroscopic

line parameters may cause systematic errors. To estimate

them, the retrievals of spectra simulated with correct param-

eters are linearly correlated to the retrievals of spectra sim-

ulated with erroneous parameters. The systematic errors are

given as the difference of the regression line slope to unity.

Table 4 lists the systematic errors for the linear retrieval for

the four partial column amounts representing the LT, MT, and

UT, the tropopause region and for the total column amount.

Table 5 lists these estimations for the logarithmic retrieval.

Below 6 km they are very similar to the linear retrieval. At

higher altitudes the linear retrieval’s errors are larger. At

these altitudes and as discussed above, it would be more cor-

rect to give two values for the linear retrieval’s smoothing er-

ror: a first for low amounts, which would be reduced, and a

second for large amounts, which would be increased if com-

pared to the mean value presented. At higher altitudes the

logarithmic retrieval is slightly more sensitive to the system-
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Fig. 10. Same as Fig. 8 but with simultaneous retrieval of temperature profile.

Table 4. Estimated systematic errors of linear retrieval [%]. The values for the 7.6–10.0 km and 8.8–11.2 km layers are for the LT

slant<10×1021 cm−2 and LT slant<5×1021 cm−2 sub-ensembles, respectively.

error source total 2.3–3.3 km 4.3–6.4 km 7.6–10.0 km 8.8–11.2 km

smoothing 0 −3 −6 −31 −38

line int. −5 −5 −3 −3 −4

pres. coef. 0 +10 −8 −1 −4
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Table 5. Same as Table 4, but for logarithmic retrieval.

error source total 2.3–3.3 km 4.3–6.4 km 7.6–10.0 km 8.8–11.2 km

smoothing −1 −4 −1 −23 −33

line int. −5 −5 −2 −4 −5

pres. coef. +2 +19 −15 +4 −1
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Fig. 11. Same as Fig. 9 but with simultaneous retrieval of tempera-

ture profile.

atic line intensity error, since the increasing sensitivity of the

linear retrieval for high amounts reduces the slope of the re-

gression line. The same can be observed for the pressure

coefficient error: at high altitudes the linear retrieval’s error

always lies below the logarithmic retrieval’s error.

3.5 Characterisation of posterior ensembles

On a logarithmic scale all involved pdfs are Gaussian distri-

butions. A correctly working retrieval should therefore pro-

duce a normal pdf for the posterior ensemble, or if referred

to the retransformed linear scale, a log-normal pdf. It should

not change the principle distribution characteristics of the a-

priori ensemble. The situation of the linear retrieval is differ-

ent because it involves normal and log-normal pdfs. Conse-

quently the posterior pdf may be something between a log-

normal and normal pdf. A χ2 test can check this issue. The

posterior covariance matrix is Sx̂=ǫ{x̂x̂T }. In contrast to the

a-priori covariance matrix Sa, the matrix Sx̂ is singular, since

the solution space has fewer dimensions than the a-priori

space. The calculation of the χ2 values according to Eq. (5)

is thus not straightforward. However, since the covariance

matrix is symmetric its singular value decomposition leads

to L3LT , with the columns of L containing its eigenvectors

and the diagonal matrix 3 its corresponding eigenvalues. As

S−1 in Eq. (5) a pseudo inverse is applied, which only con-

siders the 3 largest eigenvalues. The χ2 calculated with this

inverse would thus have 3 degrees of freedom. The test is

performed for all aforementioned retrievals: with/without pa-

rameter errors and with/without simultaneous fitting of tem-
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Fig. 12. Same as Fig. 6 but in the presence of parameter errors and

with simultaneous retrieval of temperature profile.

perature. The calculations have to be performed on a loga-

rithmic scale to check for a log-normal distribution and on

a linear scale to check for a normal distribution. In Fig. 13

the theoretical χ2 cumulative distribution function (cdf) for

3 degrees of freedom (black line) is compared to the χ2 cdf

derived from the different tests. The upper panels show the

test assuming a normal distribution. The left panels show the

linear retrieval and the right panel the logarithmic retrieval.

