
CHAPTER 13 

Water-wave modulation 

J.W.  Dold    and D.H.  Peregrine' 

Abstract 

Accurate numerical computations of wave trains with small 

modulations that grow are described.  The range of wave steepness and 

modulation lengths that give breaking waves are determined.  The 

number of wave crests is reduced for a time at greatest modulation but 

frequency downshifting is not observed.  Near-breaking wave-group 

structure is always similar, with energy concentrated into one or two 

wavelengths. 

1.  Introduction 

The ocean surface rarely, if ever, has the form of a uniform 

periodic travelling wave train.  In part, this is due to the instabil- 

ities of such waves.  The first instability to be found was the 

Benjamin-Feir (1967) modulational instability.  Unlike other instabil- 

ities it occurs for wave trains of steepness well below the maximum 

steepness of steady waves at which crests approach a 120° angle, and so 

may be especially relevant to the evolution of ocean waves.  For more 

recent theoretical studies of the instability itself see McLean 

(1982 a,b). 

Experiments demonstrate that the instability leads to the formation 

of strongly modulated wave groups, and further evolution can lead to a 

recurrence of an approximately uniform wave train.  One of the most 

striking features of experiments is that for sufficiently steep initial 

waves the recurrence of a uniform wave is accompanied by a decrease in 

frequency.  (Lake et al, 1977, Melville 1982, Su et al 1982).  Lake and 

Yuen (1978) conjecture that this frequency downshifting is related to 

the decrease in the dominant frequency of wind waves with fetch and 

duration. 

Previous theoretical studies have been made with approximate 

equations, see Lake et al (1977), Stiassnie and Kroszynski (1982) , and 

Lo and Mei (1985).  They show strong modulation and recurrence of 

uniform waves, but no frequency downshifting.  Since these approxima- 

tions are weakly nonlinear they cannot describe the wave breaking that 

occurs at strongest modulation. 

This work describes numerical computations of the evolution of 

small amplitude modulations on a uniform wave train.  These computations 

use an efficient program solving for irrotational flow with the exact 

* t 
Research Associate and Reader, School of Mathematics, University of 

Bristol, University Walk, Bristol BS8 1TW, England. 

163 



164 COASTAL ENGINEERING -1986 

inviscid boundary conditions.  The computations can continue to 

describe the initial overturning stage of wave breaking, and hence 

clearly indicate when breaking occurs. 

2.  Computation 

The method of computation is based on a boundary-integral solution 

of Laplace's equation for the complex velocity <j>x - i(j>v in two 

dimensions.  It is based on Cauchy's integral theorem for functions of 

a complex variable  (x + iy).  The method is briefly described in Dold 

and Peregrine (1984, 1985):  a more detailed account is in preparation. 

Initial conditions are chosen for the surface elevation, £, and 

velocity potential,  <J>, and were made up as follows: 

(i)  an initial uniform wave train on deep water;  ? = a cox x is 

the relevant first approximation, but an accurate steady wave 

form and potential were used in units with gravity = 1, 

wavelength = 2 IT. 

(ii)  the computational region contained n waves, where  3 £ n £ 10. 

(iii)  a perturbation of the form 

cos 
+ m      \     /n - m    . \1 
— x - *rj + cos^-^— x - ** jj 

was added to C together with a corresponding perturbation to 

ij). This gave a modulation length of n/m waves; m was 1 or 2. 

The phase shift was chosen to be hn since Stiassnle (private 

communication) indicated this gave the most rapid growth. The 

value of e was usually 0.1 and sometimes 0.05. We did not 

intend to study the growth of infinitesimal perturbations. 

Periodic boundary conditions were imposed on the computational 

region, and the effect of the above initial conditions is to give a 

weak periodic modulation on the wave train.  The time evolution of this 

modulation was then followed through its initial growth until either: 

(a)  the computation failed because the wave crest had become too 

sharply curved for satisfactory resolution, which is a clear 

indication of the proximity of breaking. By rearrangement of 

computational points wave overturning could be modelled. 

or   (b)  a near recurrence of the uniform wave state occurred.  In some 

cases more than one recurrence was computed. 