The black squares (in the graph partially hidden by the red
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Fig. 13. χ2 test for posterior ensembles. Upper panels: χ2 test

assuming normal distribution. Lower panels: χ2 test assuming log-

normal distribution. Left panels: linear retrieval. Right panels: log-

arithmic retrieval. Black line: theoretical χ2 cumulative distribu-

tion function (cdf) for 3 degrees of freedom; black filled squares:

empirical χ2 cdf of ensemble in absence of parameter errors; black

circles: empirical χ2 cdf of ensemble in the presence of parameter

errors and without retrieval of temperature profile; red circles: em-

pirical χ2 cdf of ensemble in the presence of parameter errors and

simultaneous retrieval of temperature profile.

circles) represent the posterior ensemble when no parameter

errors are assumed. The linear posterior ensemble is quite

consistent with a normal distribution. This means that the

linear retrieval forces the originally log-normally distributed

ensemble into a Gaussian ensemble. Additional errors push

the solutions slightly away from a normal distribution. A

simultaneous retrieval of the temperature enables a better ex-

ploitation of the information present in the spectra and leads

nearly to the same distribution characteristic as if no errors

were present. The logarithmic posterior ensemble has fewer

characteristics of a normal distribution. Its empirical χ2 cdfs

differ considerably from the theoretical χ2 cdf. The lower

panel checks for a log-normal distribution. This test cannot

be performed for the linear retrieval since it yields occasion-

ally to negative retrieved values. In the absence of parameter

errors, the logarithmic retrieval does not change the charac-

teristics of the a-priori distribution. It is still a log-normal

distribution (black squares). The presence of parameter er-

rors pushes the posterior ensemble slightly away from a pure

log-normal distribution (black and red circles).

2 3

2

3

2 3

2

3
no temperature 

retrieval

D
O

F
 (

re
a

lis
ti
c
 e

rr
o

rs
)

DOF (no parameter error)

simultaneous 

temperature 

retrieval

D
O

F
 (

re
a

lis
ti
c
 e

rr
o

rs
)

DOF (no parameter error)

Fig. 14. DOF values for logarithmic retrievals with realistic error

assumptions compared to DOF values of logarithmic retrieval in the

absence of errors. Left panel: no retrieval of temperature profile.

Right panel: simultaneous retrieval of temperature profile.

In the case of misinterpretation of spectral signatures the

logarithmic retrieval over-interprets spectral signatures. This

can be demonstrated by analysing the trace of the averaging

kernel matrix (tr(Â)). It determines the amount of informa-

tion present in the spectra used by the retrieval for updat-

ing the a-priori state. It is commonly called the degree of

freedom of the measurement (DOF). Figure 14 compares the

DOF values for the logarithmic retrievals with and without

additional errors. If the retrieval is working correctly adding

further errors should reduce the DOF value, since the infor-

mation in the spectra is more uncertain. However, on a log-

arithmic scale occasionally the contrary is observed. If the

temperature profile is not simultaneously fitted (left panel

of Fig. 14) occasionally more information is retrieved from

the erroneous spectra than from the spectra with only white

noise, which means that errors in the spectra are misinter-

preted as information. This problem disappears by fitting the

temperature profile simultaneously (right panel).

4 Comparison of retrieval results to ptu-sonde measure-

ments

4.1 The FTIR measurements

Since March 1999 measurements of highly-resolved in-

frared solar absorption spectra are routinely performed at the

Izaña Observatory, situated on the Canary Island of Tenerife

(28◦18′ N, 16◦29′ W) at 2370 m a.s.l. Its position in the At-

lantic Ocean and above a stable inversion layer, typical for

subtropical regions, provides clean air and clear sky condi-

tions most of the year. This offers good conditions for at-

mospheric observations by remote sensing techniques. The

spectra are obtained by a Bruker IFS 120M applying a res-

olution of 0.0036 to 0.005 cm−1 and no numerical apodis-

ation. The spectral intensities are determined by a liquid-

nitrogen cooled HgCdTe detector, which, in order to ensure

linearity, is operated in a photovoltaic mode. During short

periods in 1999 and 2001 a photoconductive detector was
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applied whose nonlinearities were corrected. The spectra are

typically constructed by co-adding up to 8 scans recorded in

about 10 or 13 min, depending on their resolution. Analysing

the shape of the absorption lines (lines are widened by pres-

sure broadening) and their different temperature sensitivities

enables the retrieval of the absorbers’ vertical distribution.

Since the instrumental line shape (ILS) also affects the shape

of the measured absorption lines, this instrumental charac-

teristic should be determined independently from the atmo-

spheric measurements. This is done on average every two

months using cell measurements and LINEFIT software as

described in Hase et al. (1999). The temperature and pres-

sure profiles, necessary for the inversion, are taken from the

synoptical meteorological 12:00 UT sondes. Above 30 km

data from the Goddard Space Flight Center’s automailer sys-

tem are applied. Some results of these measurements are

presented in Schneider et al. (2005) and references therein.

4.2 The radiosonde measurements

Until September 2002 the meteorological soundings were

launched from Santa Cruz de Tenerife, 35 km northeast of the

observatory, and since October 2002 in an automised mode

from Güimar, 15 km southeast of the observatory. The son-

des are equipped with a Vaisala RS80-A thin-film capaci-

tive sensor which determines relative humidity. The sonde

data are corrected by a method suggested by Leiterer et al.

(2004), who reported a remaining random error of less than

5% throughout the troposphere. Other authors report cor-

rection methods with a remaining uncertainty of over 10%

(Miloshevich, 2001). Furthermore, the precision of the wa-

ter vapour measured by the RS80-A sensor may be degraded

due to chemical contamination during storage. To avoid son-

des with iced detectors, sondes that passed through clouds

are not taken into account. Therefore sondes which detect

a vapour pressure close to the liquid or ice saturation pres-

sure are disregarded. Furthermore, sondes with unrealistic

high humidities above 10 km, which may indicate an iced

detector, are excluded. The corrected sonde mixing ratios

are finally sampled on the altitude grid of the retrieval by re-

quiring that linear interpolation of the mixing ratios between

two grid levels yield the same partial columns as the original

highly-resolved data.

4.3 Temporal and spatial variability

The large temporal and spatial variabilities of atmospheric

water vapour are problematic when measurements conducted

from different platforms are to be compared. Both experi-

ments should be conducted at the same time and sound the

same atmospheric location. For this reason only sonde mea-

surements coinciding within 2 h of the FTIR measurements

are used for the comparison. Spatial coincidence is difficult

to achieve. The sonde measures in-situ and will always be

situated at a certain distance from the imaginary line between

the FTIR instrument and the sun. This is particularly prob-

lematic for the lowest layer above the FTIR instrument as,

while the FTIR instrument is located at the surface the sonde

is typically floating around 30 km south of the observatory

in the free troposphere. A comparison between the humidity

measured in-situ at the observatory and the sonde’s humidity

demonstrated that the water vapour amounts close to the sur-

face are more variable and on average 40% larger than those

in the free troposphere.

4.4 Comparison

Within the comparison period, from March 1999 to January

2004, the critera for sonde quality (no clouds, realistic hu-

midity above 10 km) and temporal coincidence with FTIR

measurements are fulfilled in 157 occasions only. 59 of them

also belong to the LT slant<10×1021 cm−2 sub-ensemble

and 19 to the LT slant<5×1021 cm−2 sub-ensemble. Fig-

ure 15 presents correlation matrices of FTIR and sonde pro-

files. They are the experimental analogue to the simulated

correlations shown in Fig. 10. The upper panels show the

situation for all coincidences and the lower panels for low

LT slant column amounts. Keeping in mind the errors of the

sonde data and temporal and spacial mismatching, the over-

all agreement of these correlation patterns with the simulated

pattern is very good. Considering all situations the linear

retrieval is apparently more consistent with the sonde mea-

surements than the logarithmic retrieval, since it has slightly

larger ρ values along the diagonal of the matrix. The de-

graded performance of the logarithmic retrieval may be due

to a slight misinterpretation of an incorrect ILS characteri-

sation. As seen in Fig. 7, the phase error is similar to the

temperature error and may cause similar problems if the as-

sumptions of Table 1 are too optimistic for the applied Bruker

IFS 120M spectrometer. In this case, the logarithmic re-

trieval may be improved even further by a simultaneous re-

trieval of the ILS. However, it should be considered that the

linear retrieval has large outer diagonal elements, in partic-

ular above 5 km. For the logarithmic retrieval, on the other

hand, large correlation coefficients are well centred around

the diagonal, which counterbalances the lower diagonal val-

ues, since it means that the correlation lengths towards sonde

mixing ratios are smaller compared to those of the linear re-

trieval. This is a consequence of the poorer vertical reso-

lution of the latter (see explanations about smoothing error

in Sect. 3), and even more important considering the situa-

tion of the upper troposphere and tropopause region for days

with low LT slant column amounts. Here the ρ values on

the diagonal are quite similar for the linear and logarithmic

retrieval. However, the logarithmic amounts above 9 km are

less correlated with the sonde measurements around 8 km.