Most previous calculations with this general type of program had 

been for one or two periods involving no more than two waves.  The 

present examples were for up to 10 waves followed for a hundred or more 

periods.  Accuracy was checked in this case by running the same initial 

conditions with various numbers of initial points and varying the 

explicit tolerances for iterations and time-stepping within the 

computation. We aimed to find the most economical values which gave 

sufficient accuracy.  The high-order approximations used in the method 
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permitted as little as 8 computational points per wave and time-steps 

as large as 0.1 period for the gentler waves. Figure 1 shows part of 

one such computation just after it has lost accuracy, together with a 

more accurate profile using 12 points per wavelength from the initial 

time. 

Figure 1.  Apartial comparison of computations of surface 

elevation with 3 and 12 points per wave length 

after 60 linear periods, i.e. t = 120ir.  The more 

accurate profile is shown with a continuous line, 

the computational discretization is shown for the 

8 point profile.  The initial steepness is 0.12, 

and the whole computation includes 2 modulations 

over 9 wavelengths.  The vertical exaggeration in 

the figure is 5 times.  The actual maximum wave 

slope is 23°. 

3.  Some examples related to wave breaking 

A summary of the calculations is given in figure 2 which indicates 

whether or not waves grow to breaking.  Some of the shorter modulations 

of 2h  or 3 waves are too short to be unstable.  For the instability of 

just two waves and its evolution see Longuet-Higgins (1978) and Longuet- 

Higgins and Cokelet (1978). 

One important feature of all the computations is that except for a 

fraction of a wave period before wave breaking the linear-wave concepts 

of phase velocity and group velocity give a good approximation for any 

time interval of two or three wave periods.  Hence, should anyone wish 

to compare any of the spatial wave profiles with wave measurements at a 

fixed point this is possible.  The most significant point to be noted 

is that since for deep water waves group velocity,  cQ,  is half the 

phase velocity,  c,  the number of waves in a modulation on a temporal 

record is twice the spatial number used here;  see figure 6. 

Figure 3 is a representative example of cases where the small 

initial modulation evolved into a steep, short wave group and back to a 

recurrence of a near uniform wave-train.  Slightly more than one 

modulation length of 5 waves is shown.  The wave profiles are given at 

multiples of 10 or 20 periods since by choosing an interval of  2n or 

4n periods the effects on the wave profile of both phase velocity and 

linear group velocity lead to a recurrence of the wave and modulation 

positions. 
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Figure 2.  Summary of wave modulation computations.  Crosses 

indicate waves grew to breaking.  Open circles 

indicate modulation grows and uniform waves recur. 

Filled circles indicate no growth of modulation. 

Typical features shown in figure 3 include: 

(a) a short group of steep waves at maximum modulation. 

(b) waves of close to zero amplitude each side of the steep waves. 

The modulation does have two precise zeros in the evolution. 

(c) a time interval around the time of maximum modulation during which 

one wave crest disappears. 

(d) an advance in the relative position of the peak of the modulation 

over that predicted by linear group velocity. 

(e) a change of relative phase of waves at recurrence, but no lasting 

frequency downshift which requires the loss of a wave. 
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Those modulations that break differ little from the first part of 

figure 3.  This is illustrated in figure 4 which shows two profiles for 

the slightly greater initial wave steepness of ak = 0.12, compared 

with ak = 0.11 in figure 3.  The first profile, at 60 periods, fits 

almost precisely on the supplementary profile at 70 periods in figure 3. 

It is significant that the ratio 70:60 is close to (0.12)
2
:(0.11)

2 

which is the relative scaling one would expect from the nonlinear 

Schrodinger equation.  A wave trough is near the maximum point of the 

modulation. 

The second profile in figure 4 is just one period later:  the crest 

of a wave is now at a point close to the peak of the modulation.  A very 

short time later the computation ceased because the wave crest was too 

sharp.  Improved numerical resolution met the same problem.  This wave 

crest is very close to the form of the limiting travelling wave with a 

corner of 120° at the crest.  The maximum slopes of the waves are close 

to 30°.  This crest is shown without vertical exaggeration in figure 5. 