For example, the state retrieved at 10 km has a ρ value with

the real state at 8 km of 0.82 in the linear and 0.70 in the log-

arithmic case only. This results in a much smaller systematic

difference between the sonde and FTIR for the logarithmic

www.atmos-chem-phys.net/6/811/2006/ Atmos. Chem. Phys., 6, 811–830, 2006



826 M. Schneider et al.: Water vapour profiles by ground-based FTIR spectroscopy

5 10 15

5

10

15

 

 

sonde atmosphere [km]

re
tr

ie
v
e
d
 a

tm
o
s
p
h
e
re

 [
k
m

]

-0.64

-0.52

-0.40

0.40

0.52

0.64

0.76

0.88

1.00

5 10 15

5

10

15

L
T

 s
la

n
t 

<
 5

x
1
0

2
1 c

m
-2
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
L

T
 s

la
n

t 
<
 1

0
x
1
0

2
1 c

m
-2
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
w

h
o

le
 e

n
s
e
m

b
le

linear retrieval                                                   logarithmic retrieval

 

 

sonde atmosphere [km]

re
tr

ie
v
e
d
 a

tm
o
s
p
h
e
re

 [
k
m

]

-0.64

-0.52

-0.40

0.40

0.52

0.64

0.76

0.88

1.00

5 10 15

5

10

15

 

 

sonde atmosphere [km]

re
tr

ie
v
e
d
 a

tm
o
s
p
h
e
re

 [
k
m

]

-0.64

-0.52

-0.40

0.40

0.52

0.64

0.76

0.88

1.00

5 10 15

5

10

15

 

 

sonde atmosphere [km]

re
tr

ie
v
e
d
 a

tm
o
s
p
h
e
re

 [
k
m

]

-0.64

-0.52

-0.40

0.40

0.52

0.64

0.76

0.88

1.00

5 10 15

5

10

15

 

 

sonde atmosphere [km]

re
tr

ie
v
e
d
 a

tm
o
s
p
h
e
re

 [
k
m

]

-0.64

-0.52

-0.40

0.40

0.52

0.64

0.76

0.88

1.00

5 10 15

5

10

15

 

 

sonde atmosphere [km]

re
tr

ie
v
e
d
 a

tm
o
s
p
h
e
re

 [
k
m

]

-0.64

-0.52

-0.40

0.40

0.52

0.64

0.76

0.88

1.00

Fig. 15. Same as Fig. 10 but for correlation matrices between measured sonde and FTIR profiles.

retrieval at high altitudes if compared to the linear retrieval.

Tables 6 and 7 list these differences. They are calculated

from least squares fits as described in section 3.1. The dif-

ference to unity of the slope gives the systematic deviation

and the scattering around the regression line gives the ran-

dom deviation. This scattering describes the level of consis-

tency between the variabilities detected by the sonde and the

FTIR measurements. It may also be seen as the overall pre-

cision of FTIR and sonde experiments together. For the UT

and tropopause layer and considering the coincidences with

low LT slant column amounts only, it is situated around 55%

for the linear as well as the logarithmic retrieval. These cal-

culations even disregard temporal and spatial mismatching

of both measurements. These values are therefore – at least

qualitatively – well consistent with the simulations in Sect. 3,

where the total random error of the FTIR measurements for

these altitudes is estimated to be situated around 45% for the

linear and logarithmic retrieval (see total error in Tables 2

and 3).
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Table 6. Differences between sonde and FTIR column amounts as estimated from the correlation plots (Fig. 16). The values for the 7.6–

10.0 km and 8.8–11.2 km layers are for the LT slant<10×1021 cm−2 and LT slant<5×1021 cm−2 sub-ensembles, respectively.

total 2.3–3.3 km 4.3–6.4 km 7.6–10.0 km 8.8–11.2 km

random 25 40 32 54 56

systematic +6 +3 −4 −40 −47

Table 7. Same as Table 6 but for logarithmic retrieval.

total 2.3–3.3 km 4.3–6.4 km 7.6–10.0 km 8.8–11.2 km

random 25 47 33 58 51

systematic +6 −4 +1 +2 −10

An outstanding difference to Tables 2 and 3 is the poorer

consistency for the LT layer of FTIR when compared to

sonde than when compared within the simulations: empir-

ical standard deviation of ≈45% compared to the estimated

values of below 22%. This is due to the aforementioned dif-

ferent conditions in the lowermost layer above the instrument

(surface influences) and the corresponding layer at the sonde

(free troposphere). Since the LT mainly determines the to-

tal column amount, the latter is also largely affected by these

differences. The estimated and empirically observed preci-

sion for the MT are much more consistent: estimated noise

to signal for the FTIR of 24% versus measured ≈32% for

both experiments together.

Figure 16 shows the correlation between LT, MT, UT, and

tropopause partial column amounts of FTIR and sonde mea-

surements. The greatest differences with Fig. 12 are ob-

served for the LT (as discussed above), where the regres-

sion line between sonde and FTIR data has on offset of

≈2.5×1021 cm−2: the LT at the site of the instrument is

more humid than the free tropospheric LT. For the MT the

consistency between the simulations and the empirical ob-

servations is excellent, even though the errors of the sonde

measurements and temporal and spatial mismatching are

still disregarded. The regression lines for the UT and the

tropopause region show a small offset. Retrieved amounts

are ≈1×1020 cm−2 larger than the sonde amounts. This may

confirm a dry bias of the sonde measurements (Turner et al.,

2003). The slopes of the linear regression lines for the UT

and tropopause region are 1.02 and 0.90 for the logarithmic

retrieval. These values are much larger than the simulated

slopes of 0.64 and 0.62. The reason may be that the humidity

applied for the first layer in the simulations differs from the

real humidity of this layer. Due to the aforementioned differ-

ent condition at the sonde and at instrument altitude (2.3 km),

a mixing ratio determined by an in-situ instrument was ap-

plied for the simulation. This relatively high value is then

spread out up to the next grid point (3.3 km). However, the

enhanced humidity due to surface conditions is very likely

limited to the lowest 100 m of the atmosphere. This overesti-

mation of simulated LT amounts reduces the mean estimated

sensitivity in the UT and tropopause region.

Figure 16 further demonstrates that the logarithmic re-

trieval is correlated linearly to the sonde data at all altitudes,

whereby for high altitudes the linear retrieval’s regression

line underestimates both especially large and small amounts.

This is consistent with the simulations (Fig. 12). The experi-

ments confirm that at high altitudes the linear retrieval is less

sensitive at large amounts if compared to small amounts. The

empirical validation suggests that the differences between the

linear and logarithmic retrievals’ systematic errors are even

more pronounced than proposed by the theoretical study per-

formed in Sect. 3. This is reflected in the larger differences

between the slopes of the regression lines for the linear and

logarithmic retrieval. While at higher altitudes and for days

with low LT slant column amounts, slopes of around 0.53 for

the linear retrieval versus 0.63 for the logarithmic retrieval

are simulated, the empirical validation yields 0.57 versus

0.96. An explication may be that the assumed measurement

noise is underestimated in the simulations, since all spectra

were calculated for no aerosol loading. More measurement

noise would mean that the a-priori information is more im-

portant and, since the linear retrieval applies a wrong a-priori,

the caused systematic error would increase.

The empirical validation not only confirms the increased

systematic error of the linear retrieval, it even suggests that

the improvements by the logarithmic method are more pro-

nounced than indicated in the simulations. The empirical val-

idation – in consistency with the simulations – shows that

the linear retrieval of water vapour at high altitudes has im-

portant inconsistencies. Only the logarithmic method is a

self-consistent retrieval method. Its retrieved amounts are

linearly correlated with the real amounts and are well-suited

for detection of water vapour variabilities in the UT and the

tropopause region.
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Fig. 16. Same as Fig. 12 but for measured sonde and FTIR partial

column amounts.

5 Subtropical water vapour time series

Figure 17 depicts a nearly 7 year record of tropospheric wa-

ter vapour amounts as determined by the logarithmic retrieval

with simultaneous fitting of the temperature. The black cir-

cles show data from the Bruker IFS 120M, which was op-

erated until April 2005. The red crosses are results as ob-

tained from a Bruker 125HR, which measures since Jan-

uary 2005. While for the lower and middle tropospheric

values all measurement days are depicted, the upper tropo-

spheric and tropopause values are presented only when the

LT slant column amounts are lower than 10×1021 cm−2 and

5×1021 cm−2, respectively. For the lower and middle tropo-

sphere a well pronounced seasonal cycle is observed. Val-

ues are highest at the end of summer and lowest in the win-

ter months. A similar clear seasonal dependence is not ob-

served for the upper tropospheric amounts and the amounts

of the tropopause region. Values are sometimes even espe-

cially high in autumn/winter, which demonstrates their inde-

pendence from lower tropospheric levels. A quick view may

give the impression of increasing water vapour contents in

the upper troposphere; however, for a serious trend analysis

a longer and more continuous time series would be needed.