Also in figure 5 is a breaking wave derived from the same wave 

train but with the initial perturbation  £ = 0.D5 instead of  £ = 0.10. 

This produced a slightly more energetic breaker at a later time. 

Two isometric plots of the later stages of the computation with 

e = 0.05 are chosen to show profiles in the time direction cutting a 

wave group when the peak modulation is in a trough, figure 6(a) and 

when it is at a crest, figure 6(b).  They also show how each successive 

wave passes through the energy maximum. 

The energy of the modulation continues to be focussed near the 

peak so that there is eventually one wave which either just breaks or 

breaks more strongly depending on the relationship between the energy 

focussing and wave phase.  In reality each successive wave passing 

through such a group can break.  This is reported from ocean observations 

by Donelan et al (1982) .  In a real sea the relationship between energy 

focussing and wave phase is likely to be even more variable, so this 

aspect of wave breaking has not been studied further. 

The detailed shape and evolution of the short steep wave group that 

occurs for some periods before breaking, as illustrated in figure 6, is 

remarkably similar for a range of initial wave steepnesses and 

modulations.  Profiles chosen at comparable times of wave passage 

through the groups can be superposed with only slight differences 

detectable. 

4.  Frequency downshifting 

The problem of frequency downshifting has been examined carefully. 

In these calculations there is no frequency downshift at recurrence. 

On the other hand, at maximum modulation there is every sign of down- 

shifting.  There is normally one wave crest lost for each modulation: 

see figure 7 where at the end of a computation with 9 waves and two 

modulations only seven crests are visible.  Similarly the spatial 

Fourier coefficients show a strong spectral shift to the lower pertur- 

bation wavenumber:  figure 8 shows the time evolution of the coefficients 
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Figure 6.  Isometric plots of the last 6 periods before 

breaking for the 5 wave modulation with initial 

steepness ak = 0.12, and initial modulation 

e = 0.05.  The "exposed" time profile has a trough 

at peak modulation in (a), and a crest in (b) . 
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Figure 8.  Time evolution of the spatial Fourier coefficients 

for a 9 wave modulation on waves with initial steep- 

ness 0.10.  Breaking occurs at 92 periods with most 

energy in the "8" wave number component. 
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for a single 9-wave modulation.  However, when recurrence occurs, as in 

figures 3 and 9 the original wavelength and period also return. 

These computations support the hypothesis that breaking is 

essential for frequency downshift.  This is consistent with experiments. 

However, waves actually disappear, or reappear, in the vicinity of zeros 

of wave amplitude.  In each case of recurrence two such zeros were found 

at different times and one less wave can be seen during the time interval 

between zeros. 

5.  Conclusions 

Computations describe many details of the evolution of weak 

modulations on a uniform wave train.  The boundary of modulations that 

grow to breaking is outlined in terms of initial wave steepness and 

modulation length.  Wave trains as gentle as ak = 0.10, H/L = 0.03, 

can develop into breaking waves.  For comparison, the energy density of 

a wind driven sea is equivalent to a uniform wave train, at the 

frequency of the spectral peak, of around ak = 0.13, and the limiting 

wave train of maximum steepness has ak = 0.44. 

The steepest waves all occur in similar short groups a little more 

than one wavelength long.  Such groups endure for around ten or more 

wave periods. 

Although there are indications of frequency downshifting in the 

computations, the origin of the phenomenon is still obscure. 

Comparisons with theory suggest: 

(a) for times of a few periods linear theory gives a fair indication 

of wave behaviour, even for the steepest nonbreaking waves, but 

wave shape is nonlinear. 

(b) for long time intervals, the weakly nonlinear NLS equation gives 

a qualitatively correct evolution, with quantitative discrepancies 

which are consistent with Dysthe's (1979) higher order approxima- 

tion.  These comparisons will be reported elsewhere. 

J.W. Dold acknowledges the support of the U.K. Science and 

Engineering Research Council. 
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