6 Summary and conclusions

Compared to other atmospheric components, the retrieval

of atmospheric water vapour from ground-based FTIR mea-

surements has additional difficulties. Water vapour has very

large vertical gradients and variabilities, which generally

limit the sensitivity of the ground-based technique to the

lower and middle troposphere. The spectral signatures orig-

inating from the upper troposphere are rather weak and thus

their retrieved values depend to an important extent on a-

priori assumptions. Water vapour mixing ratios are log-

normally distributed and an inversion on a logarithmic scale

enables the correct application of this a-prior knowledge and

consequently leads to a statistically optimal retrieval. How-

ever, this method introduces the risk of misinterpreting spec-

tral signatures produced by errors in assumed model parame-

ters. It is shown that the misinterpretations can be controlled

by simultaneously fitting the temperature profile. A logarith-

mic retrieval should therefore perform better than the com-

monly applied linear retrieval, in particular for high altitudes

where the spectral signatures are similar to the measurement

noise. It is found that the linear retrieval leads to large sys-

tematic errors, which are difficult to characterise. They can

be observed in correlation plots between retrieved and real

amounts. The complex character of the linear retrieval’s

systematic error has important consequences: it limits the

linear retrieval in correctly detecting variabilities present in

time series. It would underestimate alterations towards large

amounts and overestimate alterations towards small amounts.

The systematic error of the logarithmic retrieval is smaller.

Its amounts are almost linearly correlated to the real amounts,

i.e. its sensitivity is independent from the retrieved amount.

For an analysis of water vapour time series of the upper tro-

posphere and the tropopause region the logarithmic retrieval

has to be applied. A realistic error scenario simulates ran-

dom errors of 4% for the total column amounts and around

23% for amounts of the lower and middle troposphere. On

days with low LT slant amounts, amounts of the upper tro-

pospheric and the tropopause region can also be determined

with an uncertainty of around 45%. Furthermore, it is found

that, in addition to the limited vertical resolution, the uncer-

tainties in the instrumental line shape (phase error) are re-

sponsible for the most important errors. All these estimations

are confirmed by a comparison to sonde measurements.

The advantage of the FTIR technique compared to the me-

teorological sondes is that the errors are well understood and

water isotope evaluation is possible. This may allow a study

of hydrometeorological processes in the atmosphere.
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Fig. 17. Time series of water vapour above Tenerife island determined from FTIR measurements. From the top to the bottom: tropopause

column amounts (8.8–11.2 km), upper tropospheric column amounts (7.6–10.0 km), middle tropospheric column amounts (4.3–6.4 km), and

lower tropospheric column amounts (2.3–3.3 km). Black circles: measurements of Bruker IFS 120M. Red crosses: Measurements of Bruker

IFS 125HR.

The suggested method can be applied to other dataset of

highly-resolved infrared spectra (e.g. to measurements made

within the Network for Detection of Stratospheric Change).

However, the capability of the method would have to be in-

vestigated for each measurement site individually. If the in-

strumental line shape (phase error) is well characterised and

the temperature profile data are reliable even on days with

saturated absorption lines, lower and middle tropospheric

amounts can be detected. The upper tropospheric sensitivity

is expected to be better the lower the water vapour content in

the lowest layers and the stabler the instrumental line shape.

In this context the subtropical site of Izaña, located on an is-

land, and the application of a Bruker IFS 120M are not the

best conditions. For measurements made by a Bruker IFS

125HR even lower uncertainties should be expected. At less

humid or higher located measurement sites, the conditions

necessary for the detection of water vapour in the tropopause

region are more frequently fulfilled. Applying the proposed

retrieval method to spectra measured during the last 20–25

years at FTIR sites such as Jungfraujoch or Kitt Peak could

produce unique continuous long-term series of UT/LS water

vapour amounts.
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